WALTER GauTtscHI™

THE INCOMPLETE GAMMA FUNCTIONS SINCE TRICOMI

1. THE INCOMPLETE GAMMA FUNCTIONS UP TO 1950

Tricomi considered his work on the asymptotic behavior of Laguerre poly-
nomials and their zeros among his «chief contributions to the theory of special
functions» ([153, p. 56]). Nevertheless, the incomplete gamma function held a
special fascination for him, as he was fond of calling it affectionately the Cin-
derella of special functions. I feel especially privileged to talk about this topic
here, since the only time I met Tricomi in person was shortly before his death
when he honored me by his presence in a colloquium lecture I gave in Turin.
It was precisely the incomplete gamma functions and methods for computing
them that I was talking about, a subject in which Tricomi still expressed a vivid
interest.

The incomplete gamma functions arise from Euler’s integral for the gamma |

function,

F(a):/ e "t e
Jo

by decomposing it into an integral from 0 to z, and another from z to 00,

¥(a,z) = / e 't*71dt, Rea>0;
(1.1) 0

o0
I(a,z) :/ e 't* i, Jargz| <.
T

Historically, this decomposition was first studied in 1877 for z = 1 by Prym|[118],
apparently in an attempt to collect the poles at a = 0,—1, -2, ... of the gamma
function in the first (more manageable) integral, v(a, 1), leaving the second in-
tegral, I'(a, 1), an entire function. The functions (1.1), therefore, are sometimes
referred to as Prym’s functions. For general z > 0 (even for z < 0), how-
ever, the second integral in (1.1) already appears in Legendre’s Ezercises [85,
pp- 399-343] and in some of his later works.
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Noteworthy special cases of (1.1) are obtained when a = 1+n is an integer.
Specifically, for n > 0,

(1.2) (1 +n,z) = nl[l — e Fen(z)],
(1.3) I'(1 +n,2) = nle e, (),
(1.4) (1 —n,z) =2"""E,(z),

where e,(z) = 1 +z +x2/21+--- +z"/nl, n = 0,1,2,..., are the partial sums
of the exponential series, and

(15) Eu(z) = / g n=01,2,...
i

the exponential integrals. The latter occur prominently in astrophysics and
nuclear physics and include (for n = 1) such functions as the logarithmic, sine,
and cosine integrals. The function v(a,z) has a pole when a is a negative
integer or zero; see, however, (2.1) and (2.2). When a = 1 one obtains the error
functions

_ L (L s _ _tp(l e
(1.6) erfx—ﬁ'y(z,x>, erfcx =1 erf:r—ﬁl‘<2,m>

and their close relatives such as the Fresnel integrals.

The older theory of the incomplete gamma function, including series ex-
pansions of various kinds, asymptotic expansions, differentiation and recurrence
relations, continued fractions, etc., can be found in Nielsen [103, Kap. II, XV,
XXI], and further material, especially integral representations, in Bohmer [15,
Kap. V]. The basic theory, however, remained rather stable, until in the late
1940s, as a result of his involvement in the Bateman project, Tricomi fully
recognized the importance of these functions and revitalized their theory by
adding important contributions of his own (see § 2) and by summarizing the
knowledge as of 1950 in the second volume of the Bateman project 40, Ch. IX,
pp. 133-151]. He gave a more detailed exposition, in the context of the theory
of confluent hypergeometric functions, in his monograph [151, §§ 4.1-4.6].

One aspect of incomplete gamma, functions, namely their real and complex
‘ zeros, does not receive an entirely adequate coverage in these works, in part,
perhaps, because Tricomi’s interest was in the z-zeros for fixed a, while work
done in the early 1900s was exclusively concerned with a-zeros for fixed z. The
earliest investigations dealt with the real negative zeros of v(a,z) for Prym’s
choice x = 1. Increasingly sharper localizations of these zeros were obtained
in work of Haskins [59], Gronwall [56], and Walther {158]. Rasch [120] was the
first to consider the case of arbitrary fixed z > 0, and Hille and Rasch [60]
the case of r < 0. Complex zeros were already studied by Gronwall [56], who
showed in the case £ = 1 that there are exactly two conjugate complex pairs of
them. They were subsequently computed to seven decimals by Franklin {43].
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Nielsen [103] proved that all zeros of I'(a,z), for x > 0, lic in the half-plane
Rea > z. Rasch [120] gave an asymptotic formula for the number M(z) of
pairs of conjugate complex a-zeros of y(a,z) as x — co. Hille and Rasch [60]
already in 1929, and Mahler [96] in 1930, investigated the behavior of the zeros
when z is a fixed complex number; they also identified zero-free regions in the
complex a-plane.

Other texts on confluent hypergeometric functions are the one by Buch-
holz [17] published shortly before Tricomi’s monograph, and one published later
by Slater [125]. The former is based on Whittaker’s definition [160, Ch. 16] of
the confluent hypergeometric functions, a definition not favored by Tricomi; the
latter also contains numerical tables. A detailed treatment of the probability
integral and some of its generalizations, notably ®(z,a) = 7= /2y (4q,2?), can
be found in a monograph by Hadzi [58].

2. TRICOMI'S CONTRIBUTIONS

2.1. Normalization

The integral v(a,z) has the inconvenience of not only having poles at the
nonpositive integers a = 0,-1,-2,..., but also representing a multivalued
function of the complex variable z, owing to the fractional power in the in-
tegrand. Both these inconveniences can be avoided by introducing, as Tricomi
does in [146] and Bohmer before him in (15, pp. 124-125], the function

—~a

(2.1) v (a,z) = ff(—a)v(a,r),

which is an entire function in a as well as in = and real-valued for real a and
real x (also for z < 0). In particular,

(2.2) Y {(-n,z)=2z", n=01,2,....

In terms of the function (2.1), both incomplete gamma functions in (1.1) can
be represented as

(2.3) y(a,z) = T(a)z*y"(a,z), T(a,z)=T(a)]l - 2%y (a,2)],

where fractional powers of z, as always in this theory, are to be understood as
having their principal values. Tricomi finds it useful to introduce yet another
form of the incomplete gamma function, namely

(2.4) 7(a,2) = D(a)s™"(a, ~a),

for which, as he notes (cf. {151, p. 161]), one has

(2.5) 1({a,z) :/ e't*'dt, Rea>0.
0
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This function allows the values of y(a, z) above and below the branch cut along
the negative real axis to be expressed as

(2.6) v(a, —z £ i0) = e¥*™y,(a,z), z>0.

2.2. Series erpansions

To the classical power series expansions Tricomi in [147] adds expansions
in Bessel functions, which he obtains as special cases of similar expansions he
derived for the confluent hypergeometric functions. Characteristically, Tricomi
adopts a form of the Bessel functions which makes them entire functions of
both the variable and the order, namely

(2.7) Ji(x) =z7"?J,(2Vx).

(Tricomi’s notation for them is E,(z).) In terms of these functions, he derives
the expansion

(2.8) v (a,z) =€e7" Z en(-1)z" I (—2),

where e,(-) is the {n + 1)st partial sum of the exponential series (cf. § 1).
For real arguments a and z, one can write (2.8) as an expansion in (ordinary)
Bessel functions J, 1, (2+/]z|) if = is negative (see [147, 2d equation (39)], where,
however, the factor z” should read z/?), and as a similar expansion in modified
Bessel functions I, »{2/z) if z is positive. Both converge rather well, when
0 < a < 1 (for other values of a the recurrence relation (6.4) can be used), but
the former suffers increasingly from internal cancellations as |z| becomes large.
For good measure, Tricomi obtains yet another expansion,

(2.9) v*(a,z) = e~*/? i Cn (g)n Join (GT—lm> )
n=0

where the coefficients ¢, can be obtained recursively from(®)
C = 11 G = 0$

2.10
( ) Cn = Coo + Lgl—a—n)(l _ (1),

and L) are the Laguerre polynomials. The peculiar form An(y) = L%y_")(y)
of the Laguerre polynomials appearing in (2.10) is studied by Tricomi in [148],
where he derived the recursion

’\O(y) = 1’ )‘l(y) = O’

1
A1(y) = ——= @) Fyvr @), n=1,2,....
n+1 v

(2.11)

(There is a misprint in [147, line after equation (41)] in that A} (our ci) is erroneously
defined to be 1 instead of 0.
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(The same polynomials are also used by Temme [134] in uniform asymptotic
expansions of Laplace transforms.) The series (2.9) seems to converge (for
0 < a < 1) somewhat faster than (2.8) and, for z < 0, also suffers less from
internal cancellations. We used it (in IEEE Standard double precision) to
produce the plots in § 2.4 as well as the graphs in figure 5.

Although ‘Tricomi refers to the polynomials A, (y) as being nonorthogonal,
Carlitz [19] showed that in fact (1) (n+2)z" "2\, 10(272), n =0,1,2,..., is
a set of (monic) orthogonal polynomials relative to a measure that is discretely
supported on the points z; = £57/2 with jumps $57"le ™/ /5!, j = 1.2,3.. ..
These polynomials occur also as «random walk polynomials» in the work of
Karlin and McGregor [70, Appendix B] on birth and death processes. Their
asymptotics and zero distribution are studied in [52] and [53].

Other series expansions which may be original with Tricomi are an expan-
sion [146, equation (44)] of I'(a,z) in Laguerre polynomials L'®(z), and an
expansion (ibid., equation (45)) of y(a,Az) in {y(a + n,z)}.

2.3. Asymptotics

The asymptotic behavior of the incomplete gamma functions is elementary
when only one of the two parameters a and z tends to infinity. More interesting
(and also more difficult) is the behavior when |a| and |2| become large simul-
taneously. Here Tricomi shows in [146] (see also [151, § 4.3]) that the matter
depends on whether a and z are not near each other, or z is near a — 1, as
la| and |z| both tend to infinity. In the first case, he proves from the integral
representation of I'(a + 1,z) that

(212) Tla+la)= " fio 2 +O<(L>}

r-a | Goa oo O\

as the modulus of /a/(z —a) tends to zero and its argument ultimately remains
between —3n/4 and 37/4. He in fact has the complete asymptotic expansion
in explicit (though complicated) form. In the second case there are two sub-
cases depending on whether Re a is positive or negative. Equivalently, Tricomi
considers the functions (1 + a,z) and v;(1 — a,z) separately, both under the
assumption Re a > 0. In the first subcase, again from the integral representa-
tion (1.1), he finds, when a and y are both real and y bounded, that

1

1 2 /2 2
1,a+v2ay) = =T(a+1 —S ] E@y)e -
(2.13) y(a+1,a+v2ay) 5 (a+ ){1+erfy 3 a7r(1+y Je +O<a>

a —» o0 .

(For a simplified derivation of (2.13), see also [152].) A similar result holds for
complex a,y (with Re a > 0), and again, Tricomi is able to write down the
complete asymptotic expansion.
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As a by-product of (2.13) and (1.3), one obtains a nice asymptotic estimate
for e,(z) near z = n, namely

1 o) y . 2 2 2 2 1
(n+V = —em VY arfoy — 20 2 (1 4 v Lol =

n—00.

In the second subcase, Tricomi finds, for real a > 0 and y € IR bounded, that

I'(a)

2 |27 2 1
S = y)ey - oo
t3 a( y?)e +O(Q)J,a &)

‘ 1 y
1{l —a,a+ \/ézy) = — {—n'cot am + Zﬁ/ et dt
0
(2.15) '

2.4. Zeros

In [147] (see also [151, § 4.4]) Tricomi studies the zeros of v*(a,x), a € R,
z € IR, considered as a function of z for fixed a. Except possibly for z = 0, these
zeros coincide with the zeros of v(a,z) or v;(a, —z). Tricomi gives a complete
description of these zeros and, more generally, a remarkable contour map of the
function v*(a,z), i.e., of the lines v*(a,z) = const. In figure 1 we reproduce
this map, and also provide the associated surface plot; they were generated by
the MATLAB commands contour and surf, respectively. The function itself
was computed with the help of the series expansion (2.9) for 0 < a < 1 and the
recurrence relation (6.4) for other values of a.

5
a 4 \
3 200 4.
; . & 58
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eg -.j El
pos }Q»
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Fig. 1. — Contour map and surface plot of v*(a, z). The lines in the contour map correspond
to altitudes —6(1) — 2(.5)0(.25)1(.5)2(1)86, the zero line being red. '
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From his asymptotic results in {146}, Tricomi derives the following asymp-
totic approximations (as corrected by Kolbig [78]) for the real zeros: for the
positive zeros z (a) of v*(a, ),

B T |0+ + fal)w/2 log a]\*
(2.16) z+(a) = rlaf - 1+TIOO[ sinan } +0 << a ) > |

a <0 sinar >0, a —» —c0,

where 7 = .27846454 . . . is the unique positive root of the equation 1+z+loga =
0; for the negative zeros,

(217)  2_(a) = ~(1+al) - y/2(1 + lal)o + O(la| ), @ — —oo,

where yo = yo(a) is the unique root of f; el’dt = ‘écot(]a]w), provided |a| is
not too close to a positive integer.

2.5. Inequalities and monotonicity

Obviously,
(2.18) gla,z) = Ta) a>0, x>0,

is a probability distribution on {0, co]; thus, in particular, 0 < g(a,z) < 1 and
9 1s monotonically increasing in z. In [147] Tricomi proves that ¢ is monotone
also in a, namely decreasing. Interestingly enough, Tricomi uncovers similar
monotonicity properties also in the regions a < 0,z >0 and a > 0,2 < 0. In
the former region,

(2.19) G(a,z) := —ae®z *I(a,2),
and in the latter,
(2.20) g1(a, ]} == ae™ 2|~y (a, |z]),

are both between 0 and 1 and are monotone in = as well as in a. More difficult
(not surprisingly in view of figure 1) is the region a < 0,z < 0. Here Tricomi
manages to prove that |g*(a,z)| < 1, where

e*v*(a,x)

Ilal +1)

Moreover, as a function of z, with o held fixed, g* has one, or at most two,

(2.21) 9" (a,x) =

maxima or minima.

2.6. Applications
2.6.1 Number theory

It is known from a well-known theorem of Lagrange that each positive
integer can be decomposed into a sum of (at most) four perfect squares, whereas
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only some integers are decomposable into a sum of two squares, and even fewer
into a sum of two cubes, or two fourth powers, or, more generally, two kth
powers, k = 2,3,4,.... The problem of determining the distribution Ni(z) of
all positive integers < z that are the sum of exactly two kth powers seems
to have led Tricomi in 1938 to his first encounter with the incomplete gamma,
function. By probabilistic heuristics, and at times — as he says [151, p. 286],
«acrobatic» — arguments, Tricomi in [143] indeed arrives at the approximation

k =5 k 2k
(222) Nk(.’.l?) ~T— mAl: r <~k—-———2’AkxT) s k> 3,

where

_ [rak)?
A = 2k2T(2/k)

The nature of the approximation in (2.22), given its roundabout derivation, is
of course unclear, but definitely is not asymptotic for x — o0, since a similarly
derived approximation for k£ = 2 gives No(z) =~ (1 — e~™/8)z, whereas, by a
result of Landau, Na(x) ~ bz/\/logz (cf. [86]), with a well-determined constant
b approximately equal to .764 (cf. [151, p. 289]). Nevertheless, for z not too
large, the formula (2.22) seems to give excellent results, as Tricomi demonstrates
for £ = 3 and z < 2000.

Precise asymptotic results have been obtained only more recently, for ex-
ample in [61] for k = 3, and in [62] for k£ (odd) > 5.

2.6.2. Random walks

A problem of interest in physics, biology, and other areas of science, is
the following. Given randomly n unit vectors in Euclidean space IR?, what is
the probability P,(r) = Pr{||s|| < r) that their sum s has length < r, where
0 < r < n? The problem has been solved in 1906 for d = 2 by J.C. Kluyver
(even for vectors of arbitrary fixed lengths), with full details, for d = 3, supplied
later in 1919 by Lord Rayleigh. In the case of general d, the result is derived in
Watson [159, p. 421}, where P,(r) is given in the form of an integral involving
Bessel functions (here written in terms of Tricomi’s Bessel functions),

(223) Pa(r) = [D(d/2)]" 1 (r?/n)*/? /0 "y T () Ty o (t/m)] e

What is of particular interest in applications is the behavior of P,(r) as n — oo.
Watson already studied this informally by applying the method of steepest de-
scent and arriving at an asymptotic approximation involving ; F (g; g—+ 1;-%2;‘1),
hence the incomplete gamma function. In [149] Tricomi,-by a more rigorous

approach using power series and Laplace transform techniques, improves upon
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Watson’s result, showing that

4 d 1 e* /1 z
(2.24) P.(ry=1z2 [’y* (§,m> BES (5 - m)J +0(n7?),
where
r2d
2n
The behavior of the leading term in (2.24) is illustrated in figure 2 for n = 10
and d = 2,3,5,10.

xTr =

"o81t

8,9 10

Fig. 2. — The probability P.(r) for n = 10 and d = 2,3, 5, 10.

From (2.24) it takes a quick calculation for Tricomi to determine the mean
value 7 of r, namely

[ 4P, T((d+1)/2) [n 1 L
(2.25) r—/o r—ar—dr—w\/;[l+m+0(n )}.

2.6.3. Laguerre’s equation

The Laguerre polynomial Lg{")(x), as is well known, is a solution of the
linear second-order differential equation

(2.26) zy"+ (a+1-z)y +ny =0,

a special case of the confluent hypergeometric equation. The second solution,
y2(z), therefore, must be a confluent hypergeometric function, which Tricomi
in [150], when « is not an integer, identifies explicitly in terms of the incomplete
gamma function and products of Laguerre polynomials. Specifically,

@)L (-2).

?Tl"—‘

(2.27) ya(z) = L (z)y (—e, 1) + *z~ i

(For 71, see (2.4).) There is an analogous formula involving T'(0, —z) when « is
an integer.
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2.7. Miscellanea

Without in any way wanting to disparage the results contained in this
subsection, it seems fair to say that they lie at the fringes of the general theory
of incomplete gamma functions and are therefore mentioned only in passing.

One concerns the gamma function itself, more precisely the ratio of two
© gamma functions, I'(z 4+ a)/I'(z + b), for which in [145] and [154] the complete
asymptotic expansion in descending powers of z is derived, with an explicit
characterization of the coefficients and the precise conditions of validity. Er-
ror bounds for this and similar expansions have later been obtained by Fren-
zen [44], [45]. .

In order to derive (2.15), Tricomi made use of the following (apparently
new) integral representation of v*(a,x) for real a and =z,

(2.28) v*(a,z) = — % _Re {e—”i / e (1 +it)““‘dt} :
0

I'(a) sinar

Another curious integral representation is the one for the «norm» of the in-
complete gamma function, I'(a, iz)'(a, —iz), which in [144] (or [40, § 9.3, equa-
tion (6)}) is expressed in terms of the Laplace transform of a sum of two con-
jugate complex hypergeometric functions.

3. ASYMPTOTICS

3.1. An improved approzimation (2.13)

Formula (2.13), after division by I'(a + 1), can be interpreted as an asymp-
totic approximation of the gamma distribution in terms of the normal distri-
bution &(z) = (2r)~V/2 [ ¥/2dt, the leading term in (2.13) indeed being
®(v/2y). A more accurate approximation has been derived by Pagurova [111] by
statistical arguments; it involves derivatives of the normal distribution, hence
Hermite polynomials He,(z),

y{a,a+ z/a) - B(z) - e /2

s {3 L te(o) + [1H63(a:)+ He5(m)]

()
+7[ Hea(s) + g5 Hea(s) + — Heg(x)]
(3.1) 612 [Hes(x)+§7Hey(x)+ T Hes(a) +52 4H611( )]
. f [1Heﬁ(x)+ IS%Heg(x) S Heo(a)

+ @Helz(m) 2916011’614(5”)] +O(a—3)} :

(The oY% term in (3.1), with Hey(z) = 2 — 1, is consistent with the cor-
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responding term in (2.13). This can be seen by applying the recurrence rela-
tion (6.4) to the left-hand side of (2.13), letting x = v/2y, and applying elemen-
tary asymptotics to the additive term coming from the recurrence relation.) A
similar, even more accurate, approximation (without the a=1/2 term) is also
derived, but it involves on the right-hand side a more complicated variable.

3.2. Uniform asymptotics

In deriving asymptotic results for large |a|, Tricomi found it necessary
(cf. (2.12) and (2.13)) to distinguish cases according to the magnitude of |z|
relative to |a|. One of the major advances since Tricomi’s work in this area is
the development of asymptotic expansions for large a that hold uniformly for,
say, all z > 0. There is a price to be paid, however, for uniformity: For one,
the expansion involves not only elementary but also transcendental functions,
specifically the error function erfc in our case; for another, the calculation of
the expansion coefficients is much more intricate.

Uniform asymptotic expansions for the incomplete gamma, functions were
first derived by Temme [131], [132] (see also [140, § 11.2.4]). His point of
departure is the integral representation

F(a, Z) €~a¢()\) etico B(t) -dt
_ = ap(t) 4 s <\,
(3.2) ol =5 /M_me o O<e<,
where
(3.3) ¢t)=t—1-1Int, A=2.
Q

The integrand in (3.2) has a saddle point at t = 1. Changing the contour of
integration into a path of steepest descent, and separating out the pole close to
the saddle point (when A = 1), Temme arrives at asymptotic representations of

the type
T = et (ov/ar2) + mulo),
(3.4) | 7[(,‘2—&? = %erfc (-n/af2) - Ra(n),
e"391" X ca(n)

Ru(n) ~ S nz:;) e a — 0o

where
A-1-InA

(3.5) n=(A-1) 2-(/\—_1)2—.

(When A > 0, then p = £/2(A — 1 — In )\) with the plus sign for A > 1 and the
minus sign for A < 1.) The asymptotic expansion of R,(n) is valid for a going
to infinity over positive values, and is uniform for all X > 0, i.e., for all z > 0.
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Its validity, indeed, can be established for complex a and z as well; that is, (3.4)
is valid as @ — oo uniformly in {arga| < 7 —¢; and |arg z/a| < 27 — €2, where
€1, €2 are positive numbers with 0 <¢&; <, 0 < &g < 27.

As to the coefficients ¢,(n) in (3.4), they are holomorphic functions of 7
and can be computed for small |n| by a power series expansion, and for other
values of || by recurrence. For details, as well as for estimates of the remainder
terms when the expansion in (3.4) is truncated at some finite n = N — 1, we
must refer to the original paper [132]; also see [114]. An extensive set of Taylor
coefficients for ¢, (n) is given in [30, Appendix F|. The growth of cn(n) asn — oo
is studied in {34]. .

For a rearranged version of the expansion (3.4), in the context of the Rie-
mann zeta function, see also [113, Appendix A}.

It is interesting to note the role played by the error function in (3.4). If
z = Aa, with a and X positive, then I'(a, Aa) as a function of A exhibits a sharp
decrease near the transition point A = 1, the decrease being sharper the larger a.
Elementary functions would have a hard time describing this kind of behavior,
but the error function does a nice job of it; this is shown in figure 3.

1
09}
08}
07+t
06}
05}
041}
03}
02}
01t

a=100

0 e e )
0 02040608 1 1214 16 18 2

Fig. 3. — The leading term 1 erfc(ny/a/2) in (3.4) as a function of A in 0 < A < 2, for
a = 20(20)100.

At the transition point A = 1 one has n = 0, and from the first of (3.4) one
gets

I'(a) N§+~—_~\/2 an 4T

A similar expansion in which the factor multiplying the series is replaced by the
asymptotically equivalent factor I'(a + 1){e/a)* is given in [89], together with
an asymptotic representation of the coefficients for large indices and the first
eleven coefficients expressed exactly in rational form.

I'(a,a 1 1 & 0
(a,a) mzzjcn()



— 215 —

The expansions (3.4) do not cover negative values of a, but there are similar
uniform expansions for v(—a, —z) and I'(~a, —z), involving the same coeflicients
cn(n), that are valid in |arga| < m — &1, |arg A| < 27 — &9, with 8,8, arbitrar-
ily small positive constants (cf. [139]). Of special interest is the expansion for
v*(—a, —x), where a and z are positive and v* real but oscillatory {139, equa-
tion (3.11)].

An alternative derivation of (3.4) and, with similar methods, of Tricomi’s
expansions in § 2.3, along with numerical comparisons, is given by Schell
in [121].

Applying differential equations rather than integral representations, specif-
ically the asymptotic theory of linear second-order differential equations with
almost coalescent turning points, Dunster in [31] derives an alternative asymp-
totic approximation (not expansion) for I'(a, z) that also involves the comple-
mentary error function, but an auxiliary variable { rather more complicated
than the n in Temme’s expansion (3.4). The approximation holds, for example,
when a — oo, uniformly for z in a domain containing the positive real axis, but
there are other possible interpretations of its asymptotic character. For details,
we refer to the original paper [31, Remarks on p. 1346].

3.3. The generalized exponential integral

If we take n = p in (1.4) to be an arbitrary complex number, we are led to
consider the generalized exponential integral
—t

(3.6) Ep(z) = Zpalr(l -p,z)= ZP1 / %dt.

Even though closely related to the incomplete gamma function, it arises in this

form in many applications and has attracted a considerable amount of interest
in recent years.

3.3.1. Asymptotic expansion for p — co

If p goes to oo over positive values p > 1, and z is an arbitrary nonnegative
number, it was shown in [46] by elementary means, involving integration by
parts, that

—x n—1

e T
3.7 E,(z) = Ho () p 5+ 0,(z,p)p ",
(37) @)= iy [ (5] 7 eutenlp }
where
(3.8) an<@n<x,p>szfn(1+ 1 )

z+p-—1
Here,
Hyo(w) () k=0,1,2,.. .,

T Ot
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where hi(u) is a polynomial of degree k — 1 (if k > 0) defined recursively by
ho(u) =1, hip1(u) = (1 — 2ku)hie(v) + w(l + whi(u), &k=0,1,2,...,

and an, B, are lower and upper bounds, respectively, of H,(u) on the interval
u > 0. The first eight polynomials h;(u) and respective constants oy, G are
given explicitly in [46]. For improvements, both in the error bounds and the
approximations, see also [6, § 3]. More recently, Dunster (32, Thm. 2.1} showed
that the same(® expansion (3.7) with a different bound on the error term (and
different notations), holds uniformly for complex z in the domain |arg z| < -6,
provided p > (1 — cos§) L.

An alternative asymptotic approximation for p (> 0) — oo, valid for com-
plex r in a domain containing the negative real axis, is given in [32, Thm.
3.1]. Similarly to the asymptotic approximation for the incomplete gamma,
function derived by the same author in [31], it also involves the complementary
error function and a rather complicated auxiliary variable ¢. For an asymptotic
expansion, including error bounds, see also [33, Thms. 5.1 and 5.2].

3.3.2. Stokes’s phenomenon and uniform exponential improvement
For fixed p, as z — .00 in |argz| < 3 3™ — &, where § is an arbitrarily small
positive number, one has the classical a,symptotxc expansion

_ZOO

ZH

where (p)x denotes the ascending factorial p(p+1)--- (p+ & — 1). In the sector
sm+ 6 < argz < Zr — 6, which partly overlaps with the preceding sector, one
has an asymptotic expansion just like (3.9) but with an additional term

(3-9) Ep(2) ~

; ,—DWL
2mie =1

T(p) ~

In the common sector —7r +6 < argz < %7( — ¢ this term is exponentially
small compared to the main term in (3.9). Nevertheless, as z crosses the line
argz = m, there occurs a rapid, though smooth, change in the form of the
asymptotic expansion. This is known as the Stokes phenomenon. It has been
analyzed in a formal (but insightful) manner by Berry [11] and more rigorously
by Olver [107], who writes the remainder term in (3.9), if truncated after the
nth term, as follows,

(3.10)

(3.11) Ey(2) = ZZ( 1ye @ 2mie 7

I'(p) P Ts2).

(@) There is a sign error in equations (2.11) and (2.13) of [32], where the second term on the
right should be subtracted instead of added.




— 217 —

where
e?™I'(q) E,(z2)

2m z0-1 7
The interest lies in the sector 3w < argz < 3 (containing the «Stokes line»
argz = 7), where the factor T,;, in (3.11) acts as a «Stokes multiplier»
(cf. (3.10)). If n is chosen optimally, ie., the series (3.9) is truncated just

before its numerically smallest term, and if z = pe'™9) —1z < ¢ < im, then

(3.12) To(2) =

n = p—p+a, where « is complex and bounded in absolute value as p — oo. By
a delicate analysis, Olver then finds an asymptotic representation of the Stokes
multiplier in the form

| . oo B
(3.13)  Thyp(z) ~ 3 + §erf (n\/p/Q) + N kZ:(:)ck(H,a)p , p— 00,

which holds uniformly for 8 € {~%7r,%7r] and for |a| bounded. Here 7 is a

complex-valued function of 8 defined by
1772 =1+4140 — e
5 .

(The branch with Re n > 0 is taken for # > 0 and the one with Re n < 0 for
§ < 0.) The (complex) error function in (3.13) plays a similar role as the error
function in (3.4), the transition point now being at 8 = 0. Plots of the real and
imaginary parts of the leading term in (3.13) are shown in figure 4 as functions
of A, where 6 = Ar /2.

An alternative discussion of Stokes’s phenomenon is given more recently
by Dunster in [32, §§ 4 and 5].

In [108] it is shown that choosing n optimally as described, and expanding
the remainder term in (3.11) in descending powers of p, provides in the domain
largz| < m — 6 a «uniformly exponentially improved» approximation in the

1

09} 0.01

08}

0.7 { 0.005

06}

05} 0

0.4

oal -0.005

02}

o1l -0.01
0

1 -08-06-04-020 02 04 0.6 08 1 -1 08-06-04-020 02040608 1

Fig. 4. — The real and imaginary parts of the leading term in (3.13) as functions of ), § = An /2,
—1< A< 1, for p = 20(20)100.
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sense that truncating the remainder expansion at any fixed term yields, in
combination with the (optimally) truncated expansion (3.9), an approximation
of E,(z) whose relative error is exponentially small, uniformly in the domain
indicated. In the same work the asymptotic nature of the expansion (3.13) is
further analyzed, its validity extended to the sector —27 +6 <6 < 27 — 4§, and
new, more convenient, formulae are given for the coeflicients. (Note, however,
that the notation in [108] differs somewhat from the notation in [107].)

Much of what is discussed in this § 3.3, and more, is nicely summarized by
Olver in [110]. See also § 7.2 for repeated re-expansion of remainders.

4. INVERSE FUNCTIONS AND ZEROS

4.1. Inverse functions

For any a > 0, the functions

_ vla,x) _ TIa,x)
(41) P(av‘r)_ F(a) ’ Q(a,:z:)— F((J,) s

satisfying P(a,z) + Q(a,z) = 1, are cumulative probability functions on the
interval x > 0. For example, a = £, x = % x?%, where v > 1 is an integer, yields
the chi-square probability functions with v degrees of freedom. For this reason,
their inverse functions are important in statistical applications, where, given
any p with 0 <p < 1, or ¢ =1 — p, one is interested in determining z such that

(4.2) P(a,z) =p, or (equivalently), Q(a,z)=4q.

In principle, this amounts to solving a nonlinear equation, for which many
iterative methods are available such as Newton’s method. In practice, however,
these would require good initial approximations as well as repeated evaluations
of the incomplete gamma function, both of which can render the inversion
costly. It is desirable, therefore, to be able to solve the equations (4.2) more
directly and economically.

The case a = § of the error function (cf. (1.6)) is particularly simple, as the
inverse error function is a function of a single real variable on [0,1] and hence
accessible to approximation-theoretic methods. Thus, Strecok in [129] uses
Chebyshev expansions in appropriate variables and ranges to obtain accuracies
in the region [0,1 — 1073%] of at least 18 significant decimal digits, whereas
Blair et al. [13] use rational approximations to obtain even higher accuracies
of up to 23 digits on a larger domain, [0,1 — 10719990, They also provide an
asymptotic series approximation acurate to at least 25 digits for the remaining
interval [1 — 10—10000 1],

For general a, Temme [136] employs his uniform asymptotic expansion
(3.4) to do the inversion. Thus, the second equation in (4.2), for example, in
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combination with the first in (3.4), takes the form

(4.3) %erfc (77 a/2> + R,(n) =q.

This is first solved for 7, whereupon (3.5) is used to solve for A, which by (3.3)
finally yields z = aX. To solve (4.3) for n, one can take as initial approximation
70 the solution of

(4.4) %erfc (70/af2) =4.

which is computable in terms of the inverse error function previously discussed.
Then for n one seeks an asymptotic expansion of the form

g . € €

(4.5) T’N"°+7$+a_2+a_g+”" @ 00
The determination of the coefficients ; is laborious. It is shown in [136] that
they are analytic functions of 7y for || < 2\/7 and therefore can be expanded
in powers of ng. For the first four coefficients &,, the power series are given
in exact rational form up to 17, 11, 9, and 7 terms, respectively. For larger
values of g, the same four coeflicients are expressed algebraically in terms of
no, €1 = 15 " In f(no) and f(my) = 52y, where g is the solution of (3.5) for
n = no. The procedure is particularly effective for large values of a, but yields
typically 3 to 4 correct decimal digits already for a = 1 or a = 2.

For the chi-square distribution an alternative asymptotic inversion is de-
scribed in {41}, which is valid for small ¢ and a fixed.

4.2. Real zeros

The unique positive zero of Ei(z) = [E,(~z + i0) + E;(~z — i0)] is given
to 30 decimal places in (29, p. 300]. Asymptotic approximations to the positive
zeros of the sine and cosine integrals can be found in [37] and [127], respectively.

Tricomi’s interest, as noted in § 1, was in the zeros of y(a, z) considered as
a function of x for fixed a < 0. Little (to the author’s knowledge) has been done
on this problem beyond Tricomi’s work. Curiously, though, the negative zero
z_{a) of y(a,z) for —1 < a < 0 has received some scrutiny in connection with
a probability density (encountered by Mandelbrot) whose Fourier transform is
(L(1 + a)y*(a, —is)}!. Lew [87] indeed shows that z_(a) decreases monotoni-
cally in [~1,0] (which can also be read off from the contour map of figure 1)
and satisfies the inequalities

(4.6) l—i—!<x_(a)<ln|a|, ~1<a<0.

4.3. Complex zeros

The study of complex zeros becomes interesting already for some of the spe-
cial cases (1.2)~(1.6) of the incomplete gamma function. Thus, e.g., the complex
zeros of en(nz) (cf. (1.3)) and their asymptotics as n — co have received a great
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deal of attention; see, e.g., Varga’s monograph [156, Ch. 4]. Asymptotic ap-
proximations to the zeros of the complex error function w(z) = e~ % erfc(—iz)
and to those of erfz are given in [42], including tables®® to 11 significant dig-
its of the first 100 of them. For the complex zeros of the Fresnel integrals,
see [80].

For an asymptotic analysis of the complex zeros of I'(a, z), Temme in [138]
uses the same method as described previously in § 4.1, except that in (4.4) he
puts ¢ = 0 and takes for ng\/m one of the complex zeros of the complementary
error function. In particular, curves in the complex A-plane are identified which
are approached by the A-zeros of I'(a, A\a) as a — oo over positive values. A
branch of this curve is the Szegd curve known from [156], which has been
studied in connection with integer values of a.

In the work of Kolbig [76], [77], [78] the focus is on the complex zeros of
v(a, ) considered as a function of a for fixed real z. From the contour map
in figure 1 it is evident that the line = = const, for = suitably chosen, has two
intersections with the zero level curve of v* in each of the intervals ~2m < a <
1-2m,m = 1,2,3,... (visible in figure 1 explicitly for m = 1 and m = 2).
These intersections move toward each other as z is increased and eventually
coalesce. If the point of coalescence is denoted by (a%,,z5,), the double zero of
~v* (or 7) at this point will split into a pair of conjugate complex zeros upon
further increase of x beyond «,. Thus, for each m = 1,2,3,... there is a pair
of conjugate complex trajectories in the complex a-plane emanating from o,
along which v vanishes. Using Tricomi’s result (2.16), Kolbig in [78] gives the
approximations af, ~ 1 — 2m — .623021 and z}, ~ .556929m — .108906 lnm —
.299840 and in [76] he provides graphs and tables of the first five (eight in [77])
trajectories a = an(xz), £ > zi,, in the upper half-plane. In [78] the concern
is with the trajectories a = an(z)/x, ie., the zero curves of y(za,z) in the
complex a-plane, and plots of the first eight of them are shown. As m — oo,
according to a result of Mahler [96], they approach a limiting curve, which is also
shown.

5. INEQUALITIES AND MONOTONICITY

5.1. Inequalities

An early inequality of some generality for the incomplete gamma function
is the author’s inequality [47]

1 ar
(5.1) %[(a:+2)“—x“] < e’ T(a,z) < %[($+c;1)“—3:°], 0<z<oo,0<ac<l,

®)The heading of Table 2 in [42] is incorrect; it should be «Zeros of w(z)» or «Zeros of
Erfc(—iz)».
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where
ca = [I(1+ a)}l__l; .

For a = %, the second inequality reduces to one of Pollak [117], the first to one
of Komatu [79], for «Mills’ ratio» e e e~ dt. For sharper bounds regarding
this ratio, see also [16], and for related inequalities, [82]. As a 11, both bounds
tend to 1, which is the value of e*I'(1,z), since I'(1,z) = ¢ *. Asa | 0, one
obtains an inequality for the exponential integral,

(5.2) %ln(l—#%)SeIEl(x)§1n<1+%>, 0<z <0,

which sharpens an inequality due to E. Hopf [63, p. 26]. Another special case
of (5.1) obtains by setting z = 0 and using I'(1 +a) <1 on [0,1],

271 <T(14+a)<1l, 0<a<l.

This has been sharpened and generalized in [47] to® (¢ is the logarithmic
derivative of the gamma function)

(53)  ge<LiETD

—mﬂexp[(lw)w(ﬂl)], 0<a<l, z>0,

which in turn has been the subject of numerous improvements and extensions;
see, e.g., [39], [155], [124], [64], [84], [74], [91], [81], [82], [142], (98, §§ 2,3], [116,
§ 3], {112}, [51]. Further inequalities for the gamma function can be found in
(101, § 3.6, [72], [20], [71], [94], [73], [126], [123], [69], [119], [36], [83], [93], [38,
§ 3], [54], [55].

An alternative inequality for the incomplete gamma function was recently
obtained by Alzer [4], who proved

(5.4) (L—e =)0 < Aez) g eT%)e 0<z<oo, a>0, a#l,

I'{a)
where
C(1+a)]"¥e if0<a<], 1 if0<a<l,
T“:{1 ifa>1, :{[F(1+a)]‘1/“ ifa>1.

For a = 1, this reduces to inequalities of Chu [28] for the error function erfz.
As a — 1, both bounds tend to 1 —e~*, which is the value of v(1,z). Rewriting

(5.4) in terms of FIS‘(’(;? =1- "é‘(lj)'), and letting a | 0, yields a new inequality
for the exponential integral,

(5.5) —In(l-e)<Efz) <-In(1-e¢7"), 0<z<o0,

() Actually, (5.3) was proved in {47] only for = an integer n = 1,2,3,..., but the proof
given is valid for arbitrary z > 0 (cf. Math. Reviews 21, Review 2067).
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where c is expressible in terms of Euler’s constant v as ¢ = ¥ = 1.7810724... ..
In the domain 0 < a@ < 1 the inequalities for I'(a,z) derivable from (5.4) are
sharper than those in (5.1) if « is small, but weaker if z is large. The right
inequality in (5.5) is always weaker than the corresponding inequality in (5.2),
whereas the left inequality is sharper for small £ and weaker for large z.
Upper bounds for I'(a, z) in the domain £ > 0, a > 1 are also derived in [14].
The rather special, but pretty, sequence of inequalities,
I'(n,n) 1 T(n,n—1)

<-<—22" ) n=1,23,...,

(5-6) Ty <2< T(w)

is proved in [157] and attributed to G. Lochs.

5.2. Monotonicity

Monotonicity, convexity, and higher monotonicity results abound for the
gamma function, but seem to be scarce for incomplete gamma functions. Ab-
* solute monotonicity,. i.e., positivity of all derivatives, has been shown in [35,
§ 4b] for the sum of squares of «Hermite functions», which are expressible in
terms of confluent hypergeometric functions. Lorch [90] has monotonicity re-
sults for ratios of Wh}ttgker functions. Convexity and logarithmic convexity of
I'(a + 1,a)/T(a + 1) on [0,00) are shown by Temme [133]. The fact that this
function decreases monotonically from 1 to 'l 5 has been shown previously by Van
De Lune [95]. Accordmg to the well-known Bohr-Mollerup-Artin theorem, log-
arithmic convexity, on the other hand, lies at the heart of the gamma function,
as toget;her with the difference equation and normalization, it characterizes the
gamma function uniquely (cf. Artin [9]).

A function f is said to be completely monotonic on an interval I if it has

defiiiatives of .all orders in I and (—1)"f™)(z) > 0 on I for n = 0,1,2,.
It is called strictly completely monotonic if strict inequality holds for each n.
Remarkably, many functions involving the gamma and/or the psi function are
comipletely monotonic. Bustoz and Ismail [18], for example, prove this for the
functions

R el (‘”*%) 2 D) Tz + 1)
(-7) (1 2:1;) M@+ (”%) o (x N 1)
2

on the interval (1, 00) and (0, 00), respectively. Likewise, they show that
I'(z + s) 1
TG+ exp [(1 — 8)a (2: + 5(3 + 1))]

Iz +1) (0:+ %s>s—l
Y ET E—

(5.8)

and

0<s<1,
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are completely monotonic on (0,00), and strictly so if 0 < s < 1. Furthermore,

F ) enplls = Do+ vB)

(5:9) [z + s) ‘::n—~%+\/s+4l}

and Tzt 1) ,

0<s<1,

are strictly decreasing on (0, 00), which, together with (5.8), generalizes inequal-
ities of Kershaw [74]. Other examples are given in [66] and [2]. Far-reaching
results are proved by Alzer in [3]. Thus, for example, z{lnz —(z)] is shown to
be strictly completely monotonic on (0, co), which extends a monotonicity and
convexity result of Anderson et al. [8, § 3]. The convexity on (0, 00) of (),
proved by the author [48], is generalized to

(5.10) 0<(-1)"z" zp(z)]™ < (n—=2), >0, n>2

([3, Thm. 4]). All remainders in the asymptotic expansion of In I'(z) for z — oo
are completely monotonic. More precisely, if

By

1 1 n
(5.11) fn(z) = InL(z) - (z - 5) ete g ) - ; 2% (2k — 1)z2h—1"

n=0,1,2...,

where By are the Bernoulli numbers, then (—1)"R,(z) is completely monotonic

n (0,00) ([3, Thm. 8]). This was proved earlier by Muldoon [102] for n =
0, whereas convexity and concavity for general n were shown by Merkle [98].
Another remarkable result is the complete monotonicity on (0, o) of

512 67

({3, Thm. 10]), provided

This generalizes a result of Bustoz and Ismail [18, Thm. 6] for n = 2 and
monotonicity results of Stolarsky [128, § 8] and Maligranda et al. (97, Thm. 2].

A monotonicity result of Kershaw and Laforgia [75], according to which on
(0, 00) the function [I" (14 2)]® decreases, and z [T (1 + 1)]” increases, extends
an earlier inequality of Minc and Sathre [100]. See also [116, § 5] for additional
monotonicity results of this kind. Logarithmic convexity on R, of I'(2z) /2" (z)
and logarithmic concavity of I'(2z)/I'?(x) are proved by Merkle [99].
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The g-analogue of the gamma function also enjoys inequalities and higher
monotonicity properties, many of which extend those in this § 5.2. For a good
account of this, the reader is referred to Ismail and Muldoon [65].

6. NUMERICAL METHODS

6.1. General procedures

As with other special functions, numerical methods for computing incom-
plete gamma functions rely on a variety of standard tools. Thus, asymptotics
is used by Takenaga [130] to evaluate I'(a,z) for large a. In a series of pa-
pers, Chiccoli et al. [23], [24], [25], [26], [27] use asymptotic approximations,
Taylor and other series expansions (including Tricomi’s series (2.8)), and re-
currence relations, to evaluate the generalized exponential integral E,(z) for
arbitrary positive p and . A combination of forward and backward recurrence
is the principal tool in the work of Amos [5], [7] to compute the exponential
integrals for integer values p = n of p and positive, resp. complex z. Dif-
ficulties near the negative real axis are overcome by an analytic continuation
scheme. Allasia and Besenghi [1] propose quadrature methods, in particular the
composite trapezoidal rule, to evaluate I'(a,z) for ¢ < ~1,z > 0 and provide
detailed error analyses. The use of (unstable) forward recurrence to compute
the «molecular integrals» {y(n + 1,z)} is analyzed in [88]. A fairly compre-
hensive procedure for evaluating incomplete gamma functions in the domain
—00 < a < 00,z > 0 is described in [49]. If there is a weakness in this proce-
dure, it is the fact of becoming computer-intensive when a and z are both very
large and almost equal. This, however, has been corrected by DiDonato and
Morris [30], who use, among other things, Temme’s uniform asymptotic expan-
sion {cf. § 3.2) to compute y(a,z)/T'(a) and I'(a,z)/T(a) for a > 0, z > 0, and
by Temme himself [135], who uses (3.4) in the critical region, with the asymp-
totic series (in a) for R,(n) replaced by a more manageable Taylor series (in 7).
DiDonato and Morris also describe an inversion procedure which uses a third-
order iterative method along with an elaborate scheme of computing a good
initial value. Expansion in Chebyshev polynomials is used by Barakat [10] to
compute y{a, z) for real a and purely imaginary 2. Techniques based on contin-
ued fractions are employed by Jones and Thron [68] and Jacobsen et al. [67],
and still other, especially asymptotic, techniques by Temme [137], to compute
v{(a, z) and I'(a, z) for complex a-and z. There is an extensive literature deal-
ing with the computation of special univariate cases of the incomplete gamma,
function, such as the exponential integral F;(r) and the error function and
their close relatives, both for real and complex arguments. For this, as well as
for relevant software, including software for incomplete gamma functions, we
refer to the comprehensive documentation in [92]. Here we concentrate on real
parameters and the stable use of recurrence relations.
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6.2. Recurrence relations

The recurrence relations satisfied by incomplete gamma functions are lin-
ear, inhomogeneous, first-order difference equations of the form

(6‘1) Yn = QGn¥Yn—1 + b’n.) n= 172737' <oy On # 07

where the coefficients a,, b, depend on z and/or a. Given yp, the recur-
rence (6.1) defines uniquely the sequence {y,}32,. It is important, however,
to know how robust the recurrence is to small perturbations such as rounding
errors. An informative answer to this is provided by the «amplification factors»
ws—t, which determine the effect of a small relative error € at n = s («s» for
starting) upon the value at n = ¢ («t» for «terminal»), assuming exact arith-
metic. Thus, if the desired solution of (6.1) is {f»}, and if y; = f;(1 4 ), then
¥ = fi(1 + ws—y - €) in exact arithmetic. Here s may be less than ¢, which is
the case in forward recursion, or s > ¢, in which case (6.1) is applied in reverse
order (computing y,_; in terms of y,). An easy calculation (cf. [50]) will show
that

(6.2) Cwene =2,
where
(63) Pn = th'n ]’Ln = Aplp_1---Qap (CLO —= 1)

fo
(assuming fo # 0). Here, h, is a solution of the homogeneous equation (6.1)
(with all b, = 0). Knowledge of the quantities {p,} is thus sufficient to deter-
mine all amplification factors in (6.2). Note that p, = wg_.p.

A first example is v*(a,z), which satisfies the recurrence relation

e—‘l‘

I(a+1)

(6.4) v (a+1,z) = % 7*(a,z) —

Once we know y*(a,z) for 0 < a < 1, repeated application of this relation allows
us to obtain v*(a,z) for any a > 1, and also for any a < 0 if we apply (6.4) in
the reverse order. Consider first the case of positive parameters,

(6.5) Yo=7"(a+n,z), n=0,1,2,..., 0<a<]l.

Then (6.4) yields
66)  an=1ly < —1,2,; =1

. ’Yn—x 717,—1 F(CL'{'?’L) b n= &y 70_7(0’73:)1
a relation of the form (6.1). Since here h, = 27", we get

(67) Pn = 'Y*(a)‘r)

= = 2.
v*(a + n, )z’ n=0,12
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Fig. 5. — Amplification factors |wo—n] for the incomplete gamma. function {'y*(% +n,x)}.

The behavior of the corresponding amplification factors [wo—sn] = |0n] is similar
for all values of a in {0, 1]; figure 5 shows them (on a logarithmic scale) for o = :
and for selected negative values of z on the left, and positive values of z on the
right. (The case z = 0 is uninteresting, since v*(a,0) = 1/T'(a + 1).) In either
case, |p,| — 00 asn — oo, but in the first case there is a significant downward dip
. to a minimum at about n = |z| before |p,,| grows monotonically to co, whereas in
‘the second case lpn| increases monotonically from the start. This has important
' computational implications. The fact that [pn| — oo by (6.2) indeed implies
that [w;s_| for ¢ fixed becomes arbitrarily small as s — co. In effect, this means
that backward recurrence in (6.6) from some large n = v down to any fixed
.1 produces arbitrarily accurate results if v is chosen large enough, regardless
‘of the choice of starting value. The latter, therefore, may conveniently be
taken to be zero. This procedure is particularly effective for positive z, because
of the monotonicity of |p,|. When = < 0, backward recurrence should not
proceed below n = |z, since otherwise, by the nature of the dashed curves in
figure 5, one would run into a regime of significant error amplification. The
values of vy for n smaller than [z| therefore must be generated by forward
recurrence.
. The case of negative parameters can be expected to be more complicated
since we are getting into regions containing zero curves (cf. figure 1 and § 2. 4).
Here the recursion for v} = y*(a —n,z), 0 < a <1, is

e—$
. . =z _— =1,2...; 5 ="
(6 8) Tn "E’Yn——l + F(a—n—l—l)’ n I 1 Yo Y (a,x),
where the second term on the right is to be replaced by zero if a = 0. Limited
exploration suggests that the amplification factors |p,| = |wo_.n|, when z > 0,
are of the order of magnitude 1 for a while before decreasing rapidly, while
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for x < 0 they also eventually decrease at a similar speed, but may assume
relatively large values (especially if |z| is large) before they do so. Nevertheless,
the recurrence (6.8), overall, is reasonably stable in forward direction.

What has been said about y*(a,z) holds also for y(a,z), since the quanti-
ties p, in (6.3) are invariant with respect to any scaling transformation y,
CnYn,Cn F# 0.

A second example is the complementary incomplete gamma function I'(a,x),
for which the recurrence relation reads

(6.9) I'(a+1,z) =al(a,x) + z% 7.

Its use for generating I't = I'(a+ n,z) and I, = I'(e — n,z),n = 0,1,2,.. .,
0 < a <1, can be discussed along lines similar to the preceding, except that
z is restricted to positive values. One finds that the respective amplification
factors |p}| and |p; | behave much like those in figure 5, but upside-down. That
is, |pt| = p} decreases monotonically whereas |p;| initially increases to a max-
imum near n = |z| before decreasing to zero, the maximum being larger the
larger |z]. The monotonicity of p} = %%“ai)) / ré?::;f) follows from the monotonic-
ity of I'(a, z)/T'(a) as a function of a, proved by Tricomi (cf. § 2.5). This means
that the recurrence for I'} is perfectly stable in forward direction, whereas the
one for I'; should be started at a value of n near |z|, with backward [for-
ward] recurrence being applied for the smaller [larger] values of n. The start-
ing value can be computed by a continued fraction, for example. Note that
', is related to the generalized exponential integral by I'; = "B _gin()
(cf. equation (3.6)).

7. APPLICATIONS

Many of the special cases of the incomplete gamma function are widely
used in the applied sciences. Thus, the exponential integrals E,(z) for p > 0
play a significant role in transport theory and fluid flow, and for negative inte-
ger values of p furnish basic auxiliary functions in molecular physics. The error
functions are frequently encountered in heat conduction, and the Fresnel inte-
grals in Fresnel diffraction, problems. The complex error function e~ erfc(—iz)
is important in plasma wave problems, where it is known as «plasma disper-
sion function», in astrophysics and Lorentz/Doppler line broadening, where the
real and imaginary parts go under the name of «Voigt functions», and in the
design of particle accelerators. Finally, the incomplete gamma function ratios
and their special cases are used extensively in statistical applications. Rather
than reviewing these «external» applications (a nearly impossible task), we limit
ourselves to a few recent «internal» applications that we happen to be familiar
with, i.e., applications within the theory of special functions.
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7.1. Ezpansions in incomplete gamma functions

7.1.1. The Riemann zeta function on the critical line

Efforts to verify the Riemann Hypothesis, according to which all zeros
of ¢(s) = 3 32,n™° in Re s > 0 lie on the critical line Re s = 1, require
high-precision calculation of the zeta function for s = 1 +it and ¢t very large.
Presently, the most efficient methods are based on the Riemann-Siegel formula
and some of its recent improvements; see, e.g., Odlyzko [104] and Berry [12]. A
promising alternative method has been developed by Paris [113] and Paris and
Cang [115], who use an expansion of the zeta function in incomplete gamma
functions in combination with (essentially) Temme’s uniform asymptotic ex-
pansion (cf. § 3.2). Once a reliable estimate of the truncation error becomes
available, the expansion could provide a useful tool for the rigorous verification
of the Riemann Hypothesis.

For an expansion in incomplete gamma functions of more general Dirichlet

series, see also [57, p. 106].

7.1.2. A generalization of the incomplete gamma function

The following generalization of the incomplete gamma, function,
(o o]
(7.1) I'(a,z;b) = / o te™ g, 2>0, a>0, b>0,
X

has been studied in [21]. By expanding e~%/* into a Taylor series in ¢~! one
obtains an expansion in incomplete gamma functions [21], [22],

(7.2) Fa0) =3 e —nz).

n:

n=0

It is just the Maclaurin expansion of I'(-, -; b), an entire function of 5. Whena > 0
and b > 0 are restricted to bounded intervals, then (7.2) can also be viewed as an
asymptotic expansion for x — co. The incomplete gamma, functions I'(a—n,x)
required in (7.2) can be generated recursively as discussed in § 6.2. There is also
an asymptotic expansion of I'(a,z;b) for large a analogous to (3.4), involving
the complementary error function (22, equation (5.2)].

7.1.3. Fermi-Dirac integrals

The Fermi-Dirac integral

7.3 F, Y R
(7.3) p—l(x)—l—‘(p)/o 4+ et2 t, p>0, zeR,
for negative values of x is easily evaluated by the series
o0
-1 n—lezn
Fp—l(x)zz(“)ni——, z<0.

n=1
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More difficult is the case of (large) positive = and p. Writing p = az and assum-
ing N -1 < a < N for some integer N > 1, Temme and Olde Daalhuis [141],
improving on previous work of Schell [122], obtain the representation

P4

-1 (_l)n—lezrn
(74) Fp—l = _—np— +Gp_1(.’13)+Hp_1(.’ZI),
1

3
I

where the terms in the sum on the right (if N > 3) decrease monotonically. By
contour integration in the complex plane, the function G,_;(z) is expressible
as the term with n = N in the summation of (7.4) multiplied by an incomplete
gamma function ratio,

(=1)N"le*N T(p, Nx)
NP I'(p)

(7.5) Cpor () =

Here Temme’s uniform asymptotic expansion for p — oo (cf. § 3.2) is applicable,
also when a = N. The last term, H,_;(z), in (7.4) can be formally expanded in
descending powers of z. Both terms G,_;, H,_; are negligible when N is large.

7.2. Hyperasymptotics

A process of successive re-expansion of remainder terms in asymptotic ex-
pansions, called hyperasymptotics, is developed in [109] for solutions of the con-
fluent hypergeometric equation, and in [105], [106] for solutions of more general
linear homogeneous second-order differential equations having an irregular sin-
gularity of rank one at infinity. By truncating the classical Poincaré expansion
after a judiciously selected number of terms, one re-expands the correspond-
ing remainder term to obtain a «first-level» expansion, the Poincaré expansion
being at level zero. This first-level expansion is a series in generalized expo-
nential integrals (cf. § 3.3). If that series in turn is judiciously truncated, its
remainder term is re-expanded to obtain a «second-level» expansion; it proceeds
in functions called «hyperterminants», which are repeated infinite integrals of
the generalized exponential integral. The process can be repeated indefinitely.
An important feature of this sequence of re-expansions is that at each step the
error is reduced by an exponentially small factor, of which the «exponential
improvement» of the first-level expansion, mentioned at the end of § 3.3.2, is
just one example.
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