
SIAM REVIEW
Vol. 9, No. 1, January, 1967

COMPUTATIONAL ASPECTS OF THREE-TERM RECURRENCE
RELATIONS*

WALTER GAUTSCHIf

Introduction. Recurrence relations are one of the basic mathematical tools of
computation. There is hardly a computational task which does not rely on
recursive techniques, at one time or another. The widespread use of recurrence
relations can be ascribed to their intrinsic constructive quality, and the great
ease with which they are amenable to mechanization. On the other hand, like
most recursive processes, recurrence relations are susceptible to error growth.
Each cycle ot a recursive process not only generates its own rounding errors, but
also inherits the rounding errors committed in all the previous cycles. If con-
ditions are unfavorable, the resulting propagation of error may well be dis-
astrous. It is this aspect of recurrence relations--the possibility and the preven-
tion of numerical instability--that will be of concern to us.
The problem of numerical instability has been studied extensively for differ-

ence equations arising in the numerical solution of ordinary and partial dif-
ferential equations. In the seemingly much simpler context of a single linear
difference equation, the problem has received only sporadic attention, even
though such difference equations, particularly of the second order, occur promi-
nently in many branches of pure and applied mathematics. We mention, e.g.,
the recurrence relations satisfied by large classes of special functions of mathe-
matical physics and statistics, the three-term recurrence relations that lie at the
heart of continued fraction theory and the theory of orthogonal polynomials,
and the miscellaneous recurrence relations one encounters when constructing
series expansions, asymptotic or otherwise, to solutions of linear differential
equations. We believe, therefore, that a systematic review of some of the compu-
tational problems attending recurrence relations might be of value. In the follow-
ing we attempt to present such a survey, restricting attention to the special case
of three-term recurrence relations.
The kind of instability we are concerned with, may be described as follows.

Consider a three-term recurrence relation of the form

(0.1) y,+l q- a,y,, q-. b,y,_ O, n 1, 2, 3, ...,
where am, b are given sequences of real or complex numbers, and b 0. The
general solution of (0.1) can be spanned by any pairf, g of linearly independent
solutions. We are interested in the special case where there exists such a pair
having the property
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Serious problems then arise if one attempts to compute the solution f or any
constant multiple of f.
To see this, we first note that (0.2) implies

(0.3) lira f 0
y

for any solution y not proportional to f. Such a solution, indeed, is represent-
able in the form y, af, + bg, with b 0, and therefore

lira lim f/g O.
y b + a(f/g)

If we now generate f by (0.1), using only approximate initial values yo f0,
y f (due to rounding, for example), but recurring with infinite precision, we
obtain a solution y which, in general, is linearly independent of f. Therefore,
by (0.3), we will have

as

.e., the relative error of, the intended approximation to, becomes arbitrarily
large. Therefore, this srahtforward method of computing is uterly in-
effective.

Observe that the set of all solutions f. of (0.1) having the property indicated
in (0.3) forms a one-dimensional subspce of the spce of all solutions. (There
cn be no two linearly dependent solutions f,f enjoyg this property, since,
otherwise, f/f,’ and f/f, would both have the limit zero, as n , which is
absurd.) We call the solutions of this subspace minimal at infinity, or briefly
minimal. A nonminimal solution will be referred to as dominant. Euch dominant
solution is asymptotically proportional to g. Note thut, in contrast to dominant
solutions, minimal solution is uniquely determined by one initiul value.
To illustrate the difficulty of calculatg minal solutions, consider the prob-

lem of generating Bessel functions of the first kind, J,(x), for fixed x, and n
0, 1, 2, .... As is well-known, these functions (of n) obey the three-term re-

currence relation

2n(0.4) y+ y + y.- 0.

From tbles of Bessel functions we find, e.g., thut for x 1, J0(1) .7651976866,
J(1) .4400505857, accurute to ten figures. Generating the next 99 values of
J(1) on digital computer by straightforward recursion, we obtain the results

The notion of a minimal solution ppears to have first been introduced by Pincherle in
connection with his generalization of continued frctions [44]. Pincherle called it "dis-
tinguished" solution (soluione distint). In the theory of linear differential equations the
term "principal" solution is also in use [24]. The minimal solution can often be identified
with a solution "of type II" in terminology of Schfke [51].

This example is well known, and has received considerable attention in the literature.
See the references in 5.
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TABLE 1

"Jn(1)"

7.651976866 (-1)
4.400505857 (-1)
1.149034848 (-1)
1.956335358 (-2)
2.476636684 (-3)
2.497398891 (-4)
2.076220699 (.-5)

-5.934052751 (-7)
-2.906988084 (-5)

9
10
11
12
13

2O

100

-4.645246881 (-4)
-8.332374506 (-3)
-1.661829654 (-1)
-3.647692865 (0)
-8.737844579 (1)

--2.818590869 (12)

--2.586550446 (175)

shown in Table 1. (The numbers in parentheses denote powers of 10 by which
the preceding numbers have to be multiplied.) Obviously, there is little resem-
blance with the true values of J(1), which are known to decrease steadily with
increasing n, and to approach zero very rapidly as n -- . In fact, since JT(1)
came out to be negative, all digits shown, for n _>- 7, including the sign and the
exponent, must be illusory.
The disastrous build-up of errors, in this example, is due to the fact that with

f J(x), also g Y(x), the Bessel function of the second kind, is solution
of (0.4) nd, moreover,

x/2
S .

Therefore, J(x) is indeed highly minimal at infinity.
Methods of calculating minimal solutions of three-term recurrence relations,

including applications, constitute the main theme of this paper. In 1 we begin
with a brief survey of continued fractions, emphasizing computational methods.
The relevance of continued fractions is contained in result due to Pincherle
which expresses ratios of a minimM solution in terms of continued fractions. In
2 we recM1 some classical results from the asymptotic theory of linear dif-
ference equations which will find repeated use in the later parts of the puper.
3 brings u first Mgorithm for cMculating a minimal solution, based on the result
of Pincherle. The problem considered is to culculate a minimal solution f known
to satisfy

(0.5) s 0.
m=0

The speciM case X0 1, 0, m > 0, amounts to prescribing f0. Considera-
tion of an infinite series (0.5) has the distinct advantage that the resulting
Mgorithm does not require the computation of f, for any vMue of n. Our first
algorithm is mathematically (though not computationally) equivalent to the

Computation was performed on the CDC 3600 computer, which in floating point arith-
metic allows precision of about 12 decimM digits.
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backward recurrence algorithm of J. C. P. Miller. While this algorithm is widely
regarded as iust a "trick of the trade," our presentation will show that it derives
naturally from rather elegant results of classical analysis. In 4 two alternate
algorithms are described which are more flexible, but more elaborate, than the first
algorithm. The remaining paragraphs discuss a number of applications, mostly
to the computation of higher transcendental functions such as Bessel functions
(5), associated Legendre functions (6), regular Coulomb wave functions
(7), and other miscellaneous functions (8-10). 11 contains an application
to a Sturm-Liouville boundary value problem on an infinite interval.
The extent to which our algorithms are affected by rounding errors will not be

discussed in detail. Our experience seems to indicate, however, that none of the
algorithms is sensitive to rounding, unless the series (0.5) is subject to cancella-
tion of terms. The rigorous analysis of error propagation is an interesting, though
diificult, outstanding problem in this area. A significant contribution in this
direction is due to Olver, who recently analyzed the error accumulation in
Miller’s algorithm [38].

In principle, there are other stable procedures that could be used to calculate
minimal solutions of (0.1). For example, we could set up the boundary value
problem of finding the solution yn of (0.1) which satisfies

y0 f0, y =f
for some sufficiently large N. Clearly, this amounts to solving the linear system

al 1 Yl

0b2 a. 1 0

b3 y3a3 1

of equations

0 aN--2

(0.6)

whose matrix is tridiagonal. Any of the standard methods, such as triangular
decomposition methods, may be used to solve (0.6). Unfortunately, the pro-
cedure requires two values, f0 and f, of the desired solution to be known in
advance. Either one may be difficult, or time-consuming, to obtain.
The problem of computing minimal solutions is clearly not peculiar to three-

term recurrence relations. It may equally arise in connection with other func-
tional equations, such as linear homogeneous difference and differential equa-
tions of arbitrary order, and systems of such equations. Whenever the space S
of all solutions is the direct sum S $1 @ S. of two subspaces $1 and S, and
every solution s S dominates, in some appropriate sense, over every solu-
tion s. $2, we may consider S as the set of minimal solutions with respect to

The author is indebted to Dr. M. E. Rose for pointing this out.
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the decomposition S S1 ( $2, (There may be several such decompositions.)
The problem of computing minimal solutions iu this sense has not been thor-
oughly studied, though the work of Clenshaw [7] and Schifke [51] suggests that
effective computational methods may exist also in this more general context.

1. Three-term recursion and continued fractions. It is well-known that the
concepts of three-term recursion and continued fraction are closely related. To
every continued fraction we may in fact associate a three-term recurrence
relation, namely the fundamental recurrence formula for the numerators and
denominators. Vice versa, every three-term recurrence relation may be inter-
preted as the fundamental recurrence formula for some continued fraction. The
first point of view is useful for computing continued fractions, the second for
computing the minimal solution. We begin by considering several methods of
calculating a continued fraction.
Suppose we are given the continued fraction

al a aa1.1 bl b. -t- b-t-

where the partial numerators am and partial denominators b are real or complex
numbers. Denote its nth numerator and nth denominator by Am and B,, re-
spectively, so that

al a an A
(1.2)

bl-f- b-+- b Bn"
The value of the continued fraction (1.1), if it exists, is defined as the limit
limn..o A,/B,. The quantities An, Bn satisfy the fundamental recurrence formulas
(see, e.g., [59, p. 15])

A, bnAn_ -4- a,An_2
(1.3)

B, bnBn_ anBn_2,
n 1, 2, 3, ...,

where

(1.4) A_ 1, A0 0; B_t 0, B0 1.

This shows that am An-1 and fin B-1 constitute a pair of linearly independ-
ent solutions of the three-term recurrence relation

(1.5) Yn+ bnYn anyn--1 0, n 1, 2, 3, ....
A first method of computation flows directly from these fundamental recur-

rence relations. Thus, one generates the A’s and B’s recursively, by means of
(1.3) and (1.4), and concurrently the ratios An/Bn, until the latter converge
within the required tolerance. As An and B are likely to grow rapidly with n,
some care must be exercised if this method is used on a digital computer. Initial
scaling, and possibly repeated subsequent scaling, may be necessary to avoid
overflow.
A second method, which avoids the necessity of scaling, consists in evaluating



THREE-TERM RECURRENCE RELATIONS 29

the finite continued fraction in (1.2) "from tail to head." Thus, formally, we
set

4. (n) ak ak+l an(1.6) J b-t- b+l+ b-’ 1 /c _< n,

and generate these quantities recursively by

(1.7) j(n) ak /c n, n 1, ..., 1,e(n)bk - j+l

using as initial value

(1.8) + 0.

Then, fl() A,/B,. To obtain the value of the continued fraction, the backward
recursion (1.7) will have to be carried out repeatedly, with increasing values
of n, until successive values of fl(n) agree within the accuracy desired. While
certainly an inconvenience, the repetitive nature of this process nevertheless
provides some self-checking features not possessed by the previous method.
A third method of computation, finally, exploits the connection between con-

tinued fractions and infinite series, expressed by the relation

where

pp pk,B. k=l

1 /c 2,3,...,n-- 1,1 -t-p+
1 + (a+/bkb+)(1-Jr-

1
01 ax/bt, 1 + p.

1 + (a/blb2)"

(This result may be obtained from Theorem 2.1 and formula (2.6) in [59],
by an appropriate equivalence transformation. See also [56]; the formula defining
ok in this reference contains a typographical error.) Clearly, these relations can
be modelled into a recursive algorithm to generate successive approximants of
a continued fraction. Let, indeed,

u 1, uk 1 + ok, k__> 2,

V- PiP2 Pk, l,->: 1,

w= vi, k.>= 1,

so that Wk Ak/B. Then

’irk-l-1
a+l1 - b b+ u(1.9) /c 1,2,3, ...,

vk+l vk(u+l 1),
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the initial values being

al(1.10) ul 1, vl w bl"
None of the disadvantages noted in the previous two methods are present
here.
We have seen that the continued fraction (1.1) leads naturally to the three-

term recursion (1.5). Suppose now, conversely, that we are given a three-term
recurrence relation

(1.11) y+l -t- any -t- by_ O, bn 0, n 1, 2, 3, ....
Define an, n to be the special solutions of (1.11) with initial values

(1.12) a0 1, al 0; fl0 0, fl 1.

Then, evidently, A On+l andB +1 are the numerators and denominators,
respectively, of the continued fraction

(1.13) -b b ba
al a-- a--

which is equivalent to the continued fraction

(1.14) bl b b ....
a- a2-- a3-

We may formally arrive at this continued fraction also in the following way.
Let us introduce the ratios

Yn+lrn
Yn

Dividing (1.11) by yn then gives

r+a+ bn
rn--1

from which

=0,

rn-1 an -- rn

n 0,1,2, ....

Applying this formula repeatedly, with n successively increasing, we get

yn --bn b+(1.15) r-
Yn-1 an-- an+l-- an+2--

In particular, when n 1,

y --b b b3
Y0 al-- a2--

This derivation indicates that the continued fraction (1.14), and similarly
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the continued fractions in (1.15), are related to ratios of consecutive values
for some solution y. The argument, however, neither insures us of the con-
vergence of these continued fracliions, nor does it tell us for what particular solu-
tion the ratios are to be formed. These matters are clarified by the following
theorem.
THEOREM 1.1 (Pincherle [45]). The continued fraction (1.14) converges "if and

only if the recurrence relation (1.11) possesses a minimal solution f with fo O.
In case of convergence, moreover, one has

(1.16) f, --b bn+l bn+2 n 1,2,3,...,
f-i an-- an+l-- an+2--

provided f O for n 0,1,2, ....
Proof. (a) Assume the continued fraction in (1.14) converges. Then so does

the equivalent continued fraction (1.13). Therefore

C

where an, fin are the solutions of (1.11) defined by the initial values (1.12), and
c is some constant. Let

(1.17) f a- c.
Take any other solution of (1.11), say y aa + b. Then ac + b 0, and

lim f =lim a-c lim (a/) -c
=0.

y n aa + b, a(a./) + b

This shows that the solution f defined in (1.17) is a minimal solution of (1.11).
Moreover, f0 a0 0.

(b) Assume now that (1.11) possesses a minimal solution, f say, for which
f0 0. Then

We note that @ is not a constant multiple of f, since f0 0. Therefore, f
being minimal,

lira f f0 lira a, +f 0,

and so

lirn a _f2
f0"

This establishes convergence of the continued fraction (1.13), and thus of that
in (1.14), and also proves (1.16) for n 1.
To prove (1.16) for general n > 1, we need only observe that zm f+m-1,

considered as a function of m, is a minimal solution of

z,+ na an+_z, -P bn+m_lZm_ O, n 1, 2, 3,
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Since by ssumption, z0 f_ 0, the portion of Theorem 1.1 lredy proved
yields

Zl fn --bn bn+l bn+
Zo fn-1

s sserted. This completes the proof of Theoreml.1.
Consider gin the three-term recurrence relation

(1.18) y,+ + a.y b,y,_ O, b, 0,

but ssume, for simplicity, that the coefficients a, b, re defined, nd (1.18)
holds, for 11 integers n 0, 1, 2, .... Let p be n rbitrry integer, nd
let ,() denote the solution of (1.18) hving starting vlues

()(1.19) () 1, + 0

at n and n + 1, respectively. Then the following duality theorem holds.
THEOREM 1.2. The function () satisfies, for fixed and variable n, the three-

erm recurrence relation

(1.20) + +a, +v_ 0, n=0,l,2,...,

and for fixed n and variable , the three-term recurrence relation

(1.21) + +_, 0, 0,1,2,....

Proof. The first part of the theorem follows from the definition of (). To
prove the second prt, we first observe that (1.21) holds true for n 1,
n, n 1. For example, when n, using (1.19) nd (1.20), we hve

(n) an, + , + ._ , + (-a-,_ b-,_

=1+0-1=0.

The verification for n 1 is nlogous. Assume now (1.21) to be true for 11
integers n, stisfying n k, where k 1 is some integer. We show
that (1.21) then lso holds for n k 1. We consider the two cses
n u k + 1, n -(k + 1) separately. In the first cse, we use (1.20)
in the form

() () ()

nd observe that (1.21) cn be pplied to both terms on the right, since

In- 1 , k, nd n- 2 ] - 1 < . We obtain

Yn --a,-i



THREE-TERM RECURRENCE RELATIONS 33

having again used (1.20). The second ease is verified similarly, using (1.20)
in the form

() 1 () ()
V (a+v+ v+.;.

bn+l
Since we already established (1.21) for n <_- 1, it now follows by induction
that the result holds for n /c,/c 0, 1, 2, 3, that is, for all integers
n, ,. Theorem 1.2 is proved.
We note that relation (1.21), for > n, can also be obtained from the

known fact (el. [43, vol. I, p. 3]) that () ()
/-z nd re the numerators nd

denominators, respectively, of the continued fraction

where

b’-i am 1
amb’ b

Alternatively, Theorem 1.2 may be obtained, as a special case, from the known
result that "multipliers" of a linear difference equation satisfy the adjoint
difference equation (cf. [35, 12.6]).

2. Some results from the asymptotic theory of ear second order difference
equations. In applications of Theorem 1.1, it is in general easier to recognize a
given solution of a three-term recurrence relation to be minimal than to establish
convergence of the corresponding continued fraction. One is aided in this by
classicM results from the asymptotic theory of derence equations, notably by a
theorem of Poincar6, and by refinements and extensions thereof due to Perron
and Kreuser. For convenience of the reader, we are recalling here these theorems
for the special case of a second-order difference equation

(2.1) y+ ay by_ 0, n 1, 2, 3, ....
We assume, throughout, that

(2.2) b0, n= 1,2,3, ....
We begin with the case where the coefficients a and b in (2.1) have finite

limits

(2.3) a a, b b, n ,
not excluding that b 0. One then calls (2.1) a Poincar$ difference equation,
and calls

(2.4) (t) + at + b

the characteristic polynomial of (2.1). As may be expected, the solutions of
(2.1) behave silarly, for large n, to the solutions of the difference equation
(2.1) with cstant coefficients a a, b b. This is borne out by the following
two theorems.
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TtIEOREM 2.1 (Poincar [46]). If the characteristic polynomial (2.4) of (2.1)
has zeros tl t2 of distinct moduli,

(2.5) It1 > It2 !,
then for every nontrivial solution y, of (2.1) we have

(2.6) lim Y+----- tr, r 1, or r 2.
Yn

THEOREM 2.2 (Perron [41]). Under the assumption of Theorem 2.1 there exist
two linearly independent solutions y, and y,2 of (2.1) such that

(2.7) lim Y"+’r #,
n--> Yn,r

Theorem 2.2 implies that

f
is a minimal solution of (2.1). To see this, choose r and r such that

r= 1,2.

which under the assumption (2.5) is certainly possible. By (2.7) we then have,
for n sufficiently large,

Yn+l, < 2 n > no

Hence

and

Y,I

This shows that

/ \n--no

n>_no._

from which the assertion follows.
We also note that in (2.6) one has r 2 for the minimal solution, and r 1 for

any other solution.
We shall require a generalization of Theorem 2.2 relating to a difference equa-

tion (2.1) whose coefficients satisfy

(2.8) a,-an", b,bn, ab 0; a, real; n- .
The asymptotic structure of the solutions now depends on the Newton-Puiseux
diagram formed with the points P0(0, 0), P(1, a), P(2, ). This is the broken
line PoPP if P is above the straight line joining P0 with P2" otherwise it
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:FIG. 1. Newton-Puiseux diagram for difference equation (2.1), (2.8)

is the line segment PoP2 We denote by the slope of PoP1, and by r the slope of
PIP (Fig. 1), so that a, r a.

THEOIEM 2.3 (Perron [42], Kreuser [29]). (a) If the point P is above the line
segment PoP. (i.e., ( > ’), the difference equation 2.1 has two linearly independent
solutions, y, and y. for which

2.9 Yn+i,i --an, Yn+i, b
n

y. y,.: a

(b) If the points Po P P are collinear (i.e., a), let t t be the roots

of + at + b O, and [t t . Then(2.1) has two linearly independent
solutions, y, and y. such that

(2.10) Y+l,1 tin", Yn+l,2 t n n --,

provided t > t . If t t (in particular, if t t are complex conjugates)
then

(2.11) li22p L(n ).j t

for all nontrivial solutions of (2.1).
c) If the point P lies below the line segment PoP then

(2.12) lira sup F y 7/ lbi

for all nontrivial solutions of (2.1).
An argument similar to the one following Theorem 2.2 will show that in both

case (a) and the first part of case (b) the solution f, y, is a minimal solution
of (2.1). Furthermore, in the first part of case (b),

(2.13) lira Y+ t, r 1, or r 2,
n nayn

where r 2 for the minimal solution, and r 1 for any other solution.
The second part of (b), and part (c) of Theorem 2.3 are somewhat inconclusive

for our purposes, as they do not permit distinguishing two solutions with distinct
asymptotic properties. In this connection, the example given later in 9 is of
interest.

Proofs of Poincar@s theorem may be found, e.g., in [21], [35], [37]. An elegant
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(3.5)

Similarly, we have

proof of Perron’s theorem is given in [14], and reproduced in [34]. Far-reaching
generalizations, and simplified proofs, of all these theorems, including Kreuser’s
theorem, were recently obtained in [51].

3. A first algorithm for computing the minimal solution. We assume now that
the recurrence relation

(3.1) Yn+I a,y bnYn-1 O, n 1, 2, 3,’’’,

has a nonvanishing minimal solution, fn. We wish to calculate f for
n 0, 1, 2, N. In order to specifyf uniquely, we can impose one condition,
for example prescribe the value of f0 For later applications, we consider the more
general normalization

(3.2) k,cm s, s 0,
m0

where s nd 0, h, re given quantities, and the series is known to converge.
We do not exclude that X 0 for 11 m > 0, in which cse (3.2) mounts to
prescribing f0

In sense, (3.2) represents the most general linear condition that my be im-
posed. A class of nonlinear conditions will lso be considered briefly.
To introduce the lgorithm, let

_f+ 1 .(3.3) rn
f

.% Xf.

Suppose first that r, s are known for some value n N. The desired
solution f, n 0( 1 )N, can then be obtained as follows.
From Theorem 1.1 we know that

-b b+ b+(3.4) r- n 1, 2, 3, .-..

Hence, we can generate the ratios r for 0 N n < as in (1.6)-(1.8) by

rn-1 u, u 1, ..., 1.
an rn

so that

( )
m=n-t--1

(3.6) 8n--1 rn--l()n 21- 8n), , , 1,’’’, l.

Hence, also the quantities s for 0 -<_ n < , and thus in particular so, can be ob-

The assumption of f to be nonvanishing is no serious restriction from the practical
point of view. This is further discussed at the end of this paragraph.
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tained recursively. Using (3.2) we now have

1 .. Xf, 1 (s ,ofo)

and so

8

X0 + So

This gives us the initial value of the desired solution. The remMning wlues cn
now be obtained immediately from

fn rn-’n-1, n 1, 2,-.., N.

The actual algorithm follows this procedure very closely, except that for the
infinite continued fraction, and the infinite series, representing rn_l and sn, re-
spectively, we now substitute truncated continued fractions, and truncated series.
More precisely, we define

(3.7) r() O, r() --bn bn+ b
n- 1 _-<n-<v,

an-- an+l-- a

(3.8) s() 0, sn() Xrn()r()n+ r()- 0 =< n < .
m----n+l

One then verifies readily that the formulas (3.5), (3.6) continue to hold if rn is
replaced by rn(), and s by sn() throughout. Hence the following set of recursions
arises naturally,

r() O rn-1 an + rn() n v, v 1,..., 1,
() r() ()(3.9) s() O, sn- n-l(M + sn ),

fo(V) 8 fn(v) (v)
rn-lan-l 1, 2, ", N.

ho + So()

While our initial procedure gave us the exact values fn of the minimal solution,
the quantities fn(’) now derived are at best approximations to fn. It remains to
successively improvefn(’) by repeating (3.9) for a sequence of increasing values of. The complete algorithm for computing the minimal solution may thus be de-
fined as follows:

Step 1: Select an integer => N, and let n() 0, n 0, 1, N.
Step 2: Calculate fn(), n 0, 1, N, according to the formulas in (3.9).
Step 3: If the N + 1 values of fn() obtained in Step 2 do not agree with the

current values of Cn(’) to within the desired accuracy, then redefine (’) by
n(’) fn(’), n 0, 1, N, increase by some fixed integer, say 5, and repeat
Step 2; otherwise accept fn() as the final approximations to fn, n 0, 1, N.
We note that in the special case k0 1, k X 0, all sn(’) vanish, so

that the recursion for s
_

in (3.9) may be omitted. Moreover, s f0, and there-
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fore f0() f0. In this case, the value of f9 must be known before the Mgorithm
(3.9) can be applied. The use of an infinite series 3.2 ), instead, has the remarkable
advantage of not requiring any value off,, to be known in adwnce.
Our deriwttion of (3.9) also demonstrates thatr) f if instead of zero initial

vMues in the first two recursions we select initial wlues r() r, s(’) s,.
While these quantities in generM are not known beforehand, they may sometimes
be pproximted closely when is lrge. This suggests to modify (3.9) by defining

(3.10) r(’)
p, s() ,

where p and z are suitable approximations to r and s, respectively. The better
these approximations are, the faster we expect our algorithm to converge. We
return to this point later.
We may give (3.9) a somewhat different interpretation as follows. Consider

the solution .() of the difference equation (3.1), defined by "initial" vlues

(3.11) ,.<’) i. ,<. 0

at n and n + 1, respectively. The values of ,(’) for 0 n may be ob-
tained by applying (3.1) in the backward direction, starting at n . Then we
assert that

(3.12) f() s () 0 < n < N.

0

()To verify this, we observe, first of all, thut the quantities rn- defined in (3.7)
are consecutive rtios of the solution w(’),

()

(3.13) r() W 1 < n < , + 1n--1 "()
n--1

This is trivial for n + 1, nd for n follows from the fact that the ratio
().v.()/v-() stisfies the sme nonlinear recursion (3.5) satisfied by r_ Inserting

(3.13) into (3.8), we find

()

n() mn+l

and using this for n 0, we obtain
()

8 8W0 8 ()

h0 s0(’) h0V0() V0(’)s0()
5,0 0

() + h

This proves our assertion (3.12) for n 0. To prove it for n 0, we need only
observe that in view of (3.13), the quantities f() in (3.12) satisfy

n-:, as required by (3.9).
The algorithm of generating the vn() and using (3.12) is often referred to as

Miller’s baclcward recurrence algorithm. It was first proposed as a computational
scheme by J. C. P. Miller in connection with the tabulation of Bessel functions
(see [5, p. xvii]). An error analysis has recently been given by Olver [38].
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While algorithm (3.9) and Miller’s algorithm are mathematically equivalent,
they have different computational characteristics. In many cses, e.g., the qunti-
ties v() grow rapidly as increases, and my cause "overflow" on digital com-
purer. In contrast to this, the quantity r() in (3.9) converges to a finite limit as
, -- , and so does s() if the algorithm converges at all.
We now use (3.12) to discuss convergence s , - of the lgorithm (3.9).

Let g denote any solution of the difference equation (3.1) other thnf, so that

(3.14) lira -- 0.
gt

Clearly,

() a()f + b()gn

for some constants a(), b(). By (3.11) we must have

The first of these relations gives b() (f+z/gz)a(), so that

()
a
() (f f+l )-- g+g

Substituting in (3.12), and simplifying, we obtain

f(l f+ g)
(3.15) f() g+

1-! 2 xf f+ Xgm
In view of (3.14) nd the convergence of the infinite series in (3.2), it is clear

that lim f(’) f if and only if

(3.16) lira f+ hg 0.

We hve proved the following theorem.
TonE 3.1. Suppose the recurrence relation (3.1) has a nonvanishing minimal

solution, f for which (3.2) holds. Let g be any other solution of (3.1). Then the
algorithm (3.9) converges in the sense

if and only if (3.16) is satisfied.
Condition (3.16) holds, e.g., if the k’s are uniformly bounded, and

f+lg+l
___> tl

g,

Itl > Itl, t,,. < .
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If all but a finite number of the },’s are zero, then (3.16) is a consequence of
(3.14). Theorem 3.1, in this case, has been noted previously in [16].

It is useful to observe that convergence of the algorithm (3.9), in the sense of
Theorem 3.1, implies that

(3.17) r() -+ rn, s() -- s, -- ,where rn, s are the quantities defined in (3.3). The first of these relations follows
directly from (3.4) and (3.7). The second follows by induction on n. Indeed, if
n 0, we have from the third line in (3.9),

()
() s 00 s 0f0

So
f0( -- f0

So, -- .Assuming now 8n--1 --- S-I, we get from the second line in (3.9), and from (3.6),
that

8()
,)

rn-1 rn-1

In case of convergence of the algorithm (3.9), we may obtain from (3.15) the
following approximate expression for the relative error, valid for sufficiently
large,

(3.18) f() f 1
Xmfm -t- f+__L Xm gm f+---2 g--

It is interesting to examine what effect the modification (3.10) of algorithm
(3.9) will have upon the relative error (3.18). We assume that

where r, s are defined by (3.3), and e, w are small numbers. Then a simple
computation will show that in place of (3.15) we now have

() =A
8g+l m=O

Since pg/g+lis usually substantially smaller than 1 (at least for large ,) we
see that the modification (3.10) reduces the relative error of f(’) effectively by a
factor of , I, or w I, whichever is lurger. Hence, our statement made earlier that
the convergence off() to f is fster the better p approximates r, and , approx-
imates s, is clearly vindicated.

It is tempting to try substitution of the type

(3.19) F c,f,, c, 0,

to exert influence upon the convergence criteria (3.14) and (3.16). We note, how-
ever, that these criteria are invariant with respect to any linear substitution of the

form (3.19).
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We now briefly consider the case in which condition (3.2) is replaced by a non-
linear condition of the form

(3.2p) ’, Xmfmp S, S 0,
m0

where p is some real number. It must be noted that this condition specifies the
minimal solution only to within a constant factor c satisfying cp 1.

()Algorithm (3.9) extends readily to the case of general p, if we define rn-1 as be-
fore, and let

We obtain

s() 0, sn@) h.[r() () () 1rn+ rm--] 0 It " Y.
m--n-

r( O rn-1 a ()

(3.9p) s,
() 0, s-

1 So@)
f() r(E)-j-l, n 1, 2, N.

The nonuniqueness of f. is reflected in the multivalued definition of f0().
in the proof of Theorem 3.1, one shows that (3.9p) converges us if

limh() 0, i 1, 2, p,

where

We conclude this paragraph with some practical remarks concerning the
algorithm (3.9).
The effectiveness of the algorithm is clearly enhanced if good estimates of the

initial value o’f, are available. Such estimates can sometimes be obtained from
(3.18), and from known asymptotic properties of the solutions f and g. (See
5, 7 for examples.)

It is worth noting that the storage requirements on a digital computer do not
depend on y. It suffices to store permanently only those N quantities r() which
are needed to build up the final results f(). All the other r(’) as well as the s
can be generated in temporary storage cells.
The assumption

n 1, 2, 3,...

in Theorem 3.1 is ordinarily fulfilled in practice, if for no other reason than round-
()

ing errors. Nevertheless, one might think, in view of lim r- f/f_t, that
the case of f-I nearly equal to zero for some n 1 might cause numerical diffi-
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culties. By the following, admittedly superficial, considerations we wish to show
that the presence, or proximity, of such zeros need be of no great concern.

Suppose, indeed, that f-i is very small in modulus, compared to f. For
definiteness, let n > 1. Then, by (3.3), rn_l is very large, and so is rn- I, when
, is sufficiently large. From the first line in (3.9) it follows that an + rn()[ must
be very small compared to b I. Since neither an nor r() will normally be small,
this means that many digits will cancel when the sum a + r() is formed, and so
()
r_ is not only very large, but also very inaccurate in terms of significant digits.
Consequently, ()

r- will be very small, and also inaccurate. However, r_
()--b_/(a_ + r_ (if n 2 will again be accurate, since a_ in the denomi-

nator picks up lost accuracy, r
_

being normally much smaller than a._. Later
() r() ()on, in the formation of the final results,
_

-_ will come out very small
and inaccurate, as one must expect. The really questionable point is the computa-
tion of () r

() #) ()
n--1 jn--1 since r_x is large and j-x is small, and both are inac-

curate. We note, however, that

() b
n--1 rn--2 In--2 ’n--1 () a.. 1/r()

() ()which shows that the lrgeness of rn- SVeS fn from becoming inaccurate, even
() () ()though r- is. A similar reasoning applies to s-, s-.

()More serious is possible loss of ccurcy in the clcultion of 0 s this
()would ffect 11 subsequent (). It could indeed occur that 0 + s0 is smll

in comparison with 0 , so that mny digits cncel when0 + s0
() is formed. The

() would then be quite inaccurate. The sme difficulty mightresulting vlue of 0
rise if 0 0. Suppose, indeed, that (p > 0) is the first nonvnishing co-
efficient in the series (3.2),

X O, X O, 0 m < p,
()nd that Ik + s hppens to be very smll compared to lX . Then s_ is

necessarily inaccurate, nd this in.ccuracy will be transmitted to all subsequent
() () ()() nd finally to 0(), in view of the relations s- r-s n p 18n--i

p 2, 1, nd f0() S/So().
Now for large ,, and p 0, we have

1
f =+1 s

so that I(X + s())/X is small if ls/(Xf,)] is small. Hence, dangerous cancel-
lation occurs when s is small in absolute value compared to the first nonvanishing
term Xf, in (3.2), i.e., when cancellation occurs in the series (3.2) itself. For this
reason, some care must be exercised in the selection of the identity (3.2).

4. Second and third algorithm for comput.g the mimal solution. The effec-
tiveness of our first algorithm (3.9) is somewhat limited if no reasonable estimate
of the starting value of n is known a priori. The recursions in (3.9) must then
be repeated with increasing values of ,, until sufficient agreement is obtained
between successive results fn(’), for all n 0, 1, N. This disadvantage can
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be removed, at the expense of a more complex algorithm, by making use of the
duality theorem 1.2, or, alternatively, by evaluating a sequence of continued
fractions (3.4). The corresponding algorithms will now be developed. The first
of these, though not in the form given here, is due to Shintani [52].
As was noted in the previous paragraph, we can obtain r, s reeursively, for

0 =< n < N, and hence also fn for 0 __< n N N, once rn, s are known. In the fol-
lowing we derive a method for calculating r, sN reeursively. If f0 is known, the
s will not be required, and the algorithm then reduces to one suggested by G.
Blanch ([4, p. 405 ff]) in connection with Bessel functions.
As for rn, we may simply evaluate the continued fraction

-b+l bN+ b+(4.1) r
aN+l aN+2-- ar+a--

by either the first, or third method described in 1. In the first case we have

(4.2) r lim A
k- Ik

where

A_t 1, A0 0; B_ 0,

(4.3) A ar+A_ br+A
_

B ar+B_ br+B_,

In the second case w6 have

B0 1;

It= 1, 2, 3,....

(4.4) r lim w,,

where the w’s are generated as follows"

b+l
ul 1 vl Wl

aar+l

1
(4.5) u+--

1- (bv++/ar+av++)u’

v+ v(u+ 1), 1,2,3, ....
For the computation of s, we make use of the fact that

()(4.6) s lims

where s(’) is defined by (3.8). The quantities s(), N, may be obtained re-
cursively as follows. From the definition (3.8) of ’ and from (3.13), we note
that

(4.7) v(’)s() Xv,,(")

m----N+
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Hence, using (1.21), we can write

VN(Y)SN() X.
a, (y-i) 1 (-2)

Since

we get

,(y--1) -I O,

4.8 ,7N
(,)sN(y) a, (--1)

--b Tar SN b,_--
or, alternatively,

generating sN
(N--l) (N)

0N 0, N 1,

8N
(N)

8N
(N-I) O,

(y-i) 1
0N a_, + 1 (_2)

(4.9)

() a, (y-l) 1
v -b-; v b_

()
8N

(N-i)
N O,

, =N+ 1, N+2,-...
(,--2)

s(,_l) pN
(’-2)

1 )k+ bi
8(’-2) -[-

r/N
(y--5

This, together with (4.2) [or (4.4)] and the remarks at the beginning of this
paragraph constitutes our second algorithm for computing the minimal solution
of (3.1).
As noted previously, the quantities vN(’)may grow rapidly, as increases, and

may cause overflow on a computer. However, if vN
(’) is large, just short of over-

(y)flowing, it is normally permissible to replace the term X#nN in the last relation
of (4.9) by zero, and to continue the recursion for sN

(’) in the truncated form.
To develop the third algorithm, let

l
x,f, X,ror, r,-l,(4.12) q’

where we have set oN
(v) nv()/vN(y+l). Taking into account the recursive relations

for oN(’), vN(’), which follow from (1.21), we arrive at the following algorithm fo
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where as before r_l f/f_. Denoting the product of the first n of the r’s by
p, we obtain

po 1, p r_p_
(4.13) n-- 1,2,3,....

q0 )0, q q- np,
Each r_, in (4.13) will be computed from the continued fraction

b b+l bn+2
rn-1 an-- an+l-- an+2

by applying either (4.2), (4.3), or (4.4), (4.5), with N replaced by n 1. From
(4.12), and the identity (3.2), it follows that

s
q lim q

Hence we continue generating the q, in (4.13) until they meet some specific
criterion of convergence. Thereafter, we may obtain as many of the final answers
as desired by means of

(4.14) fo s/q, f pfo, n 1, 2, 3,....

If the % converge too rapidly, it may occur, of course, that some of the later
p, required in (4.14) are not yet available, and must be generated by continuing
the first recursion in (4.13). It should also be noted that the q-recursion in (4.13)
can be omitted if f0 is known in advance.
An obvious disadvantage of the third algorithm is the fact that a rather large

number of continued fractions have to be evaluated, in contrast to just one con-
tinued fraction in the first two algorithms. Even though some of these continued
fractions (especially the later ones) may converge quite rapidly, the expenditure
of computation in the third algorithm is in general higher than in the first and
second algorithm.

In spite of these shortcomings, there might be situations in which the third
algorithm is more convenient than the others. Suppose, e.g., that we are to evalu-
ate an infinite series

m--0

Not knowing the number of terms required, for given accuracy, one normally ac-
cumulates terms until, say, for the first time

m0

Since this is equivalent to

we could make use of this condition to terminate (4.13) at the proper time.
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We also observe that the third algorithm converges under the sole condition
that f be minimal; no addition,l condition, such as (3.16), is required.

5. Bessel functions of the first kind. Bessel functions J,(z) of the first kind,
and Bessel functions Y,(z) of the second kind, obey the same recurrence relation.

(5.1) y,+ y, + y,- 0.
z

It was the computation of modified Bessel functions I(x) that, led J. C. P. Miller
to invent his backward recurrence algorithm [5, p. xvii]. Various authors, since
then, observed that this algorithm can be used effectively to generate other
Bessel functions as well, including Bessel functions of the second kind ([15], [54],
[47], [22], [26], [39 9.12, Exps. 1 and 7], [2] [32], [33]). To our knowledge the use
of ratios of Bessel functions, and thus of a procedure resembling closely our
algorithm (3.9), was first suggested by C. W. Jones [27], and is further des-
cribed in [9], [40], [10]. The ideas involved are extended here in a natural way
to Bessel functions of a complex argument. Some new technical details are also
included, such as the estimation of the initial value of in our first algorithm.

Consider

(5.2) fn Ja+n(z), gn Ya+,(z), n O, 1, 2,...,

where 0 =< a <2 1, and z x iy is a complex number not on the negative real
axis. Since Ja+n(2) Ja+n(z), we may assume y => 0. As follows directly from
(5.1), both functions in (5.2) satisfy the three-term recurrence relation

(5.3) Y+
2(a n)

Y _{_ Y- 0, n 1, 2, 3, .--.
z

However, their usymptotic behnvior for large n is quite different. We have, in
fct,

(5.4) Ja+n(Z)

Therefore, f is the minimal solution of (5.3), and the dominance of every other
solution over f is extremely pronounced:
z 12/(2n)!, when n
It may be noted that this behavior also follows from the general asymptotic

results of 2. In fact, the Newton-Puiseux diagram (see Fig. 2) for equation
(5.3) has two sides with slopes + 1 and -1, respectively. Hence, by Theorem
2.3(a), there are two solutions, y,l and y.2 of (5.3) with different asymptotic
behavior, viz.,

Yn+, 2n y+, z
y, y.. 2n

As pointed out by Logan [30], the ide of reversing recurrence schemes to control the
ropagation of errors can be traced back to Lord Rayleigh, who lready recommended that
spherical Bessel functions be clculted in the direction of decreasing order [48, p. 38ff].
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FIG. 2. Newton-Puiseux diagram for (5.3)

Since limn Ja+n(Z) 0 for any fixed z, we may readily identify y.2 Ja+n(Z)
and Yn,1 Ya+n( Z

In view of the marked predominance of Ya+, over Ja+n it is virtually impos-
sible to generate Ja+ directly by means of (5.3). Algorithm (3.9), however,
appears to be very effective. In fact, various infinite series of the form (3.2) are
available for bypassing the calculation of initial values. Moreover, rather close
estimates can be derived for the initial value of the recursion index n, thus
eliminating the need for many repetitions of the backward recurrence process, as
well as the risk of doing too much unnecessary computing.
We first discuss the selection of a suitable infinite series (3.2). We may choose

from a family of candidates furnished by Sonine’s formula [13, p. 64], which
may be written in the form

i, a + m Cma(,y)ja+m(Z) (z/2)%iz
m=o a F (1 - a)

The parameter , will presently be specified to suit our purpose; Cma(,) are the
Gegenbauer polynomials, i.e., the coefScients in the expansion

(1 2,t-- t2) Cma(’y)tm.
m--0

It is readily seen that

C,a( ) 1 )mCma(’)

(5.6) cma(1) r(Za + m)
m!r(2a)

C-(0) 0, C(0) (- 1) r(a / m)
m!r(a) m>0,

while, of course, C0() 1.
In accordance with our remark at the end of 3 we should try to select , in

such a way that

(z/)%
fo F(1 -- a)Ja(z)

cannot become very small in absolute value. Now, if zl is small, then
Ja(z) (z/2)a/r(1 + a), so that [s/foi.. 1. For large Iz !, we have Ja(z)

(rz/2)-/2 cos (z ar/2 r/2), and again, s/fo cannot be small if z is real.
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However, if z x -k iy, and y > 0 is large, then cos (z a-/2 ’/2)1 eY/2,
and so

e-(+)y+ a)

To prevent this from becoming exponentially small, we must require y -1.
For convenience, we choose -1. In view of the first two relations in (5.6),
identity (5.5) then becomes

(_ i)
a + m r(2a + m) Ja+m(Z) (Z/2)ae-iZ

=0 a m IF (2a) F(1 + a)’
or finally, noting that ar(2a) F(1 + 2a)/2,

(5.7) Ja(z) + 2 (-- i) (a + m)r(2a + m) Ja+=(Z) (z/2)e-
=, mr(1 + 2a) F(1 + a)"

The coefficients

(5.8) hm 2(- i) (a -t- m)F(2a + m)
re!r(1 + 2a)

m 1, 2, 3, ...,
are best obtained recursively as follows,

11 1,

1+1
m + 2______a 1,, m 1, 2, 3, ...,
m-i

), 2(--i)’(a - m)l,.

In the special case a 0, we simply hve )m 2(-i).
If z x is real and positive we could choose the real or imaginary part of (5.7)

as our normalization identity. We find it more convenient, however, to use (5.5)
with , 0. By virtue of the last relations in (5.6), this identity cn be written
in the form

(5.9) J,(x) - (a q- 2m)F(a -k m) (x/2)
=, m!r(1 - a)

Ja+2rn(x)
F(1 -b a)"

The coefficients

r(a + m)(5.10) },2, (a -t- 2m) re!r(1 + a)’
m 1, 2, 3, -..,

are obtained recursively by means of

, (a + 2m)l,.
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Again, if a 0, the expression forX simplifies toX 2. In. this case, one
could also use the second algorithm in its simplified form (without the s-reeur-
sions), if one computes Jo(x) from an appropriate rational approximation. This
would probably result in a more efficient algorithm to generate Bessel functions
of integer order, than the use of (5.9).
We also note that in the special ease of modified Bessel functions

Ia+,(x) e-(a+’)’2J,+,(ix), x > O,

the recurrence relation (5.3) assumes the form

2(a + n)
Yn+l - Yn Yn-1 0, n 1, 2, 3, "",

X

and relation (5.7) the form

Za(Z) "- 2 E (a -t- m)r(2a + m) I+,(z) (x/2)%
= m!r(1 + 2a) r(1 + a)"

It is now an easy matter to verify that algorithm (3.9), whether the Xm be de-
fined by (5.8), or by (5.10), converges as -+ , provided Ja+,,(Z) 0 for
n 0, 1, 2, .... By Theorem 3.1 we need only show that

g+l

has the limit zero. Now in the case of (5.8), since 0 -<_ a < 1, r(1 + 2a) > .88,
we clearly have

2 a + m r(2a + m)x r(1 + 2a) m r(m)

< 2 m zc 1 r(m + 2) < 2.3(m -t- 1) 2.
r(1+ 2a) m r(m)

Therefore, if , is already so large that g ->- gm for 0 -<_ m < ,, we shall have

h =< 2.3(, -t- 1) =0

hence lim,_. h 0, by virtue of (5.4). A similar argument applies to (5.10).
We proceed now to estimate the initial value of to be used in algorithm (3.9),

given the number of significant digits desired. Such an estimate may be found
from the estimate (3.18) for the relative errors. For definiteness, we assume z
complex, and assume identity (5.7) in the role of (3.2).

If is large, the infinite series

in (3.18) may roughly be approximated by its first term, X+ fi+, and similarly

m--0
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may be approximated by the last term X.g.. Then

f, 1
X,+lf,+l 1

f,
<5.11)

1
h,+f,+ f"+ g

s g,+ f,"

Our aim is to find an upper bound for the moduli of these expressions, valid
for n 0, 1, 2,... N. Since g,/f,l ultimately grows rapidly with n, it is
plausible to expect that a bound which holds for n N will also be a valid bound
when n < N, particularly if N is large. We therefore consider the simplified prob-
lem of bounding the modulus of the last member in (5.11), when n N. As a
further simplification we assume N, and thus., so large that the asymptotic ex-
pressions in (5.4) are reasonably accurate. In particular, then, 2N > e z I. Under
these assumptions a short calculation gives

( )-A <- zl + lz] ("-)y%-.,
f, 2, 2 y Imz,

where a few unimportant coefficients have been omitted. For f,(") to be an ap-
proximation of f, to d significant digits, we are led to require, simultaneously,

(5.12) e_z, e[z[2, __< #1 10_, e[z2 NV’-" <
-4 10-"

In the case of real arguments z x > 0, and using relation (5.9) in place of
(5.7), our reasoning must be slightly modified, but the conclusion is the same as
in (5.12), with y 0.
Now the first inequality in (5.12), after taking logarithms and multiplying by

-2/(e z I), gives

(5.13) 2___ ln.. 2.. > 2(D y),
where

D dlnl0 +ln4.

Similarly, the second inequality gives

2 (2N) 1In > N In +

which may be rewritten in the form

(_ 1)in(N) ,
> D

z + FInF 2N"

Since > N, and 2N > e lz I, this is certainly stisfied if we require

in. > D(5.14) F F 2N"



:REE-TERM RECURRENCE RELATIONS 51

X t,n

I/e

-I/e

FrG. 3. Graph of x In

Both conditions (5.13) and (5.14) have now the form In >_- c. Since this is
equivalent to => t(c) with t(x) the inverse function of x In in the rcgion

-> 1/e (see Fig. 3), our conditions may be given the final form

(5.15) >eJz[tI2(D--Y)] if O<y<D- JzJ
=--V- __ izl

>=
Low-accuracy approximations to the function t(x) are not hard to obtain. In

the interval 1/e -< -<_ 1 we may first approximate the graph of In by a
quadratic parabola passing .through the points (l/e, --l/e), (1, 0), and having
zero slope at the first of these points"

tlnt’-1 e ()e (e- 1)
t--

Taking then the inverse function of the right-hand member to approximate t(x),
we obtain

e--l(t(x) _le q- %,/- x -t- .36788 - 1.0422(x q-.36788) 1/, 1/e =< x =< 0.

The accuracy of this approximation is about 4 %, or better.
In the region 0 -<_ x _-< 10, wetruncated the expansion of t(x) in Chebyshev poly-

nomials, having determined the first few expansion coefficients by numerical inte-
gration. We so obtained

t(x) 1.0125 q-.8577x- .129013x2 q .0208645x

.00176148x q- .000057941x5,
with maximum percentage error of about 1%.
For larger values of x, we first observe that

t( x x/ln x, x --->

In fact, [t(x) In x]/x (ln x)/ln t(x), and using the rule of Bernoulli-
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L’Hospital, we find

1

lim
lnx

lim limX-t-t(x)
In t(x) - 1 1 -. x

t(x) 1 + In t(x)

Unfortunately, the asymptotic expression so obtained does not give sufficient
accuracy, unless x is very large. Applying, however, one step of Newton’s
method to the equation In x, with x/ln x as initial approximation, we get

t(z) z 1
lnx lnlnx

1--
l+lnx

This approximation now appears to be in error by less than 1% for x >= 2. As
x --+ , the relative error clearly tends to zero.
An alternate method of selecting in the case z x > 0, a 0, was derived

by W. Kahan [28], using Olver’s error analysis [38]. Let e be the largest rela-
rive error tolerated in the final results, Jo(z), J(x), Jr(X). Let K be the
integer

K max (N, [x]),

and, with > 0 arbitrary (though small, in practice), define

y 0, y+ fl,

2n
y+ y y-, n K -4- 1, K -4- 2, ....

X

Then may be taken to be the smallest n for which y+ => /e.
We have seen that Bessel functions J+(z) of positive orders can be computed

entirely from their recurrence relation. This remains true, to a certain extent, for
Bessel functions

(5.17) y J_,,(z), n 1, 2, 3, 0 < a < 1,

of negative orders. They satisfy the recurrence relation

(5.18) y+ A-
2(n -a)

Y .+_ Y- 0, n 2, 3, 4, ...,
Z

which has the same Newton-Puiseux diagram as (5.3). The solution (5.17), how-
ever, is now dominant solution, the minimal solution being f, (-1)J-(z).
It appears therefore safe to generate Ja-n(Z) by means of (5.18) in the ordinary
fashion. Moreover, the recursion may be started with n 0, and the initial
values y- Ja+(z), Yo Ja(z) obtained by the methods previously discussed.
The assumption a > 0 is of course essential. If a 0, the two solutions y and

f, above are the same (minimal) solution of (5.18), and forward recursion by
(5.18) is doomed to fail. The same must be expected if a is close to zero, and
indeed if a is close to one.
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We present now a few numerical results concerning the first algorithm for com-
puting Ja+, (z). The performance of this algorithm was found to be quite insensi-
tive to changes of a in the interval 0 <= a <: 1, so that the results given for a 0
may be considered as representative.
Our main concern was to determine the quality of the estimate of v given

above in (5.15), (5.16). We compared this estimate with the smallest value of v

empirically observed to yield Jn(z), n 0(1)N, to six significant digits, For
real z x, the results are shown in Fig. 4, while for complex z re they are
depicted in Fig. 5. Both figures show that agreement between estimated and
actual v is rather satisfactory on the whole, even though for larger values of,

zl it is worsening. Remarkable is also the relative smallness of v/N over an
extended region of the complex plane.
ALGOL procedures based on the methods of this paragraph may be found in

[lS].
6. Legendre functions. A urther class of special functions amenable to the

methods of 3 and 4 are the associated Legendre functions of the first and second
kind, P’(z) and Q’(z). We assume that m is a nonnegative integer, z a com-
plex number outside the interval (0, 1 ), with Re z > 0, and a arbitrary real or

More precisely, algorithm (3.9) was run with N + 2, N + 4, N + 6, until for
the first time the N + 1 values f,(v), n 0, 1, N, agreed to six significant digits with
the respective values of

If ais an integer >=m, or nonintegral, then P"(z) [r(a m q- l)/r(a + m q- 1)]P=(z),
and the restriction to nonnegative integers m is not essential. Similarly, Q-"(z)

[r(a m + 1)/r( + m + 1)]Q(z).
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complex, but a # -1, -2, -3, .... The Legendre functions of the first kind
are then representable by a definite integral,

P,’(z) F(a -F m + 1) J0 [z -- (z 1)
r(a -I- 1)

cos t] cos mt dt.

A similar representation holds for Legendre functions of the second kind,

Q’(z) (-1)" F(a + 1) Z cosh mt
F(a- m -- 1) [z -F (z2- 1):/2 cosh t]+1

dt,

provided Re (a m) > -1. In both these tormulas the meaning of the expres-
sions (z 1)1/2, (z + 1)1m is as usual obtained by continuity in the complex
plane, cut along the interval , 1), assuming them real for z > 1. A similar
remark applies to the other fractional powers.

It is well known thatP andQ satisfy identical three-term recurrence rela-
tions, both with respect to order m and degree a. (See, e.g., [12, p. 160].) The fact
that backward recursion techniques are applicable to obtain Legendre functions
of integral order and argument greater than unity was already mentioned in [10].
The use of Miller’s algorithm (cf. 3) for calculating toroidal functions of the
second kind is described in [50]. No mention is made, in this reference, of the use-

fulness of infinite series for normalization purposes, which makes this algorithm
even more attractive.
We begin with considering the recurrence with respect to order m. Both

P(z) and Q’(z), as functions of m, are solutions of
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Fro. 6. Newton-Puiseux diagram for (6.1)

2mz
(6.1) ym+l d- (z2_ 1)1/2 Ym d- (m d- a)(m a 1)y-i 0,

m 1, 2, 3, .--.

We first assume that a is not an integer. The case of integral a will be dealt with
later.
The Newton-Puiseux diagram (see Fig. 6) for the difference equation (6.1) is

a straight line segment with slope 1, and thus case (b) of Theorem 2.3 applies.
The characteristic equation is

-t-
2z -- 1 0,

(z 1)1/

which has the roots

tl --(;-t--11]
Since Re z > 0, it is readily seen that

By Theorem 2.3, and the remarks following it, the difference equation (6.1) thus
possesses a minimal solution, y,.2, for which

for any other solution the corresponding limit is tl. Let

(6.2)

so that

F(a -l- m + 1)

1 [z -t- (z 1 112

rI’(a -t- 1)
cos t] cos mt dt,

fm+. P2+(z)
f mP.’(z)

The second member of this relation, as was just observed, has a finite limit as
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m -- oo, which is either tl or t. Were it tl, then fml would tend to oo, since
t > 1. This, however, is impossible, sincefm by (6.2) are essentially the Fourier

coefficients of a smooth function, and thus lim_.f 0. Therefore, the limit is
t, and P’(z) is indeed the minimal solution of (6.1), while Q(z) belongs
among the dominant solutions.

It follows that P,’(z), m 0, 1, 2, can be obtained by the algorithms of
3 and 4. As will be seen shortly, an infinite series can be used for normalization,
so that no values of P,(z) need to be known in advance. The functions Q,(z),
m 0, 1, 2, on the other hand, can safely be generated by forward use of
(6.1); this requires two initial values for m 0 and m 1 to be available. In
the important special case a -1/2 d- n, where n is an integer, these initial values
may also be obtained by th aforementioned algorithms, applied to the recur-
rence with respect to degree (cf. below).

It is more convenient, computationally, to deal with fm defined in (6.2), rather
thanP, since then we not only avoid excessively large numbers, but also obtain
a very simple identity for normalization. It is well known, indeed, that (see [12,
p. 166])

(6.3) r( + )P.(z) -- 2,= F(a -- m -- 1)
P.(z) [z -- (z- 1)/]",

valid for Re z > 0 and arbitrary a. Hence,

(6.4) f0 A- 2 fm=
[z -t- (z 1) 112],,

=1 F(a + 1)

which may serve in the capacity of condition (3.2), with

S
[Z - (Z 1)112]"

r(a -- 1) X0 1, X, 2, m > 0.

The conYergence of the first algorithm then follows from the remark made after
Theorem 3.1.
To insure numerical stability, the ratio

s [z+(z-1)(6.5) -rio P,(z)

should not be allowed to become excessively small (cf. 3). While it is difficult to
check the magnitude of this function for the full range of z and a, we shall at
least look into the behavior of this function near the singular points z --1,
z= -t-l,z .
Asz tends to +1, or -1, in the plane cut from to 1, we have P.(z) -- 1,

and so s/fol ---, 1.
To study the behavior at infinity, we make use of the following facts (see

[49, 54])" If a a -1/2 -b n, where n is an integer, we have, as z --, o,

P,(z) A,( 2z)-(".1) -t- B,(2z)",
As is customary, we write P,(z) for P,(z).
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where
r(- 1/2) B r( + 1/2)
/rF(-a) %/rF(a -- 1)

Otherwise, when a -1/2 + n, then

/ z-1/2 In z, if n 0,
P-a/.)+,(z)

r(Inl)
v/J r(Inl + 1/2) (2z)"-’’ if n 0.

Hence, in the former case,

f0 A,(2z)-("+1) + B,(2z)" A,(2z)-(2"+) -t- B,’
which becomes small in modulus only if Re (2a 1 < 0, i.e., Re a -1/2. In the
case a -1/2 -t- n, we have

(
ifn 0,21nz’

s_ v/r(n + 1/2)
if n > 0,

fo F(n)

/ r(I n + 1/2) (2z)- i n < o.
r(Inl)

Here, the third case (n 0) is critical, and also the first, but to much lesser
degree.
For 11 practical purposes, then, (6.5) will be small in modulus only if

Re a , -1/2. This can easily be avoided by employing the relation

(6.6) g,m(z) g-,_(z),

when necessary. If Re a < 1/2, then indeed Re a 1) > 1/2.
Restricting a to have real part -1/2 one obtains Mehler’s conical functions

P-(,..)+(z), where r is real. Since P-(l)+(z) P-(n)-(z), by (6.6), these
functions are real when z is real. It suffices, moreover, to consider nonnegative
values of r. We shall assume z x > 1, which is a case of practical interest.

Since Fa + m -t- 1) is now complex, the scaled functions (6.2) used previ-
ously are not as convenient anymore. To maintain the computational ad-
vantages noted before, we consider

1(6.7) f, .. P(/)+(x).
As follows from (6.1) and our previous discussion, fm so defined is a minimal
solution of

2mx (m 1/2) + ’(6.8) Y+ -{-
(m + 1)(x- 1)/

y - n-m 1)
y- 0,

m 1, 2, 3, ....
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To arrive at a normalizing identity for f, involving real quantities only, we
write down (6.3) (with z x) once for a -1/2 q- it, and once for a -1/2 it,
and then form the arithmetic mean of the two identities. Noting (6.7), we then
obtain

f0 q- Xf Ix q- (x 1)z"]-’z" cos
m--1

where

m!r(1/2 + ir). u , u r(1/2 q- ir q- m)"
The X’s are best obtained from a three-term recurrence relation. We dearly have

(m -t- 1)u (m q- 1)(m q- 1/2 --it)
m+l m

m q- 1/2 q- ir (m q- 1/2)2 q_ r.
For notational simplicity, let

1 (m -t- 1/2)(6.9) an m q-, 5
q-r

mq-1

Then

u+, (a. ir)u.,

m?m+l (Om 27 iT)(tm.

Adding, and subtracting, we get

(6.10)
X+I aX r,

where i(u ). Eliminating ghe ’s, we find

m--I + m m--1 +

or, with the values (6.9) inserted,

(6.11) 2m(m -t- 1)
(mq- 1/2): q- r

The initial values are

m(m -t- 1)
)m--1 0,

1 3 4r(6.12) Xi X.+ + +

m 2, 3,

We observe that the recursion (6.11) belongs to case (b) of Theorem 2.3, the
characteristic equation being (t 1) 0. Because of the double root h t 1,
Theorem 2.3 does not permit us to decide whether the recursion in 6.11 ), (6.12)
is numerically stable. We observe, however, that another solution of (6.11) is,
as follows by eliminating the X’s in (6.1.0). Therefore, Re u and Im u are a pair
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of linearly independent solutions of (6.11). Using Stirling’s formula, and disre-
garding constant factors, we find

--rlnm
Um me m ---> oo

so that both solutions oscillate, for large m, with linearly increasing amplitudes.
Therefore, numerical instability cannot arise.
A further interesting special case is obtained by assuming a a nonnegative

integer, a p. Then, in fact,

P (z) (z 1)/ dv+ (z 1).
2p! dz+,,,

This shows that

Pm(z) =--0 if m > p.

We note that Theorem 1.1 with f Pm(z) is no longer applicable, since the
assumption fm 0 (all m) does not hold. Neither apply the asymptotic results
of 2, the assumption (2.2) now being violated.

Nevertheless,f still satisfies the recurrence relation (6.1) (with a p) for all
values of m, thus in particular for m p, p 1, 1, whereby f+l 0. The
algorithm described at the beginning of 3 becomes applicable, and it follows that
the r-recursion in our algorithm (3.9), if started with p, furnishes the exact
ratios rm_l f,/f,-l, apart from rounding errors. The same is true for the
s-recursion, which yields exact values of

p

the infinite series in (6.3) reducing to a finite sum, when a p. In short, (3.9)
with , p now represents the complete algorithm for computing f, P’n(z),
m O, 1, 2, p, and no iteration on , is required.
We now proceed to the recurrence relation with respect to degree. Let a, m,

and z be fixed, and consider P+n(Z), Qa+(z) as functions of n. They both obey
the reiation

(6.13)
(n + a m -- 1)yn+l (2n -- 2a -- 1)zy,-- (n + a -- m)y,_ O, n 0,1,2, ....

This is a Poincard difference equation whose characteristic equation is- 2zt-- 1 O.

The roots are

t z + (z- 1)/, t. t-
and it is readily verified that for Re z > 0,
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From Theorem 2.3(b), and the remarks following this theorem, we conclude that
(6.13) has a minimal solution f for which lim. f+/f, t, while the limit is
t for every other solution. Now it is known (see, e.g., [12, p. 162] that

--1/4 anl]2Q+,,(z) -1) -/(z 1) n ,
for z outside the cut from - to 1, thus in particular for those z which we are
considerg here. It follows immediately, therefore, that the minimal solution is. Qa.(z), and that g. P.(z) is now a dominant solution.
The computation of P.(z) for n 0, 1, 2, can proceed using (6.13) in

the normal fashion. The required initial values P(z), P(z) may be obtained
by the methods discussed above. These functions are thus again computable
entirely from their recurrence relations. On the other hand, Q.(z), as the
minimal solution of (6.13), is amenable to the algorithms of 3 und 4.

Unfortunately, no simple infinite series involving the f. Qa.(z) for arbi-
trary a exists, which would be convergent in the region considered here. Normli-
zation of f., therefore, has to be accomplished by computing the initial wlue
Q.(z). In the special case of toroidal functis Q(/)+.(z), however, we huve the
following relation [12, p. 166]"

Q2/(z) + 2 Q2a/)(z) (-1) F m + (z 1)- + 1
which lends itself well for normalization, unless z is complex and near the singular
pot 1.
We wish now to give some additional numerical information concerning the

algorithms described in this paragraph.

ylN
5

O0 5 I0 15 0 5 30

m. 7. Nmpirieal /N for eendre fueeioe P(z), e O(1)N, where N 0
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Fro. 8. Empirical ,/N for conical functions P(1/:)+(x), n 0(1)N, where N 50

Of foremost interest is again the determination of ,/N in our first algorithm.
A derivation of an estimate by analytical means appears to be out of question.
We tried, therefore, to determine the behavior of ,/N empirically, as a function
of the various parameters involved. To simplify the task, we assumed a fixed
accuracy requirement of six significant digits. Moreover, we decided to consider a
fixed value of N. Since /N was found to decrease with N, we deemed it desirable
to select a relatively large value of N as representative, namely, N 50. If we
would not do so, we would considerably overestimate v/N, and pay heavily for
this in cases where N is actually large. To compensate for a possible underestima-
tion in cases where N is small, we suggest that a relatively large increment of ,,
say 10, or even 20, be used in the iteration process of the first algorithm. Having
thus disposed of two parameters, we are still left with two in ech cse.

In the case of Legendre functions f P(x)/P(a d- n d- 1), where x > 1,
a ---, the value of ,/N found empirically for N 50 is depicted in Fig. 7 as a
function of x nd a. A reasonably good approximation to these curves was ob-
tgined in the form

37.26 + .283( + 38.26
37.26 d-.1283(a + 1)x

For the conical functions P-(/)+(x)/n!, where x > 1, => 0, the empirical
value of ,/N s s function of x and is shown in Fig. 8. The curves were fitted by
function which is linear in both x and , viz.,

1 d- (.140 -4-.0246)(x 1).

As the graphs in Fig. 8 show, the conical functions are by far the hardest to com-
pute. As ,/N becomes large, considerable accumulation of rounding errors must be
expected.



62 WALTER GAUTSCHI[

z,’IN

5.0

2.0

1.0
1.4 1.5 1.6 x

FIG. 9. Empirical ,/N for toroidal functions Qm_(1/2)+n(X), n 0(1)N, where N 50

Finally, in the case of toroidal functions Q2(1/2).(x) where x > 1 m => 0, the
behavior of ,/N as a function of x and m is shown in Fig. 9, and is roughly approx-
imated by

.0146 + .00122m
1.15 +N x--1

ALGOL procedures based on the methods of this paragraph are available in
[19].

7. Coulomb wave functions. Coulomb wave functions are of importance in the
study of nuclear interactions. They arise when SehrSdinger’s equation for a
charged particle in the Coulomb field of a fixed charge is separated in polar
coordinates. The radial component then satisfies the differential equation

(7.1) f___y
__

11 2v L(L-1)1do p 02
y O,

where v is a real para,meter, L a nonnegative integer, and o > 0. Physically, n
depends on the relative charges. If both are of equal sign, then n > 0, otherwise,
n < 0. The variable p is a radial distance, suitably sealed, vhile L is the orbital
angular-momentum quantum number of the particle.
The origin p 0 is a regular singular point of (7.1), with indicial equation

X(X- 1) L(L+ 1).

Since the roots of this equation are Xl L + 1, X. -L, the differential equa-
tion (7.1) has a solution corresponding to X which is regular at p 0, admitting
an expansion of the form

L-I

n-0
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In quantum mechanics it is customary to normalize this solution to have
sinusoidal behavior as p - , with amplitude equal to 1. So normalized, the
solution is called the regular Coulomb wave function, and denoted by FL(7, p).
The solution corresponding to X2, on the other hand, will contain a logarithmic
term, since Xl differs from . by a positive integer. If normalized similarly as Fr,
it is called the irregular Coulomb wave function, and denoted by GL(7, p).
The line

p 27, 7 > 0,

which separates regions of different asymptotic behavior of the solutions of (7.1)
as -- and 7 -- , is called the transition line.
In terms of Whittaker’s function MK.,(z) (see [12] for notation), we have

(7.2) F(7, ) (2i)-(+)C(7)M.+/(2i),
where

(7.3) C(7)
(2L+ .)

We note for later use,

L 1, 2, 3,

As functions of L, both the regular and irregular Coulomb wave function
satisfy the three-term recurrence relation

L[(L+ 1) +v]/y+--(2L- 1) I7 +L(L+ 1) 1(7.,5) , YL

-+- (L + 1)[L -t- r]-/YL-- 0, L 1,2,3, ....
This difference equation, has the same Newton-Puiseux diagram as the recurrence
relation for the Bessel functions (see Fig. 2). Hence, there are two solutions of
(7.5) with markedly distinct asymptotic properties as L . These, in fact,
are precisely the regular and irregular Coulomb wave functions, since for fixed 7
and p, it is known that

L+I GL (7, P) 1 L --->(7.6) F(r, p) Cc(7)p
2LC(7)pr,

and furthermore,
1 (e)TM(7.7) C 7 e/- e- -2--L

In particular, Fc is the minimal solution of (7.5). Therefore, F may be obtained
by the algorithm in (3.9), provided a suitable infinite series can be found for
normalization. The proper selection of this series is a rather crucial matter, and
will be discussed next.
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For computational convenience we first let

2LL!(7.8) fz, F(v, p).
(2L) !CL()

Among other things (relatively slow rate of growth of the coeiticients XL in
(7.11) below), this effectively removes square rootsin (7.5). In fact, using (7.4),
one finds that fx, is the minimal solution of

(L- 1) -k 3) YI+1-- r q-
p

YLq-
2L-- 1 YL-1 0.

The following expansion is known (see, e.g., [6, p. 131, formula (16f)]),

(7.10)
=0 F(t, + 2n)

where P,,(’)(z) is the Jacobi polynomial of degree n. (For notation, see [55].)
Letting g 1, ir, z 2ip, oe -ioo, and writing L for n, this becomes in
view of (7.2), (7.8),

zL iy i)(7.11) pe’ a,,fr ki, z ,-x, --ioo).
L--O

If 0 i, then one easily shows that (7.11) reduces to a result ttributed in [53]
to P. Henrici. As one of several alternatives, it was suggested in this reference
to apply Miller’s backward recurrence algorithm to (7.9), using Henrici’s series
for normalization. Unfortunately, the process suffers from severe loss of accuracy
when r and p are positive and large. We show that by selecting oa judiciously, the
loss of accuracy can be kept under control.
We recall (cf. the end of 3) that loss of ccurcy due to cncelltion occurs if

8 p
(7.12)

X0f0 f0
is very small in absolute value. Let

P

27
so that the point (r, p) is above or below the transition line, depending on
whether > 1 or 0 < < 1, respectively, and < 0 if- < r < 0. In each
of these three cases, f0 will behave differently s Iv nd r is held fixed.
In fct, using general symptotic results for Whittaker hmctions due to Buch-
holz (see [6, p. 101 if, formulae (7), (11), (16)]), one obtains from (7.2), fter
some computation,

1 7

fo ; c’cos 2V[r(r-- 1) in (; + r 1)]-

r > 1, r/--+ ,
0 In the cited formula (7) of [6], the factor exp (q=i(- (1 q- it)/2)) should read

exp (=t=rri(- (1 q- it)/2)).
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/1/41 r
f 2/2--- i--

exp {[r 2 arccos V/ + 2V/-(1 r)]},

0 < T < 1,,/--

f0v/2rl! sin 211 [ll(ll-t- )

A- In (V/[r[ -f- %/r)] }, -- <r <0,,/----.

To prevent the quantity in (7.12) from becoming exponentially small, as r/-- ,
we are led to choose

r>=l,
2T

(7.13) o_>_ 1 [r-- 2arccosr+ 2%/r(1-- r)] 0 < r < 1rr
O, r<0.

Since for reasons which become clear later, small values of o are to be preferred,
equality in (7.13) is suggested. The parameter o so defined then depends
continuously on in the interval (0, ), and decreases monotonically from

to 0. Clearly, as long as is small, say < 1, the choice o 0 is entirely satis-
factory.

Other series expansions obtained by letting g 2L0 + 1, a 0 in (7.10) have
also been suggested for normalization [57], whereby the integer L0 is adjusted
empirically to control the loss of accuracy.
The normalization identity now completely determined by (7.11) and (7.13)

(with equality sign), we proceed with a discussion of the resulting algorithm
(3.9).
We first observe that the coefficients XL in (7.11) satisfy

L2L -4- 1
oX -4- A- V(7.14) hL+ L -t- 1 L(L -t- 1) hr-,

L 1, 2, 3, "-,

(7.15) X0 1, M o--,

as follows readily from the well-known recurrence relation for Jacobi poly-
nomials. In particular, they are all real. Using (7.14), (7.15) to generate the
Xc, algorithm (3.9) becomes

0, rr) 1
r(v)

(2L-- 1)
/(L(L+ 1))-t-

/ ()/(2L -t- 3)(7.16) 1+ L+ i r
L ,-- 1,...,1,

() () [ ()s() O, s- r_o -4- X,),
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fo(,,) Pe
p

(p) 7,I)1 _e()

1 s0()’
fL L i, 2, Lmx.

The final results F are readily obtained from (7.8), with the help of (7.4).
It is worthwhile to examine more closely the three-term recurrence relation

(7.14). We note that it is a difference equation of the Poincard type, with charac-
teristic equation - 2cot-- 1 0.

Since the roots are

t, + v/o + , t. - /+ ,
it follows from Theorem 2.2 that (7.14) for co 0 has a minimal solution
for which

(7.17) XL+I /c0 q- 1, L --
while all. other solutions behave according to

(7.18) XL+I
C0 -4- %/co nc 1, L- .

To convince ourselves that the solution Xx defined by (7.15) is not a minimal
solution, we make use of the asymptotic formula

Pn(’)(z) (z 1)-/2(z-@ 1)-/2[(z - 1) 1/ + (z 1)/2]+

X (2n)-1/2(z 1 )--1/412 - (Z 1 )1/2]n+1/2, n ,
where z is outside the segment [-1, 1]. It follows, by a simple computation, that

:L D i,--iv)Xc ,, (--iw) e--(2L) 1/2(1 + N2)--1/4[ + N2 + 1]L+l/2,
(7.19)

0, L,
where

1(7.20) aretan-,

so that indeed (7.18) holds, rather than (7.17).
It may appear, therefore, that the use of (7.14) in forward direction is nu-

merically "safe." Unfortunately, and surprisingly, it was observed by computa-
tion [applying algorithm (3.9) to (7.14)] that Xx defined by (7.14), (7.15) ap-
proaches a minimal solution, in the sense

hi -- hi’,

{X’} being normalized by X0’ 1, as either s, or p, or both, become large.

’ See [55, p. 194], where the result is stated for real a, . The derivation by the method
of steepest descent, however, is valid for arbitrary complex values of a, .



THREE-TERM RECURRENCE RELATIONS 67

40.-=
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Fro. 10. Degree of minimality of {kL}. The regions I, II, III indicate coverage of the
tables [36], [31], [58], respectively, for FL(, p).

(Recall that o is equal to the right-hand expressions in (7.13), and is thus
function of p and 7.) To describe this phenomenon more precisely, let

--log X Xl ],

which may be considered a measure of the "degree of minimality" of the solution
XL. (We expect, roughly speaking, that the generation of XL by (7.14), (7.15)
involves a loss of about decimal digits due to cancellation.) Fig. 10 shows the
behavior of 5 as a function of v and p. In particular, it can be seen that no serious
cancellation problems arise in the regions (marked, I II, III) which are com-
monly of interest in applications. However, in special applications which involve
large values of v and p, the loss of accuracy may indeed be quite substantial.
An obvious way to counteract this phenomenon is to generate the },L in double

precision arithmetic. However, this may not be very efficient, considering that
L, in the region in question, may assume values as large as 100, or more. We sug-
gest the following alternative.

Let

(7.21) e Xi- ki’ oo-

a quantity that can be calculated to any degree of accuracy (in double precision,
if necessary) without too much effort, using algorithm (3.9) for Xl’. Let further-
more Xc" be the solution of (7.14) defined by

(7.22) X0" M’, Xi" 1.

Then, using elementary facts from the theory of linear difference equations, one
finds that
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Having determined e accurately, we may now use (7.23) to clculte . This
requires the computation of the minimul solution ’ by algorithm (3.9), and the
computation of " by (7.14), (7.22), but ll of this can safely be done in single
precision. Thus, double precision arithmetic will only be required in the compu-
tation of from (7.21).

For lter use, we note the analogue of (7.19) or w 0. In this case we use

(cf. [55, p. 194] and footnote1)

Pn(a’) (0) 2 cos In + (a + + 1)/2] a +

and find that

1L (i,--i)(7.24)

The starting value u in (7.16) my be estimated similarly as for Bessel func-
(u)tions. Using (5.11), we may pproximtte the relative error of. by

(7.25)
p g+ f

where g 2LG(, p)/((2L)iC(v)). We wish to bound this for L Lma,
assumingL and , > Lm large. By (7.6), (7.7), we hve for lrge L,

c 2e /
5) for largeHence, he second erm in (7 2 and L may be esgimaed by

(7.26)

To estimt the first term in (7.25
nd (7.8), thtit for L lrge, and w 0,

x hl

where

f2 oosh n/2),A (v) ,e-,+, o > O,

+ v/j +
being defined in (7.20) The total relative error (7.25) will thus be =< 1/2.10-d,

if we require that
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e-’A (7)(1 + 2)-114[B()]11 1
\2- Z i)] =4< "10-’

()-)L- <1=4- "10-’ L nmax,

From here on, the nlysis proceeds s for Bessel unctions. Assuming (with-
out loss of generality) thatL > ep/2, the result is that must stisfy both of
the following conditions:

> epB()t( 2
,B() [D + l (A(,)( + J)-’)]

(7.27)

:)
where we reeall ghag D d In 10 + In 4, and (z) is ghe inverse funegion of
z tln.
An ALGOL procedure for he eompugaion of F(n, o), using ghe mehods

described in ghis paragraph, may be found in [20].
8. Incomplete beta and gamma function. he incomplete beta funegion is

defined by he integral

(8.1) B(p,q) ’-(1 )-d, p > 0, q > 0,0 N z N 1.

The complete beta function is obtained when z 1, and can be expressed in
germs of gamma functions,

r(p)r()(8.2) B(p, q) ’-(1 )-1 d
r(p + )

For large p or large Lapl.aee’s meghod (see [11, p. aT]) yields ghe asympogie
formulae,

(8.a) B(p, q) (1 z)- p , q ed,
P

(8.) B(p, q) r(p)q-’, q , p fixed.

In probability distribution gheory he following raio of beta funcgions is
important,

Recurrence relagions hold in boh variables p and q (see [a]):
pI(p + 1, q) [(p + q 1)z + p]I(p, q)

(.)
+ (p + - )z(p ,) =o,

ormula (14) in [g] eongains a mispring: he las germ on ghe lefg should hae ghe faegor

q, no p.
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qlx(p,q + 1) [(p + q-- 1)(1 x) + q][x(P,q)
(s.7) - (p - q 1)(1 x)lx(p, q 1) 0.

It also follows from (8.5) that

(8.8) (q, p) 1 _(p, q).

The calculation of Ix(p, q) presents no difficulty when both p and q are small
or moderately large. Expansion of (1 t)q- into the binomial series then leads
to a rapidly convergent series for Bx(p, q), especially since by (8.8) we can always
arrange to have x in the interval 0 =< x =_< 1/2. Moreover, the gamma functions in
(8.2) are rapidly calculated by reducing the arguments to some standard interval
for which rational approximations are available [60]. When p or q is large,
however, it may be more efficient to make use of the recursions (8.6) or (8.7).

Consider then, first,

fn I(p + n, q),

By (8.6) this is a solution of

n- 0,1,2,... 0 <:p =< 1, q > 0.

(8.9) yn+l II -n + p - q --1 ) n - p + q l
xy,-x y, -0,np np

again a Poincard difference equation. The characteristic equation (1 + x)t
+ x 0 has the roots

tl 1, t2 x.

By inspection (8.9) has the solution y ------ 1, which clearly corresponds to the
root tl. On the other hand, from (8.3) and (8.5), we find

so that f corresponds to the root t2. Therefore, f is the minimal solution of
(8.9).
While our methods of 3 and 4 again apply, it must be noted that in contrast

to the previous examples the dominant solution is now bounded. Forward re-
cursion by means of (8.9) should therefore cause no difficulties if thef are to be
obtained to a fixed number of decimals after the decimal point. If a given number
of significant digits is required, however, it is more appropriate to employ the
algorithms in 3 and 4. The initial value f0 Ix(p, q) needed in these algo-
rithms may be obtained by first reducing q modulo 1 to q0, where 0 q0 _-< 1,
then calculating Ix(p, q), Ix(p, q0 - 1) by series expansion, and finally applying
the second recursion (8.7) to connect with Ix(p, q).

Consider next

Ix(p,q-n), n 0,1,2,... p > 0, 0 < q__< 1.

From (8.7) we now get the difference equation
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yn+l I1--t--n -t- P q 1 (1-- x) ln nt_ q
(s.o)

+n-+-P+q-- 1(1 __x)yn_l =0,n+q
which may also be obtained from (8.9) by interchanging p with q and, simul-
taneously, x with i x. Therefore (8.10) has the solutions gn and Ii_x(q + n, p),
of which the latter is again the minimal solution. We see that g is among the
dominant solutions, and no problem of numerical instability arises.
For a detailed description of these algorithms we refer to [17].
The incomplete gamma function is defined by

1 fo e--1 dt, a > O, x > O.(8.1) P(a, )
r(a)

It satisfies the well-known recurrence relation
a--1

P(a, x) P(a 1, x)
x e

r(a)

which, by elimination of the inhomogeneous term, can be brought into the form

aP(a + 1, x) (x + a)P(a, x) Jr- xP(a 1, x) O.

Lettingf P(a -- n, x), we therefore find that f is a solution of

(8.12) (a+n)y+l- (x + a+n)y,--xy_ 0, n 1, 2, 3,....

This again is a Poincard difference equation, whose characteristic equation
0 has the roots tl 1, t2 0. The solution of (8.12) corresponding to

h is clearly Yn 1. The solution corresponding to t2 is f, since

fn+l X

f n

as follows from the well-known asymptotic formul

P(a, x) xae-/F(a -Jc 1),

(See, e.g., [13, p. 140].) Consequently, f is a minimal solution of (8.12).
To obtain an infinite series in f, we multiply f by

r(a + m)(8.13) X m!r(a)

and sum over m. We get

m---O

1 1
e-tt+- dt

r(a) =0 n-
t1 e-tt- dt

r(a) =0
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1 fo a-1 dt
r(a)

X

aF(a)

and therefore,

(8.14) )mfm
X

==0 r(a + 1)"
The coefficients ),m can easily be obtained from the recursion

(8.15) o 1, h
a + m 1

},-1, m 1, 2, 3,
m

Our algorithms may now be applied to (8.12), (8.14) to compute P(a + n, x)
forn 0,1,2,... ,N.

9. Repeated integrals of the error function. In problems of heat conduction
the complementary error function

2 e_terfc z
V/r

dt

and its repeated integrals frequently occur. Foliowing Hartree [25] we denote

erfc z erfc z,

f. i-1erfc z erfc dt,

It is also convenient to define

n 1,2,3, ....

-1 erfc z e

Expressed as a single integral, we have

erfc z
2 foo (t z)"

dr.

Writing

n’l erfc z /- n + i
le_t dt

z f* (t z)"e_t, dt
n+l n!

and evaluating the first integral by parts, one finds

z 1+1 erfc z + erfc z
n -I- 1 2(n -I- 1)

n-1 erfc z 0, n 0, 1, 2, ....
Consider now

fn eZi erfc z, n- --1,0,1,2,.-.

which clearly is a solution of
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z 1(9.1) Y’+: +n + 1
y’

2(n -+- 1)
yn-: 0, n 0, 1, 2, ....

To this difference equation cse (c) of Theorem 2.3 could be pplied with the
result that al! solutions behave "similarly" a,s n -- , viz.,

1

This conclusion is somewhat deceiving, as in fact f is the minimal solution of
(9.1).
To see this, we make use of the result that for ny fixed z, as n -- ,--(1/2)ze

erfc z exp ( /z).(9.2) 2nF( + I)
[See [13, p. 123] and also recall that the repeated integrals of the error function
are related to parabolic cylinder functions D(z) by

erfe z (e-z/2n-’)[2D_n_(zv/).]
By inspection, moreover, one sees that

gn 1) neZ erfe (--z)

also satisfies the recurrence relation (9.1). Applying (9.2) to both fn and
we find

(9.3) (_l)n fn e_/Vnz n --->
g

This shows that f is indeed the minimal solution of (9.1) whenever Re z > 0.
Otherwise, when Re z < 0, gn is the minimal solution.
Our algorithms of 3 and 4 for computing j’, are particularly simple, in this

case, since the initial value is known to be

2/v/;.
From (9.3) it is evident that convergence of the first algorithm is better the
further away z is from the imaginary axis.
The application of Miller’s backward recurrence algorithm in this connection

was first suggested by M. Abramowitz [1], and is further analyzed in [16].
We note, incidentally, that Theorem 1.1 gives us the identity

1 1 1

fn 2(n + 1) 2(n -+- 2) 2(n + 3)
fn-: Z Z Z

n-k- 1 n+2 n-+-3
which by m equivMenee transformation can be brought into the form

nerfez 1/2(n + 1)/2 (n -t- 2)/2 Rez > 0.-- erfc z z+ z+ z+
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For n 0, this reduces to the well-known result

2e e-tdt 1 1/2 1 3/2
z+ z+ z+ z+

10. An example arising in the numerical computation of Fourier coefficients.
Let f(t) be a function defined and continuous on the closed interval [0,
and let

2r 2

(10.1) ay =f0 f(t) cosptdt, by ]o’ f(t) sinptdt, p 0,1,2,

denote its Fourier coefficients. The computation of Fourier coefficients of high
order (p large) is notoriously difficult because of two reasons. Firstly, if one at-
tempts to apply standard integration techniques, such as the trapezoidal rule,
one is forced into a rather fine subdivision of the interval [0, 2r] in order to cover
adequately the many oscillations of the trigonometric factors in 10.1 ). Secondly,
even if one adopts a sutticiently fine subdivision, substantial cancellation of
digits will occur in the summation associated with the integration formula. In-
deed, by Riemann’s lemma, both ay and by tend to zero when p -- , whereas
the individual terms of the integration formula need not be small at all. In
matter of fact, cancellation will be more prominent the smoother the function
f is!

In order to circumvent these di/ficulties, it has been suggested to use Gauss
type integration methods, treating the troublesome trigonometric factors as
weight functions [61], [62]. As the general theory of Gaussian quadrature re-
quires nonnegative weight functions, one first writes

2r 2r 2

and similarly for by. Then Gaussian integration is applied to the second integral,
while the first integral is evaluated by some standard technique. Both integrals
may have to be evaluated to high accuracy, since for large p, they are nearly
equal. Thus, our cancellation problem is not entirely eliminated, but appears to
be under better control.

Gaussian quadrature formulae of possibly various orders have to be obtained
for each value of p. While this is a formidable task in itself, it appears feasible
on current high-speed computers. One would presumably start from the moments

cn (1 cos pt) dt, s (1 sin pt) dt,
(10.3)

n 0,1,2, ...,
and use these to construct either the associated orthogonal polynomials, or the
continued fractions associated with the formal power series

CnZ 8nZ
=0 =0
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The abscissae and weights of the desired quadrature formula then follow readily.
Because of the inherent sensitivity of these quantities with respect to perturba-
tions of the moments, it is rather important that the m.oments (10.3) be ob-
tained as accurately as possible. Our concern here will be with a stable genera-
tion of these moments.
We assume p a positive integer. Integrating by parts, we have13

(2)"+

(2r)

hence,

(2)"+

t"+(1--cospt)dt It"+ (t

(n+ 1) fo ’+l dt +

[Jo (n -t- 1)t"

[.2 sin pt dt+ 1

P ao

n + 1 (2r),+2 n + 1
n+2 p

n + 1 (2r),+ + i (2r),+
n+2 p

t"(1 sin pt) dt

P

n+l
P

si;pt) dt

n + 1 (2r)"+(10.5) s,+l c,+ n 0 1,2,...
p n+2’

Replacing n by n 1 in (10.5), and inserting the result in (10.4), one gets

n(n + 1) (2r) "+2(10.6) cn+l p c- + n + 2
n 1, 2, 3, ....

Eliminating similarly the c’s from (10.4) and (10.5), one gets

n(n + 1) ), n + 1 2+(10.7) s.+ p s.-+(2 p + p n+2
n 1,2,3,

Writing down (10.6) once with n increased by unity, and once with n decreased

In principle, c. and s. could be evaluated in closed form. However recursive generation
of these quantities is more effective. Alternatively, we could integrate the additive term

2w 2w

tim simplification would result, however.

Similarly, one obtains

n+l (271.)n/1 (; 271")(10.4) c,+1 s, q- q n 0, 1, 2,
p n+2
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by unity, and eliminating the inhomogeneous terms, one finally obtains

Similarly,

+(n + 1)(n + 2)- 4re(n -t-1)an+2 p n --- 3
Cn

4r
(n 1)n(n + 1)

p(n + 3)

(lO’9) s"++I(n--l)(n+2) 1 (n 1)n
p O’n Sn O’n p2 Sn-- O,

where

n + 2-t- 2rp --o, 4r n + 3
4p

n 2p-
n+l

The recurrence relations (10.8), (10.9) are valid for n2.
It is clear that (10.8), (10.9) permit, in principle, all moments of even order

to be obtained from those o order 0 and 2,

c0 2, ce 4

(10.10)
0=2, =4(+ ),

and all moments of odd order from those of order 1 and 3,

(10.11)
sa 4 aq 2 3

P

As it happens, however, the moments are minimal solutions of (10.8) and
(10.9), respectively. Therefore, straightforward reeursion, as indicated, is highly
unstable. We expect the algorithms of }3 and 4 to be rather more effective,
especially since the first relations in (10.10), (10.11) can be used for normali-
aation.
To establish the minimal character of the moments, let us first write

C2n-bh Cn 82n+h ’n

where h is either zero or one. Then Cn and Sn are both solutions of three-term
recurrence relations of the standard form

(10.12 yn+l + a,yn + bnYn-1 O, n 1, 2, 3,

the Newton-Puiseux diagram in both cases having the form shown in Fig. 11.
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P (0) Pz

Po

0

11. Newton-Puiseux diagram .for (10.8), (10.9)

Moreover,

4 1672
an n, bn p2 n, n --

It follows from part (a) of Theorem 2.3 that (10.12) has a pair of fundamental
solutions, y,.1 and y,.2, for which

(10.13) y+. 4 Y’+’ 4
Y. p. n, Y..

Both solutions thus tend with n to infinity, but the first one much more rapidly
than the second.
On the other hand, applying Laplce’s method [11, p. 37] to the integrals in

(10.3), one finds readily that for n -- ,
Cn pe(’/n)(2’) zn+h, t.n (2) z"+, h 1, 2.

n

The C’s nd S’s, therefore, exhibit the same asymptotic behavior s y,. in
(10.13). Consequently, they re both minimal solutions of the respective equa-
tion (10.12).

11. A Sturm-Liouville boundary value problem. Consider the Sturm-Liou-
ville boundary vlue problem with one boundary condition at infinity,

(11.1) (p(t)y’)’ -F q(t)y O, y(O) 1, y() O.

We assume that p and q are rel-wlued continuous functions in [0, o ), with
p(t) > O, q(t) -< O, and in addition that

i i"(11.2)
p(t) ’ q(t) - dt .

Then the boundary value problem (11.1) has an unique solution which is mini-
mal in the continuous sense [24, p. 357 if]. When solving the problem numeri-
cally, by a method of finite differences, we expect the approximate solution to be
minimal in the discrete sense. We wish to illustrate this in the case of a simple
finite difference scheme.
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Consider mesh points t nh, n 0, 1, 2,... where h > 0 is small, but
fixed, and let y designate approximations at t to the solution y(t) of (11.1),

y, y(t,), n O, 1, 2,....

Such approximations may be obtained by first rewriting (11.1) as a system of
two first-order differential equations, letting z p(t)y,

z + q(t)y O,

1
Y p(l)

z O,

and then replacing derivatives by central difference quotients. We get

Zn-t-1/2 Zn--1/2
h

-[- % y’ O,

Yn+/.- Y--/. 1
Z Oh p

where p, p(t), q, q(t,). Eliminating the z’s, we obtain the following dis-
crete analogue of (11.1),

(11.3) y,+i
Pn+l/2 -- Pn-1/. ]. r,v2n

Y, - p,.-i/,
y,-i O, n 1, 2, 3, ...,

pn+i/2 pn+i/2

(11.4) y0 1, lim y 0.

It appears to be an open question whether under the assumptions (11.2),
or some discrete analogue thereof, the difference equation (11.3) possesses a
minimal solution satisfying (11.4), if h is suitably restricted. The answer, how-
ever, is in the affirmative, if we make the stronger assumptions

(11.5) lim p(t) p > 0, lira q(t) q < O.

Then, indeed, (11.3) is a Poincar difference equation having the characteristic
equation

-(2-h2q)t+l= 0.
P

Since p > 0, q 0, the roots tl, t of this equation are real and distinct for all
h :> 0. In fact,

t= 1--h q ///_(+ h 1 t t-,
so that t > 1, 0 <: t: 1. The solution of (11.3) corresponding to t therefore
is a minimal solution, for arbitrary h, and can be normalized to satisfy the first
condition in (11.4). The second condition (at infinity) is insured, since by
Theorem 2.2,
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Yn+l 2 -- ov
Y

for any minimal solution of (11.3).
Clearly, algorithm (3.9) applies in its simplified form (without the s-reeur-

sion), since y0 is given o be 1.
By way of an example, consider

l+t(11.6) y y, y(0) 1, y(m) 0.
2+t

(This may be interpreted as a hett conduction problem for an infinite rod; cf.
-8, p. 150]). Here,

l+tp(t) 1, q(t) +,
tnd (11.5) is satisfied with p 1, q --1. The discrete analogue of (11.6)
takes the form

2+ y. + y.- 0,

Y0 1, lim y, 0.

Applying algorithm (3.9), we obtain approximations yn to y, from

() 1
r,") 0, r,--- n ,, l, ,1,

(117) 2 + h1 +nh (

2 + nh
r.

yo() 1 yn() () ()r_ y_, n 1, 2, N.

Here, N is determined by the length of the intervM in which the solution y(t)
is sought.

Table 2 displays selected numerical results for integrating (11.6) by (11.7) on
the interval [0, 5]. The first column shows the number N of subintervals, the
second column the corresponding value of h (= 5IN), the third column the

TABLE 2

Approximate solution y,(’) of the boundary value problem (11.6) by means of
(11.7), for n kN/5, k 0(1)5

5
10
50
250

1
.5
.1
.02

13
25

116
511

4

1.0 446887 033098
1.0 .443648 .031219
1.0 .442753 030620
1 0 442729 030598

.191699 .080285
187645 077222
.186395 076251
.186352 076217

.013494

.012465

.012137

.012124
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smallest integer for which six signiiicant digits are chieved. The remaining
columns contain the pproximtions yn (v) corresponding to 1( 1)5.
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