
Algorithm 726: ORTHPOL—A Package of
Routines for Generating Orthogonal
Polynomials and Gauss-Type
Quadrature Rules

WALTER GAUTSCHI

Purdue University

A collection of subroutines and examples of their uses, as well as the underlying numerical
methods, are described for general:ing orthogonal polynomials relative to arbitrary weight
functions. The object of these routines is to produce the coefficients in the three-term recurrence
relation satisfied by the orthogonal polynomials. Once these are known, additional data can be
generated, such as zeros of orthogonal polynomials and Gauss-type quadrature rules, for which
routines are also provided.

Categories and Subject Descriptors: G. 1.2 [Numerical Analysis]: Approximation; G.1.4
[Numerical Analysis]: Quadrature and Numerical Differentiation; G.4 [Mathematical Soft-
ware]

General Terms: Algorithms

Additional Key Words and Phrases: Gauss-type quadrature rules, orthogonal polynomials

1. INTRODUCTION

Classical orthogonal polynomials, such as those of Legendre, Chebyshev,

Laguerre, and Hermite, have been used for purposes of approximation in

widely different disciplines and over a long period of time. Their popularity is

due in part to the ease with which they can be employed and in part to the

wealth of analytic results known for them. Widespread use of nonclassical

orthogonal polynomials, in contrast, has been impeded by a lack of effective

and generally applicable constructive methods. The present set of computer

routines has been developed over the past 10 years in the hope of remedying

this impediment and of encouraging the use of nonstandard orthogonal

polynomials. A number of applications indeed have already been made, for

This work was supported in part by National Research Foundation grants, most recently by

grant DMS-9023403.
Author’s address: Department of Computer Sciences, Purdue University, West Lafayette, IN
47907-1398.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
01994 ACM 0098-3500/94/0300-0021 $03.50

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994, Pages 21-62.

22 . Walter Gautschi

example, to numerical quadrature (Cauchy principal value integrals with

coth-kernel [Gautschi et al. 1987], Hilbert transform of Jacobi weight func-

tions [Gautschi and Wimp 1987], integration over half-infinite intervals

[Gautschi 1991c], rational Gauss-type quadrature [Gautschi 1993a; 1993bl),

to moment-preserving spline approximation [Gautschi 1984a; Gautschi and

Milovanovi6 1986; Frontini et al. 1987], to the summation of slowly conver-

gent series [Gautschi 1991a, 1991 b], and, perhaps most notably, to the proof

of the Bieberbach conjecture [Gautschi 1986b].

In most applications, orthogonality is with respect to a positive weight

function, w, on a given interval or union of intervals, or with respect to

positive weights, w,, concentrated on a discrete set of points, {x,}, or a

combination of both. For convenience of notation, we subsume all of these

cases under the notion of a positive measure, d A, on the real line R. That is,

the respective inner product is written as a Riemann–Stieltjes integral,

(U, u) =
/

r.L(t)rJ(t)ci A(t), (1.1)
R

where the function M t) is the indefinite integral of w for the continuous part,

and a step function with jumps ZULat x, for the discrete part. We assume that

(1. 1) is meaningful whenever u, v are polynomials. There is then defined a
unique set of (monic) orthogonal polynomials,

n~ (t) = t k + lower-degree terms, k=o,l,2,...,

(fik,m,)=o if k#&. . (1.2)

We speak of “continuous” orthogonal polynomials if the support of d h is an

interval or a union of intervals, of “discrete” orthogonal polynomials if the

support of dh consists of a discrete set of points, and of orthogonal polynomi-

als of “mixed type” if the support of d A has both a continuous and discrete

part. In the first and last cases, there are infinitely many orthogonal polyno-

mials, one for each degree, whereas in the second case, there are exactly N

orthogonal polynomials, To, rl, . . . , w~. ~, w here N is the number of support

points. In all cases, we denote the polynomials by m~(.) = Wk(”; d A), or Wk(.; w),

if we want to indicate their dependence on the measure d A or weight function

w, and use similar notations for other quantities depending on d A or w.
It is a distinctive feature of orthogonal polynomials, compared to other

orthogonal systems, that they satisfy a three-term recurrence relation,

~k+~(t) = (t – ~k)~~(t)– ~~~&~(t), k = 0,1,2,...,

?TO(t)= 1, 7r1(t) = o, (1.3)

with coefficients a~ = ak(d~) G l?, ~k = flk(d A) > 0 that are uniquely deter-

mined by the measure dA. By convention, the coefficient PO, which multiplies

ACM TransactIons on Mathematical Software, VOI 20, No, 1. March 1994

Algorithm 726: ORTHPOL . 23

T.l = O in (1.3), is defined by

(1.4)

The knowledge of these coefficients is absolutely indispensable for any sound

computational use and application of orthogonal polynomials [Gautschi 1982a,

1990]. One of the principal objectives of the present package is precisely to

provide routines for generating these coefficients. Routines for related quanti-

ties are also provided, such as Gauss-type quadrature weights and nodes and,

hence, also zeros of orthogonal polynomials.

Occasionally (e.g., in Gautschi [1984a], Gautschi and Milovanovi6 [19861,

Frontini et al. [1987], and Gautschi [1993a; 1993b]), one needs to deal with

indefinite (i.e., sign-changing) measures d 1 The positivity of the ~~ is then

no longer guaranteed, indeed not even the existence of all orthogonal polyno-

mials. Nevertheless, our methods can still be formally applied, albeit at the

risk of possible breakdowns or instabilities.

There are basically four methods used here to generate recursion coeffi-

cients: (1) Methods based on explicit formulas. These relate to classical

orthogonal polynomials and are implemented in the routine recur of Section

2. (2) Methods based on moment information. These are dealt with in Section

3 and are represented by a single routine, cheb. Its origin can be traced back

to work of Chebyshev on discrete least squares approximation. (3) Bootstrap

methods based on inner product formulas for the coefficients, and orthogonal

reduction methods. We have attributed the idea for the former method to

Stieltjes, and referred to it in Gautschi [1982a] as the Stieltjes procedure. The

prototype is the routine sti in Section 4, applicable for discrete orthogonal

polynomials. An alternative routine is lancz, which accomplishes the same

purpose, but uses the method of Lanczos. Either of these routines can be used

in mcdis, which applies to continuous as well as to mixed-type orthogonal

polynomials. In contrast to all previous routines, mcdis uses a discretization

process and, thus, furnishes only approximate answers whose accuracies can

be controlled by the user. The routine, however, is by far the most sophisti-

cated and flexible routine in this package, one that requires, or can greatly

benefit from, ingenuity of the user. The same kind of discretization is also

applicable to moment-related methods, yielding the routine rnccheb. (4)

Modification algorithms. These are routines generating recursion coefficients

for measures modified by a rational factor, utilizing the recursion coefficients

of the original measure, which are assumed to be known. They can be thought

of as algorithmic implementations of the Christoffel, or generalized Christof-

fel, theorem and are incorporated in the routines chri and gchri of Section 5.

An important application of all of these routines is made in Section 6, where

routines are provided that generate the weights and nodes of quadrature

rules of Gauss, Gauss–Radau, and Gauss–Lobatto types.

Each routine has a single-precision and double-precision version with

similar names, except for the prefix d in double-precision procedures. The

latter are generally a straightforward translation of the former. An exception

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

24 . Walter Gautschi

is the routine dlga used in drecur for computing the logarithm of the

gamma function, which employs a different method than the single-precision

companion routine alga.

All routines of the package have been checked for ANSI conformance and

tested on two computers: the Cyber 205 and a Sun 4/670 MP workstation.

The former has machine precision es = 7.11 X 10-15, .Ed = 5.05 X 10-29 in

single and double precision, respectively, while the latter has es = 5.96 X

10-8, Ed = 1.11 x 10-16. The Cyber 205 has a large floating-point exponent

range, extending from approximately –8617 to + 8645 in single as well as in

double precision, whereas the Sun 4/670 has the rather limited exponent

range [– 38, 38] in single precision, but a larger range [– 308, 308] in double

precision. All output cited relates to work on the Cyber 205.

The package is organized as follows: Section O contains (slightly amended)

netlib routines, namely, rlmach and dlmach, providing basic machine

constants for a variety of computers. Section 1 contains all of the driver

routines, named test 1, test2, etc., which are used (and described in the body

of this paper) to test the subroutines of the package. The complete output of

each test is listed immediately after the driver. Sections 2–6 constitute the

core of the package: The single- and double-precision subroutines described in

the equally numbered sections of this paper. All single-precision routines are

provided with comments and instructions for their use. These, of course,

apply to the double-precision routines as well.

2. CLASSICAL WEIGHT FUNCTIONS

Among the most frequently used orthogonal polynomials are the Jacobi

polynomials, generalized Laguerre polynomials, and Hermite polynomials,

supported, respectively, on a finite interval, half-infinite interval, and the

whole real line. The respective weight functions are

~(t) = ~(~!~)(~) = (1 _~)’J(l + ~)~

on (–1,1), a > –1,/3 > –l: Jacobi; (2.1)

w(t) = w(a)(t)= tae–t on (0, ~), a > – 1: Generalized Laguerre; (2.2)

w(t) = e-t’ on (—~, ~): Hermite. (2.3)

Special cases of the Jacobi polynomials are the Legendre polynomials (a = ~

= O); the Chebyshev polynomials of the first (a = ~ = – ~), second (a = ~
= ~), third (a = –~ = – ~), and fourth (a = –~ = ~) kinds; and the Gegen-

bauer polynomials (a = ~ = A – ~). The Laguerre polynomials are the special
case a = O of the generalized Laguerre polynomials.

For each of these polynomials, the corresponding recursion coefficients

ah = ah(w), ~h = ~~(w) are explicitly known (see, e.g., Chihara [1978,

pp. 217–22 1] and are generated in single precision by the routine recur.

Its calling sequence is

recur(n, ipol y, al, be, a, b, i err).

ACM Transactions on Mathematical Software, Vol. 20, No 1, March 1994,

Algorithm 726: ORTHPOL . 25

On entry,

n is the number of recursion coefficients desired; type integer.

ipoly is an integer identif~ng the polynomial as follows:

1 = Legendre polynomial on (– 1, 1);

2 = Legendre polynomial on (O, 1);

3 = Chebyshev polynomial of the first kind;

4 = Chebyshev polynomial of the second kind;

5 = Chebyshev polynomial of the third kind;

6 = Jacobi polynomial with parameters al, be;

7 = generalized Laguerre polynomial with parameter al; and

8 = Hermite polynomial.

al, be are the input parameters a, ~ for Jacobi and generalized Laguerre

polynomials; type real; they are only used if ipoly = 6 or 7, and in

the latter case, only al is used.

On return,

a, b are real arrays of dimension n with a(/%), b(k) containing the coeffi-

cients a~_ ~, /3~_ ~, respectively, k = 1,2, n.

ierr is an error flag, where

ierr = O on normal return,
ierr = 1 if either al or be is out of range when ipoly = 6 or ipoly = 7,

ierr = 2 if there is potential overflow in the evaluation of ~0 when

ipoly = 6 or ipoly = 7; in this case, PO is set equal to

the largest machine-representable number,

ierr = 3 if n is out of range, and

ierr = 4 if ipoly is not one of the admissible integers.

No provision has been made for Chebyshev polynomials of the fourth kind,

since their recursion coefficients are obtained from those for the third-kind

Chebyshev polynomials simply by changing the sign of the a‘s (and leaving

the /3’s unchanged).

The corresponding double-precision routine is drecur; it has the same

calling sequence, except for real data types now being double precision.

In the cases of Jacobi polynomials (ipoly = 6) and generalized Laguerre

polynomials (ipoly = 7), the recursion coefficient flo (and only this one)

involves the gamma function r. Accordingly, a function routine, alga, is

provided that computes the IIogarithm in F of the gamma function, and a

separate routine, gamma, computing the gamma function by exponentiating

its logarithm. Their calling sequences are

function alga(x)
function gamma(x, ierr),

where ierr is an output variable set equal to 2 or O depending on whether the

gamma function does, or does not, overflow, respectively. The corresponding

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

26 . Walter Gautschi

double-precision routines have the names dlga and dgamma. All of these

routines require machine-dependent constants for reasons explained below.

The routine alga is based on a rational approximation valid on the interval

[~, ~1. Outside this interval, the argument x is written as

x=xc+m,

where

{

X–[XJ+l if x–1X]<*,
Xe =

x–lx] otherwise

is in the interval (~, $] and where m > – 1 is an integer. If m = – 1 (i.e.,

0< x s +), then in IYx) = in IYx,) – in X, while for m >0, one computes

lnIlx) = lnIYx,) + lnp, where p =x,(x, + I)”””(xe+ m – 1). If m is so

large, say, m > mO, that the product p would overflow, then in p is com-

puted (at a price!) as lnp = lnx, + ln(x, + 1) + ““” +ln(x, + m – 1).It is

here where a machine-dependent integer is required, namely, m ~ = smallest

integer m such that 1 “ 3 “ 5 “”” (2 m + 1)/2 ~ is greater than or equal to the

largest machine-representable number, R. By Stirling’s formula, the integer

mO is seen to be the smallest integer m satisfying ((m + 1)/e) ln((m + 1)/e)
> (ln R – ~ lntl)\e, hence, equal to [e . t((ln R – ~ln8)/e)], where t(y) is

the inverse function of y = tint.For our purposes, the low-accuracy approxi-

mation of t(y), given in Gautschi [1967b, pp. 5 1–52], and implemented in the

routine t, is adequate.

The rational approximation chosen on [~, ~] is one due to W. J. Cody and

K. E. Hillstrom, namely, the one labeled n = 7 in Table II of Cody and

Hillstrom [1967]. It is designed to yield about 16 correct decimal digits (cf.

Table I of Cody and Hillstrom [1967]), but because of numerical cancellation

furnishes only about 13– 14 correct decimal digits.

Since rational approximations for in r having sufficient accuracies for

double-precision computation do not seem to be available in the literature, we

use a different approach for the routine dlga, namely, the asymptotic approx-

imation (cf. eq. 6.1.42 of Abramowitz and Stegun [1964], where the constants

Bz ~ are Bernoulli numbers)

lnr(y) = (y – ~)lny –y + *ln(27r)

B
+?

2m
-(2m-l)+pJy)

~=1 2m(2m– l)Y

for values of y >0 large enough to have

lRn(y)l < &

(2.4)

(2.5)

where d is the number of decimal digits carried in double-precision arith-

metic, another machine-dependent real number. If (2.5) holds for y > y. and

if x > y., we compute in 11x) from the asymptotic expression (2.4) (where

ACM TransactIons on Mathematical Software, Vol 20, No 1, March 1994

Algorithm 726: ORTHPOL . 27

Y = x and the remainder term is neglected). Otherwise, we let k. be the
smallest positive integer k such that x + k > yO, and use

lnr(x) =lnr(x +kO) –ln(x(x+ 1) . . . (x +kO – l)), (2.6)

where the first term on the right is computed from (2.4) (with y = x + k ~).

Since, for y >0,

lR~(y)/ <
lB2n+21 –(2n+l)

(2n + 2)(2n + l)Y

(cf. Abramowitz and Stegun [1964, eq. 6.1.421), the inequality (2.5) is satisfied
if

([1 21B2n+21 1}yzexp Zn+l ‘1nlO+ln (2n+2)(2n +1) “ (2.7)

In our routine dlga, we have selected n = 9. For double-precision accuracy on

the Cyber 205, we have d = 28.3, for which (2.7) then gives y >

exp{.121188 ... d + .053905 ..} = 32.6.

For single-precision calculation, we selected the method of rational approxi-

mation, rather than the asymptotic formula (2.4) and (2.6), since we found

that the former is generally more accurate, by a factor, on the average, of

about 20 and as large as 300. Neither method yields full machine accuracy.

The former, as already mentioned, loses accuracy in the evaluation of the

approximation. The latter suffers loss of accuracy because of cancellation

occurring in (2.6), which typica Ily amounts to a loss of 2–5 significant decimal

digits in the gamma function itself.

Since these errors affect only the coefficient /?O (and only if ipoly = 6 or 7),

they are of no consequence unless the output of the routine recur serves as

input to another routine, such as gauss (cf. Section 6), which makes essential

use of Do. In this case, for maximum single-precision accuracy, it is recom-

mended that Do be first obtained in double precision by means of drecur

with n = 1 and then converted to single precision.

3. MOMENT-RELATED METHODS

It is a well-known fact that the first n recursion coefficients ak(d~), ~~(d~),

k= O,l,..., n – 1 (cf. (1.3)), are uniquely determined by the first 2 n mo-

ments Wk of the measure d A,

pk = pk(dA) = ~ tkd/i(t), k=0,1,2,...,2n–l. (3.1)
R

Formulas are known, for example, that express the a‘s and p‘s in terms of

Hankel determinants in these moments. The trouble is that these formulas
become increasingly sensitive to small errors as n becomes large. There is an

inherent reason for this: The underlying (nonlinear) map K.: R’2n - R 2n has

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

28 . Walter Gautschi

a condition number, cond K., that grows exponentially with n (cf. Gautschi

[1982a, sect. 3.2]). Any method that attempts to compute the desired coeffi-

cients from the moments in (3.1), therefore, is doomed to fail, unless n is

quite small or extended precision is being employed. That goes, in particular,

for an otherwise elegant method due to Chebyshev (who developed it for the

case of discrete measures d A) that generates the a‘s and ~‘s directly from

the moments (3.1), bypassing determinants altogether (cf. Chebyshev [1859]

and Gautschi [1982a, sect. 2.3]).

Variants of Chebyshev’s algorithm with more satisfactory stability proper-

ties have been developed by Sack and Donovan [1972] and by Wheeler [1974]

(independently of Chebyshev’s work). The idea is to forgo the moments (3.1)
as input data and instead depart from so-called modified moments. These are

defined by replacing the power tk in (3.1) by an appropriate polynomial ph(t)

of degree k,

Vk = vk(d/i) = /~ph(t) d~(t), k=0,1,2,...,2l–l. (3.2)

For example, pk could be one of the classical orthogonal polynomials. More

generally, we shall assume that { pk} are monic polynomials satisfying a

three-term recurrence relation similar to the one in (1.3),

pk+~(t) = (t ‘~k)p~(t) – bkpk- ~(t), k = 0,1,2,...,
(3.3)

po(t) = 1, p-l(t) = o,

with coefficients ak c R, bk > 0 that are known. (In the special case ah = O,

bk = O, we are led back to powers and ordinary moments.) There now exists

an algorithm, called the modified Chebyshev algorithm in Gautschi [1982a,

sect. 2.4], which takes the 2 n modified moments in (3.2) and the 2 n – 1

coefficients {ak }: ~; 2, {bk}~ B~ 2 in (3.3), and from them generates the n desired

coefficients ak(d~), /3k(d A), k = O, 1, ..., n – 1. It generalizes Chebyshev’s
algorithm, which can be recovered (if need be) by putting ak = bk = O. The

modified Chebyshev algorithm is embodied in the subroutine cheb, which

has the calling sequence

cheb(n, a, b, fnu, alpha, beta,s, ierr, sO, s1, s2)
dimension a(*), b(*), fnu(*), alpha(n), beta(n), s(n),

SO(*), S1(*), S2(*)

On entry,

n is the number of recursion coefficients desired; type integer.

a, b are arrays of dimension 2 x n – 1 holding the coefficients a(k) =

ak_l, b(k) =bh_l, k=l,2,...,2n– 1.

fnu is an array of dimension 2 x n holding the modified moments fnu(k)

=vk_l, k=l,2,...,2Xn.

ACM TransactIons on Mathematical Software, Vol. 20, No. 1, March 1994.

Algorithm 726: ORTHPOL . 29

On return,

alpha, beta are arrays of dimension n containing the desired recursion

coefficients alpha(k) = a~_ ~, beta(k) = ~k.l, k = 1, 2,

n.

s is an array of dimension n containing the numbers s(k)

=/~rr~_ldA, k=l,2,..., n.

ierr is an error flag, equal to O on normal return, equal to 1 if Iv. I

is less than the machine zero, equal to 2 if n is out of range,

equal to –(k – 1) if s(k), k = 1,2,..., n, is about to under-

flow, and equal to + (k – 1) if it is about to overflow.

The arrays sO, s1, S2 of dimension 2 x n are needed for working space.

There is again a map K.: R2’ ~ R2” underlying the modified Chebyshev

algorithm, namely, the map taking the 2 n modified moments into the n pairs

of recursion coefficients. The condition of the map K. (actually of a somewhat

different, but closely related, map) has been studied in [Gautschi 1982a, sect.

3.3; 1986a] in the important case where the polynomials pk defining the

modified moments are themselves orthogonal polynomials, p~(”) = pk(.; d~),

with respect to a measure dp (e.g., one of the classical ones) for which the

recursion coefficients ah, b~ are known. The upshot of the analysis then is

that the condition of K. is characterized by a certain positive polynomial

g.(”; dA) of degree 4n – 2, depending only on the target measure dA, in the
sense that

condKn = /Rgn(t;dA)dp(t). (3.4)

Thus, the numerical stability of the modified Chebyshev algorithm is deter-

mined by the magnitude of g. on the support of dp.

The occurrence of underflow (overflow) in the computation of the a‘s and

/? ‘s, especially on computers with limited exponent range, can often be

avoided by multiplying all modified moments by a sufficiently large (small)

scaling factor before entering the routine. On exit, the coefficient /30 (and

only this one!) then has to be divided by the same scaling factor. (There may

occur harmless underflow of auxiliary quantities in the routine cheb, which

is difficult to avoid since some of these quantities actually are expected to be

zero.)

Example 3.1 d~o(t) = [(1 – OJ2t2)(l – t2)]-1/2dt on (–1,1), O <0<1.

This example is of some historical interest, in that it has already been

considered by Christoffel [187’7, example 6]; see also Rees [1945]. Computa-

tionally, the example is of interest as there are empirical reasons to believe

that for the choice d~(t) = (1 – t 2)- 1/2 dt on (– 1, 1), which appears rather

natural, the modified Chebyshev algorithm is exceptionally stable, uniformly

in n, in the sense that in (3,,4) one has g. < 1 on SUDP d~ for al~ n (cf.
Gautschi [1984b, example 5.2]). With the above choice of dp, the polynomials

pk are clearly the Chebyshev polynomials of the first kind, PO = To, pk =

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

30 . Walter Gautschi

2‘(k l)Tk, k > 1,and the modified moments are given by

l/. =
J

1 d/is(t), ~k = ~ /’ 7’k(t)dA.,(t), k = 1,2,3,..
–1 –1

They are expressible in terms of the Fourier coefficients C,(C02) in

(1 – 02 sin2 fj-1/2 = CO(02)

by means of (cf. Gautschi [1982a, example

v~ —— 7TCO(U2),

(–l)mm-
Vzm == cm(o~)22m-1

1

cc

} 2 ~ cr(oJ2)cos2ro
~=1

3.3])

m=l,2,3,

(3.5)

(3.6)

(3.7)

‘2m–l =0 J

The Fourier coefficients {Cr(a 2)}, in turn, can be accurately computed as the

minimal solution of a certain three-term recurrence relation (see Gautschi

[1982a, pp. 310-311]).

The ordinary moments

PI)= VIJ> /Jk = J1 tkd/iW(t), k=lj2,3,..., (3.8)
–1

likewise can be expressed in terms of the Fourier coefficients C,(C02) by

writing t2m as a linear combination of Chebyshev polynomials To, Tz, T2 ~

(cf. Luke [1975, Eq. 22, p. 454]). The result is

‘-l)mm: (-l)ry:m)cm.r(u’)~z~ = zzm-l ,=0

1

m=l,2,3, ..., (3.9)

pzm-~ = o

where

2m+l–r
Y:m) = Y;~l 7 r=l,2 ,. ..,1,1,

r

(3.10)

The driver routine testl (in Section 1 of the package) generates for

C02= .1(.2) .9, .99, .999 the first n recurrence coefficients ~k(d /i@) (all ak = O),

both in single and double precision, using modified moments if modmom =

true. and ordinary moments otherwise. In the former case, n = 80; in the

latter, n = 20. It prints the double-precision values of ~k, together with the

relative errors of the single-precision values (computed as the difference of

ACM TransactIons on Mathematical Software, Vol. 20, No 1, March 1994

Algorithm 726: ORTHPOL . 31

Table I. Selected Output from testl in the Case of Modified Moments

w’ k %’oub’e err ~~’ng’e

.100 0 3.224882697440438796459832725 1.433(– 14)

1 0.5065840806382684475158495727 1.187(– 14)
5 0.2499999953890031901881028267 1.109(– 14)

11 0.2499999999999999996365048540 1.454(– 18)
18 0.2500000000000000000000000000 0.000

.500 0 3.708149354602743836867700694 9.005(– 15)
1 0.5430534189555363746250333773 2.431(– 14)
8 0.24-99999846431723296083779480 4.109(– 15)

20 0.24-99999999999999978894635584 8.442(– 18)
35 0.2500000000000000000000000000 0.000

.900 0 5.156184226696346376405141543 6.950(– 15)
1 0.6349731661452458711622492613 7.920(– 15)

19 0.2499999956925950094629502830 1.820(– 14)

43 0.2499999999999998282104100896 6.872(–16)

79 0.2499999999999999999999999962 1.525(–26)
.999 0 9.682265121100594060678208257 1.194(– 13)

1 0.7937821421385176965531719571 6.311(– 14)
19 0.2499063894398209200047452537 1.026(– 14)
43 0.2499955822633680825859750068 8.282(– 15)

79 0.2499998417688157876153069211 1.548(– 15)

the double-precision and single-precision values divided by the double-preci-

sion value). In testl, as well as in all subsequent drivers, not all error flags

are interrogated forpossiblem alfunction. The user is urged, however, todo so

as amatter ofprinciple.

The routine

fmm(n,eps,modmom, om2,fnu,ierr, f,fo,rr)

used by the driver computes the first 2 x n modified (ordinary) moments for

02 = om2, to a relative accuracy eps if modmom = true. (false.). The

results are stored in the array fnu. The arrays f,fO, and rr are internal

working arrays ofdimensionn, and ierris an error flag. On normal return,

ierr = O; otherwise, ierr = 1, indicating lack of convergence (within a pre-

scribed number of iterations) of the backward recurrence algorithm for

computing the minimal solution {CT(~2)}. The latter is likely tooccurifco2 is

too closeto l. The routine from, as wellas its double-precision version dmm,

is listed immediately after the routine testl.

Table I shows selected results from the output oftestl, whenmodmom =

.true. (Complete results are given in the package immediately after testl.)

Thevalues fork =Oareexpressible interms of the complete elliptic integral,

DO=2K(C02), and were checked, where possible, against the 16S-valuesin
Abramowitz and Stegun[1964, Table 17.1]. In all cases, there was agreement

to all 16 digits. The largest relative error observed was 2.43 x 10-13 for
m2=.999andk=2. When coz<.99, the error was always less than 2.64X

10-14, which confirms the extreme stability ofthe modified Chebyshev algo-

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

32 . Walter Gautschi

Table II. Selected Output from testl in the Case of Ordinary Moments

co’ k err ~k 0’ k err ~k

.100 1 1.187(–14) .900 1 3 270(– 15)

7 2.603(– 10) 7 4.819(– 10)

13 9.663(– 6) 13 1.841(– 5)

19 4.251(–1) 19 6.272(– 1)

.500 1 2.431(–14) .999 1 6.311(– 14)

7 5,571(–10) 7 1.745(– 9)

13 9.307(– 6) 13 8.589(– 5)

19 5.798(– 1) 19 4,808(0)

rithm in this example. It can be seen (as was to be expected) that for OJ2 not

too close to 1, the coefficients converge rapidly to ~.

In contrast, Table II shows selected results (for complete results, see the

package) in the case of ordinary moments (modmom = false.) and demon-

strates the severe instability of the Chebyshev algorithm. Note that the

moments themselves are all accurate to essentially machine precision, as has

been verified by additional computations.

The next example deals with another weight function for which the modi-

fied Chebyshev algorithm performs rather well.

Example 3.2 d~o(t) = tr ln(l/t) dt on (O, 11,u > – 1.
What is nice about this example is that both modified and ordinary

moments of d Am are known in closed form. The latter are obviously given by

1
pk(dA.) = k=o,l,2,...,

(a+l+ k)’
(3.11)

whereas the former, relative to shifted monic Legendre polynomials (ipoly =

2 in recur), are (cf. Gautschi [1979])

(2k)!
‘vk(d~o)

k!2

The routines fmm and dmm appended to test2 in Section 1 of the package,

similarly as the corresponding routines in Example 3.1, generate the first

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994

Algorithm 726: ORTHPOL . 33

Table III. Selected Output from test2 in the Case of Modified Moments

V k ah D,
– .5 0 .1111111111111111111111111 4.000000000000000000000000

12 .4994971916094638566242202 0.06231277082877488477563886
24 .4998662912324218943801592 0.06245372557342242600457226
48 .4999652635485445800661969 0.0624885L717748684742433618
99 .4999916184024356271670789 0.06249733823051821636937156

o 0 .2500000000000000000000000 1.000000000000000000000000
12 .4992831802157361310272625 0.06238356835953571123560330
24 .4998062839486146398501532 0.06247100084469111001639128
48 .4999494083797023879356424 0.06249281268110967462373889
99 .4999877992015903283047919 0.06249832670616925926204896

.5 0 .3600000000000000000000000 0.4444444444444444444444444
12 .4993755732917555644203267 0.06237082738280752611960887
24 .4998324497706394488722725 0.06246581011945496883543089
48 .4999567275223771727791521 0.06249115332711027176695932
99 .4999896931841789781887674 0.06249787251281682973825635

2 X n modified moments VO, vl,vzl.l ifmodmom = .true. and the first

2 X nordinary moments otherwise. The calling sequence offmm is

fmm(n,modmom, intexp,si,gma,fnu).

The logical variable intexpis to beset .true. ifm is an integer and false.

otherwise. In either case, the input variable sigmais assumed tobe oftype

real.

The routine test2 generates the first n recursion coefficients ak(d~c),

/3h(d&) insingle and double precision for~= – &O, ~, wheren= 100 for
the modified Chebyshev algorithm (modmom=.true.) and n= 12 for the

classical Chebyshev algorithm (modmom = false.). Sele’cted double-preci-

sion results to 25 significant digits, when modified moments are used, are

shown in Table III. (The complete results are given in the package after

test2.)

The largest relative errors observed, over allk=O, l,99. were, respec-

tively, 6.211x 10-11, 2.237x 10-12, and 1.370x 10-12 for the a’s and

1.235x 10-10,4.446x 10-12, and 2.724x 10-12 for the /3’s,attainedconsis-

tentlyatk =99. The accuracy achieved is slightly less than in Example 3.1,

for reasons explained in Gautschi [1984b, Example 5.3].

The complete results for u= – ~ are also available in Gautschi [1991b,
Appendix, Table 1]. (They differ occasionallyby one unit in the last decimal

place from those produced here, probably because of a slightly different

computation ofthe modified moments.) The results for CT= O canbe checked

uptok = 15 against the 30S-valuesgiven in Stroudand Secrest[1966, p. 92],

and for 16 < k < 19 against 12S-values in Danloy [1973, Table 3]. There is

complete agreementto all 25 digits in the former case and agreementto 12
digits in the latter, although there are occasional end-figure dism-epancies of

one unit. These are believed to be due to rounding errors committed in

Danloy[1973], since similar discrepancies occur also intherangek< 15.We

ACM Transactions on Mathematical Software, Vol. 20, No. I, March 1994.

34 . Walter Gautschi

Table IV. Selected Output from test2 in the Case of Ordinary Moments

kc err ak err ~~ u err ak err flh u err ah err fi~

2 – .5 1.8(–13) 7.7(– 14) o 4.2(– 13) 7.6(– 13) .5 1.6(–12) 2.6(–13)

5 2.2(– 9) 1.2(–9) 4.2(– 9) 1.2(– 10) 1.3(–8) 6.6(–9)

8 1,1(–5) 5.5(–6) 4.3(– 6) 3.8(– 6) 6.0(–5) 5.2(– 6)

11 2,5(– 1) 1.7(–1) 1.3(0) 3.2(– 1) 2.2(0) 4.7(– 1)

do not know of any tables for a = ~, but a testis given in Section 5, Example

5.1.

The use of ordinary moments (modmom = false.) produces predictably

worse results, the relative errors of which are shown in Table IV.

4. STIELTJES, ORTHOGONAL REDUCTION, AND DISCRETIZATION
PROCEDURES

4.1 The Stieltjes Procedure

It is well known that the coefficients ah(d A’), ~~(d A) in the basic recurrence

relation (1.3) can be expressed in terms of the orthogonal polynomials (1.2)

and the inner product (1. 1) as follows:

Provided that the inner product can be readily calculated, (4.1) suggests the

following “bootstrap” procedure: Compute a. and /30 by the first relations in

(4. 1) for k = O. Then use the recurrence relation (1.3) for k = O to obtain ml.
With To and m-l known, apply (4.1) for k = 1 to get al, /31, then again apply

(1.3) to obtain n,, and so on. In this way, alternating between (4.1) and (1.3),

we can bootstrap ourselves up to as many of the coefficients ak, @k as are

desired. We attributed this procedure to Stieltjes and called it Stieltjes’s

procedure in Gautschi [1982a].

In the case of discrete orthogonal polynomials,
the form

(u, rJ) = ; Wku(xk)u(xk),
k=l

that is, for inner products of

Wh > 0, (4.2)

Stieltjes’s procedure is easily implemented; the resulting routine is called sti

and has the calling sequence

sti(n, ncap, x, w, alpha, beta, ierr, pO, pl, p2).

ACM TransactIons on Mathematical Software, Vol. 20, No 1, March 1994

On entry,

n is

ncap is

Algorithm 726: ORTHPOL . 35

the number of recursion coefficients desired; type integer.

the number of terms, N, in the discrete inner product; type

integer.

x, w are arrays of dimension ncap holding the abscissas x(k) = x~ and

weights = wh, k = 1,2, ..., ncap, of the discrete inner product.

On return,

alpha, beta are arrays of dimension n containing the desired recursion

coefficients alpha(k) = a~.l, beta(k) = ~~.l, k = 1,2,

n.

ierr is an error flag having the value O on normal return and the

value 1 if n is not in the proper range 1 < n < N; if during

the computation of a recursion coefficient with index k there

is impending underflow or overflow, ierr will have the value

– k in case of underflow and the value + k in case of

overflow. (No error flag is set in case of harmless underflow.)

The arrays pO, pl, p2 are working arrays of dimension ncap. The double-pre-

cision routine has the name dsti.

Occurrence of underflow (overflow) can be forestalled by multiplying all

weights w~ by a sufficiently large (small) scaling factor prior to entering the

routine. Upon return, the coefficient PO will then have to be readjusted by

dividing it by the same scaling factor.

4.2 Orthogonal Reduction Method

Another approach to producing the recursion coefficients a~, ~h from the

quantities Xk, w~ defining the inner product (4.2) is based on the observation

(cf. Boley and Golub [1987] and Gautschi [1991d, sect. 7]) that the symmetric

tridiagonal matrix of order N + 1,

~fi

m ~o

J(dA~) = m

o

(the “extended Jacobi matrix” for the

is orthogonally similar to the matrix

(4.3)

discrete measure d~~ implied in (4.2)),

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

36 . Walter Gautschi

Hence, the desired matrix J(d AN) can be obtained by applying Lanczos’s

algorithm to the matrix (4.4). This is implemented in the routine

lancz(n, ncap, x, w, alpha, beta, ierr, PO, PI),

which uses a judiciously constructed sequence of Givens transformations to

accomplish the orthogonal similarity transformation (cf. Rutishauser [1963],

de Boor and Golub [1978], Gragg and Harrod [1984], and Boley and Golub

[1987]; the routine lanez is adapted from the routine RKPW in Gragg and

Harrod [1984, p. 328]). The input and output parameters of the routine lancz

have the same meaning as in the routine sti, except that ierr can only have

the value O or 1, while PO, pl are again working arrays of dimension ncap.

The double-precision version of the routine is named dlancz.

The routine lancz is generally superior to the routine sti: The procedure

used in sti may develop numerical instability from some point on and

therefore give inaccurate results for larger values of n. It furthermore is

subject to underflow and overflow conditions. None of these shortcomings is

shared by the routine lancz. On the other hand, there are cases where sti

does better than lancz (cf. Example 4.5).

We illustrate the phenomenon of instability (which is explained in Gautschi

[1993c]) in the case of the “discrete Chebyshev” polynomials.

Example 4.1 The inner product (4.2) with x~ = – 1 + 2(k – l)\(N – 1),

wk=2/N, k=l,2,N.

This generates discrete analogues of tlie Legendre polynomials, which they

indeed approach as N - ~. The recursion coefficients are explicitly known:

a!~ = o, k= O,l,...,l; l;

k=l,2,...,l–l.

To find out how well the routines sti and lancz generate them

(4.5)

(in single

precision), when N = 40, 80, 160, and 320, we wrot~ the driver test3, wh~ch

computes the respective absolute errors for the a‘s and relative errors for the

fl’s.

Selected results for Stieltjes’s algorithm are shown in Table V. The gradual

deterioration, after some point (depending on IV), is clearly visible. Lanczos’s

method, in contrast, preserves essentially full accuracy; the largest error in

the a’s is 1.42(– 13), 2.27(– 13), 4.83(– 13), and 8.74(– 13) for N = 40, 80,

160, and 320, respectively, and 3.38(– 13), 6.63(– 13), 2.17(– 12), and

5.76(– 12) for the @’s.

4.3 Multiple-Component Discretization Procedure

We now assume a measure d A of the form

d/i(t) = w(t)dt + ~ y18(t –xl)dt, p>o,
~=1

ACM TransactIons on Mathematical Software, Vol 20, No 1, March 1994

(4.6)

Algorithm 726: ORTHPOL . 37

Table V. Errors in the Recursion Coefficients ah, & of (4.5) Computed by Stieltjes’s Procedure

Nn err a err ~ N n err a err ~

40 <35 < 1.91(– 13)

36 3.01(– 12)
37 6.93(– 11)
38 2.57(– 9)
39 1.93(– 7)

80 < 53 < 2.04(– 13)
57 2.04(– 10)

61 3.84(– 7)
65 1.94(– 3)
69 1.87(–1)

< 7.78(– 13)
1.48(– 11)
3.55(–lo)

1.30(– 8)

9.58(– 7)
< 6.92(– 13)

5.13(– 10)

9.35(– 7)
4.61(–3)

6.14(0)

160 <76
85

94
103
112

320 < 106

117
128

139
150

s 2.98(– 13)
1.61(–9)
1.25(–4)

2.64(–3)

2.35(– 3)
< 8.65(– 13)

3.96(– 10)
2.46(– 6)

2.94(–2)
1.15(–3)

< 7.61(– 13)

1.57(–8)
1.17(–3)
1.51(–1)

1.16(0)

< 7.39(– 13)

7.73(– 10)
4.67(– 6)

6.27(–2)
2.18(–2)

consisting of a continuous part, W(t) dt, and (if p > O) a discrete part written

in terms of the Dirac &function. The support of the continuous part is

assumed to be an interval or a finite union of disjoint intervals, some of which

may extend to infinity. In the discrete part, the abscissas XJ are assumed

pairwise distinct, and the weights positive, yj >0. The inner product (1.1),

therefore, has the form

(u, u) = ~ u(t)u(t)zu(t)dt + f yjZd X,)~(Xj).
R j=l

(4.7)

The basic idea of the discretization procedure is rather simple: One approx-

imates the continuous part of the inner product, that is, the integral in (4.7),

by a sum, using a suitable quadrature scheme. If the latter involves N terms,

this replaces the inner product (4.7) by a discrete inner product (“, “)~+P

consisting of N + p terms, the N “quadrature terms,” and the p original

terms. In effect, the measure d~ in (4.6) is approximated by a discrete

(N + p)-point measure d~~+P. We then compute the desired recursion coeffi-

cients from the formulas (4. 1), in which the inner product (“, “) is replaced,

throughout, by (’, .)~+ ~. Thus, in effect, we approximate

The quantities on the right can be computed by the methods in Section 4.1 or

4.2, that is, employing the routines sti or lancz.

The difficult part of this approach is to find a discretization that results in

rapid convergence, as N ~ ~, of the approximations on the right of (4.8) to

the exact values on the left, even in cases where the weight function w in

(4.6) exhibits singular behavior. (The speed of convergence, of course, is
unaffected by the discrete part of the inner product (4.7).) To be successful in

this endeavor often requires considerable inventiveness on the part of the

user. Our routines, mcdis and dmcdis, which implement this idea in single

(resp., double) precision, however, are designed to be flexible enough to
promote the use of effective discretization procedures.

Indeed, if the support of the weight function w in (4.7) is contained in the

(finite or infinite) interval (a, b), it is often useful to first decompose that

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

38 . Walter Gautschi

interval into a finite number of subintervals,

Suppwc[cz, b] = ~ [czL, b,], m>l, (4.9)
~=1

and to approximate the inner product separately on each subinterval [a,, b,],

using an appropriate weighted quadrature rule. Thus, the integral in (4.7) is

written as

(4.10)

where w, is an appropriate weight function on [a,, b,]. The intervals [a,, b,]

are not necessarily disjoint. For example, the weight function w may be the

sum w = w ~ + w ~ of two weight functions on [a, b], which we may want to

treat individually (cf. Example 4.2). In that case, one would take [al, b ~] =

[az, bz 1 = [a, b 1 and w ~ on the first interval, and Wz on the other. Alterna-
tively, we may simply want to use a composite quadrature rule to approxi-

mate the integral, in which case (4.9) is a partition of [a, b] and w,(t) = w(t)

for each i. Still another example is a weight function w that is already

supported on a union of disjoint intervals; in this case, (4.9) would be the

same union, or possibly a refined union where some of the subintervals are

further partitioned.

In whichever way (4.9) and (4.10) are constructed, each integral on the

right of (4.10) is now approximated by an appropriate quadrature rule,

J“u(t)u(t)w,(t)dt = Q,(w)> (4.11)
a,

where

Q,f= ; W,, zf(xr,,). (4.12)
~=1

This gives rise to the approximate inner product

(zL,rJ)N+p= 5 : Wr,, u(xr,,)u(xr,,) + j y,z4-zj)rJ(xj),
~=1 ~=1 ~=1

(4.13)

N== ~N,.
~=1

In our routine mcdis, we have chosen, for simplicity, all N, to be the same

integer NO,

N,= NO, i=l,2 ,. ... m, (4.14)

so that N = mNO. Furthermore, if n is the number of ah and the number of

~~ desired, we have used the following iterative procedure to determine the

coefficients ak, @k to a prescribed (relative) accuracy ~: Let NO be increased
through a sequence {NJ’]},, = 0,1,2, of integers, for each s use Stieltjes’s (or

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994

Algorithm 726: ORTHPOL . 39

Lanczos’s) algorithm to compute a~s] = ah(d~n~rl +P), Dls] = Dk(d ~n IV~sl+P),

k=o,l,..., n – 1, and stop the iteration for the first s > 1 for which all

inequalities

I p~’1 – p~’-lll < EpJ’1, k=O,l ,. ..,1,1, (4.15)

are satisfied. An error flag is provided if within a preset range Ivis I s Nomax

the stopping criterion (4. 15) cannot be satisfied. Note that the latter is based

solely on the /3-coefficients. This is because, unlike the a ‘s, they are known to

be always positive, so that it makes sense to insist on relative accuracy. (In

our routine we actually replaced /3~’1 on the right of (4.15) by its absolute

value to ensure proper termination in cases of sign-changing measures d A)

In view of formulas (4.1), it is reasonable to expect, and indeed has been

observed in practice, that satisfaction of (4.15) entails sufllcient absolute

accuracy for the a‘s if they are zero or small, and relative accuracy otherwise.

Through a bit of experimentation, we have settled

quence of integers N~sl:

N$l = 2n, N~sl =N~s-ll + A.s, s=

Al = 1, AS = 21s/51 .n s=

on the following se-

1,2,...,
(4.16)

2,3

Note that if the quadrature formula (4.11) is exact for each i, whenever u . u

is a polynomial of degree < 2 n – 1 (which is the maximum degree occurring

in the inner products of (4.1), when k < n – 1),then our procedure converges

after the very first iteration step! Therefore, if each quadrature rule Q, has

(algebraic) degree of exactness > d(No) and if d(No)/No = 8 + O(N{ 1) as
No + CO, then we let N~Ol = 1 + [(2 n – 1)/8] in an attempt to get exact

answers after one iteration. Normally, 8 = 1 (for interpolatory rules) or 8 = 2

(for Gauss-type rules).
The calling sequence of the multiple-component discretization routine is as

follows:

mcdis(n, ncapm, mc, mp, xp~ yp, quad, eps, iq, idelta, irout,
finl, finr, endl, endr, xfer, wfer, alpha, beta, ncap,
kount, ierr, ie, be, x, w, xm, wm, pO, pl, p2)

dimension xp(*), yp(*), endl(mc), endr(mc), xfer(ncapm),
wfer(ncapm), alpha(n), beta(n), be(n), x(ncapm),
w(ncapm), xm(*), wm(*), pO(*), pl(*), p2(*)

logical finl, finr

On entry,

n is the number of recursion coefficients desired; type integer.

ncapm is the integer Nomax above, that is, the maximum integer

allowed (ncapm = 500 will usually be satisfactory).

No

mc is the number of component intervals in the continuous part of the

spectrum; type integer.

mp is the number of points in the discrete part of the spectrum; type

integer; if the measure has no discrete part, set mp = O.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

40 . Walter Gautschi

XP 7YP are arrays of dimension mp containing the abscissas and the

jumps of the point spectrum.

quad is a subroutine determining the discretization of the inner product

on each component interval, or a dummy routine if iq # 1 (see

below); specifically, quad(n, x, w, i, ierr) produces the abscissas

x(7-) = x,,, and weights w(r) = w,,,, r = 1,2, n, of the n-point

discretization of the inner product on the interval [a,, b,] (cf.

(4. 13)); an error flag ierr is provided to signal the occurrence of an

error condition in the quadrature process.

eps is the desired relative accuracy of the nonzero recursion coeffi-

cients; type real.

iq is an integer selecting a user-supplied quadrature routine quad if

iq = 1 or the ORTHPOL routine qgp (see below) otherwise.

idelta is a nonzero integer, typically 1 or 2, inducing fast convergence in

the case of special quadrature routines; the default value is idelta

= 1.

irout is an integer selecting the routine for generating the recursion

coefficients from the discrete inner product; specifically, irout = 1

selects the routine sti, and irout # 1 selects the routine Iancz.

The logical variables finl, finr and the arrays endl, endr, xfer, wfer are

input variables to the subroutine qgp and are used (and, hence, need to be

properly dimensioned) only if iq # 1.

On return,

alpha, beta are arrays of dimension n holding the desired recursion

coefficients alpha(k) = ah. l, beta(k) = ~~.l, k = 1,2,

n.

ncap is the integer NO yielding convergence.

kount is the number of iterations required to achieve convergence.

ierr is an error flag, equal to O on normal return, equal to – 1 if n

is not in the proper range, equal to i if there is an error

condition in the discretization on the ith interval, and equal

to ncapm if the discretized Stieltjes procedure does not

converge within the discretization resolution specified by

ncapm.

ie is an error flag inherited from the routine sti or lancz

(whichever is used).

The arrays be, x, w, xm, wm, pO, pl, p2 are used for working space, the last

five having dimension mc X ncapm + mp.

A general-purpose quadrature routine, qgp, is provided for cases in which

it may be difficult to develop special discretizations that take advantage of

the structural properties of the weight function w at hand. The routine

ACM TransactIons on Mathematical Software, VOI 20, No 1, March 1994

Algorithm 726: ORTHPOL . 41

assumes the same setup (4.9)–(4. 14) used in mcdis, with disjoint intervals

[a,, b,], and provides for Q, in (4.12) the Fej&- quadrature rule, suitably

transformed to the interval [ai, b,], with the same number N, = NO of points

for each i. Recall that the N-point Fej6r rule on the standard interval [– 1, 1]

is the interpolatory quadrature formula

where x: = COS((2r – l)7r/2 N) are the Chebyshev points. The weights are

all positive and can be computed explicitly in terms of trigonometric functions

(cf., e.g., Gautschi [1967a]). The rule (4.17) is now applied to the integral in

(4. 11) by transforming the interval [– 1,11 to [a,, b, 1 via some monotone
function @, (a linear function if [a,, bi] is finite) and letting f = uu w,:

Thus, in effect, we take in (4.13)

x ,,, = (b,(X:), w,,, = wr~wi((b, (x:))(j:(x:), i=l,2 ,. ... m. (4.18)

If the interval [a,, b,] is half-infinite, say, of the form [0, ~], we use +,(t)= (1

+ t)/(1 – t), and similarly for intervals of the form [– ~, b] and [a, ~]. If

[cz,, b,] = [-~,~], we use +,(t) = t/(1 - t2).

The routine qgp has the following calling sequence:

subroutine qgp(n, x, w, i, ierr, mc, finl, finr, endl, endr, xfer, wfer)
dimension x(n), w(n), endl(mc), endr(mc), xfer(*), wfer(*)
logical finl, finr

On entry,

n is the number of terms in the Fej& quadrature rule.

i indexes the interval [a,, b,] for which the quadrature rule is

desired; an interval that extends to – cc has to be indexed by 1,

and one that extends to + cc by mc.

mc

finl

finr

endl

is the number of component intervals; type integer.

is a logical variable to be set true. if the extreme left interval

is finite and false. otherwise.

is a logical variable to be set true. if the extreme right interval

is finite and false. otherwise.

is an array of dimension mc containing the left endpoints of
the component intervals; if the first of these extends to – ~,

endl(l) is not being used by the routine.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

42 . Walter Gautschi

endr is an array of dimension mc containing the right endpoints of

the component intervals; if the last of these extends to + ~,

endr(mc) is not being used by the routine.

xfer, wfer are working arrays holding the standard Fej& nodes and

weights, respectively; the y are dimensioned in the routine

mcdis.

On return,

x, w are arrays of dimension n holding the abscissas and weights (4.18) of

the discretized inner product for the ith component interval.

ierr has the integer value 0.

The routine calls on the subroutines fejer, symtr and tr, which are ap-

pended to the routine qgp in Section 4 of the package. The first generates the

Fej&r quadrature rule; the others perform variable transformations. The user

has to provide his or her own function routine wf(x, i) to calculate the weight

function w,(x) on the ith component interval.

Example 4.2 Chebyshev weight plus a constant: w’(t) = (1 – t2)-1/2 + c,

C>o>–l<t <l.

It would be difficult here to find a single quadrature rule for discretizing

the inner product and to obtain fast convergence. However, using in (4.9)

m = 2, [al, bl] = [az, bz] = [–1,1], and Wl(t) = (1 – t2)-1/2, zu2(t) = c in

(4.11), and taking for Q1 the Gauss-Chebyshev, and for Qz the

Gauss–Legendre n-point rule (the latter multiplied by c), yield convergence

to ~k(WC), ~k(Wc), k = O, 1, ..., n – 1, in one iteration (provided 6 is set

equal to 2)! Actually, we need NO = n + 1,in order to test for convergence; cf.

(4.15). The driver test4 implements this technique and calculates the first
n = 80 beta-coefficients to a relative accuracy of 5000 X es for c = 1, 10, 100.

(All ah are zero.) Attached to the driver is the quadrature routine qchle used
in this example. It, in turn, calls for the Gauss quadrature routine gauss, to

be described in Section 6. Anticipating convergence after one iteration, we put

ncapm = 81.

The weight function of Example 4.2 provides a continuous link between the

Chebyshev polynomials (c = O) and the Legendre polynomials (c = ~); the

recursion coefficients ~~ (w c, indeed converge (except for k = O) to those of

the Legendre polynomials, as c ~ ~.
Selected results of test4 (where irout in mcdis can be arbitrary) are

shown in Table VI. The output variable kount is 1 in each case, confirming

convergence after one iteration. The coefficients /3.(w c) are easily seen to be

m+ 2C.

Example 4.3 Jacobi weight with one mass point at the left endpoint:

W(a’p)(t; y) = [p, t~j~~]–l(l — t)m(l + t)~ +ya(t + 1) on (—1,1), p~’~~ =

2“+e+lr(a +l)r(~+ l)/r(a+p+2), a> –l, P> –l, Y>o.

ACM TransactIons on Mathematical Software, Vol. 20, No, 1, March 1994

Algorithm 726: ORTHPOL . 43

Table VI. Selected Recursion Coef%cients fl~(wc) for c = 1,10,100

k pk(w’) pk(w’o) (ilk(w’o’)

o 5.1415926540 23.14159265 203.1415927
1 0.4351692451 0.3559592080 0.3359108398
5 0.2510395775 0.2535184776 0.2528129500

12 0.2500610870 0.2504824840 0.2505324193
25 0.2500060034 0.2500682357 0.2501336338
51 0.2500006590 0.2500082010 0.2500326887
79 0.2500001724 0.2500021136 0.2500127264

The recursion coefficients a~,~~ are known explicitly (see Chihara [1985,

Eqs. 6.23, 3.5]1) and can be expressed, with some effort, in terms of the

recursion coefficients a~,f3~ for the Jacobi weight zu(”’~)(.) = UJ(”’~)(.;O).

The formulas are

CY:J—y

ao=l+y’
I%=D:+Y,

2k(a + k)

a~=a~+(a+p+2k)(a+B+2k +1)
(Ck – 1)

where

Co=l+y,

and

2(p+k.+l)(a+p+k+l) 1

(‘(a+p+2k+ l)(a+p+2k?+2) ;

ph=— ;:,%J9 k=l,2,3,...,

~+(~+k+l)(a+@+k+l)

k(a+k)
ydh

Ch =
1 + ydh

>

)1,

(4.19)

k=l,2,...,

(4.20)

dl = 1,

(~+k)(a+~+k)d_l, (4.21)
dh =

(a+k–l)(k–1) k
k = 2,3,

Again, it is straightforward with mcdis to get exact results (modulo

rounding) after one iteration, by using the Gauss–Jacobi quadrature rule (see

gauss in Section 6) to discretize the continuous part of the measure. The

driver test5 generates in this manner the first n = 40 recursion coefficients

~k, ~k, k= O,l,..., n — 1, to a relative accuracy of 5000 X es, for y = ~, 1, 2,

lIn Chihara [1985] the interval is taken to be [0, 2], rather than [– 1, 1]. There is a typographical
error in the first formula of (6.23), which should have the numerator 2 L3+ 2 instead of 2 ~ + 1.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

44 . Walter Gautschi

4, and 8. For each a = – .8(.2)1. and @ = – .8(.2) 1., it computes the maximum

relative errors (absolute error, if ah = O) of the CYk, ph by comparing them

with the exact coefficients. These have been computed in double precision by

a straightforward implementation of formulas (4. 19)–(4.21).

As expected, the output of test5 reveals convergence after one iteration,

the variable kount having consistently the value 1. The maximum relative

error in the ah is found to lie generally between 2 X 10-8 and 3 X 10’8, the

one in the ~h between 7.5 x 10- lZ and 8 x 10- 12; they are attained for k at

or near 39. The discrepancy between the errors in the ah and those in the flh

is due to the ah being considerably smaller than the ~k, by 3–4 orders of

magnitude. Replacing the routine sti in mcdis by lancz yields very much the

same error picture.

It is interesting to note that the addition of a second mass point at the

other endpoint makes an analytic determination of the recursion coefficients

intractable (cf. Chihara [1985, p. 713]). Numerically, however, it makes no

difference whether there are two or more mass points and whether they are

located inside, outside, or on the boundary of the support interval. It was

observed, however, that if at least one mass point is located outside the

interval [– 1, 1] the procedure sti used in mcdis becomes severely unstable2

and must be replaced by lancz.

Example 4.4 Logistic density function: w(t) = e “/(1 + e-’)2 on (– CO,CD).

In this example we illustrate a slight variation of the discretization procedure

(4.9)-(4.13), which ends up with a discrete inner product of the same type as
in (4.13) (and thus implementable by the routine mcdis), but derived in a

somewhat different manner. The idea is to integrate functions with respect to

the density w by splitting the integral into two parts, one from – sc to O and

the other from O to ~, changing variables in the first part, and thus obtaining

/x f(t)w(t) dt = ~w~(-t) ‘-’ m ‘-’ dt. (4.22)J f(t)
—. o (~ + e-t)z ‘t + o

(l+e-’)2

Since (1 + e”)- 2 quickly tends to 1 as t + ~, a natural discretization of both

integrals is provided by the Gauss–Laguerre quadrature rule applied to the

product f(+ t).(1 + e-t)-2. This amounts to taking, in (4.13), m = 2 and

w:
Xr ~ = —x:, X,,2 =x;; W,, l = wr,2 =

(1 + p;)z ‘

r=l,2 >. ..> N,

where x ~, w~L are the Gauss–Laguerre N-point quadrature nodes and

weights.

2This has also been observed in a similar example [Gautschi 1982a, Example 4,8], but was
incorrectly attributed to a phenomenon of ill-conditioning. Indeed, the statement made at the end
of Example 4.8 can now be retracted: Stable methods do exist, namely, the method embodied by
the routine mcdis in combination with lancz,

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

Algorithm 726: ORTHPOL . 45

Table VII. Selected Output from test6

k Pk err al err ~~

o 1.000000000000000000000000 4.572(– 13) 1.918(– 13)
1 3.289868133696452872944830 1.682(– 13) 5.641(– 13)
6 89.44760352315950188817832 2.187(– 12) 2.190(– 12)

15 555.7827839879296775066697 1.732(– 13) 2.915(– 12)
26 1668.580222268668421827788 3.772(–12) 4.112(– 12)
39 3763.534025194898387722354 2.482(– 11) 4.533(– 12)

The driver test6 incorporates this discretization into the routines mcdis

and dmcdis, runs them for n = 40 with error tolerances 5000 X es and

lOOOX ~~, respectively, and prints the absolute errors inthe a’s(a~ =O,in

theory) and the relative errorsin the ~’s. (We used the default value 8= 1.)

Also printed are the number of iterations #it (= kount)in (4.15) and the

corresponding final value N~(= ncap). In single precision we found that

#it= 1, IVf=81, and in double precision, #it= 5, N~=281. Both routines

returned withthe error flags equal toO, indicating a normal course ofevents.

A few selected double-precision values3 of the coefficients ~k along with

absolute errors in the a‘s and relative errors in the ~‘s are shown in Table

VII. The results are essentially the same no matter whether sti or lancz is

used in mcdis. The maximum errors observed are 2.482 X 10 – 11 for the a‘s

and 4.939 x 10 – 12 for the ~ ‘s, which are well within the single-precision

tolerance c = 5000 X e‘.

On computers with limited exponent range, convergence difficulties may

arise, both with sti and lancz, owing to underflow in many of the Laguerre

quadrature weights. This seems to perturb the problem significantly enough

to prevent the discretization procedure from converging.

Example 4.5 Half-range Hermite measure: w(t) = e ‘t 2 on (O, CO).

This is an example of a measure for which there do not seem to exist

natural discretizations other than those based on composite quadrature rules.

Therefore, we applied our general-purpose routine qgp (and its double-preci-

sion companion dqgp), using, after some experimentation, the partition

[0, CO]= [0,3] U [3,6] U [6,9] U [9, ~]. The driver test7 implements this, with
n = 40 and an error tolerance 50 x e‘ in single precision, and 1000 X e d in

double precision.

The single-precision routine mcdis (using the default value 8 = 1) con-

verged after one iteration, returning ncap = 81, whereas the double-preci-

sion routine dmcdis took four iterations to converge and returned ncapd =

201. Selected results (where err a~ and err ~~ both denote relative errors) are

shown in Table VIII. The maximum error err ak occurred at k = 10 and had

the value 1.038 X 10-12, whereas max~ err ~~ = 3.180 X 10-13 is attained at

k = O. The latter is within the error tolerance e, the former only slightly

3Note added in proof Alphonse Magnus, in an email message, May 5, 1993, kindly pointed out to
the author that the fl-coeffkients are known explicitly: /3k = k 4n 2/(4k 2 – 1),k = 1,2,....

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

46 . Walter Gautschi

Table VIII. Selected Output from test7

k err ak err ~h

o 0.5641895835477562869480795 0,8862269254527580136490837

1.096(–13)
1 0.9884253928468002854870634

1,514(–13)

6 2.080620336400833224817622

1.328(–13)
15 3.214270636071128227448914

2.402(– 14)
26 4.203048578872001952660277

1.415(– 13)

39 5.131532886894296519319692

6.712(– 13,)

3.180(–13)

01816901138162093284622325

7.741(–14)
1.002347851011010842224538

5.801(– 14)
2.500927917133702669954321

8.186(– 14)
4.333867901229950443604430

7.878(–14)

6.500356237707132938035155
1,820(–14)

larger. Comparison of the double-precision results with Table I on the mi-

crofiche supplement to Galant [1969] revealed agreement to all 20 decimal

digits given there, forallk intherange O<k s 19. interestingly, the routine

sti in mcdis did consistently better than lancz on the ~’s, by a factor as

large as 235 (for k = 33), andis comparable with lancz (sometimes better,

sometimes worse) on the a’s.

Without composition, that is, usingmc = linmcdis, it takes 8 iterations

(iV/=521)insingleprecisionand 10 iterations (N{ =761) in double preci-

siontosatisfy the much weaker error tolerances e = ~ 10–6 and Ed = ~ 10–12,

respectively. All single-precision results, however, turn out to be accurate to

about 12 decimal places. (This is because of the relatively large final incre-

ment As = 2n = 80 in No (cf. (4.16)) that forces convergence.)

4.4 Discretlzed Modified Chebyshev Algorithm

The whole apparatus of discretization (cf. (4.9)–(4.14)) can also be employed

in connection with the modified Chebyshev algorithm (cf. Section 3), if one

discretizes modified moments rather than inner products. Thus, one approxi-

mates (cf. (4.14), (4.16))

vh(ci?/i) = vk(d~mjv~~l+p) (4.23)

and iterates the modified Chebyshev algorithm with s = O, 1,2, . . . until the

convergence criterion (4. 15) is satisfied. (It would be unwise to test conver-
gence on the modified moments, for reasons explained in Gautschi [1982a,
sect. 2.5].) This is implemented in the routine mccheb, whose calling se-

quence is as follows:

mccheb(n, ncapm, mc, mp, xp, yp, quad, eps, iq, idelta, finl,
finr, endl, endr, xfer, wfer, a, b, fnu, alpha, beta, ncap,
kount, ierr, be, x, w, xm, wm, s, sO, s1, s2)

Its input and output parameters have the same meaning as in the routine

mcdis. In addition, the arrays a, b of dimension 2 X n – 1 are to be supplied

ACM TransactIons on Mathematical Software, Vol. 20, No, 1, March 1994.

Algorithm 726: ORTHPOL . 47

with the recursion coefficients a(k) = a~.l, b(k) = b~.l, k = 1,2,... ,2 x n

– 1, defining the modified moments. The arrays be, x, w, xm, wm, s, sO, s1, S2

are used for working space. The double-precision version of the routine has

the name dmcheb.

The discretized modified Chebyshev algorithm must be expected to behave

similarly as its close relative, the modified Chebyshev algorithm. In particu-

lar, if the latter suffers from ill-conditioning, so does the former.

Example 4.6 (Example 3.1, revisited).

We recompute the n = 40 first recursion coefficients ak, ~k of Example 3.1

to an accuracy of 100 X Es in single precision, using the routine mccheb

instead of the routine cheb. For the discretization of the modified moments,

we employed the Gauss–Chebyshev quadrature rule:

y f(t)(l - (7,2, -’’2(1- ,’)-’”d, = ; fi f($tr)(l - A;)-’”,
–1 ~=1

(4.24)

where x, = COS((2 r – l)m\2 ~) are the Chebyshev points. This is accom-

plished by the driver test8. The results of this test (shown in the package)

agree to all 10 decimal places with those of test 1. The routine mccheb

converged in one iteration, with ncap = 81, for ~’ = .1, .3, .5, .7, .9; in 4

iterations, with ncap = 201, for o 2 = .99; and in 8 iterations, with ncap =

521, for o’ = .999. A double-precision version of test8 was also run with e

= 1 X 10’20 (not shown in the package) and produced correct results to 20

de~mals in one iteration (ncap = 81) for 0J2 = .1,.3,.5, .7; in 3 iterations

2 – 9“ in 6 iterations (ncap = 361) for w(ncap = 161) for o – . , 2 = .99; and in 11

iterations (ncap = 921) for ~’ = .999.

5. MODIFICATION ALGORITHMS

Given a positive measure d A(t) supported on the real line, and two polynomi-

als u(t) = +H;=l(t – UP), u(t) = ~~=l(t – u.) whose ratio is finite on the

supp~rt of d A, we may ask for the recursion coefficients ~k = ak(d ~), ~~ =

ph(d ~) of the modified measure

u(t)
d~(t) = — d/i(t), t c supp(dA),

v(t)
(5.1)

assuming known the recursion coefficients a~ = a~(d A), fl~ = fl~ (d A) of the

given measure. Methods that accomplish the passage from the a‘s and @‘s to

the G‘s and ~‘s are called modification algorithms. The simplest case s = O

(i.e., u(t)= 1) and u positive on supp(dA) has already been considere~ by

Christoffel [1858], who represented the polynomial U(”)fih(”) = u(”)mh(”; dA) in

determinantal form in terms of the polynomials WJ(.) = mj(.; dA), j = k, k +

1,... , k + r. This is now known as Christoffel’s theorem. Christoffel, how:ver,

did not address the problem of how to generate the new coefficients ii~, 13~ in

terms of the old ones. For the more general modification (5.1), Christoffel’s

theorem has been generalized by Uvarov [1959; 1969]. The coefficient prob-

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

48 . Walter Gautschi

lem stated above, in this general case, has been treated in Gautschi [1982b],

and previously by Galant [19A71] in the special case u(t) - 1.

The passage from d A to d A can be carried out in a sequence of elementary

steps involving real linear factors t – x or real quadratic factors (t – x)2 + y 2,

either in U(t) or in u(t). The corresponding elementary steps in the passage

from the a‘s and ~‘s to the &’s and ~‘s can all be performed by means of

certain nonlinear recurrences. Some of these, however, when divisions of the

measure d A are involved, are liable to instabilities. An alternative method

can then be used, which appeals to the modified Chebyshev algorithm

supplied with appropriate modified moments. These latter are of independent

interest and find application, for example, in evaluating the kernel in the

contour integral representation of the Gauss quadrature remainder term.

5.1 Nonlinear Recurrence Algorithms

The routine that carries out the elementary modification steps is called chri

and has the calling sequence

chri(n,iopt,a,b,x, y,hr,hi,alpha,bet a,ierr).

On entry,

n is the number of recursion coefficients desired; type integer.

iopt is an integer identif~ng the type of modification as follows:

(1) d@ = (t – x)dA(t).

(2) d~(t) = ((t – X)2 + y2)d/i(t), y >0.
(3) d~(t) = (t2 + y2) dA(t) with dA(t) and supp(dA) assumed

symmetric with respect to the origin and y > 0.

(4) d~(t) = dA(t)\(t - x).

(5) d~(t) = dA(t)\((t – X)2 + y2), y >0.

(6) d~(t) = dA(t)\(t2 + y2) with dA(t) and supp(dA) assumed sym-
m~tric with respect to the origin and y > 0.

(7) dMt) = (t – x)2dA(t).

a, b are arrays of dimension n + 1 holding the recursion coefficients

a(h) = ak_l(d A), b(k) = ~k_l(d A), h = 1,2,n + 1.

x, y are real parameters defining the linear and quadratic factors (or

divisors) of dA.

hr, hi are the real and imaginary part, respectively, of ~~ d A(t)\(z – t),

where z = x + iy; the parameter hr is used only if iopt = 4 or 5,
and the parameter hi only if iopt = 5 or 6.

On return,

alpha, beta are arrays of dimension n containing the desired recursion

coefficients alpha(k) = a~ ~(d~), beta(k) = ~h _ ~(d ~), k =

1,2,.. .,n.

ierr is an error flag, equal to O on normal return, equal to 1 if

n < 1 (the routine assumes that n is larger than or equal to

2), and equal to 2 if the integer iopt is inadmissible.

ACM Transactions on Mathematical Software, Vol. 20, No 1, March 1994

Algorithm 726: ORTHPOL . 49

It should be noted that in the cases iopt = 1 and iopt = 4, the modified

measure d ~ is positive (negative) definite if x is to the left (right) of the

support of d& but indefinite otherwise. Nevertheless, it is permissible to

have x inside the support of d A (or inside its convex hull), provided the

resulting measure d ~ is still quasi-definite (cf. Gautschi [1982bl).

Foriopt= 1,2,..., 6, the methods used in chri are straightforward imple-

mentations of the nonlinear recurrence algorithms, respectively, in Eqs. (3.7),

(4.7), (4.8), (5.1), (5.8), an~ (5.9) of ~autschi [1982b]. The only minor modifica-
tion required concerns Do = /30(dA). In Gautschi [l~82b] this. constant was

taken to be O, whereas here it is defined to be /30 = JR dA(t). Thus, for

example, if iopt = 2,

~0 = ~~((t – X)2 +y2) dA(t) = ~~((t – aO + aO – X)2 +y2) dA(t)

—
-/((

t – aO)2 + (aO –X)2 +y2)dA(t),
R

since ~~(t – ao) dA(t) = (~ ml(t) dA(t) = O. Furthermore (cf. (4.1)),

/(t – ao)2 dA(t) = BoDI,
R

so that the formula to be used for 60 is

Bo=Bo(& +(ao-x)2+y2) (iopt = 2)<

Similar calculations need to be made in the other cases.

The case iopt = 7 incorporates a QR step with shift x, following Kautsky

and Golub [1983], and uses an adaptation of the algorithm in Wilkinson

[1965, Eq. 67.11, p. 567], to carry out the QR step. The most significant

modification made is the replacement of the test c # O by Ic I > ~, where

e=5x Es is a quantity close to, but slightly larger than, the machine

precision. (Without this modification, the algorithm could fail.)

The methods used in chri are believed to be quite stable when the measure

dA is modified multiplicatively (iopt = 1, 2, 3, and 7). When divisions are
involved (iOpt = 4, 5, and 6), however, the algorithms rapidly become unsta-

ble as the point z = x + iy = C moves away from the support interval of dA.

(The reason for this instability is not well understood at present; see, how-

ever, Galant [1992].) For such cases there is an alternative routine, gchri

(see Section 5.2), that can be used.

Example 5.1 Checking the results (for o = ~) of test2.

We apply chri (and the corresponding double-precision routine dchri) with

iopt = 1, x = O, to dAm(t) = t“ ln(l/t) on (O, 1) with u = – ~, to recompute

the results of test2 for m = ~. This can be done by a minor modification,

named test9, of test2. Selected results from it, showing the relative discrep-
ancies between the single-precision values ak, /3~ (resp. double-precision

values a:, /3~), computed by the modified Chebyshev algorithm and the
modification algorithm, are shown in Table IX (cf. Table III). The maximum

errors occur consistently for the last value of k(= 98).

ACM Transactions on Mathematical Software, Vol 20, No. 1, March 1994.

50 . Walter Gautschi

Table IX. Comparison between Modified Chebyshev Algorithm and Modification Algorithm
in Example 5.1 (cf. Example 3.2)

.5 0 7.895(– 14) 4.796(– 14) 2.805(– 23) 7.952(–28)

12 3.280(– 12) 6.195(– 12) 8.958(– 26) 1.731(–25)

24 7.648(– 12) 1.478(–11) 2.065(–25) 3.985(– 25)

48 2.076(–11) 4.088(- 11) 5.683(–25) 1.121(–24)

98 6.042(– 11) 1.201(– 10) 1.504(– 24) 2.987(– 24)

Example 5.2 Induced orthogonal polynomials.

Given an orthogonal polynomial Tn(.; d A) of fixed degree m z 1, the se-

quence of orthogonal polynomials fib, ~(.) = Wk(.; rr~ dA), k = O, 1,2, ..., has

been termed induced ~orthogonal polynomials in Gautschi and Li [1993].

Since their measure d Am modifies the measure d A by a product of quadratic

factors,

dim(t) = R (t –x&)2. dA(t), (5.2)
#=1

where .Tw are the zeros of w~, we can apply the routine chri (wi~h iopAt = 7)

m times to compute the n recursion coefficients ti~, ~ = ak(dA~), Bh, ~ =

/?k(cii,n), k? = 0,1,..., n – 1, from the n + m coefficients ak = ak(d A), Ph =

~k(dA), k = 0,1,..., n – 1 + m. The subroutines indp and dindp in the

driver testlO implement this procedure in single (resp., double) precision.

The driver itself uses them to compute the first n = 20 recursion coefficients

of the induced Legendre polynomials with m = O, 1,....11. It also computes

the maximum absolute errors in the 6‘s (dk, ~ = O for all m) and the

maximum relative errors in the /$’s by comparing single-precision with

double-precision results.

An excerpt of the output of testlO is shown in Table X. It already suggests

a high degree of stability of the procedure employed by indp. This is

reinforced by an additional test (n~t shown in the package) generating
n = 320 recursion coefficients &h, ~, ~k, ,., 0 < k < 319, for m = 40, 80, 160,

320 and dA being the Legendre, the first-kind Chebyshev, the Laguerre, and

the Hermite measure. Table XI shows the maximum absolute error in the

&k, ~, O < k <319 (relative error in the Laguerre case), and the maximum

relative error in the ~k, ~, O < k < 319.

5.2 Methods Based on the Modified Chebyshev Algorithm

As was noted earlier, the procedure chri becomes unstable for modified

measures involving division of dA(t) by t – x or (t – x)2 + yz as z = x + iy

G C moves away from the “support interval” of d A, that is, from the smallest

interval containing the support of d A. We now develop a procedure that

works better the further away z is from that interval.

The idea is to use modified moments of d~ relative to ~he polynomials

wh(.; dA) to generate the desired recursion coefficients iih, ~k via the modi-
fied Chebyshev algorithm (cf. Section 3). The modified moments in question

ACM TransactIons on Mathematmal Software, Vol. 20, No. 1, March 1994.

Algorithm 726: ORTHPOL . 51

k

o
1
6

12
19

Table X. Induced Legendre Polynomials

m=O,ji~,~ m=2, jk, m m=6, ~k, m

2.0000000000 0.1777777778 0.0007380787
0.3333333333 0.5238095238 0.5030303030
0.2517482517 0.1650550769 0.2947959861
0.2504347826 0.2467060415 0.2521022519
0.2501732502 0.2214990335 0.2274818789

0.0000007329
0.5009523810
0.2509913424

0.1111727541
0.2509466619

err & 0.000(0) 1.350(– 13) 9.450(– 13) 1.357(– 12)

err ~ 1.737(–14) 2.032(– 13) 2.055(– 12) 3.748(– 12)

Table XI. Accuracy of the Recursion Coefficients for Some Classical Induced Polynomials

Legendre Chebyshev Laguerre Hermite

m err 4 err ~ err & err j err & err ~ err & err i

40 3.4(–11) 1.5(–10) 1.9(–9) 7.9(–10) 3.0(–10) 6.0(–10) 1.8(–9) 2.7(–10)
80 1.4(–10) 5.4(–10) 2.1(–9) 2.2(–9) 5.8(–10) 9.2(–10) 7.9(–9) 9.2(–10)

160 1.5(–9) 5.1(–9) 9.5(–9) 1.1(–8) 7.8(–10) 1.4(–9) 1.1(–8) 6.8(–10)

320 3.3(–9) 2.1(–8) 9.6(–9) 2.1(–8) 3.9(– 9) 7.2(– 9) 2.5(–8) 1.1(–9)

are

~~(t;d~)
u~ = v~(x;d/i)=/N d~(t), k=o,l,2,..., (5.3)

t–x

for linear divisors and

~h(t; dA)
V~= vk(x,y;d/O=/ dA(t), k=o,l,2,..., (5.4)

R(t–x)2+y2

for quadratic divisors. Both can reexpressed in terms ofthe integrals

rr~(t; dA)
p~ =ph(z; dA) =/ ~_t d~(t), z6C\supp(dA), k = 0,1,2, ...,

R

(5.5)

the first by means of

v~(x; dA) = –p~(z; dA), z=~ (5.6)

and the others by means of

Imp~(z; dA)
v~(x, y;d~) = –

Imz ‘
Z=x+iy, (5.7)

The point to observe is that { p~(z; dA)} is a minimal solution of the basic

recurrence relation (1.3) for the orthogonal polynomials {n~(”; dA)} (cf.

Gautschi [1981]). The quantities p~(z; dA), k = O, 1,..., n, therefore, can be

computed accurately by a backward recurrence algorithm [Gautschi 1981,

sect. 5], which, for v > n, produces approximations p~”l(z; d A) converging to

p~(z; dA) when v ~ ~, for any fixed k,

P~](z; dA) + p~(z; dA), V+ co. (5.8)

ACM TransactIons on Mathematical Software, Vol. 20, No. 1, March 1994.

52 . Walter Gautschl

The procedure is implemented in the routine

knum(n, nuO, numax, z, eps, a, b, rho, nu, ierr, rold),

which computes ph(.z; d~) for k = O, 1,. , , , n to a relative precision eps. The

results are stored as rho(k) = ph. I(z; d~), k = 1,2,...,n + 1,in the complex

array rho of dimension n + 1. The user has to provide a starting index

nuO = VO > n for the backward recursion, which the routine then increments

by units of 5 until convergence to within eps is achieved. If the requested

accuracy eps cannot be realized for some v < numax, the routine exits with

ierr = numax. Likewise, if VO > numax, the routine exits immediately,

with the error flag ierr set equal to nuO. Otherwise, the value of v for which

convergence is obtained is returned as output variable nu. The arrays a, b of

dimension numax are to hold the recursion coefficients a(k) = ak - ~(d~),

b(k) = /3~_ ~(dA), k = 1,2,...,numax, for the given measure dA The com-

plex array rold of dimension n + 1 is used for working space. In the interest

of rapid convergence, the routine should be provided with a realistic estimate

of VO. For classical measures, such estimates are known (cf. Gautschi [1981,

sect. 5]) and are implemented here by the function routines

nuOjac(n, z, eps), nuOlag(n, z, al, eps), nuOher(n, z, eps).

The first is for Jacobi measures, the second is for generalized Laguerre

measures with parameter al = a > — 1, and the last is for the Hermite

measure. Note that PO for Jacobi measures does not depend on the weight

parameters a, ~, in contrast to VO for the generalized Laguerre measure.

The name knum comes from the fact that P.(z; d~) in (5.5) is the numera-

tor in the kernel

K.(z; dA) =
~n(z; dA)

7Tn(Z; dA)
(5.9)

of the remainder term of the n-point Gaussian quadrature rule for analytic

functions (cf., e.g., Gautschi and Varga [1983]). For the sequence of kernels

KO, KI, K., we have the following routine:

subroutine kern(n, nuO, numax, z, eps, a, b, ker, nu, ierr, rold)
complex z, ker, rold, pO, p, pml
dimension a(numax), b(numax), ker(*), rold(*)
call knum(n, nuO, numax, z, eps, a, b, ker, nu, ierr, rold)
if(ierr.ne.0) return
po = (o., o.)
p = (1.,0.)
dolOk=l, n

pml = pO
po=p
p = (Z – a(k)) *pO – b(k) *pml
ker(k + 1) = ker(k + 1)/p

10 continue
return
end

The meaning of the input and output parameters is the same as in knum.

The double-precision version of the routine is named dkern.

ACM TransactIons on Mathematical Software, Vol. 20, No 1, March 1994

Algorithm 726: ORTHPOL . 53

All of the ingredients are now in place to describe the workings of gchri,

the alternative routine to chri when the latter is unstable. First, the routine

knum is used to produce the first 2 n modified moments v~(x; d~) (resp.,

Vk(x, y;dA)), k = o, l, ..., 2 n – 1. These are then supplied to the routine

cheb along with the recursion coefficients a~(d A), ~~(d A) (needed anyhow
for the comp~tation of the VL), which produces the desired coefficients

ak(d$, ~~(dA), k = O, 1, ..., n – 1. The routine has the following calling

sequence:

gchri(n, iopt, nuO, numax, eps, a, b, x, y, alpha, beta,
nu, ierr, ierrc, fnu, rho, rold, s, sO, s1, s2).

On entry,

n is the number of recursion coefficients desired; type integer.

iopt is an integer identifying the type of modification as follows:

(1) d~(t) = dA(t)/(t – x), where x is assumed to be outside of the

smallest interval containing supp(d A).

(2) dA(t) = dA(t)/((t – X)2 + y’), y >0.

nuO is an integer VO >2 n estimating the starting index for the back-

ward recursion to compute the modified moments; if no other

choices are available, take nuO = 3 x n.

numax is an integer used to terminate backward recursion in case of

nonconvergence; a conservative choice is numax = 500.

eps is a relative error tolerance; type real.

a, b are arrays of dimension numax to be supplied with the recursion

coefficients a(k) = a~.l(d~), b(k) = @h-l(d A), k =

1,2 ,. ... numax.

x, y are real parameters defining the linear and quadratic divisors of

dA.

On return,

alpha, beta are arrays of dimension n containing the desired recursion

coefficients alpha(k) = il. ~, beta(k) = ~~-1, k = 1,2, ...,

n.

nu is the index v for which the error tolerance eps is satisfied

for the first time; if it is never satisfied, nu will have the

value numax.

ierr is an error flag, where

ierr = O on normal return,
ierr = 1 if iopt is inadmissible,

ierr = nuO if nuO > numax,
ierr = numax if the backward recurrence algorithm does

not converge, and
ierr = – 1 if n is not in range.

ierrc is an error flag inherited from the routine cheb.

ACM TransactIons on Mathematical Software, Vol. 20, No. 1, March 1994.

54 . Walter Gautschl

The real arrays fnu,s,s0,sl,s2 are working space, all of dimension 2 X n,

except s, which has dimension n. The complex arrays rho, rold are also

working space, both of dimension 2 n. The routine calls on the subroutines

knum and cheb. The double-precision version of gchri has the name dgchri.

Since the routine gchri is based on the modified Chebyshev algorithm, it

shares with the latter its proneness to ill-conditioning, particularly in cases of

measures supported on an infinite interval. On finitely supported measures,

however, it can be quite effective, as seen in the next example.

Example 5.3 The performance of chri and gchri.

To illustrate the severe limitations of the routine chri in situations where

divisions of the measure d~ are involved, and at the same time to document

the effectiveness of gchri, we ran both routines with n = 40 for Jacobi

measures d~(”’ P) with parameters a, @ = – .8(.4) .8, ~ > a. This is done in

testl 1.

The routine testl 1 first tests division by t – x, where x = – 1.001, – 1.01,

– 1.04, – 1.07, and – 1.1. Both routines chri and gchri are run in single and

double precision, the latter with e = 10 x ~‘ and e = 100 X ~d, respectively.

The double-precision results are used to determine the absolute errors in the

6‘s and the relative errors in the ~‘s for each routine. The required coeffi-

cients ah, ~~, O <k < v~~, – 1 (V~,X = 500 for single precision and 800 for

double precision) are supplied by recur and drecur with ipoly = 6. The

routine nuOjac is used to provide the starting recurrence index V. (resp.,

v$). In Tables XII and XIII, relating, respectively, to linear and quadratic

divisors, we give only the results for the Legendre measure (a = /3 = O). The

first line in each three-line block of Table XII sh~ws x, VO, v:, and the

maximum (over k, O < k < 39) errors in the ~~ and ~~ for gchri, followed by

the analogous information (except the Vo’s) for chri. The recurrence index v

yielding convergence was found (not shown in test 11) to be v = V. + 5 and

v d = v: + 5, without exception.

It can be seen from the leading lines in Table XII that chri rapidly loses

accuracy as x moves away from the interval [— 1, 1], all single-precision

accuracy being gone by the time x reaches – 1.1. Similar, if not more rapid,

erosion of accuracy is observed for the other parameter values of a, ~. The

next two lines in each three-line block show “reconstruction errors,” that is,

the maximum errors in the a‘s and ~‘s if the 6‘s and ~‘s produced by gchri,

chri and dgchri, dchri are fed back to the routines chri and dchri with

iopt = 1 to recover the original recursion coefficients in single and double
precision. The first of these two lines shows the errors in reconstructing these

coefficients from the output of gchri (resp., dgchri), and the second from the

output of chri (resp., dchri). Rather remarkably, the coefficients are recov-

ered to essentially full accuracy, even when the input coefficients (produced

by chri and dchri) are very inaccurate! This is certainly a phenomenon that

deserves further study. It can also be seen from Table XII (and the more
complete results in Section 1 of the package) that gchri consistently produces

accurate results, some slight deterioration occurring only very close to x =

– 1, where the routine has to work harder.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994

Algorithm 726: ORTHPOL . 55

Table XII. Performance of gchri and chri for Elementary Divisors ~ – x of the
Legendre Measure d A(t)

– 1.001 418 757 8.000(– 14)
8.527(– 14)*
1.421(– 14)*

1.559(– 13)
1.705(–13)

5.329(– 14)

1.013(–13)
1.010(–27)

2.019(–28)

1.647(– 13)
2.423(– 27)
1.211(–27)

– 1.010 187 294 4.016(– 14)
3.553(– 14)

7.105(– 15)

6.907(– 14)
9.946(– 14)
4.262(– 14)

1.396(– 10)
6.058(– 28)

1.515(– 28)

2.424(– 10)
1.211(–27)

9.080(– 28)

– 1.040 133 18’7 3.590(– 14)
2.842(– 14)

7.105(–15)

4.759(– 14)

7.103(– 14)
4.263(– 14)

5.944(– 6)
5.554(– 28)
1.010(– 28)

8.970(–6)

1.312(– 27)
9.080(– 28)

– 1.070 120 161 2.194(– 14)
2.842(– 14)

7.105(– 15)

4.850(– 14)

7.104(– 14)
4.263(– 14)

5.334(– 3)

6.058(– 28)
1.010(–28)

7.460(– 3)
1.211(–27)

7.062(– 28)

– 1.100 114 148 2.238(– 14)
2.132(–14)
1.549(– 12)

4.359(– 14)
5.683(– 14)
1.833(– 12)

4.163(0)
3.534(– 28)
1.010(–28)

4.959(+1)
1.009(– 27)
6.057(– 28)

*The second two lines of each three-line block show reconstruction errors.

Table XIII. Performance of gchri and chri for Elementary Divisors (t – x)2 + y 2 of the

Legendre Measure d ~(t) with z = x + iy on %0

gchri chri

P ~o
-d
Vo err & Gj err & Gj

1.050 390 700 7.879(–13)
7.814(– 13)*
2.024(– 14)*

1.440(– 12)
1.433(– 12)

8.442(– 14)

7.685(– 14)
1.786(– 26)

3.016(–28)

1.556(– 13)
3.042(– 26)
1.742(–27)

1.275 142 204 6.252(– 14)

6.554(– 14)
2.295(– 14)

1.287(– 13)
1.279(– 13)

8.970(– 14)

4.562(– 7)
1.541(–27)

3.579(–28)

6.162(– 7)
3.061(–27)
1.646(– 27)

1.500 117 154 3.991(–14)
4.207(– 14)

3.805(– 14)

7.966(– 14)
9.064(– 14)

8.971(– 14)

4.906(– 1)

6.932(– 28)
4.351(–28)

2.339(0)

1.676(– 27)

1.744(– 27)

*The second two lines of each three-line block show reconstruction errors.

The second half of testll tests division by (t – X)2 + y2, where z = x + iy

is taken along the upper half of the ellipse

(1 (1

) 1
27P= zGC:z=~ pei~+–e-’$,0<8<27T, p >1, (5.10)

P

which has foci ~ 1 and sum of the semiaxes equal to p. (These ellipses are

contours of constant UO for Jacobi measures.) We generated information

analogous to the one in Table XII, for p = 1.05, 1.1625, 1.275, 1.3875, and 1.5,

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

56 . Walter Gautschl

except that all quantities are averaged over 19 equally spaced points on ZP

corresponding to 8 = j~/20, j = 1,2, 19. Selected results (bars indicate

averaging), again for the Legendre case, are shown in Table XIII. They reveal

a behavior very similar to the one in Table XII for linear divisors.

6. GAUSS-TYPE QUADRATURE RULES

One of the important uses of orthogonal polynomials is in the approximation

of integrals involving a positive measure d A by quadrature rules of maxi-

mum, or nearly maximum, algebraic degree of exactness. In this context, it is

indispensable to know the recursion coefficients for the respective orthogonal

polynomials {nk(.; d A)}, since they allow us to generate the desired quadra-

ture rules accurately and effectively via eigenvalue techniques. The software

developed in the previous sections thus finds here a vast area of application.

6.1 Gaussian Quadrature

Given the (positive) measure d A (having an infinite number of support

points), there exists, for each n = N, a quadrature rule

(6.1)

having algebraic degree of exactness 2 n – 1, that is, zero error, R.(f) = O,

whenever f is a polynomial of degree < 2 n – 1.The nodes Xk indeed are the

zeros of the nth-degree orthogonal polynomial T.(.; d A), and the weights Wk,

which are all positive, are also expressible in terms of the same orthogonal

polynomials. Alternatively, and more importantly for computational pur-

poses, the nodes Xk are the eigenvalues of the nth-order Jacobi matrix

(6.2)

where aA = aL(d A), DL = ~k(d A) are the recurrence coefficients for the (monic)
orthogonal polynomials {wh(.; dA)}, and the weights Wk are expressible in

terms of the associated eigenvectors. Specifically, if

J.(dNu~ = XkUk> V:uk = 1, Jz=l,2,..., n, (6.3)

that is, if Vk is the normalized eigenvector of J~(d A) corresponding to the

eigenvalue Xk, then

w~ = /3.7):,1, k=l,2,..., n, (6.4)

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

Algorithm 726: ORTHPOL . 57

where & = DO(d A) is defined in (1.4) and Uk, ~ is the first component of v~ (cf.

Golub and Welsch [1969]). There are well-known and efficient algorithms,

such as the QR algorithm, to compute eigenvalues and (part of the) eigen-

vectors of symmetric tridiagonal matrices. These are used in the routine

gauss,4 whose calling sequence is as follows:

gauss(n, alpha, beta, eps, zero, weight, ierr, e).

On entry,

n is the number of terms in the Gauss formula; type integer.

alpha, beta are arrays of dimension n assumed to hold the recursion

coefficients alpha(k) = ah. ~, beta(k) = 13k.1, k = 1,2, ..., n.

eps is a relative error tolerance, for example, the machine preci-

sion.

On return,

zero, weight are arrays of dimension n containing the nodes (in increas-

ing order) and the corresponding weights of the Gauss

formula, zero(k) = Xh, weight(k) = Wk, k = 1,2,... ,n.

ierr is an error flag equal to O on normal return, equal to i if the

QR algorithm does not converge within 30 iterations on

evaluating the i th eigenvalue, equal to – 1 if n is not in

range, and equal to – 2 if one of the ~‘s is negative.

The array e of dimension n is used for working space. The double-precision

routine has the name dgauss.

We refrain here from giving numerical examples, since the use of the

routine gauss and the routines yet to be described is straightforward. Some

use of gauss and dgauss has already been made in Examples 4.2–4.4 and

5.2.

6.2 Gauss – Radau Quadrature

We now assume that d A is a measure whose support is either bounded from

below, bounded from above, or both. Let XO be either the infimum or the

supremum of supp d & so long as it is finite. (Typically, if supp d~ = [– 1, 1],

then XO could be either – 1 or +1; if supp d A = [0, CO],then XO would have to

be O; etc.). By Gauss-Radau quadrature we then mean a quadrature rule of

maximum degree of exactness that contains among the nodes the point XO. It

thus has the form

/ f(~)d~(~) = w,f(~,) + i w,f(~,) + ~.(f) (6.5)
R k=l

4This routine was kindly supplied to the author by Professor G. H. Golub.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

58 . Walter Gautschi

and, as is well known, can be made to have a degree of exactness 2 n, that is,

R.(f) = O for all polynomials of degree <2 n. Interestingly, all nodes

Xo, xl,..., x. and weights w ~, w ~,. . ., w. can again be interpreted in terms of
eigenvalues and eigenvectors, exactly as in the case of Gaussian quadrature

rules, but now relative to the matrix (cf. Golub [19731)

= R(n+’’x(n+”, (6.6)

7Tn-,(x,; d/i)
a!* = a:(cl A) =x~ – &n

mn(xo; dA) “
(6.7)

Hence, we can use the routine gauss to generate the Gauss–Radau formula.

This is done in the following subroutine:

subroutine radau(n, alpha, beta, end, zero, weight, ierr, e, a, b)
dimension alpha(*), beta(*), zero(*), weight(*), e(*), a(*), b(*)

c
c The arrays alpha, beta, zero, weight, e, a, b are assumed to have
c dimension n + 1.
c

epsma = rlmach(3)
c
c epsma is the machine single precision.
c

npl=n+l
do 10 k = 1, npl

a(k) = alpha(k)
b(k) = beta(k)

10 continue
po = o.
pl = 1.
do20k=l, n

pml = pO
PO = pl
pl = (end – a(k)) *pO – b(k) *pml

20 continue
a(npl) = end – b(npl) *pO /pl
call gauss (npl, a, b, epsma, zero, weight, ierr, e)
return
end

The input variables are n, alpha, beta, and end, representing, respectively,

n; two arrays of dimension n + 1 containing the ak(dA), ~h(dA), k =

0, 1,2,. . . . n; and the “endpoint” XO. The nodes (in increasing order) of the

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994

Algorithm 726: ORTHPOL . 59

Gauss-Radau formula are returned in the array zero, and the corresponding

weights in the array weight. The arrays e, a, b are working space, and ierr

is an error flag inherited from the routine gauss. The double-precision

routine has the name dradau.

We remark that XO could also be outside the support of d~, in which case

the routine would generate a “Christoffel-type” quadrature rule.

6.3 Gauss – Lobatto Quadrature

Assuming now the support of d A bounded on either side, we let XO =

inf supp (d A) and x.+ ~ = sup supp (d A) and consider a quadrature rule of the

type

j“ f(t)d~(t) = Wof(Xo) + fi ~,f(x,) + ~n+,f(xn+l) +~n(f) (6.8)
R k=l

having maximum degree of exactness 2 n + 1. This is called the GcLuss-Lo-

batto quadrature rule. Its nodes XO, xl, x~+l and weights WO, Wl, w~hl

again admit the same spectral representation as in the case of the Gauss and

Gauss–Radau formulas, only this time the matrix in question has order

n + 2 and is given by (cf. Golub [1973])

Here, as before, ah = ah(d A)(O < k < n), flk = flk(d~)(l < k < n), and a;+ ~,

D:+ I are the unique solution of the linear 2 x 2 sYstem

Hence, we have the following routine for generating the Gauss-Lobatto

formulas:

subroutine lob(n, alpha, beta, aleft, right, zero, weight, ierr, e, a, b)
dimension alpha(*), beta(*), zero(*), weight(*), e(*), a(*),b(*)

c
c The arrays alpha, beta, zero, weight, e, a, b are assumed to have
c dimension n + 2.
c

epsma = rlmach(3)
c
c epsma is the machine single precision.
c

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

60 . Walter Gautschi

npl=n+l
np2=n+2
do 10 k = l,np2

a(k) = alpha(k)
b(k) =beta(k)

10 continue
pol = o.
pOr = O.
pll= 1.
plr= 1.
do 20 k = l,npl

pmll = pOl
pol = pll
pmlr = pOr
pOr = plr
pll = (aleft – a(k)) *pOl – b(k) *pmll
plr = (right – a(k))* pOr – b(k)* pmlr

20 continue
det = pll *pOr – plr *pOl
a(np2) = (aleft * pll * pOr – right* plr * pOl) / det
b(np2) = (right – aleft) * pll * plr / det
call gauss(np2, a, b, epsma, zero, weight, ierr, e)
return
end

The meaning of the input and output variables is as in the routine radau,

the variable aleft standing for XO and right for X.. ~. The double-precision

routine is named dlob.

A remark analogous to the one after the routine radau applies to the

routine lob.

ACKNOWLEDGMENTS

The author gratefully acknowledges a number of suggestions from two anony-

mous referees and from the associate editor, Dr. Ronald F. Boisvert, for

improving the code of the package.

REFERENCES

ARRAMOWITZ, M., AND STEGUN, I. A., EDS. 1964. Handbook of mathematical functions. NBS

Appl. Math. Ser. 55, U.S. Government Printing OffIce, Washington, D.C.

BOLEY, D., AND GOLUB, G. H. 1987. A survey of matrix inverse eigenvalue problems. Znuerse
Problems 3, 4, 595–622,

CHEBYSHEV, P. L. 1859. Sur l’interpolation par la m6thode des moindres carr6s. M4m, Acad.
Imp&_. SCL. St. P6tersbourg (7) 1, 15, 1-24. (Oeuvres I, pp. 473-498.)

CHIHARA, T. S. 1978. An Introduction to Orthogonal Polynomials. Gordon and Breach, New

York.

CHIHARA, T. S. 1985. Orthogonal polynomials and measures with end point masses. Rocky
Mountain J. Math. 15, 3, 705–719.

CHRISTOFFEL,E. B. 1858. Uber die Gau @ische Quadratur und eine Verallgemeinerung dersel-

ben. J. Reme Angew. Math 55, 61-82. (Ges. Math. Abhandlungen I, pp. 65-87.)

CHRISTOFFEL, E. B. 1877. Sur une classe particuli&re de fonctions enti&-es et de fractions

continues, Ann. Mat. Pura Appl. Ser. 2, vol. 8, 1–10, (Ges. Math. Abhandlungen II, pp.

42-50.)

CODY, W. J., AND HILLSTROM, K. E. 1967. Chebyshev approximations for the natural logarithm

of the gamma function. Math. Comput 21, 98 (Apr.), 198–203.

ACM Transactions on Mathematical Software, Vol 20, No 1, March 1994

Algorithm 726: ORTHPOL . 61

DANLOY,B. 1973. Numerical construction of Gaussian quadrature formulas for (:(– Log

x)’ x“ f(x) ~dx and f: Em(z). ~(.x) dx. J4ath. Comput. 27, 124 (Oct.), 861-869.

DE BOOR, C., AND GOLUB, G. H. 1978. The numerically stable reconstruction of a Jacobi matrix

from spectral data. Linear Algebra Appl. 21, 3 (Sept.), 245-260.

FRONTINI,M., GAUTSCHI,W., ANDMILOVANOVE5,G, V. 1987. Moment-preserving spline approxi-

mation on finite intervals. Numer. Math. 50, 5 (Mar.), 503–518.

GALANT, D. 1969. Gauss quadrature rules for the evaluation of 2 T- 1‘z]; exp(–X2)f(x) ch,
review 42. ilfath. Comput. 23, 107 (July), 676–677. (Loose microfiche suppl. E.)

GALANT, D. 1971. An implementation of Christoffel’s theorem in the theory of orthogonal
polynomials. Math. Comput. 25, 113 (Jan.), 111-113.

GALANT, D. 1992. Algebraic methods for modified orthogonal polynomials. Math. Comput. 59,
200 (Oct.)> 541-546.

GAUTSCHI,W. 1967a. Numerical quadrature in the presence of a singularity. SIAM J. Numer.
Anal. 4, 3 (Sept.), 357-362.

GAUTSCHI,W. 1967b. Computational aspects of three-term recurrence relations. SIAM Reu. 9,

1 (Jan.), 24-82.

GAUTSCHI,W. 1979. On the preceding paper “A Legendre polynomial integral” by James L.

Blue. Math. Comput. 33, 146 (Apr.), 742-743.

GAUTSCHI, W. 1981. Minimal solutions of three-term recurrence relations and orthogonal
polynomials. Math. Comput. 36, 154 (Apr.), 547-554.

GAUTSCHI, W. 1982a. On generating orthogonal polynomials. SIAM J. SCL. Stat. Comput. 3, 3

(Sept.),289-317.
GAUTSCHI,W. 1982b. An algorithmic implementation of the generalized Christoffel theorem.

In Numerical Integration, G. Hammerlin, Ed. International Series of Numerical Mathematics,
vol. 57. Birkhauser, Basel, pp. 89–106.

GAUTSCHI, W. 1984a. Discrete approximations to spherically symmetric distributions. Numer.
Math. 44, 1 (June), 53-60.

GAUTSCHI, W. 1984b. Questions of numerical condition related to polynomials. In Studies tn

Mathematicsj vol. 24. G. H. Golub, Ed. Studies in Numerical Analysis. Mathematical Associa-

tion of America, Washington, D. C., pp. 140-177.

GAUTSCHI, W. 1986a. On the sensitivity of orthogonal polynomials to perturbations in the
moments. Numer. Math. 48, 4 (Apr.)j 369–382,

GAUTSCHI, W. 1986b. Reminiscences of my involvement in de Branges’s proof of the Bieber-

bach conjecture. In The 13ieberbach Conjecture. Mathematical Surveys and Monographs, no. 21.
American Mathematical Society, Providence, R. I., pp. 205-211.

GAUTSCHI, W. 1990. Computational aspects of orthogonal polynomials. In Orthogonal Polyno-
m ials—Theory and Practice, P. Nevai, Ed. NATO ASI Series, Series C: Mathematical and
Physical Sciences, vol. 294. Kluwer, Dordrecht, pp. 181-216.

GAUTSCHI, W. 1991a. A class of slowly convergent series and their summation by Gaussian
quadrature. Math. Comput. 57, 195 (July), 309-324.

GAUTSCHI, W. 1991b. On certain slowly convergent series occurring in plate contact problems.

Math. Comput. 57, 195 (July), 325-338.

GAUTSCHI, W. 1991c. Quadrature formulae on half-infinite intervals. BIT 31, 3, 438-446.

GAUTSCHI,W. 1991d. Computational problems and applications of orthogonal polynomials. In
Orthogonal Polynomials and Their Applications. IMACS Annals on Computing and Applied
Mathematics, vol. 9. Baltzer, Basel, pp. 61-71.

GAUTSCHI, W. 1993a. Gauss-type quadrature rules for rational functions. In Numerical Inte-
gration IVj H. Brass and G. Hammerlin, Eds. International Series of Numerical Mathematics,
vol. 112. Birhauser, Basel, 111–130.

GAUTSCHI,W. 1993b. On the computation of generalized Fermi–Dirac and Bose–Einstein
integrals. Comput. Phys. Commun. 74, 2 (Feb.), 233–238.

GAUTSCHI,W. 1993c. Is the recurrence relation for orthogonal polynomials always stable? BIT
33, 2, 277-284.

GAUTSCHI,W., ANDLI, S. 1993. A set of orthogonal polynomials induced by a given orthogonal
polynomial. Aequatioizes Math. 46, 1/2 (Aug.), 174-198.

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.

62 . Walter Gautschi

GAUTSCHI, W., AND MILOVANOV16, G. V. 1985. Gaussian quadrature involving Einstein and
Fermi functions with an application to summation of series. Math Cornput. 44, 169 (Jan),
177-190.

GAUTSCHI, W., AND MILOVANOV16, G V. 1986. Spline approximations to spherically symmetric
distributions. Numer. Math. 49, 2/3 (July), 111-121.

GAUTSCHI, W., AND VARGA, R. S. 1983. Error bounds for Gaussian quadrature of analytic
functions. SIAM J. Numer. Anal, 20, 6 (Dec.), 1170-1186.

GAUTSCHI, W., AND WIMP, J. 1987. Computing the Hilbert transform of a Jacobi weight

function. BIT 27, 2, 203-215.

GAUTSCHI, W., KOVAFEV16, M. A., AND MILOVANOV16, G. V, 1987. The numerical evaluation of

singular integrals with coth-kernel. BIT 27, 3, 389–402.

GOLUB, G. H. 1973. Some modified matrix eigenvalue problems. SIAM Rel. 15, 2 (Apr.),
318-334.

GOLUB, G. H., AND WELSCH, J. H. 1969. Calculation of Gauss quadrature rules. Math. Comput.
23, 106 (Apr.), 221-230.

GR#iGG, W. B., AND HARROD,W. J. 1984. The numerically stable reconstruction of Jacobi
matrices from spectral data. Numer. Math. 44, 3 (Sept), 317–335.

KAUTSKY, J., AND GOLUB, G. H. 1983. On the calculation of Jacobi matrices. Linear Algebra
APPt. 52-53 (July), 439-455.

LUKE, Y. L. 1975, Mathematical Functtons and Thetr Approxzmatzons, Academic Press, New

York.

REES, C. J. 1945. Elliptic orthogonal polynomials. Duke Math J. 12, 173-187.

RUTISHAUSER,H. 1963. On Jacobi rotation patterns, In Experimental Arithmetic, Hzgh Speed

Cornputmg and Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 15.
American Mathematical Society, Providence, R. I., pp. 219-239.

SACK, R. A., AND DONOVAN, A. F. 1972. An algorithm for Gaussian quadrature given modified
moments. Numer. Math. 18, 5 (Mar.), 465–478.

STROUD,A. H., AND SECREST, D 1966. Gaussian Quadrature Formulas Prentice-Hall, Engle-
wood Cliffs, N.J.

UVAROV, V. B. 1959. Relation between polynomials orthogonal with different weights. Dokl.
Akad. Nauk SSSR 126, 1,33–36. (In Russian.)

UVAROV, V. B. 1969. The connection between systems of polynomials that are orthogonal with
respect to different distribution functions. 2 Vy~isl. Mat. z Mat. Fuz. 9, 6. 1253–1262. (In

Russian.)

WHEELER, J. C. 1974. Modified moments and Gaussian quadrature. Rocky Mountain J. Math.
4, 2, 287-296,

WILKINSON,J. H. 1965. The Algebraic Eigenualue Problem. Clarendon Press, Oxford.

Received February 1992; revised December 1992 and March 1993; accepted March 1993

ACM TransactIons on Mathematical Software, Vol. 20, No. 1, March 1994

