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Abstract.

Procedures are described for the high-precision calculation of the modified Bessel func-
tion Kν(x), 0 < ν < 1, and the Airy function Ai(x), for positive arguments x, as pre-
requisites for generating Gaussian quadrature rules having these functions as weight
function.
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1 Introduction.

Integrals involving modified Bessel functions Kν for ν = 1
3 and the Airy func-

tion Ai occur naturally in some physics applications (see, e.g., Gordon [5, 6]); the
weight function K0 has also found use in the asymptotic estimation of oscillatory
integral transforms (see Wong [12], Gautschi [4, Example 6.1, p. 94]). Efficient
evaluation of such integrals calls for Gaussian quadrature rules having these func-
tions as weight function. Such rules (involving up to 10 points) were already given
in [6] for the modified Bessel function K 1

3
and in [5, 9] for the Airy function. It

appears, however, that the latter are in error because of an incorrect calculation
of the relevant moments. Here we develop Gaussian quadrature formulae for both
weight functions with up to n = 40 points. The main task is to find the first n
recursion coefficients in the three-term recurrence relation for the relevant orthog-
onal polynomials. These can be obtained to arbitrary precision from the known
moments by symbolic computation, or else, to standard machine precisions, by
general procedures developed earlier in [3]. To apply these procedures, it is im-
portant to have routines that calculate modified Bessel functions and the Airy
function to high accuracy. Such routines are described in Section 2 for Bessel
functions, and in Section 3 for the Airy function. Section 4 discusses the compu-
tation of the respective Gaussian quadrature rules. An appendix contains the first
40 of the requisite recursion coefficients to 28 decimals.

∗Received December 2000. Communicated by Kaj Madsen.
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2 Modified Bessel functions.

Our interest is in generating values to high accuracy of the modified Bessel
function Kν(x), where 0 < ν < 1 and x > 0, as a preparation for generating the
Gaussian quadrature rules in Sections 4.1 and 4.2. A case of particular interest
is ν = 1

3 , but the procedure we develop is applicable also for other values of ν
except those close to 0 and 1. It is not our intention, here, to develop a general-
purpose production code. There are a number of such codes available in the
literature (see, e.g., [8, Sections 4.1, 5.1]), that—like ours—are suitable also for
high-accuracy work. What we find worth observing is the apparently novel use
of integral representations and related generalized Gauss–Laguerre quadratures to
compute modified Bessel functions for moderately large, and large, real arguments.
The approach, in fact, is potentially useful also for complex arguments.
When x is relatively small, say 0 < x ≤ 2, we use, as others have done before,

the representation (cf. [1, Eq. 9.6.2])

Kν(x) = 1
2π

I−ν(x)− Iν(x)
sinπν

,(2.1)

and evaluate I±ν(x) by Taylor expansion ([1, Eq. 9.6.10])

I±ν(x) = (12x)
±ν

∞∑
k=0

(14x
2)k

k!Γ(k + 1± ν)
.(2.2)

If ν is close to 0 or 1, considerable cancellation occurs in the numerator of (2.1).
This could be dealt with, if deemed necessary, by special additional procedures
(cf., e.g., [10, Section II]). Here we simply assume 0.05 ≤ ν ≤ 0.95, which limits
the loss of accuracy to at most two (or three, if x is near 2) decimal digits.
For x > 2, we use the integral representation ([1, Eq. 9.6.23])

Kν(x) =
√

π

2νΓ(ν + 1
2 )

e−x

√
x

∫ ∞

0

(
2 +

t

x

)ν− 1
2

· tν− 1
2 e−tdt,(2.3)

where the integral is conveniently evaluated by generalized Gauss–Laguerre quadra-
ture with parameter α = ν − 1

2 ,

∫ ∞

0

(
2 +

t

x

)ν− 1
2

· tν− 1
2 e−tdt �

n∑
k=1

wL
k

(
2 +

tLk
x

)ν− 1
2

, x > 2.(2.4)

Here, tLk , wL
k are the nodes and weights of the generalized Gauss–Laguerre quadra-

ture rule. (The dependence on n is suppressed in the notation.) These, for ν = 1
3 ,

were generated by double-precision resp. quadruple-precision analogues of the
procedures recur and gauss of [3]. While it would be unreasonable to expect
convergence to full machine precision as n → ∞, it was found that in double and
quadruple precision, “numerical convergence” occurs to an accuracy of 10×εdble
resp. 1000×εquad, where εdble � .111×10−15, εquad � .963×10−34 are respectively
the IEEE double- and quadruple-precision machine precisions. In other words, the
approximants stabilized to these accuracies at certain values of n, which are shown
in Table 2.1.
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Table 2.1: Number of Gauss points in (2.4), with ν = 1
3
, required for double- and

quadruple-precision accuracy.

ν 0 1/6 1/3 1/2 2/3 5/6 1

n double 23 23 22 1 21 22 22
n quadruple 87 85 83 1 82 82 82

(The data is for x = 2; as x increases, n decreases.)
In many applications (including the one in Section 4.1; cf. (4.7)), it is better to

compute exKν(x). This is also the function tabulated (for ν = 1
3 ) in [11, Table

III].
We remark that our evaluation procedure is also applicable for x in the complex

plane cut along the negative real axis, but we will not pursue this here any further.

3 The Airy function.

The Airy function is related to the modified Bessel function K 1
3
as follows (cf. [1,

Eq. 10.4.14]):

Ai(x) =
1
π

√
x

3
K 1

3
(ζ), ζ = 2

3x
3
2 .(3.1)

Using (2.1) with ν = 1
3 , one gets

Ai(x) =
1
3
√

x [I− 1
3
(ζ)− I 1

3
(ζ)].(3.2)

Here, for 0 < ζ ≤ 2, i.e., 0 < x ≤ 32/3 = 2.08008 . . . , both Bessel functions can be
evaluated by Taylor expansion as in (2.2) with ν = 1

3 .
For ζ > 2, we use the integral representation (2.3) for K 1

3
in conjunction with

(3.1) to obtain

Ai(x) =
1√
π

ζ−
1
6 e−ζ

(48)
1
6Γ(56 )

∫ ∞

0

(
2 +

t

ζ

)− 1
6

· t− 1
6 e−tdt,(3.3)

with ζ as defined in (3.1). Now generalized Gauss–Laguerre quadrature is appro-
priate with Laguerre parameter α = − 1

6 . According to Table 2.1 (ν = 1
3 ), a 22-

point formula yields double-precision accuracy and a 83-point formula quadruple-
precision accuracy.
This procedure can be used also for complex x, at least in the sector | arg x| < 2

3π.

4 Gauss quadratures.

4.1 Gauss quadrature with Bessel weight function.

We define the weight function

w(x) =
2
π
cos(12νπ)Kν(x), 0 < x < ∞.(4.1)
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Its moments can be calculated explicitly by (cf. [7, 6.561.16])

µk =
∫ ∞

0

xkw(x)dx =
1
π
cos(12νπ) · 2kΓ(12 (k + 1 + ν))Γ(12 (k + 1− ν)).(4.2)

In particular, for k = 0,

µ0 =
1
π

cos(12νπ) · Γ(12 (1 + ν))Γ(12 (1− ν)) = 1(4.3)

by virtue of the reflection formula ([1, 6.1.17]) for Γ(z)Γ(1 − z), z = 1
2 (1 + ν).

Thus, (4.1) is a normalized weight function.
In principle, the first 2n moments µk of w can be used to generate the n-point

Gauss formula for w. It is well known, however, that this becomes quickly unstable
as n increases. A way around this problem is to employ a symbolic computation
package combined with extended-precision arithmetic. A Maple script, named
cheb.mws1, has been developed for this purpose and has been used to produce the
required recursion coefficients αk, βk (cf. (4.4) below) for 0 ≤ k ≤ 39 to as many
as 100 decimal digits2. It can be accessed at
http://www.cs.purdue.edu/archives/2001/wxg/codes/cheb.mws.
(A text file cheb.txt can be found at the same URL.)
Here, we describe a stable numerical procedure—a four-pronged discretization

procedure (cf. [4, Section 6])—that discretizes the inner product for the weight
function w and generates the corresponding discrete orthogonal polynomials. If the
discretization is chosen judiciously, the discrete orthogonal polynomials converge
to the desired ones as the discretization is made increasingly finer. The first n
recursion coefficients αk, βk in the three-term recurrence relation

πk+1(x) = (x − αk)πk(x)− βkπk−1(x), k = 0, 1, . . . , n − 1,
π0(x) = 1, π−1(x) = 0,(4.4)

for the monic orthogonal polynomials (where β0 =
∫ ∞
0 w(x)dx) are computed by

the Stieltjes procedure ([4, Section 6.3]).
The discretization we choose makes use of a composition of the positive real axis

into three subintervals, R+ = (0, x0] ∪ [x0, x1] ∪ [x1,∞), with x0, x1 still to be
selected such that 0 < x0 ≤ 1, 1 < x1 < ∞. In the first subinterval, the behavior
of Kν(x) for small x must be properly accounted for. One has [1, Eqs. 9.6.2 and
9.6.10]

Kν(x) =
π

2 sin νπ

{
(12 x)−ν

Γ(1− ν)
S−ν(x)−

(12 x)ν

Γ(1 + ν)
Sν(x)

}
,(4.5)

where

S±ν(x) =
∞∑

k=0

(14 x2)kΓ(1± ν)
k!Γ(k + 1± ν)

.

1This is written for Maple.Release 5.
2The author is indebted to Oscar Chinellato at the Institute for Scientific Computing of the

ETH Zurich, Switzerland, for translating a slightly edited version of our ORTHPOL routine cheb
(cf. [3]) into a Maple script.
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The two distinct behaviors x−ν and xν as x → 0 need to be treated separately
for purposes of integration. Indeed, the following composition for integrals over
(0, x0] is suggested:∫ x0

0

p(x)Kν(x)dx =
2ν−1π

sin νπ · Γ(1 − ν)

∫ x0

0

p(x)S−ν(x) · x−νdx

− π

2ν+1 sin νπ · Γ(1 + ν)

∫ x0

0

p(x)Sν(x) · xνdx.

(4.6)

The first integral on the right is approximated by an N -point Gauss–Jacobi quadra-
ture rule relative to the interval (0, x0] with Jacobi parameters α = 0, β = −ν,
the second by a similar N -point Gauss–Jacobi rule with parameters α = 0, β = ν.
In the second interval, we apply the ordinary N -point Gauss–Legendre rule trans-
formed to the interval [x0, x1]. For the last interval, we write∫ ∞

x1

p(x)Kν(x)dx = e−x1

∫ ∞

0

p(x1 + t)[ex1+tKν(x1 + t)] · e−tdt(4.7)

and approximate the integral on the right by an N -point Gauss–Laguerre quadra-
ture rule, the function exKν(x), x ≥ x1, being computed from the integral repre-
sentation (2.3) as discussed in the text following (2.3).
We call this a “four-pronged” discretization procedure since four different quadra-

ture rules are employed to discretize the integral
∫ ∞
0

p(x)Kν(x)dx (and with it the
inner product relative to the weight function (4.1)): two Gauss–Jacobi rules for
approximating the two integrals on the right of (4.6), the Gauss rule over [x0, x1],
and the Gauss–Laguerre rule to deal with the integral on the right of (4.7).
The parameters x0, x1 are chosen in an attempt to reduce the number N of

quadrature terms required to achieve a given accuracy. Some limited experimen-
tation suggested the choice x0 = 1 and x1 = 10. When ν = 1

3 and n = 10, then
N = 41 will yield a relative accuracy of 1000 times the double machine precision
(about 12 decimal-digit accuracy), and N = 71 a relative accuracy of 105 times the
quadruple machine precision (about 29 decimal digits). For n = 40 the respective
numbers are both N = 81.
The values of the recursion coefficients αk, βk (for ν = 1

3 ) to 28 decimal digits
are given in the appendix, Table A1, for k = 0, 1, . . . , 39. These allow us to
generate the respective Gauss and Gauss–Radau quadrature rules for up to 40
points by well-known eigenvalue/eigenvector techniques [4, Section 4]. Double- and
quadruple-precision fortran programs producing these coefficients are accessible at
http://www.cs.purdue.edu/archives/2001/wxg/codes/ in the files dOPbess.f
and qOPbess.f. The coefficients themselves to 28 decimals can be found in the file
coeffbess at the same URL. The file ORTHPOLq contains the quadruple-precision
routines of the package ORTHPOL in [3].

4.2 Gauss quadrature with Airy weight function.

We define a weight function proportional to the one in Eq. (1.4) of [9],

w(x) =
2

2
3 π

3
5
6Γ(23 )

x− 2
3 e−xAi((32x)

2
3 ), 0 < x < ∞.(4.8)
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By (3.1), one has

w(x) =
2

1
3

3Γ(23 )
x− 1

3 e−xK 1
3
(x).(4.9)

As in [9], we use [7, 6.621.3] to obtain for the moments (correctly)

µk =
∫ ∞

0

xkw(x)dx =
2

2
3
√

π

Γ(23 )
k!Γ(k + 1

3 )
(6k + 1)2kΓ(k + 1

6 )
.(4.10)

In particular,

µ0 =
2

2
3
√

π

Γ(23 )
Γ(13 )
Γ(16 )

= 1(4.11)

by virtue of the duplication formula [1, 6.1.19] for Γ(2z), z = 1
6 . Thus, the weight

function (4.8) is normalized.
The three-term recurrence relation (4.4) for this weight function can again be

obtained by symbolic computation using the Maple script cheb.mws (cf. §4.1).
Numerically, on the other hand, we may use, similarly as in Section 4.1, a three-
pronged discretization method. First, integration against the weight function is
“regularized” by means of the change of variable x �→ x3/3; thus,

∫ ∞

0

p(x)w(x)dx =
2

2
3 π

3
1
6Γ(23 )

∫ ∞

0

p(13x
3)Ai(2−

2
3 x2) · e−x3/3dx.(4.12)

The discretization is effected by using the decomposition R+ = (0, 2]∪[2, 6]∪[6,∞)
and N -point Gauss–Legendre quadrature on the first two intervals, and N -point
Gauss quadrature relative to the weight function e−x3/3, 0 < x < ∞, on the
last interval (after transforming the integral over [6,∞) to one over [0,∞)). The
latter quadrature rules have been generated by a “general-purpose” discretization
method [4, p. 95]; see also [2]. In this way, when n = 10, then N = 51 (in double
precision) yields about 12-digit accuracy, N = 91 (in quadruple precision) an
accuracy of about 29 digits. For n = 40, the respective numbers are N = 81 and
N = 161.
Values of the recursion coefficients αk, βk to 28 decimal digits are given in the

appendix, Table A2, for k = 0, 1, . . . , 39. These again permit the generation of
Gauss and Gauss–Radau quadrature rules with up to 40 points. Double- and
quadruple-precision fortran programs producing these coefficients are accessible
at
http://www.cs.purdue.edu/archives/2001/wxg/codes/ in the filesdOPairy.f
and qOPairy.f. The coefficients themselves to 28 decimals can be found in the
file coeffairy at the same URL.
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A Appendix.

Recursion coefficients αk and βk for the orthogonal polynomials relative to the
weight function

√
3

π K 1
3
(x), 0 < x < ∞, are given in Table A.1.

Table A.1: Recursion coefficients for orthogonal polynomials with Bessel weight function.

k dalpha(k) dbeta(k)

0 0.5773502691896257645091487805D+00 0.1000000000000000000000000000D+01

1 0.2540341184434353363840254634D+01 0.5555555555555555555555555556D+00

2 0.4530325099277556972940619392D+01 0.3080000000000000000000000000D+01

3 0.6525263205367024754584421146D+01 0.7597308896010194711493412792D+01

4 0.8522091681572316495410571818D+01 0.1411128895064359048476764685D+02

5 0.1051987069032579681709327397D+02 0.2262328375651997214118489043D+02

6 0.1251820534200411842698661310D+02 0.3313393449511827909015205175D+02

7 0.1451689745070847589982540347D+02 0.4564360198457644797420242203D+02

8 0.1651583533890971294501705203D+02 0.6015251169387165444574183086D+02

9 0.1851495070370021650146786956D+02 0.7666081512279027237029582199D+02

10 0.2051419913459637659996186934D+02 0.9516861964153151276420251970D+02

11 0.2251355035096639733155330055D+02 0.1156760045129536402241437743D+03

12 0.2451298290692544758973945221D+02 0.1381830301661429736830519992D+03

13 0.2651248113403138074584401742D+02 0.1626897438888321271102896829D+03

14 0.2851203328421788988619681952D+02 0.1891961834909268127004429781D+03

15 0.3051163035337998449498607362D+02 0.2177023797559084152522105542D+03

16 0.3251126530928971516451325688D+02 0.2482083581355438536773868170D+03

17 0.3451093256931540393887725062D+02 0.2807141399544099117867506745D+03

18 0.3651062763776024473491489160D+02 0.3152197432866833050342266185D+03

19 0.3851034684821817685385767070D+02 0.3517251836077464523819711369D+03

20 0.4051008717681441792603844069D+02 0.3902304742873398067597234709D+03

21 0.4250984610438625709490911393D+02 0.4307356269688528086704175367D+03

22 0.4450962151314044127608953558D+02 0.4732406518652590307625711171D+03

23 0.4650941160804019999493643228D+02 0.5177455579930047052041031595D+03

24 0.4850921485622134798647588526D+02 0.5642503533590167393634950613D+03

25 0.5050902993974754185328926380D+02 0.6127550451118075040591250302D+03

26 0.5250885571836803795271883128D+02 0.6632596396647438874918855282D+03

27 0.5450869119986848180007865562D+02 0.7157641427974924632092938047D+03

28 0.5650853551625092002779691310D+02 0.7702685597401779256832448017D+03

29 0.5850838790443559309423523307D+02 0.8267728952437190489066061745D+03

30 0.6050824769050409076746501085D+02 0.8852771536390157066778742762D+03

31 0.6250811427674077725581328007D+02 0.9457813388870707655384939225D+03

32 0.6450798713090365394190828550D+02 0.1008285454621685966632728510D+04

33 0.6650786577728518444594287897D+02 0.1072789504186032141840176389D+04

34 0.6850774978922060972058434023D+02 0.1139293490664133569567757833D+04

35 0.7050763878277471470954744945D+02 0.1207797416908104118798814682D+04

36 0.7250753241139409466091921010D+02 0.1278301285561814669842441005D+04

37 0.7450743036135516422801459683D+02 0.1350805099081546598221771377D+04

38 0.7650733234787168021992493344D+02 0.1425308859754087068026168299D+04

39 0.7850723811175176515929034805D+02 0.1501812569712642681574641394D+04
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Recursion coefficients αk and βk for the orthogonal polynomials relative to the
weight function 22/3π

35/6Γ(2/3)
x− 2

3 e−xAi
(
(32x)

2
3
)
, 0 < x < ∞, are given in Table A.2.

Table A.2: Recursion coefficients for orthogonal polynomials with Airy weight function.

k dalpha(k) dbeta(k)

0 0.1428571428571428571428571429D+00 0.1000000000000000000000000000D+01

1 0.1110508830215072565133764644D+01 0.6750392464678178963893249608D-01

2 0.2103923262303366469719046650D+01 0.6176435520631454946477366322D+00

3 0.3100612923619468060204041749D+01 0.1665222369579728763993598104D+01

4 0.4098522990053350300259677356D+01 0.3211665437933813301442673108D+01

5 0.5097048017912237952211191366D+01 0.5257439791428266998569894003D+01

6 0.6095934772142735289405067651D+01 0.7802762871816141245078916230D+01

7 0.7095055742615174969695761115D+01 0.1084775582766331463731785213D+02

8 0.8094338704979790304572522853D+01 0.1439249405127950300891982957D+02

9 0.9093739247462993136699966123D+01 0.1843702812922128928773098512D+02

10 0.1009322834609956529095674925D+02 0.2298139391050911313320103004D+02

11 0.1109278611899427796389513021D+02 0.2802561787656439530189513139D+02

12 0.1209239842573524183149667965D+02 0.3356972023701598312985079015D+02

13 0.1309205489613779605430552664D+02 0.3961371682566247092476763052D+02

14 0.1409174772819666777679886468D+02 0.4615762031917471854658917880D+02

15 0.1509147092378366705795857263D+02 0.5320144105213568478003200469D+02

16 0.1609121978528171983953788068D+02 0.6074518758045262957376738563D+02

17 0.1709099057396944013793558492D+02 0.6878886708190032036430935116D+02

18 0.1809078027208983877445351834D+02 0.7733248564781360694249859341D+02

19 0.1909058641334036072040544031D+02 0.8637604849999474726610235545D+02

20 0.2009040695967678119625359998D+02 0.9591956015498898485337591888D+02

21 0.2109024021017825188614733837D+02 0.1059630245505277814479273789D+03

22 0.2209008473255468030080111379D+02 0.1165064451442633467187277061D+03

23 0.2308993931093330244858796206D+02 0.1275498249918669408772461453D+03

24 0.2408980290553974280008571454D+02 0.1390931668095257606646414852D+03

25 0.2508967462119770022815575463D+02 0.1511364730244838704145147093D+03

26 0.2608955368245429586520635128D+02 0.1636797458163074470540297192D+03

27 0.2708943941374431823158236292D+02 0.1767229871508726145735111346D+03

28 0.2808933122342959521382761789D+02 0.1902661988085847580652764775D+03

29 0.2908922859084928131852207332D+02 0.2043093824079820406036281648D+03

30 0.3008913105573190129755639056D+02 0.2188525394256132521262541885D+03

31 0.3108903820947633067457385995D+02 0.2338956712128841886680652998D+03

32 0.3208894968792388105605120154D+02 0.2494387790104189467091905899D+03

33 0.3308886516532915095237870707D+02 0.2654818639603698571811680251D+03

34 0.3408878434930151025223927020D+02 0.2820249271170230956579194238D+03

35 0.3508870697653776378539261556D+02 0.2990679694559797076870358157D+03

36 0.3608863280920376927294370407D+02 0.3166109918821391090615739319D+03

37 0.3708856163185149561174724958D+02 0.3346539952366705633992391624D+03

38 0.3808849324878032081407976838D+02 0.3531969803031251160025604749D+03

39 0.3908842748176883766030660897D+02 0.3722399478128140407767669942D+03
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