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Abstract. 

We develop two classes of quadrature rules for integrals extended over the positive real axis, assuming 
given algebraic behavior of the integrand at the origin and at infinity. Both rules are expressible in terms 
of Gauss-Jacobi quadratures. Numerical examples are given comparing these rules among themselves 
and with recently developed quadrature formulae based on Bernstein-type operators. 
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I. Introduction. 

For integrals extended over the whole real line, whose integrands go to zero like 
Ixl -p  when Ixl ~ ~ ,  special (symmetric) quadrature rules have been developed by 
W. M. Harper [6] and S. Haber [5] some time ago that integrate exactly the product 
of (1 + x2) -~/2 with certain rational functions. Here we treat in a similar spirit 
integrals over the half-infinite interval [0, 0o) and integrands that have an algebraic 
singularity at the origin of type x ~, a > - 10 and behave like x -p,/~ > 1, as x ~ m. 
We develop two types of quadrature formulae - one having maximum polynomial 
degree of exactness, the other maximum "rational" degree of exactness. The former, 
already considered by R. Kumar and M. K. Jain [7], are subject to a severe 
limitation on the number of quadrature points allowed, whereas the latter are free 
from any such limitation. We show that both types of formulae can be reduced to 
Gaussian quadratures relative to appropriate Jacobi weight functions, and hence 
can be generated by standard mathematical software. Numerical examples are 
given, comparing these quadrature rules among themselves, and also with alterna- 
tive rules based on Bernstein-type operators, recently developed by B. Della Vecchia 

[3]. 

* Work supported, in part, by the National Science Foundation under grant CCR-8704404. 
Received November 1990. Revised April 1991. 
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2. Formulae of maximum algebraic degree of exactness. 

The object  in this section is to find a quadra tu re  formula  

~o ° ,1 -r .~;- x~ L (2.1) f ( x ) ~  dx = akf(Xk) + r . ( f )  
k=l  

of Gauss ian  type, that  is, such that  r , ( f )  = 0 whenever  f ~ P2. -1 ,  the class of  
polynomials  of  degree _< 2n - 1. To  assure integrability, one has to assume that  

(2.2) ~ > - 1 ,  2 n < f l - ~ .  

Thus,  the formula  (2.1) will be applicable only i f / / >  0 is relatively large. 
The  requi rement  tha t  (2.1) be exact for f ( x )  = x x, 2 = 0, 1 . . . . .  2n - 1, trans- 

lates, via the t rans format ion  of variables 

1 - x  1 - t  
(2.3) - - - t ,  x -  

l + x  l + t '  

into the condi t ion that  

1  =01, 1, 

or, equivalently,  that  

f l  1( 1 _ t)z(1 + t )2 . -1 -4 . (1  _ t)'(1 + t ) " - ' - 2 " - t d t  (2.4) 

= 2P-1 L [ak(1 + tk) 1-2hI "(1 -- tk)Z(1 + tk) 2" -1 -z ,  2 = 0, 1 . . . . .  2n -- 1. 
k = l  

Here  we have set, in conformi ty  with (2.3), 

(2.5) 1 - Xk 1 -- tk 
= tk, Xk 

1 ~- X k 1 "~- t k " 

Since {(1 - t)~(1 + t ) E n - l - ' t :  ,~ = 0, 1 . . . .  ,2n - 1} forms a basis in P2. -1 ,  it follows 
f rom (2.4) that  

tk = ZR,S 2P-X(1 + tk)l-2nak = O)~, k = 1 ,2 , . . . ,n ,  (2.6) 

where 

(2.7) Zk a = Z~")(Ct, fl -- ~ -- 2n -- 1), o J  = ~O~k")(C~, fl -- ~t -- 2n -- 1) 

are the n-point  Gauss ian  nodes and weights relative to the Jacobi  weight function 
with pa ramete r s  ~ a n d / / -  ~ - 2n - 1. Note ,  by assumpt ion  (2.2), that  bo th  par-  
ameters  are larger than  - 1, as required by the theory of Gauss -Jacob i  quadrature .  
(This is not  the case with ano ther  relat ionship to Jacobi  polynomials ,  noted in [7, 
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Eq. (12)3, which involves parameters  - f l  and ~.) Thus, combining (2.5) and (2.6), we 
obtain 

(2.8) Xk-- l +'r~'  ak-- 2 p-I CO[, k =  l,2 . . . . .  n, 

for the desired abscissae and weights in the quadra ture  formula (2.1). 

3. Formulae of maximum "rational" degree of exactness. 

For  a more  viable alternative to (2.1), not  subject to the second condi t ion in (2.2), 

we now require the quadra ture  rule 

I °~ f(x)x~'dx = ~ Akf(Xk) + R,,(f) (3. 1) 
J 0  k = l  

to be exact (i.e., R, ( f )  = 0) whenever  

1 
(3.2) f (x)  = (1 + x) a+~ '  )' = 0, 1 . . . . .  2n - 1. 

Here  the only assumptions needed for integrabili ty are 

(3.3) ~ >  - 1 ,  f l - ~ >  1. 

In the case 0~ = 0, fl = 2, such a quadra ture  rule has already been suggested in [8, p. 

52]; see also [2, pp. 225-226].  
It is easy to see that  exactness of(3.1) for the "rat ional"  functions (3.2) is equivalent 

to 

(3.4) (1 "~ X) p+2n-1  dx = k= l  Ak (1 + Xk) p + 2 " - 1  

for 

(3.5) g(x) = x x, 2 = 0, 1 . . . . .  2n - 1. 

Indeed, put t ing f (x)  = g(x)/(1 + x) ~ +z,-1 in (3.1), our  exactness requirement  im- 
plies (3.4) for g(x) --- (1 + x) 2n-x-~, 2 = 0, 1 . . . . .  2n - 1, which is equivalent to 
(3.4), (3.5). Conversely,  if (3.4), (3.5) holds, it suffices to put  g(x) = (1 + x) 2n-~- 1 in 

(3.4) to get exactness of (3.1) for (3.2). 
N o w  using again the t ransformat ion of variables (2.3), and 

1 - x k  1 -Tk 
(3.6) - - =  Tk, Xk = 

l +Xk  l + T k  
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in place of (2.5), we get f rom (3.4), (3.5) 

_ _  

that  is, 

= k=xAk (1 + Xk)  ~ + 2 " - 1  ' 

2 
dt 

(1 + t) 2 

2 = 0 , 1 , . . . , 2 n -  1, 

f l t)2n- 1 - ).. (1 -- t)~(1 + (1 -- t)~(1 + t)P-~-Zdt 
- 1  

½Ak(1 + T J . ( 1  --Tk)~(1 + Tk) z"-x-~,  2 = 0 , 1 , . . . , 2 n - -  1. 
k = l  

As before in §2, this implies 

(3.7) Tk = Tk J, 

where 

(3.8) 

½Ak(1 + Tk) t~ = f2~k, 

Tk s = Z(k"~(~, fl -- C~ -- 2), ~ = Cn(k")(a, fl -- 0~ -- 2) 

441 

(3.11) 

N o w  typically, 

(3.12) f ( x )  = (1 + x)-PF(x), 

where F is a "nice" function. In this case, 

(3.13) h(t) = 2 -#F  [1-~1'1 - t - 1  < t < 1. 

Therefore,  convergence R~(h)--. 0 in (3.10), hence R , ( f ) ~  0 in (3.1), is assured 

are the n-point Jacobi  nodes and weights corresponding to parameters  ~ and 
fl - ~ - 2. Hence,  in (3.1), 

(3.9) X k -  1 -- Tk J A k -  2f2~k 
1 + Tk s '  (1 + TRJ) ~" 

In contrast  to the quadra ture  rule of §2, it is now meaningful to discuss conver-  
gence of  the rule (3.1) as n ~ ~ .  To  do this, let R~ denote the remainder  term in the 
Gauss-Jacobi  formula with parameters  ~ and fl - ~ - 2, 

(3.10) 
d _  1 k = l  

Then an easy calculation shows that  the remainder  R,  in (3.1) is given by 

I~ V l - t 7  
R , ( f )  = 2R~J(h), h(t) = (1 + t)-  f / - 7 7 ~ / .  

Ll+tJ 
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if h in (3.13) is continuous - in fact, bounded Riemann-integrable - on the 
interval [ - 1 ,  1], i.e., F is continuous on the closed interval [0, oo]. Moreover, 
if h(t) is analytic in a disk Itl < r, where r > 1, hence F analytic outside 

r 2 + 1 2r 
the disk with center at r z -  1 and radius r 2 - - ~ ,  then convergence is 

exponentially fast, the rate of convergence being larger the larger r > 1 (cf. 
[4, Eq. (A. t)]. 

It is also possible to combine the two approaches in ~ 2 - 3  and seek a quadrature 

formula 

(3.14) ~o f (x )~dx  = k = l  ~ b J ( y k ) +  s,( f)  

for which, given an integer m with 0 < m < 2n, one has s ,( f )  = 0 whenever 

x;', ). = 0 ,  1 . . . . .  2n - rn - 1, 

(3.15) f i x )  = 1 
( l + x )  ~+I '  2 = 0 , 1 , . . . , m - 1 .  

Here one needs to assume c~ > - 1 and 2n < fi - a + m. To construct such for- 
mulae, however, seems to require different techniques (the solution of nonlinear 
equations), and we will not pursue this further. Note that the limit cases m = 0 and 
m = 2n - 1 correspond to the quadrature rules (2.1) and (3.1), respectively. 

4.  F o r m u l a e  b a s e d  o n  B e r n s t e i n - t y p e  o p e r a t o r s .  

The linear positive operator of Bernstein type, 

 0(n) [ (4.1) (L , f ) ( x )=(1  + x)-" k k xk f  n - k +  1 ' 

was introduced by G. Bleimann, P. L. Butzer and L. Hahn [1] for approximating 
continuous functions on [0, oo), and was used by B. Della Vecchia [3] to construct 
a quadrature rule which is exact for the function (1 + x)-  a, fl > 1. Slightly generaliz- 
ing her approach,  we integrate (L,g)(x)'x~(1 + x) -~ from 0 to ~ ,  where 
9(x) = f(x)(1 + x) p, to get a quadrature rule for S~ x ' f ( x )  dx" This rule is again exact 
when f is the function (1 + x )  -B, since it then takes the form 
S~ (/~ 1)( x)" x~(1 + x)-adx = Sg x~( t + x)-Pdx" As before, we assume that 

(4.2) e > - l ,  f l - e > l .  

To conform with the formulae obtained in the previous sections, we replace n in (4.1) 

by n - 1, and denote the quadrature nodes by 

k - 1  
(4.3) ~k= n -  k + l '  k = l , 2 , . . . , n .  
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The quadrature rule then becomes 

;o (4.4) x~f(x)dx = ekf(~k) + Pn(f), 
k=l  

~k ~ n - k + l C(n + fl - 1 )  

The weights ~k are easily generated recursively by 

r ( n  + ~ - ~ - 2) 
(4.5) cq -- r(~ + 1), 

r(n  + ~ - 1) 

r(~ + k). 

1 +  m k l En 
ak = ek-1, k = 2,3 . . . .  ,n, 

l + f l - e - 2  n k +  
n - k + l  

where, for large n, one first computes In el,  and then al by exponentiation, to avoid 
machine overflow. 

The principal virtue of the quadrature rule (4.4) seems to be its simplicity and 
explicit form, its major drawback slow convergence. Known error estimates (for 
a = 0) due to B. Della Vecchia [3] indeed exhibit a convergence order of O(n-1) at 
best, and so do our examples in §5. 

5. E x a m p l e s .  

In this section we illustrate the performance of the three quadrature schemes of 
N2-4  on a number of examples. All computations were carried out in double 
precision (ca. 29 decimal digits) on the Cyber 205. 

f ;  x 1/2 tanh x 
EXAMPLE 1. (1 + X) 12"5 dx -- .00340388967504569561787042285. 

Here e = ½, fl = 12.5, so that by (2.2) the Gauss formula (2.1) exists only for 
n = 1 (1)5. The associated relative errors are shown in the second column of Table 
5.1. (Integers in parentheses denote decimal exponents.) 

TABLE 5.1. Relative errors of the quadrature rules (2.1), (3.1), (4.4) for Example 1. 

n (2.1) n (3.1) n (3.1) n (4.4) 

1 2.79(-2) 5 1.38(-6) 30 1.06(-21) 200 2.12(-3) 
2 2.35(-3) 10 5.08(-11) 35 2.10(-23) 400 1.06(-3) 
3 1.64(-4) 15 2.63(-  15) 40 3.32(-25) 800 5.26(-4) 
4 9.14(-5) 20 7.98(-18) 45 1.10(-26) 1600 2.62(-4) 
5 3.91(- 5) 25 1.94(- 19) - - 3200 1.31(-4) 
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Since F(x) = tanh  x (cf. (3.12)) is cont inuous  on the closed interval [0, oo], the 
quadra tu re  formula  (3.1) converges  as n --* o% and Table  5.1 shows a ra ther  satisfac- 
tory  speed of convergence.  The  numerical  value of  the integral shown above  indeed 
is the numerical  limit observed as (3.1) is applied with increasing values of  n. 

As expected, the quadra tu re  rule (4.4) based on a Bernstein-type opera to r  con- 
verges ra ther  slowly, with order  O(n-1), as is evident f rom the last co lumn of Table  
5.1. Applying the e-algori thm to the first 200 app rox ima t ions  reduces the error  by 

only one decimal  order  of  accuracy.  
We have repeated  Example  1 with 0~ = 0, fl = 1.1 and  obta ined  similar results for 

(3.1) except that  convergence is considerably  slower. It  now takes n = 120 in (3.1) to 
get a 16S value 9.539866086478899 for the integral; the smallest  error  in (4.4) is 

3 . 5 7 ( - 5 )  (for n = 3200). 

fo 
e X-  1/2 dx 

EXAMPLE 2. l(r) = (x - -c , )  ~ - - -  d~ (1 + x) 12"5 ' where c, = - ( r  2 + 1)/(r: - 1), 

d, = 2r/(r z - 1), r > 1. 
This  example  is chosen to illustrate how the rate of  convergence of (3.1) depends 

on the analyt ici ty propert ies  of  the function F in (3.12), that  is, in our  case, of  the 

function 

1 
(5.1) F(x) = 

( x  - c r )  4 - d 4 "  

This function has exactly four poles, respectively at c, ± d, and c, + id,, so that  F is 

analytic outside the circle with center  at cr and radius d, ( <  IG[). According to the 
discussion following Eq. (3.13), the rate of  convergence of (3.1) should therefore 
increase with r. This  is conf i rmed in Table  5.2, where compar i son  is m a d e  also with 
the o ther  two quadra tu re  schemes, (2.1) and (4.4). Table  5.3 gives the exact values of  
I(r) to 26 significant digits, as de termined by the quadra tu re  rule (3.1). 

TABLE 5.2. Relative errors of  (2.1), (3.1), (4.4) for Example 2 with r = 1.1, 1.5, 2, 5. 

r n (2.1) n (3.1) n (4.4) r n (2.1) n (3.1) n (4.4) 

1 2.38(--1) 10 1.49(-5) I00 2.89(--2) 2.0 1 3.31(--2) 6 1.53(-9) 100 3.49(-3) 
2 9.90(-2) 20 1.48(--9) 200 1.46(-2) 2 3.44(-3) 9 2.85(--13) 200 1.75(-3) 
3 5.54(--2) 30 1.80(--13) 400 7.31(--3) 3 7.49(--4) 12 6.85(--17) 400 8.79(--4) 
4 3.80(--2) 40 2.33(--17) 800 3.66(--3) 4 2.76(--4) 15 1.88(--20) 800 4.40(--4) 
5 3.06(--2) 50 3.10(--21) 1600 1.83(--3) 5 1.56(--4) 18 5.57(--24) 1600 2.20(--4) 
6 2.86(--2) 60 4.23(--25) 3200 9.17(--4) 6 1.30(--4} 21 2.89(--27) 3200 1.10(--4) 

1.5 i 5.45(-2) 5 1.80(--6) 100 5.65(--3) 5.0 I 2.81(-2) 2 3.00(-5) 100 3.03(-3) 
2 9.05(-3) 10 4.76(-11) 200 Z84(--3) 2 1.90(--3) 4 5.76(-10) 200 1.52(-3) 
3 2.75(-3) 15 2.02(-15) 400 t.43(-3) 3 2.67(-4) 6 2.83(-14) 400 7.60(-4) 
4 1,27(-3) 20 1.03(-19) 800 7.14(-4) 4 7.02(-5) 8 1.33(-18) 800 3.81(-4) 
5 8.15(-4) 25 5.70(-24) 1600 3.57(-4) 5 3.22(-5) 10 7.22(-23) 1600 1.90(-4) 
6 7.06(-4) 30 1.28(-27) 3200 1.79(-4) 6 2.50(-5) 12 6.05(-27) 3200 9.52(-5) 
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TABLE 5.3. Exact values of the integral in Example 2. 

r t(r) 

1.1 .00156342765157602865464464288 
1.5 .0346073108917596779365812324 
2.0 .098427460167752436964227875 
5.0 .333873596349519021032797704 
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f~ X-1/2 e- x EXAMPLE 3. (1 + X) 5/4 c o s x d x  = 1.1378118633993858829455828. 

The  function F(x) = e - : '  cos x of  this example  is no longer analytic at  ~ ,  as was 
the case in Example  2, and the singularities at x = 0 and x = - 1 are more  severe 

than  those in Example  1. These are p robab ly  the reasons why (3. l) now converges 
m u c h  m o r e  slowly than  in the previous  examples.  The  relative errors  of  (3.1), a long 

with those of  (4.4), are shown in Table  5.4. 

TABLE 5.4. Relative errors of (3.1), (4.4) for Example 3. 

n (3.1) n (4.4) 

40 8 .34(-  9) 100 7.40( - 3) 
80 9 .90( -  14) 200 3.69( - 3) 

120 8 .94( -  17) 400 1 .85(-  3) 
160 3 .04(-  20) 800 9.23 ( -  4) 
200 6 .99( -  23) 1600 4.61 ( -  4) 
240 8 .60(-  26) 3200 2.31 ( - 4) 

Since ~ = -½ , /3  = ~, the second inequali ty in (2.2) is violated for n > 1, so that  
there are no Gauss i an  rules (2.1)for this example.  

n ('° x-1/2 dx 
EXAMPLE 4. 1(O9) = - ~  J 0  (1 + X) 5/4 1 + (D2(x - 1) 2 ' 

The function 

o 9 > 0 .  

(5.2) f ( x )  - 
rc 1 
co 1 + ¢o2(x - 1) 2 

in this example  has poles at  x = 1 + i/co, which app roach  the point  1 on the real axis 
as co ~ or. (The function is normal ized  to have unit integral over  the whole real line; 
since it has a sharp  peak  at x = 1 when co is large, it m a y  be thought  of as an 
a p p r o x i m a t i o n  to the Di rac  delta function centered at  1.) Natura l ly ,  our  quadra tu re  
rule (3. i) will have increasing difficulty converging,  as co becomes large. This can be 
seen f rom the relative errors  displayed in Table  5.5. Strangely enough,  the conver-  
gence of (4. 4) - slow, to be sure - is relatively unaffected by the value of co and indeed 
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accelerates a little bit as ~o increases! The  true answers for co = .  5, 1, 2.5, 5, furnished 
by (3.1) for n sufficiently large, are shown in Table  5.6. 

TABLE 5.5. Relative errors of (3.1), (4.4) for Example 4. 

o) n (3.1) n (4.4) a) n (3.1) n (4.4) 

.5 10 4.97(--6) 100 4.22(--3) 2.5 30 1.02(--5) 100 2.07(--3) 
20 1.49(--10) 200 2.10(--3) 60 3.63(-11) 200 1.03(--3) 
30 9.75(-15) 400 1.05(-3) 90 1.58(-15) 400 5.16(-4) 
40 3.55(-19) 800 5.24(-4) 120 1.71(-20) 800 2.58(--4) 
50 1.03(-23) 1 6 0 0  2.62(-4) 150 7.43(-26) 1 6 0 0  1.29(-4) 

1.0 15 3.25(-6) I00 3.25(-3) 5.0 60 2.63(-6) 100 1.72(-3) 
30 2.19(-11) 200 1.62(-3) !20 7.16(-11) 200 8.58(-4) 
45 3.80(-16) 400 8.09(-4) 180 5.14(-16) 400 4.28(-4) 
60 2.96(-21) 800 4.04(-4) 240 8.14(-22) 800 2.14(-4) 
75 4.91(-27) I600 2.02(-4) 300 2.45(--26) t600 1.07(-4) 

TABLE 5.6. Exact values of the integral in Example 4. 

I(o)) 

.5 
1.0 
2.5 
5.0 

10.7185761829848814375380337 
3.9449597795274933486744356 
.74241157786627923083242852 
.182154799099070485116688565 
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