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Abs t r ac t - -An  account is given of the role played by moments and modified moments in the 
construction of quadrature rules, specifically weighted Newton-Cotes and Gaussian rules. Fast and 
slow Lagrange interpolation algorithms, combined with Gaussian quadrature, as well as linear algebra 
methods based on moment equations, axe described for generating Newton-Cotes formulae. The 
weaknesses and strengths of these methods axe illustrated in concrete examples involving weight 
functions with and without singularities. New conjectures are formulated concerning the positivity of 
certain Newton-Cotes formulae for Jacobi weight functions and for the logistics weight, with numerical 
evidence being provided to support them. Finally, an inherent limitation is pointed out in the use 
of moment information to construct Gauss-type quadrature rules for the Hermite weight function on 
bounded or half-infinite intervals. 

K e y w o r d s - - M o d i f i e d  moments, Lagrange interpolation, Newton-Cotes formulae, Gaussian quad- 
rature, Positivity. 

1. I N T R O D U C T I O N  

Moments and quadrature have been intimately connected ever since the classical work of Cheby- 
shev and Stieltjes on continued fractions and the moment problem. Here we examine the role 
of moments in the numerical construction of quadrature rules. We confine attention to two ex- 
treme classes of quadrature rules--weighted Newton-Cotes and Ganssian--and consider ordinary 
as well as modified moments of the underlying weight function. For other quadrature rules in- 
termediate between these two, the reader may consult [1], and for rules involving also derivatives 
and computed without the use of moment information, [2,3]. 

Section 2 is devoted to the numerical computation of weighted Newton-Cotes formulae. In 
Section 2.1, we describe an approach using a combination of Lagrange interpolation and Gauss 
quadrature, where both fast and slow methods of computing the elementary Lagrange interpola- 
tion polynomials are considered. Moments here enter only implicitly (if at all) through the use of 
the Gaussian quadrature procedure. In Section 2.2, the problem is solved via a system of linear 
algebraic equations--the moment equations--where the ordinary or modified moments appear 
explicitly in the right-hand vector of the system. All these approaches have their specific weak- 
nesses: fast Lagrange interpolation tends to be unstable, slow interpolation time-consuming, while 
the moment equations are usually moderately to severely ill-conditioned, regardless of whether or- 
dinary or modified moments are employed. If speed is of little concern--and in most applications 
to numerical quadrature this is probably the case--then the methods of choice are either ordi- 
nary (slow) Lagrange interpolation, or fast Lagrange interpolation at carefully arranged points, 
coupled with Gaussian quadrature. 

The methods axe illustrated in Section 3 for several weighted integrals involving a constant 
weight in Section 3.1, a weight function with a logarithmic and algebraic singularity in Section 3.2, 
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National Science Foundation under grant DMS-9305430. 
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and the Hermite weight function on half-infinite and finite intervals in Section 3.3. In Section 4, 
we apply our techniques to test a number of conjectures regarding the positivity of Newton-Cotes 
formulae. These involve general Jacobi weights, in combination with judiciously selected Jacobi 
nodes, and the logistics weight function on the real line using appropriate Laguerre nodes. 

In Section 5, we recall the modified Chebyshev algorithm for generating orthogonal polynomi- 
als, and hence Gaussian quadrature rules, and, in connection with the Hermite weight function 
on finite and half-infinite intervals, point out an inherent limitation of this algorithm and thus of 
any moment-based procedure. 

2. W E I G H T E D  N E W T O N - C O T E S  F O R M U L A E  

The quadrature rule 

Z ° f(x)w(x) dx = ~ w~ f(x~) H- R~(/), (2.1) 

with w E Lz[a,  b] a (usually) nonnegative weight function, is called a weighted Newton-Cotes 
formula if it is interpolatory, i.e., R n ( f )  = 0 whenever f E Pn-1, the class of polynomials of 
degree < n - 1. The problem we wish to consider is this: given w, the integer n _ > 1, and 
the nodes x~ -- x (n) (normally contained in [a, b]), compute the weights w~ -- w(n)--the Cotes 

number s  associated with the weight function w and the nodes x. .  Of interest is also the stability 
constant 

an - v=z > 1, (2.2) 

which measures the susceptibility of the quadrature sum in (2.1) to rounding errors: the larger 
a,~, the larger the error caused by cancellation. We discuss two methods of computation: one 
based on Lagrange interpolation combined with Gaussian quadrature, the other based on systems 
of moment equations. 

2.1. M e t h o d  Us ing  L a g r a n g e  I n t e r p o l a t i o n  

Since (2.1) is interpolatory, we have 

w~ = e )(z)w(x)dx, 

where g(~) are the 
X l , X 2 ~ .  . .  ~ X n :  

u = 1 , 2 , . . . , n ,  (2.3) 

elementary Lagrange interpolation polynomials belonging to the nodes 

eS = H , 
~=z Zu - -  X/z 

= 1 , 2 , . . . , n .  (2.4) 

[ n + l [  
The integral in (2.3) can be computed exactly (modulo roundoff) by an | - - - -~- | -point  Gaussian 

L A quadrature rule relative to the weight function w, 

L(n+i)12J 
(2.5) w ,  = Wk ~v (x  , v = 1 , 2 , . . . , n .  

k = l  

For methods and software generating the required Gauss formulae, we refer to [4]. In particular, 
the modified Chebyshev algorithm [4, Section 3] takes the first n (respectively, n + 1, if n is odd) 
moments or modified moments of w as input to produce a symmetric tridiagonal matrix whose 
eigenvalues and eigenvectors yield the quantities z~, wk ° in (2.5). 
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With regard to the effective calculation of the quantities £(n)(xf) in (2.5), one faces a tradeoff 
between efficiency and accuracy. A naive procedure is to calculate for each u the product  in (2.4) 
as written. Since there are n such products to be formed, this requires for each fixed x a number 
of multiplications of the order n 2. Given that  O(n) values of x are needed in (2.5), the total 
complexity of evaluating all Cotes numbers in (2.5) is O(n3), not counting the work of generating 

c and nodes x~. the Gaussian weights w k 
A more efficient procedure is to use the barycentric formula 

- (x # (2.6) 

where A ('~) are the auxiliary quantities 

;:) : [ I  
u,¢v 

---- 1 , 2 , . . . , n .  (2.7) 

Each evaluation of e(~n)(x) according to (2.6) is an O(n) process, and since O(n) such evaluations 
are to be made, we get an O(n 2) procedure for evaluating all Cotes numbers in (2.5), provided 
that  the quantities (2.7) can also be generated with O(n 2) operations. This is indeed the case, if 
one uses an algorithm suggested in [5], namely 

A? ) = 1; 

for u = 2 , 3 , . . . , n  do 
) ( v - - l )  

A!y) - "'~ 

v--1  

;:)-- - E ; 9  
p~=l 

# = l , 2 , . . . , p - 1 ;  (2.s) 

Here, the first set of equations in the u-loop is a direct consequence of the definition (2.7), while 
the second equation follows from the identity 

t t = l  t t = l  ~=i 

by comparing the leading coefficients (of the power x "-1) on the left and right. 

While the procedure based on (2.6) and (2.8) is one order more efficient than the naive pro- 
cedure described above, it is also more exposed to the detrimental influence of rounding errors. 
This is because it requires, in the last step of the u-loop in (2.8), the formation of a sum, which 
can be subject to significant cancellation error if maxl_<~<~_i [A~v)l is much larger than IA(~)I. 
Numerical experimentation with (2.8) in Section 3 will show that  this indeed is likely to happen. 
No harmful arithmetic operations occur in the naive O(n 3) procedure, since it uses only the 
benign operations of multiplication and division (disregarding the formation of differences such 
as x ,  - xu, which occur in both algorithms). 

It may be worth pointing out that  the cancellation effect referred to above does not depend 
x( ')/x(~) which control cancellation, on how the nodes are scaled or shifted, since the quantities .,~ / . . . .  

are invariant with respect to any linear transformation of the nodes. The effect, however, may 
depend on the order in which the nodes are arranged. In [5] it is recommended that  they be 
arranged in the order of decreasing distance from their centerpoint. 

33:112-E 
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2.2.  M o m e n t - B a s e d  M e t h o d s  

Suppose one knows the first n modified moments of w relative to a system of polynomials 

7rt~_ 1 E Pt~-l, 

// ?7t t t_  1 ~-  7C,_l(X)W(x)dx, # = 1 , 2 , . . . , n .  (2.9) 

It is assumed, of course, that  these moments exist. When ~r~_l(X) = x ~-1, we are dealing 
with ordinary moments; important  examples of modified moments are those relative to a set of 
orthogonal polynomials, lr~_l(x) = ~r~_l(x;v), where v is also a nonnegative weight function, 
possibly, but not necessarily, identical with w. Putt ing f ( x )  = 7r#_~(x), # = 1, 2 , . . .  ,n, in (2.1) 
then yields the system of moment  equations 

f i  7r#_l(X~)W . = raft_l, p = 1,2, .. ,n,  (2.10) 

a system of linear algebraic equations with the Vandermonde-like coefficient matrix 

n (2.11) 

Also here, there are slow and fast methods for solving (2.10). Straightforward Gauss elimination 
is an O(n 3) process, while there are known O(n 2) algorithms (cf. [6,7] and references cited 
therein) tha t  take advantage of the Vandermonde structure. All solution procedures, however, 
are subject to the ill-conditioning of the matrix Vn, which, even for modified moments, can be 
quite severe (cf. [8]). Again, in Section 3, we will illustrate the numerical properties of these 
algebraic procedures on typical examples. 

3. E X A M P L E S  

In this section, we report  on a number of examples calculated in double and quadruple precision 
on the Sparc 2 workstation (machine precision ~ 1.11 x 10 -16 and 0.963 x 10 -34, respectively). 
In general, we will be interested in determining the maximum (over ~) relative errors in the 
Cotes numbers w~, as well as the stability constants an in (2.2). The former are computed 
by comparing double-precision with quadruple-precision results, while the latter are computed 
throughout  in quadruple precision. Of special interest are situations in which an = 1, which 
indicates positivity (more precisely, nonnegativity) of the respective Newton-Cotes formulae. 
New examples of (conjectured) positive Newton-Cotes formulae will be given in Section 4. 

In connection with moment-based methods, we will also be interested in seeing numerical 
values, or estimates, of the condition numbers of the respective matrices Vn (cf. (2.11)). 

3.1. Class ica l  N e w t o n - C o t e s  F o r m u l a e  on  [-1,  1] 

These are for the weight function w(x)  --- 1 on [-1,  1] and the equidistant nodes x~ = - 1  + 
2 ( v -  1 ) / ( n -  1), v = 1 ,2 , . . .  ,n. We first illustrate the O(n 3) method of Section 2.1, and in 
Table 3.1 report  the maximum relative errors of the Cotes numbers w~ in the column headed 
"err w" and the stability constants an in the column headed "stab." As can be seen, the accuracy 
is quite satisfactory, and the stability constants, as is well known, grow rapidly with n. 

The results in Table 3.1 should be contrasted with those in Table 3.2 obtained by the O(n 2) 
method of Section 2.1. Here, all accuracy is practically gone by the time n reaches 35. Instead of 
the stability constant we list in Table 3.2 under "err A" the maximum relative error of the A(n) 
in (2.7). As can be seen, the latter correlate well with the errors in the w~. 

Rearranging the nodes x~ so that  they move from both ends toward the origin as ~ increases 
(cf. the remark at the end of Section 2.1), for example, defining 
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Table 3.1. Accuracy and stability of classical Newton-Cotes formulae generated by the O(n  3) 
method of Section 2.1. 

n err w stab n err w stab 

5 1.9(-15) 1.00(0) 25 2.8(-14) 5.63(3) 

10 5.2(-14) 1.00(0) 30 5.7(-13) 1.83(4) 

15 9.3(-15) 2.03(1) 35 1.5(-14) 2.52(6) 

20 6.1(-14) 6.33(1) 40 2.9(-13) 7.86(6) 

Table 3.2. Accuracy of classical Newton-Cotes formulae generated by the O(n 2) method of Sec- 
t ion 2.1. 

n err w err A 

5 1.8(-15) 8.9(-15) 

10 7.3(-12) 5.6(-13) 

15 1.5(-12) 3.1(-12) 

20 1.0(-7) 1.2(-8) 

n err w err A 

25 1.0(-6) 1.5(-6) 

30 4.2(-3) 3.8(-4) 

35 6.2(-2) 1.0(-1) 

40 2.3(+1) 9.5(0) 

Table 3.3. Accuracy of classical Newton-Cotes formulae generated by the O(n 2) method of Sec- 
tion 2,1 with rearranged nodes. 

n err w err A n err w err A 

5 1.8(-15) 5.6(-17) 25 5.2(-12) 2.9(-14) 

10 2.9(-14) 7.8(-16) 30 3.2(-9) 3.5(-13) 

15 2.5(-14) 2.2(-15) 35 4.5(-9) 2.0(-12) 

20 2.1(-12) 1.4(-14) 40 2.1(-7) 1.5(-11) 

Table 3.4. Classical Newton-Cotes formulae from ordinary moments; accuracy and condition 
numbers. 

n err w cond n err w cond 

5 1.7(-15) 5.0(1) 25 3.8(-7) 2.9(11) 

10 3.1(-13) 1.4(4) 30 2.7(-4) 8.5(13) 

15 1.8(-11) 3.6(6) 35 4.1(-2) 2.4(16) 

20 5.1(-9) 1.1(9) 40 2.3(+1) 6.9(18) 

Table 3.5. Classical Newton-Cotes formulae from Legendre moments; accuracy and condition 
numbers. 

n err w cond n err w cond 

5 1.4(-15) 2.7(i) 25 1.2(-7) 3.7(9) 

i0 7.5(-14) 1.5(3) 30 1.3(-6) 7.0(ii) 
15 1.5(-13) 1.4(5) 35 1.0(-5) 1.4(14) 

20 3.0(-9) 2.1(7) 40 1.1(-2) 2.9(16) 
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v--1 - 1 +  h--zY-1, v odd, 
x~ = (3.1) 

1 ~-2 n- I  ' v even, 

improves the accuracy of the O ( n  2) method considerably. This is shown in Table 3.3. 
We next illustrate the method based on moment equations, where for ordinary moments 

/ /  { 0, # e v e n ,  
m ~ _  1 = t ~ -  1 d t  = 1 2/~, # odd, 

the matrix V,~ in (2.11) is the Vandermonde matrix in the nodes x~. We will choose for the 
modified moments the Legendre moments 

/1 { 
r n , _ l  = 7 r , _ l ( t ; w ) d t  : 2, # = 1, 

1 O, # > 1, 

where 7rt,_l are the monic Legendre polynomials. In this case, V,~ becomes a Vandermonde- 
like matrix in the terminology of [9]. In Tables 3.4 and 3.5 we list, along with the errors in 
the w~, the condition numbers of the respective matrices Vn.  For ordinary moments, these are 
the c~-condition numbers computed by [8, equations (3.3),(3.4)] (see also [8, Example 3.3]), while 
for Legendre moments, they are Frobenius-norm condition numbers computed according to 
[8, equations (5.16),(5.17)]. We used the LINPACK routines DGECO and DGESL, and our 
own quadruple-precision versions thereof, to solve the linear system (2.10), since they provide 
estimates for the condition number. Table 3.4 reports on the results for ordinary moments, 
Table 3.5 on those for Legendre moments. Modified moments are seen to give only marginal 
improvements (1-2 decimal orders) over ordinary moments, both in terms of accuracy and con- 
dition. It was observed that  the LINPACK estimates of the condition numbers agree very well 
in order of magnitude with those computed analytically. 

Rearranging of the nodes as in (3.1) does not significantly alter the results. Indeed, the 
(x>condition number in the case of ordinary moments remains the same. 

3.2. N e w t o n - C o t e s  F o r m u l a e  for  L o g a r i t h m i c / A l g e b r a i c  W e i g h t  

We now consider the weight function w ( x )  = x - 1 / 2  ln(1/x) on [0, 1] and equally spaced nodes 
x~ = (v - 1) / (n  - 1), v = 1, 2 , . . . ,  n. The results based on slow and fast Lagrange interpolation 
are very similar to those in Tables 3.1 and 3.2 for classical Newton-Cotes formulae, except that  
the stability constant grows somewhat faster, from 1.26 when n -- 5, to 5.10 x l0 s when n = 40. 
The Cotes numbers seem to exhibit an interesting sign pattern: for each n > 3, the first two 
weights are positive, while from then on they alternate in sign. A similar improvement as in 
Table 3.3 is observed also in this example, if the nodes are rearranged analogously to (3.1). 

Ordinary moments are easily computed rationally from m~_ 1 = 1 / ( # - 1 / 2 )  2, # = 1, 2 , . . . ,  while 
modified moments relative to the shifted Legendre polynomials are also expressible rationally in 
terms of # (cf. [10]). The respective moment equations, as expected, become gradually ill- 
conditioned, more quickly so for ordinary moments. This is shown in Table 3.6. Here again, 
the LINPACK estimates of the condition numbers agree with those computed analytically within 
1-2 decimal orders. Both overestimate the actual loss of relative accuracy by several orders of 
magnitude. 

We also experimented with the xv being the Chebyshev nodes on [0, 1], but  observed only 
a slight improvement in the case of ordinary moments, and none for modified moments. The 
stability constants, on the other hand, as computed by the O(n 3) method, are all very close to 1. 

3 .3 .  N e w t o n - C o t e s  F o r m u l a e  for  t h e  H e r m i t e  W e i g h t  o n  F i n i t e  o r  H a l f - I n f i n i t e  In -  
t e r v a l s  

Our interest  here is in the  weight  funct ion w(x) = e -x2 on [0, c], where  0 < c < c~. We 
first consider nodes  that  are equal ly  spaced (with endpoints  included) on  [0, c] w h e n  c < c~, 
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than 1. It can be verified analytically, in this case, that  the Cotes number for the largest of the 
three nodes, x3, is indeed 

1 { 4 e _ 4 + ( v / ~ _ l ) v / ~ e r f 2 } = _ O . O 1 0 4 6 7  . . . .  w3--~---~ 1 v ~  

It seems reasonable to conjecture the existence of a ~ with 1 < 6 < 2 such that  for all 0 < c < 
the Newton-Cotes formulae for w(x)  = e -z2 on [0, c], based on Chebyshev points of the first 
kind, are positive. For Chebyshev points of the second kind, we conjecture the same for some 
with 2 < 6 < 3, having observed positivity for c = 2 and 1 _ n < 40, but  not for c --- 3. What  
was also found to be interesting is that  for c > 5 (respectively, c > ~), the stability constants an 
essentially decrease as n increases and in fact seem to approach 1 as n ~ c~. This surely is in 
marked contrast to classical Newton-Cotes formulae[ 

4 .  P O S I T I V I T Y  C O N J E C T U R E S  

We use the accurate O(n 3) procedure of Section 2.1 for generating Newton-Cotes formulae to 
numerically test their positivity (for all n). We examine two weight functions w - - t h e  Jaeobi 
weight on [-1,  1] and the logistics weight on ( -c~ ,  c~). For the former we test a wide-ranging 
conjecture of Milovanovid [14] and supply ample evidence for its support. For the latter we 
advance a conjecture of our own. To reduce the amount of computation time, all computations 
were done in double (rather than quadruple) precision, but the accuracy was monitored by doing 
the calculations also in single precision and observing the degree of deterioration of single-precision 
accuracy. 

4.1.  J a c o b i  W e i g h t  F u n c t i o n s  

The positivity of Newton-Cotes formulae for the Jacobi weight function w(~'Z)(x) : (1 - x) a 
( l + x )  3 on [-1,  1], c~ > -1 ,  f~ > - 1 ,  where the nodes are Jacobi abscissas belonging to parameters 
other than a,/3, has been investigated by a number of researchers. The earliest examples are the 
positive quadrature rules of Fejdr [12] for w = w (°'°) having as abscissas the Chebyshev points 
of the first and second kind. Subsequent work for w = w (°,°) dealt with ultraspherical and more 
general Jacobi abscissas, either for all n [15-17], or for selected fixed n [18,19]. Ultraspherical 
abscissas were considered in combination with the Chebyshev weight function of the first kind in 
[20], and for ultraspherical weight functions in [21]. 

Askey, for w = w (°,°), in addition to proving positivity of all Cotes numbers for a variety of 
Jacobi abscissas, in [17] held out the possibility that  positivity may hold for all Jacobi abscis- 
sas with parameters c~, f~ satisfying - 1  < a < f~ _< 3/2. Our computations seem to confirm 
this conjecture except for the upper left-hand corner of the region where we noted nonpositiv- 
ity for even values of n. We thus revise the conjecture, claiming positivity only in the region 
{a _</3 < a + 2, - 1  < a < - 1 / 2 }  U { - 1 / 2  _< a _< t3 _< 3/2}, and of course, by symmetry, in the 
companion region reflected along a =/3. 

In all the work above, the quadrature nodes in each rule are zeros of one and the same (Jacobi) 
polynomial. It appears tha t  more satisfactory results are attainable if one takes as abscissas the 
zeros of two (related) polynomials. Fejdr's (2n - 1)-point formula for w = w (°'°) with the zeros 
of U2,~-1 as abscissas gives us a clue on how this might be done. Note that  U2,-1 = 2Tn Un-1. 
Thus, the nodes in this case are the zeros of p(-U2,-1/2)  and r~(1/2'1/2) ~n-1 . This interpretation 
suggests the following sweeping generalization. 

CONJECTURE 4.1. (See [14]). For any a > - 1 , / 9  > - 1 ,  let 

= -~- p(a+1,,8+l) / , . , .1 = 0 } .  Xn ° {x e ( - 1 ,  1):  P(a'3)(x) = 0}, Xn 1 {x e ( - 1 ,  1):  n-1 v ~, (4.1) 
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Then the (2n - 1)-point Newton-Cotes formula 

l 1 (1 - x) c~+112 (1 - x) ~+1/2 f (x)  dx = E w~n)f(xk) + R2n-l( f) ,  
xkexoux~ 

Ru~-l( f)  = O, all f c P2,~-2, 

(4.2) 

has nonnegative coefficients w~ n) for all n = 1, 2 , . . . .  

T h e  Fej6r formula  ment ioned  above is the  special case a = fl = - 1 / 2  of this conjecture.  

T h e  conjecture  has been checked numerical ly  by comput ing  (in double precision) the  s tabi l i ty  
cons tan t  an (cf. (2.2)) and  tes t ing  whether  or not  it equals exac t ly  1. We found t h a t  it a lways 
does, for a = -0 .75(0.25)4.00,  fl = a(0.25)4.00,  and n = 5(5)40. (It  suffices, by symmet ry ,  to 
consider fl _> a . )  We also examined  in more  detail  a = -0 .9(0.1)1.0 ,  fl = a (0 .1 ) l .0 ,  n = 1(1)40, 
and confirmed the  conjecture  in these cases as well. We used the  procedures  r e c u r  and g a u s s  
of [4] to genera te  the  necessary Jacobi  polynomials  and their  zeros. 

T h e  evidence in suppor t  of Conjecture  4.1 is thus fairly convincing. 

4 .2 .  L o g i s t i c s  W e i g h t  F u n c t i o n  

Here we consider 
e - x  1 

w ( x )  = (1 + e - x )  2 - 4 c o s h 2 ( x / 2 )  ' x ~ IR. (4 .3 )  

T h e  corresponding or thogonal  polynomials  can be genera ted  ra ther  easily from their  known re- 
currence  relat ion (cf. [4, footnote  3, p. 45]). Since w(x) ~ e -Ixl as x --* +oc ,  it seems na tu ra l  to 
take as q u a d r a t u r e  abscissas the  zeros of Laguerre  polynomials  and their  negat ive counte rpar t s ,  
including 0, if n is odd.  Thus,  we let 

{+x : Ln/2(x) = 0}, n even, 

{x = 0} U { + x :  Lln/2j(x) = 0}, n odd. 

(4.4) 

T h e n  we propose  the  following conjecture.  

CONJECTURE 4.2.  For  any  even n = 2, 4 , . . . ,  the n-point Newton-Cotes formula 

f l f (z)  e-~ (1 + e - X )  2 dx = ~ W(n)f(Xk) + Rn(f),  
~keX. (4.5) 

Rn(f)  = O, all f E ?n-l ,  

has all coefficients nonnegative, w~ n) > O. 

W h e n  n is odd,  the  conjecture  is false. 

We have verified in quadruple  precision t h a t  an = 1, n even, for all n = 2(2)80, lending 
s t rong suppor t  to the  val idi ty of  the  conjecture.  Quadruple  precision was necessary to counte rac t  
significant de ter iora t ion  of accuracy  for large n. In this way, it was possible to  still verify an = 1 
to a t  least  20 decimal  digits. 

I t  m a y  be wor th  observing t h a t  the  m e t h o d  of m o m e n t  sys tems in this example  quickly dete-  
r iorates  because  of severe i l l-conditioning of the matr ices  involved, bo th  in the case of o rd inary  
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moments and, slightly less so, in the case of modified moments (relative to the orthogonal poly- 
nomials for w). The former can be computed from 

{: 2 t k e - t  
m k  (1 - ~ e - t )  ~ dr, k even, 

= ( 4 . 6 )  

0, k odd, 

by making the change of variables e - t  = x, using equation 4.272.14 in [22], simplifying the result, 
and expressing it in terms of the Riemann zeta function by using [23, equation 23.2.16]. The 
result, for k even, is 

m k  = 1 (k = 0), m k =  (1 -- 2 l -k)  (27r) k [Bk[ (k > 0, even), (4.7) 

where Bk is the Bernoulli number. The modified moments are 1 for k --- 0, and 0 otherwise. 

5. G A U S S  F O R M U L A E  

As we have mentioned earlier, moments and modified moments enter also in the construction 
of Gauss-type quadrature formulae 

f(x) w(x) dx = w. f(x.) + R~(f), 
.=I (5.1) 

R n ( / )  = 0, all f C ~2n-1, 

although there are other techniques--and they are sometimes more e f fec t ive - tha t  do not rely 
on moment information (cf. [4]). 

It is generally assumed that  the modified moments of w, 

// m , - 1  = p u - l ( X ) W ( x ) d x ,  # = 1 , 2 , . . . ,  (5.2) 

are formed with polynomials {Pk} satisfying a three-term recurrence relation 

p o ( z )  = 1, p - l ( z )  = o, 

p k + l ( x )  = ( x  -- a k ) p k ( x )  -- b k p k - l ( X ) ,  k = 1 , 2 , . . . ,  

(5.3) 

with known coefficients ak E •, bk ~_ O. If ak : bk = 0, all k, this will produce ordinary moments, 
while modified moments use a set of orthogonal polynomials Pk(') -~ ~rk( "; V) relative to some 
positive weight function v. The coefficients ak ---- ak(v) ,  bk = bk(v) > 0 then depend on v. 

There is a well-known algori thm--the modified Chebyshev algorithm (cfi [4, Section 3])- - that  
takes as input the first 2n moments (5.2) (ordinary or modified) and the first 2n - 1 coefficients 
ak, bk, k : 0, 1 , . . . ,  2 n - 2 ,  and produces the first n recursion coefficients ak = ak(w) ,  ~k = bk(W) 
for the orthogonal polynomials Pk(') = "irk( .; W) relative to the weight function w. These in turn, 
by well-known eigenvalue techniques, allow us to compute the Gauss nodes x~ and weights w~ 
in (5.1). 

The major problem with moment-related approaches is the possible ill-conditioning of the 
underlying nonlinear moment map 

Gn : R 2'~ ---, R 2'~ m ,  , % (5.4) 
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Figure 1. The polynomial 9n 

1 . 0 ¢ 0 6  - 

1.Oe04 - 

1 . 0 e 0 2  - 

1 .0eO0 - 

n=40 i 

A 
I I I I I I 
0 0.2 0.4 0.6 0.8 1 

for w(x) = x -z/2 ln(1/x) on [0, 1]. 

where m T = [m0, ?nl,..., Z122n--l], ~/T z [Xl,..., Xn ; Wl,... ' Wn]. In the case of ordinary mo- 

ments, if w is supported on the positive real line and normalized to make m0 -- I, it is known, 

e.g., that [24, Section 5.2] 

condoo G,~ > ~ max (5.5) 
- -  l < u < n  I ~ ' n ( X ~ ; W )  J 

for some suitably (in terms of the m-norm)  defined condition number. The quotient on the right 
of (5.5) typically tends to oo exponentially fast as n --* co, since the point - 1  is well outside the 
support  interval of w. For this reason, ordinary moments  are unsuitable for generating Gauss 
formulae, unless n is quite small. 

A bet ter  chance (but no guarantee!) of succeeding can be had by using modified moments,  
provided the auxiliary weight function v in the respective polynomials Pk(') = 7rk(-; v) is chosen 
to reflect the peculiarities inherent in the given weight function w. For the condition of the 
underlying moment  map (5.4) one then has [25, Theorem 3.1] (in terms of the Frobenius norm) 

/ condp Gn = gn(x; w)v(x) dx , (5.6) 

where g~ is a polynomial of degree 4n - 2, which is positive on R and can be defined in terms 
of the elementary Hermite interpolation polynomials associated with the Gauss nodes x ,  and 
in terms of the Gauss weights w~. Therefore, gn depends only on the given weight function w, 
whereas the influence of the chosen weight function v for the modified moments  comes into play 
in the second factor of the integrand in (5.6). The extent of ill-conditioning is thus crucially 
determined by the magnitude of gn on the support  of v. 

In Figure I we show graphs of gn, n = 5, 10, 20, 40, for the logarithmic/algebraic weight function 
w of Section 3.2. I t  can be seen in this case tha t  gn is less than 1 over much of the interval [0, 1]. 
If, as proposed in Section 3.2, one chooses Legendre moments, that  is, v -- 1, then the integral 
in (5.6) remains rather  small, even for large values of n. Indeed, the condition numbers for the n- 
values of Figure 1 turn out to be 5.73, 14.4, 38.6 and 107., respectively. The modified Chebyshev 
algorithm, accordingly, works very well in this case. 

The situation is rather different for the Hermite weight w on [0, c] (el. Section 3.3), unless c is 
relatively small. For c --- 5, for example, the polynomials gn behave as shown in Figure 2. Using 
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Figure  2. T h e  polynomial  gn for w(x) = e -=2 on [0, 5]. 

Table  4.1. T h e  condi t ion  of Gn for Hermi te  weights on [0, c]. 

n c = 1  C ~ 2  C ~ 5  C ~  

5 7.9(-1)  1.7(0) 8.3(1) 8.3(1) 

10 7.8(-1) 1.6(0) 2.0(4) 8.7(4) 

20 7.7(-1) 1.4(0) 4.7(4) 1.3(11) 

40 7.6(-1) 1.3(0) 3.8(4) 3.5(23) 

Table  4.2. Accuracy  of modified Chebyshev  a lgor i thm for w(x) = e -=2 on [0, c¢]. 

n err  c~ err  ~3 

5 2.8(-13) 2.7(-13) 
10 1.0(-10) 1.2(-10) 
15 1.2(-S) 1.5(-8) 
20 7.8(-7) 1.0(--6) 
25 3.4(-5) 4.7(-5) 
30 1.1(-3) 1.6(-3) 
35 2.4(-2) 3.8(-2) 
40 6.8(-2) 1.4(-1) 



Moments in Quadrature Problems 117 

again Legendre moments  on [0, c], one now obtains condition numbers 3.52 × 1012, 1.14 × 1019, 
1.36 × 1020 and 8.57 × 1019 for the four values of n, which are unacceptably large. 

One might argue that the choice of Legendre moments  is a poor choice in this case, since 
v (x )  ~ 1 does not mimic the behavior of w ( x )  = e -~2 on 0 < x < 5. That,  of course, is a valid 
point. Surprisingly, however, the difficulty persists for large c, even if we make better choices. 
Indeed, the best choice of all, v = w, gives rise to condition numbers shown in Table 4.1. While for 
0 < c < 5, these optimal condition numbers are still acceptable, they are no longer so if c = co or 
c much larger than 5. To illustrate this, we have run the modified Chebyshev algorithm for c = oo 
with the true modified moments  (v = w) randomly perturbed at the level of machine (double) 
precision and obtained for the computed recursion coefficients ak, ~k the relative errors shown 
in Table 4.2. We can see that the modified Chebyshev algorithm deteriorates rather rapidly and 
looses all (double-precision) accuracy by the t ime n reaches 40. 

The lesson to be learned from this example is that the approach via modified moments  (even 
the best ones!) can be inherently limited. It is therefore no surprise that the computat ion 
of the orthogonal polynomials  for these laterally supported Hermite weights must use different 
techniques to succeed, for example, appropriate discretization [26, Section 6] or "domain decom- 
position" [27]. 
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