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Abstract. 
We discuss characteristic difficulties inherent in the validation of Gaussian quadrature formulae, in 

particular the futility of moment-related tests. We propose instead more effective tests based on the 
recursion coefficients of the appropriate orthogonal polynomials and on the sum of the quadrature 
nodes. 

1. Introduction. 

The preparation of this note was prompted by the appearance, in the 
chemistry literature, of a 16-digit table of a Gaussian quadrature formula for 
integration with measure dA(t)= exp(-t3/3)dt on (0, or), a table, which we 
suspected is accurate to only 1-2 decimal digits. How does one go about 
convincing a chemist, or anybody else for that matter, that his Gaussian 
quadrature formula is seriously defective? 

The question is not as easy to answer as one might think at first, and is 
not without intrinsic interest, considering that the most obvious test - using the 
n-point quadrature rule to reproduce the first 2n moments of d)~ - is totally 
ineffective. The latter, of course, is a manifestation of the extreme ill-conditioning 
(if n is large) of the map from the first 2n moments to the n-point Gaussian 
quadrature rule (of. [-3, § 3.2]). 

In Section 2 we present the nodes z~ n) and weights 2~ n~ for the Gaussian 
formula 

(1.1) f o  f (t )exp ( - t3 /3 )dt = v= l ~ 2~) f (z~)) + Rn(f ) 

with n -  15, on the one hand as published in the literature, and on the other 
as recomputed by us. In Section 3 we discuss two tests, both ineffective, 
designed to determine which of the two formulae is the more trustworthy 
one. More conclusive tests are described in Section 4 which not only allow us 
to decide in favor of one of the two formulae, but also to indicate the accuracy 
of each. 
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2. Two competing implementations of (1.1). 

In Table 2.1 are listed the nodes and weights of  the quadrature rule (1.1) 
as published in [5]. (Integers in parentheses denote decimal exponents.) They 
were obtained by applying a "product-difference algorithm" (a variant of 
Rutishauser's quotient-difference algorithm) of R. G. Gordon [4] to produce 
the J-fraction belonging to d2(t)= exp(-t3/3)dt, starting from the moments 
Pk = j'~tkd2(t) = 3(k-2)/3 × F((k+ 1)/3), k = 0, 1, 2 . . . . .  The nodes z~ ~ can then be 
obtained as eigenvalues of a symmetric tridiagonal matrix (the Jacobi matrix 

Table 2.1. The Gauss formula (1.1) according to [5]. 

v ~15~ ,~v~5~ 

1 1.457697817613696(-2)  3.805398607861561(-2) 
2 8,102669876765460(-2) 9.622028412880550(-2) 
3 2.081434595902250(- 1) 1.572176160500219(- 1) 
4 3.944841255669402(- I) 2.091895332583340(-1) 
5 6.315647839882239(- 1) 2.377990401332924(- 1) 
6 9.076033998613676(- 1) 2,271382574940649(- I) 
7 1.210676808760832( 0) 1.732845807252921(- 1) 
8 1.530983977242980( 0) 9.869554247686019(-2) 
9 1,861844587312434( 0) 3.893631493517167(-2) 

10 2.199712165681546( 0) 9.812496327697071(-3) 
11 2.543839804028289( 0) 1.439191418328875(-3) 
12 2.896173043105410( 0) 1.088910025516801(-4) 
13 3,262066731177372( 0) 3.546866719463253(-6) 
14 3.653371887506584( 0) 3.590718819809800(-8) 
15 4,102376773975577( 0) 5.112611678291437(- 11) 

for d2), and the weights 2~ ") in terms of the first components of the associated 
eigenvectors. The procedure, thus, is a particular realization of the (ill-conditioned) 
map from the moments to the Gaussian quadrature rule. (The sensitivity to 
rounding errors of this procedure has been explicitly noted by Gordon, who 
suggests the use of double precision arithmetic or, better yet, exact integer 
arithmetic. It is not clearly stated by the author of I5] what computer, and 
what type of arithmetic, he has used.) Table 2.2 displays the same quadrature 
rule (1.t), produced, however, by an application of the "discretized Stieltjes 
procedure", in combination with a suitable partition of the interval (0, or) into 
eight subintervals (cf. [3, Example 4.6]), to generate the required orthogonal 
polynomials. Essentially the same method as in Gordon [-4] was then used to 
obtain the z~ ~ and 2~ ~. (The computation was carried out in double precision 
on the CDC 6500, using a relative error tolerance of 0.5x 10 -20 in the 
discretized Stieltjes procedure.) It is seen that the two tables agree only to 
about 1-2 decimal digits. Which one is correct? 
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Table 2.2. The Gauss formula (1.1) recomputed. 
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1 1.929765389638693(-2)  4.940830823126689(-2) 
2 1.006599142226749(- 1) 1.126586278069619(- 1) 
3 2.428468366694404(- 1) 1.696700745266622(- 1) 
4 4.387642946878456(- 1) 2.136246330297717(- I) 
5 6.787965036904373(- t) 2.329324905722498(- 1) 
6 9.522620471509191(-1) 2.150021042138036(-1) 
7 1.249165311141012( O) 1.596591t46577856(--1) 
8 1.561526358196975( O) 8.939650846589768(-2) 
9 1.883496691223344( O) 3.512652914092340(-2) 

10 2.213595570164661( O) 8.956321788320709(-3) 
11 2.550023378308307( O) 1.353123731389520(-3) 
12 2.895208615030500( O) 1.076566880888657(-4) 
13 3.254368222416162( 0) 3.781200408411502(-6) 
t4 3.639045691197643( 0) 4.272835535767259(-8) 
t5 4.080805415015807( 0) 7.218347932277564(-11) 

3.  M o m e n t - r e l a t e d  tes ts .  

As already mentioned, the ability of the quadrature formula to reproduce the 
moments accurately is an unreliable test. This will now be documented by 
performing two tests, first a simple moment-reproducing test, then a more 
involved test based on Markov's remainder formula. 

Test #l. Verify R , ( f ) = O f o r  f ( t ) = t  k, k = 0 , 1 , 2  . . . . .  2 n - 1 .  

In other words, use the formulae in Tables 2.1 and 2.2 to check the identities 

(with n = t5) 

~ ~(n)l'~ (n)'lk k = 0, 1, 2, ., 2 n -  1, (3.1) #k = - ,  L-~ J ,  " 

v = l  

where /~k are the moments #k = j'~tkexp(--ta/3)dt=3(k-2):a×F((k+l)/3), 
k = 0 , 1 , 2  . . . . .  

Results of Test #1. Using double precision on the CDC 6500 (which corre- 
sponds to a precision of about 29 significant decimal digits) to carry out the 
computations indicated in (3.1), we obtain for the relative errors e k = 
I(/~k-- ~,--n 12 ~,[z~,]k)/#kl the results shown in Table 3.1. In the second and third 
columns are listed the errors ek resulting from the quadrature formula (z*,2*) of 
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Table 3.1. Relative errors I~ k observed in reproducing the moments [J k by the 
quadrature formulae of Tables 2.1 and 2.2. 

k Table 2.1 Table 2.2 

0 4.56( - 16) 2.02(- 17) 
1 8.92(- 16) 4.66(- 17) 
2 3.20(- 15) 1.51(- 16) 
3 6.49( - 15) 2.45( - 16) 
4 1,02(- 14) 3.21(- 16) 

29 7.48(- 14) 4.46(- 16) 

Table 2.1 and Table 2.2, respectively. The maximum error in each case is 
attained for k = 29. 

Discussion. It is rather remarkable that both quadrature rules of Section 2, 
even though they differ already in the first or second decimal digit, manage to 
compute the moments to about 15 correct decimal digits. The reason for this is 
an extreme case of correlation of errors. If we represent the correct quadrature 
rule by a point g o t  ~2n, and the vector of moments by mot  ~2n, theng ° =M,m ° 
for some (nonlinear) map M~ : R 2~ ~ ~2~ defined in a neighborhood of m o. For 
sufficiently small perturbations Am of m 0, one has zig ~ J ° A m ,  where j o  is 
the Jacobian matrix of Mn at m o. Therefore, a small sphere S(m o ; s) of moment 
vectors, with center at mo and radius s, is mapped under M~, approximately, 
into an ellipsoid E(g 0 ; s) centered at go, whose half axes have lengths s" ai(J°n), 
with g i ( J ° )  the singular values of j o ,  and directions given by the (ortho- 
normal) eigenvectors of o o r JM,(JM,) . In our case, the ellipsoid E(g o, s) happens 
to be extremely elongated and flatl the largest singular value being approx. 
5.78x 1011, and the smallest 1.88 x 10-~8! It is reasonable to assume that the 
computed Gauss formula g* is the exact Gauss formula belonging to some 
moment vector m*tS(mo;S ), where s is of the order of magnitude of the 
machine precision, or a few orders larger (to account for rounding errors in the 
computational process). Conversely, then, to g* there corresponds m* t S(m o ;s), 
hence []m* -m0]] = s, explaining the relatively high accuracy of m*. The correlation 
of errors thus consists in the fact that the computed formula g* lies, approxi- 
mately, in the extremely elongated and flat ellipsoid E(g ° ;~). This correlation 
can be confirmed by subjecting either of the two quadrature rules of Section 2 
to random errors of given magnitude 0, and letting 0 vary through 10- ~, 10- z, 
t0 -3 . . . . .  One will find that the resulting relative errors in the moments are 
no longer of the order of magnitude 10-1 s, but rather of the order of magnitude 
0, or significantly larger. The correlation of errors has been broken! 

The discussion just given has merit only in a qualitative, not quantitative, 
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sense, the reason being that the moments Pk vary in a wide range (from about 
1.29 for k = 0 to about 7.14 x 10 9 for k = 29) and that one really ought to analyze 
the propagation of errors under M, consistently in terms of relative errors. 
This can be done by computing a carefully defined condition number 
(cond M,) (mo)  for the map M, at mo (see 13, §3.2, especially Eq. (3.11)]), with 
the result that (cond M,) (mo)  = 1.26 x 1017 (for n = 15). This means that relative 
errors in the moments #k of magnitude e must be expected to translate into 
relative errors in the Gauss formula having magnitude ~ 1017- e. It would appear, 
therefore, that the formula in Table 2.1, given that it is accurate to only 1-2 
decimal digits (cf. Section 4), was computed in a precision of about 20 decimal 
digits, assuming that the moments were computed correctly to machine 
precision. 

Tes t  ~2. Use the given quadrature nodes z~ ) and weights 2~ ) (for n = 15) 
to first generate the coefficients ~k, ilk, k = 0, 1, 2 . . . .  , n - 1 ,  in the recursion 
formula 

(3.2) nk+l( t )  = ( t - -~k)nk( t ) - - f lknk_l ( t ) ,  k = 0,1,2 . . . .  , n_l(t  ) = O, no(t) = 1, 

for the associated (monic) orthogonal polynomials (Ttk(" ;d2)},where fl0 = ~'~d2(t). 
This is easily done (see, e.g., [3, Eq. (3.7)]) and yields the Jacobi matrix 

(3.3) J .  = J.(d2) = 

m 

~o 

• P • 

0 ° ~ 0On- t 

0 

Then, using the successive segments J1, J 2  . . . . .  Jn -  1 Of J,(d2), generate (by methods 
already mentioned in Section 2) the nodes ~v-(k) and weights 2~ ) of the k-point 
Gaussian quadrature rule, k = 1, 2 . . . . .  n -  1, and check the identities 

k 

(3.4) #2k E 2(k)r-'r(k)'i2k ~1_ tTI tTl t~ k = 1, 2 . . . .  , n -  1. 
= "~V t-~'V J T ] / 0 F 1  " " " F k '  

v = l  

(These follow readily from Markov's formula for the remainder term in Gaussian 
quadrature.) 

Resul ts  o f  Tes t  $ 2. Using double precision as before, this test, too, disap- 
pointingly, is as unrevealing as Test # 1. Both quadrature rules of Section 2 
confirm all identities in (3.4) to within a relative error of at most 7.24 x 10-14 
and 4.36 x 10 -16, respectively. 
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4. Coefficient-based tests. 

More effective are tests based on coefficients, either the coefficients in the three- 
term recurrence relation satisfied by the orthogonal polynomials, or coefficients 
of the orthogonal polynomials themselves. We propose two such tests. 

Test ~ 3. Generate the coefficients 0Ok, ilk, k = 0, 1 . . . . .  n - 1 ,  as in Test ~2;  
then check the relations 

(4.1) ~k = D'k+ l/Dk+ l --D'k/Dk'~ k = O(1)n-  1 where 
2 flk Dk+ 1Dk-1/Dk J 

(4.2) D O = D _ I  = 1, D1 = / a o ; D ~ = 0 ,  D't =/~1; 

D k 

/ao #z ...  #k-Z 

/q /~2 ... #k 

~'~k- 1 ~ k  " ' "  / ' ~ 2 k - 2  

~ 0  /~1 " ' "  /'Lk - 2 /'~k 

~'~1 ~ 2  " ' '  / '~k-1  ]2k+1  

~t~k- 1 ~ k  " ' "  ~'L2R- 3 ~ 2 k -  1 

k = 2 , 3  ... . .  

Table 4.1. Relative errors in the recursion coefficients Ctk, flk yenerated by the 
quadrature rules of Table 2.1 and Table 2.2. 

Table 2.1 Table 2.2 
k t~ot k 6ilk tSOt k 6ilk 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1.35(- 15) 4.56(- 16) 
5.38(- 15) 5.75(- 15) 
2.49(- 15) 6.42(- 15) 
1.32(- 13) 6.59(- 14) 
1.43(- 12) s 73(- 13) 
2.26(- 11) 9.644 - 12) 
6.73(- 10) 2 43( - 10) 
1.29(-8) 6.31(-9) 
9.98( - 8) 8.26( - 8) 
4.59( - 7) 1.94(- 7) 
6.36(-6) 5.71(-6) 
2.08(-4) 3.12(- 5) 
2.80(- 3) 2.01(- 3) 
3.66(- 2) 1.33(- 3) 
8.28(- 2) 3.65(- 1) 

6.68(- 17) 2.02(- 17) 
3.75(- 17) 2.52(- 16) 
2.89(- 17) 4.66(- 19) 
1.54(- 16) 7,72(- 17) 
3.20(- 16) 2.01(- 16) 
2.10(- 16) 7.77(- 16) 
1.85(- 16) 1.16(- 15) 
6.24(- 16) 5.13(- 16) 
6.08(- 16) 4.32(- 16) 
4.39(- 16) 5.97(- 16) 
5.17(- 16) 6.93(- 16) 
6.55(- 16) 2.15(- 15) 
4.29(- 14) 1.08(- 14) 
3.17(-13) 3.14(-13) 
5.71(- 12) 4.75(- 13) 

Results of Test # 3. Using the LINPACK double precision routine D G E C O  
(see, e.g., [2, Ch. I]) to factor the Hankel matrices in (4.2), and computing the 
determinants Dk, D[, k = 2, 3,.. . ,  as signed products of the diagonal elements of 
the upper triangular factors, one obtains the results shown in Table 4.1. Here, 
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6~ k and 6flk are defined by &t  k = I(Ct*--Otk)/Otkl, 5ilk = I(f~'-/~)/fkl, where ~tk,flk 
are the recursion coefficients generated as in Test g 2 from the respective 
quadrature rule (z*, 2*) in Table 2.1 and Table 2.2, while ~k, flk are the recursion 
coefficients as computed from (4.1), (4.2). 

Discuss ion .  The map from the Gaussian quadrature formula (z~, ~1"~"--~ ,~= x to 
the recursion coefficients 0t k, fig, k = O, 1 . . . .  , n - 1, is usually quite well-conditioned ; 
see the discussion in [3, §3.1]. In the present case, the appropriate condition 
number indeed computes to 28.0. This means that Test g 3 ought to be able 
not only to discriminate between a good and a bad quadrature formula, but 
also to determine, approximately, the accuracy of each. From the results in 
Table 4.1 it indeed becomes plausible that the quadrature rule of Table 2.1 is 
accurate to at most 1-2 decimal digits, while the one of Table 2.2 is accurate 
to at least 11 decimal digits. 

Actually, our quadrature rule in Table 2.2 is probably accurate to all 16 
digits shown. The reason why this is not evident from Table 4.1 is the fact that 
the Hankel matrices H k and H~, used in (4.2) also become ill-conditioned rather 
quickly, as k increases. Their triangular factorizations, therefore, suffer in accuracy 
accordingly. Fortunately, for the case at hand, double precision on the CDC 6500 
is still sufficient to weather this progressive ill-conditioning. From the condition 
numbers furnished by the routine DGECO, and shown in Table 4.2, we can 

Table 4.2. C o n d i t i o n  n u m b e r s  o f  the  H a n k e l  m a t r i c e s  Hk, H'k in (4.2). 

k condHk condH~, k condH k condH~ 

1 1.00(0) 1.00(0) 9 1.40( 11 ) 2,90( 11 ) 
2 1.15(1) 7.18(0) 10 5,85(12) 1,29(13) 
3 1.79(2) 1,48 (2) 11 2.58(14) 6.02(14) 
4 3.95(3) 4.17(3) 12 1.20(I 6) 2.93(16) 
5 1.02(5) 1.33(5) 13 5,81 (17) 1.48(18) 
6 3.02(6) 4.61(6) 14 2,93(19) 7.76(19) 
7 9.95(7) 1.72(8) 15 1,53(21) 4.20(21) 
8 3,59(9) 6.85(9) 

see indeed that, in the worst case k = 15, at least 8-10 decimal digits are 
salvaged. However, it would be unreasonable to expect agreement in the 
recursion coefficients ~14, fl14 to much more than 10 decimal digits. As it turned 
out (see Table 4.1), we observed agreement to about 11-12 decimal digits. 

To make Test # 3 effective as a general test, one would normally have to 
consider the use of multiple-precision arithmetic. With the availability of 
precompilers, such as Augment [1], to convert single- or double-precision 
Fortran routines to multiple-precision routines, this would be quite feasible. 
However, we have not done so here. 

For easy reference, we list in Table 4.3 what we believe are the correct 
values (to 16 decimals) of the coefficients Otk, ilk" 
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Table  4.3. The recursion coefficients ~k, ilk" 

k ~k /~k 

0 0.7290111329472270 1.2878993168540691 
1 1.0422198256747441 0.2450009794174209 
2 1.2537306422019648 0.3530735172799071 
3 1.4061820889340039 0.4538065447547201 
4 1.5304717088698266 0.5467091516329361 
5 1.6371146876931010 0.6327914312656564 
6 1.7313265280009314 0.7135915502415592 
7 1 .8t62157284093990 0.7901716008181790 
8 1.8938033162945061 0.8632766955003995 
9 1.9654868263312374 0.9334529739837076 

10 2.0322783394582394 1.0011143019264016 
11 2.0949374105669606 1.0665830763064052 
12 2.1540505128026898 1.1301163055170060 
13 2,2100811161203424 1.1919228879829775 
14 2.2634026387069418 1.2521754391488299 

A s impler  test, bu t  one tha t  checks only the  nodes,  is 

Test  ~4. C o m p u t e  the sum of  the nodes,  s, = ~ =  l~v~'t"~, and  check agains t  

(4.3) s. = D'./D., 

where D., D'. are  the de t e rminan t s  defined in (4.2). 

Results o f  Test  ~4. Using aga in  the  L I N P A C K  rou t ine  D G E C O ,  one  finds 

t D,/D,  = 25.7603125030, 

s,  = 25.4984452247 

s, = 25.7603125030 

from Tab le  2.1, 

f rom Tab le  2.2, 

c o r r o b o r a t i n g  the conclus ion  reached ear l ier  in Test  g 3. 
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