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1. INTRODUCTION

The incomplete gamma function and its complementary function are usually
defined by

o

vla, x) = J et dt, I(a, x) = f et dt. (1.1)

1] x

By Euler’s integral for the gamma function,
v(a, x) + I'(a, x) = I'(a). (1.2)
We are interested in computing both functions for arbitrary x, a in the half-plane
H={xa):x=20,—0<a<oxn}

The function I'(a, x) is meaningful everywhere in #, except along the negative
a-axis, where it becomes infinite. The definition of y(a, x) is less satisfactory,
inasmuch as it requires ¢ > 0. The difficulty, however, is easily resolved by
adopting Tricomi’s version [14] of the incomplete gamma function,

—a

* ==
y*(a, x) = T@ v(a, x), (1.3)
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Incomplete Gamma Functions . 467

which can be continued analytically into the entire (x, a)-plane, resulting in an
entire function both in ¢ and x,

e"M(l,a+ 1;,x) M(a,a+1;—x)

Y ) s T T+ D)

(1.4)

Here,

az ala+1)2?

M(a,b 2)—1+bl'+b(—b+—1)—§+

is Kummer’s function. Moreover, y*(a, x) is real-valued for a and x both real, in
contrast to I'(a, x), which becomes complex for negative x.

Our objective, then, is to compute the functions y*(a, x) and I'(a, x), suitably
normalized, to any prescribed accuracy for arbitrary x, a in #. We do not attempt
here to compute y*{(a, x) for negative x, which may well be a more difficult (but,
fortunately, less important) task. We accomplish our task by selecting one of the
two functions as primary function, to be computed first, and computing the other
in terms of the primary function by means of

I'(a, x) = I'(a){1 — x°y*(a, x)} (1.5)
or
. e I'(a, x)
v*(a, x) = x {1 Ta) } (1.6)

If v*(a, x) is the primary function, we evaluate it by Taylor’s series. For I'(a, x)
we use a combination of methods, including direct evaluation based partly on
power series, recursive computation, and the classical continued fraction of
Legendre. Although our procedure is valid throughout the region 7, excessively
large values of @ and x will strain it, particularly when a = x > 1 (cf. Section 5).
In such cases it may be preferable to use asymptotic methods, e.g. the uniform
asymptotic expansions of Temme [12]. We shall not consider these here, however,
nor do we implement them in our algorithm.

An evaluation procedure of the generality attempted here is likely to be of
interest in many diverse areas of application. Widely used special cases of
v*(a, x) or I'(a, x) include Pearson’s form of the incomplete gamma function

(10},

Iu, p) = (uvp + 1"'y*(p + L, uvp + 1), u=0, p>-1, (L.7)
the x*-probability distribution functions

\ 1\ (v, v 1,

the exponential integrals

E(x) = x"'T(~v+ 1, x) 1.9)
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(which, for » = —n, a negative integer, yield the molecular integrals A.(x) [7)),
and the error functions
erf x = xy*(}, 2%,  erfe x = (1/VmT(4, x9). (1.10)
When a is integer-valued, v*(a, x) becomes an elementary function,
Y(=n,x)=x" yn+1x)=x""l-eYe(x)], n=012, .., (1L11)

where e,(x) = Yr-o x*/E!

2. NORMALIZATION AND ASYMPTOTIC BEHAVIOR

The purpose of normalizing functions is twofold: In the first place, one wants to
scale the function in such a way that underflow or overflow on a computer is
avoided in as large a region as possible. In the second place, one wants to bring
the function into a form in which it is used most naturally and conveniently in
applications. There is little doubt as to what the proper normalization ought to
be for I'(a, x) and v*(a, x), when a is a positive number. The formulas (1.7), (1.8),
(1.10), and (1.11), indeed, all point toward the normalization

I(a,
G(a,x)=l(,—“w;3,

We then have, by (1.5),
Gla,x) +g*(a,x)=1, 0sx<ow, a>0.

g¥a, x) =xv a,x), 0=sx<oo, a>0. (2.1)

It is equally clear that division by I'(a) to normalize I'(a, x), when a is negative
or zero, is undesirable, as this would generate functions identically zero for x > 0,
when «a is integer-valued, and would cause complications in evaluating exponential
and molecular integrals (cf. (1.9)). Growth considerations, on the other hand,
suggest a multiplicative factor e*x™“ The function y*(a, x) behaves rather
capriciously for ¢ < 0 and is not easily normalized. We decided (somewhat
reluctantly) to adopt the same normalization as in (2.1), primarily for reasons of
uniformity and good behavior for large @ and x. We are doing this, however, at
the expense of introducing a singularity along the line x = 0. For nonpositive a,
we thus define

G(a, x) = e'xT'(a, x), g%a, x) =xv*(a,x), 0=sx<ow, a<0. (2.2)

Our efforts will be directed towards computing G(a, x) and g*(a, x) in the
region .

1t is useful to briefly indicate the behavior of G(a, x) and g*(a, x) in the various
parts of the region 7. The limit values, as x approaches zero for fixed a, are
readily found to be

G(a,0) =1, £%(a, 00 =0 ifa>0,
G(a, 0) = oo, g*a, 0 =1 ifa=0, (2.3)
G(a, 0) = 1/|a], g%(a,0)=o ifa<O.

(It should be noted that g*(a, x), considered as a function of two independent
variables, is indeterminate at a = 0, x = 0.) If | a| is bounded and x large, we
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deduce from well-known asymptotic formulas {13, p. 174],

-x..a—1
G(a, x) ~ T’ a > 0 bounded,
G(a, x) ~ % s a < 0bounded, x— . (2.4)
g*(a, x) ~ 1, | a| bounded,

Equally simple is the case | x| bounded and @ — o« (over positive values of @), in
which case [13, p. 175]

G(a, x) ~ 1, | x| bounded,
a(>0) = oo, 2.5)

xa

g*(a, x) ”m—l')',

| x| bounded,

An indication of the behavior of these functions, when both variables are large,
can be gained by setting x = pa, p > 0 fixed, and letting a — . Laplace’s method,
applied to the integrals in (1.1), then gives

1, O0<p<l,
%’ p = 1) a— (X),
G(a, pa) ~ ple—(e-a o1
— = P N
V2na (p — 1)
(2.6)
a,(l1-pla
pce
—_—, O<p<«<],
N v2ma (1 — p)
g*(a, pa) ~ |
% p=1 a— o,
L 1’ P > 1’
Similarly,
1
- ~ ———— 0<p<® a—> %,
G{(—a, pa) o+ Da P -
2 sin ma o —alp+)) -
—_—p % if pe’™ < 1,
) V2rma (p + 1)
*{ s a) ~
g7(=@pa) ™ | 0 (mod 1), & ~> o, @.7)

11 ifper' =1,
3. CHOICE OF PRIMARY FUNCTION

Either of the two functions I'(a, x), y*(a, x) can be expressed in terms of the
other by means of the relations

I(a, x) = '(a){1l — x*y*(a, x)}, v¥(a, x) = x‘"{l - FI(.‘T;;C)} . (8.1)

In our choice of primary function, we are guided primarily by considerations of
numerical stability. We must be careful not to lose excessively in accuracy when
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we perform the subtractions indicated in braces in (3.1). No such loss occurs if
the absolute value of the respective difference is larger than, or equal to, 4. This
criterion is easily expressed in terms of the ratio

T'(a, x)
T(a) ’

Indeed, the first relation in (3.1) is stable exactly if | 7(a, x)| = 4, while the second
is stable in either of the two cases r(a, x) = § and r(a, x) < }. As a consequence,
an ideal choice of the primary function is y*(a, x) if 4 < r(a, x) < 3, and
[(a, x) if | r(a, x}| = }; in all remaining cases either choice is satisfactory.

For the practical implementation of this criterion, consider first a > 0, x > 0.
In this case, 0 < r(a, x) < 1, and r(e, x) increases monotonically in the variable
a ([14, p. 276)). Since lim,..o r{a, x) = 0 and, by (2.5), lim.—... 7(a, x) = 1, there is
a unique curve a¢ = a(x) in the first quadrant x > 0, @ > 0, along which r(a, x)
= 4, and r(a, x) 2 } depending on whether a Z a(x). Since, by (2.6), r(x, x) ~ }
as x — o, we have a(x) * x for x large. By numerical computation it is found that
in fact a(x) = x for all (except very small) positive x, the value of a(x) consistently
being slightly larger than x. As x — 0 one finds a(x) ~ In 1/In x, which suggests
the approximation a(x) + a*(x), where

r(a, x) =

(3:2)

x+ % }=x<o,
a*(x) = (3.3)
In }/Inx, 0<x=1}
The proper choice of primary function thus is I'(a, x) (resp. G(a, x)) f0 < a =
a(x), and y*(a, x) (resp. g*(a, x)) if a > a(x), where a(x) may be approximated
by a*(x) in (3.3).
In the case a = 0, x > 0, the second relation in (3.1) is stable if I'(a) < 0, i.e. if

-m=-l1l<a<-—-m, (3.4)

where m = 0 is an even integer. If m = 1 is an odd integer and a as in (3.4), then
for x not too large there is a possibility that y*(a, x) will vanish. The second
relation in (3.1) is then subject to cancellation errors. A similar problem of
cancellation, however, would occur if y*(a, x) were calculated directly (e.g. from
its Taylor expansion in the variable x). Furthermore, if y*(a, x) were the primary
function, the first relation in (3.1) would create serious (though not unsurmount-
able) computational difficulties for values of a near (or equal!) to a nonpositive
integer (cf. the relevant discussion in [3]). All these considerations lead us to
adopt I'(a, x) (resp. G(a, x)) as the primary function, whenever a < 0.

In summary, then, our choice of primary function is I'(a, x) (resp. G(a, x)), if
- < a<=a(x), and y*(a, x) (resp. g*(a, x)), if ¢ > a(x). Here, a(x) is adequately
approximated by a*(x) in (3.3).

4, THE COMPUTATION OF G(a, x)
As discussed in Section 3, it suffices to consider the region —» < a = a*(x),
x = 0. We shall break up this region into the following three subregions:

Region: 0=x=x, -} =<a=<a*(x).

RegionIl: 0<x=<xy, —0o<a<—4}.

Region II: x > %0, —® < @ = a*(x).

ACM Transactions on Mathematical Software, Vol 5, No 4, December 1979,
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The breakpoint x, will be chosen to have the value x, = 1.5. (A motivation for
this choice is given in subsection 4.1.) We use a different method of computation
in each of these three subregions. In Region I we first comptite I'(a, x) directly
from (1.4) and (1.5), and then use (2.1) or (2.2), dependirig ofi whether a > 0 or
a = 0, to obtain G(a, x). In Region II we employ a tecurrence relation in the
variable a, the starting value being computed by the methed appropriate for
Region I (except, possibly, when x < 1). In Region III we ust 4 continued fraction
due to Legendre. We now proceed to describe and justify these various methods
in more detail.

4.1 Direct Computation of I'(a, x) and G(a, x)
for0<x=xo,—¥=<a=a*(x)

Using (1.5), we can write

Na, x) =T(a) - %a- + -J;—a [1-T(a+ Dy*(a, x)]. 4.1)

We let

u=T(a) - x_,
a
. (4:2)
v= % [1 - T(a + y*(a, ),

and propose to use

I'a,x)=u+v (4.3)
as a basis of computation in Region 1. The breakpoint x, will be determined,
among other things, from the requirement that the relative error generated in
{(4.3) (due to respective errors in u and v) be within acceptable limits.

Before analyzing these errors, we observe that both quantities u and v have
finite limits as a — 0, when x > 0. Indeed,

limu=-y-Ingx, limv=Ex)+y+Ingx, (4.4)
a—0 a—0
where y = .57721... is Euler’s constant and E,(x) is the exponential integral. The
first relation follows at once from

u_I‘(1+a)-1 x*=-1
B a a

, (4.5)

the second from (4.3) by letting a — 0 and noting that T'(Q, x) = E,(x).
Furthermore, from (1.1) and (1.3), we have

v= f (1 - e7)dt, (4.6)

0
valid not only for a > 0, but even for a > —1. In particular, therefore,
v>0 ifa>-1,x>0. 4.7)

Using Taylor’s expansion in (4.6) it is possible to compute v very accurately,
essentially to machine precision. The same can be said for u, except that near the
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Fig. 1. The subregions # = 0 1n Region 1

line where u = 0 (see Figure 1) the precision will be attained only in terms of the
absolute error, not the relative error. If the absolute and relative error of u is e,
and €,, respectively, and e, is the relative error of v, then the relative error ¢ of
I'(a, x), computed by (4.3), will be

e, + Ve, _ Uuey + v€p
u+v u+v

€

Therefore, if € = max(| e[, | €| ), we have, in view of (4.7),

2
lerl<e if u>0, |el~|$<1+ﬂ)e if u<O. 4.8)
u+v
Similarly, if e = max(] e.|, | €.]), then
1+v
=< . 4.9
|er] e (4.9)

It is seen from the first relation in (4.8) that (4.3) is perfectly stable if u > 0,
except possibly when u is very close to zero, in which case the absolute (not
relative) error of u is what matters. Even then, however, one finds that the error
magnification in (4.3) is negligible, since along the line u = 0 in Region I the
factor 1 + 1/v multiplying e in (4.9) is always less than 3.8. In the subregion
u < 0 of Region 1 it has been determined by computation’' that the magnification
factor

2|ul
u+v

wla,x) =1+

! A prehminary version of an algornthm for computing I'(a, x) and y*(a, x) (see [3]) was used for this
purpose.
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Table I Maximum Error Magnification in Formula (4.3)
Xo 05 1.0 1.5 2.0 2.5 3.0
(=1, x0) 3.426 18.34 56.25 142.6 327.3 706.5

in (4.8) decreases monotonically as a function of a. It is easily verified, moreover,
that in the same subregion the quantity p(a, x) increases monotonically as a
function of x. Therefore, the maximum error magnification occurs at the corner
(=3, xo) of Region 1. Table 1 shows the value of u at this corner point in
dependence on xo. A similar behavior is exhibited by the magnification factor in
(4.9). Its values at (—41, xo), however, are generally smaller than those in Table 1.

Since the continued fraction used in Region III converges rather more slowly
when x gets small, we have an interest in choosing x, as large as possible.
Unfortunately, this runs counter the increased instability of (4.3). By way of a
compromise, we will adopt the value xo = 1.5, thus accepting a possible loss of
between 1 and 2 decimal digits. This choice of x, also strikes a reasonable balance
in the computational work on either side of the boundary line separating Region
III from Region I.

For the actual computation of u, we use (4.5) when |a| < 1 and the first of
(4.2), otherwise. The term in (4.5) involving the gamma function will be written
in the form

TA+a -1 _i.r(1+a).{

1
m— 1}, |a|<-—,

2

a

and evaluated using the Taylor expansions of [I'(1 + @)]™! and [['(1 + a)]™* -1,
respectively. High-precision values of the necessary coefficients are available in
[16, table 5]. Similarly, for the remaining term we write

xa_l ealnx_l

.ln x,

a alnx

and evaluate the first factor on the right by Taylor expansion whenever |a In x|
<1l

The computation of v is most easily accomplished by series expansion. From
(4.6) we find immediately

e w  (=2)
v=~X n-lm, a>-1, (4.10)

or, equivalently,

xa+1 © (a + 1)(_x)k
= t, b = , B=0,1,2 ...
PEaFiA® TG ET DG
The terms Z: can be obtained recursively by
+
to=1, ty = @+ k)x -1, =123, ...

(a+k+1)(k+1)
ACM Transactions on Mathematical Software, Vol. 5, No. 4, December 1979.
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In an effort to reduce the number of arithmetic operations, we define p, =
(a+k)x, gp=(a+k+ 1)k + 1), r, = a+ 2k + 3, and generate {¢:} by means
of

po=ax, gg=a+1 ro=a+3 &L=1,
Dr=pr-1 + X,

Qr = Qr—1 + rp—,

k=123, ...
ry =rorpga+ 2,
tr = —pr-ta-1/qn,

This requires only three additions, one multiplication, and one division per
iteration step.

It is worth noting that overflow poses no serious threat in computing I'(a, x) as
described. Indeed, I'(a, x) decreases in x, hence is largest along the left boundary
of Region 1. The respective boundary values are finite, equal to } I'(a) =
(1/2a)T(a + 1), if @ > 0, and infinite, if ¢ = 0. As x — 0 for fixed a < 0, I'(a, x)
behaves like E1(x) ~ — y — In x, if ¢ = 0, and like —x%/q, if a < 0. In all cases
(a > 0, and — } < a = 0) the values of I'(a, x) are machine representable if «a,
1/a, and x are.

Having computed I'(a, x), one obtains G(a, x) from the first relations in (2.1)
and (2.2), according as ¢ > 0 or a = 0, respectively. The secondary function
g%(a, x) then follows from G(a, x) by

e *x*G(a, x)

1- T@ , a<(,
8% =11 4=, (4.11)
1 - Gla, x), a>0.
4.2 Recursive Computation of G(a, x)
forO<x=xo —-w<a<-—3%
We let’> m = [4 — a], so that
a=—m+e, —i<e=<i,

Gla, x) = G(—m + ¢, x),

where m is an integer greater than or equal to 1. Defining G, = G(-n + ¢, x),
n=0,1,2, .., the well-known recurrence relation in the variable a, satisfied by
T'(a, x), yields®

GO = G(E, x))

] (4.12)
Gi=——(1-xGr), n=12,..,m.
n—e

*'The symbol [r] denotes the largest integer less than or equal to r.
* The normalization (2.2) for G{e, X) must be adopted here, even if € > 0.
ACM Transactions on Mathematical Software, Vol 5, No. 4, December 1979,
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The error propagation pattern in (4.12) is very similar for all e in ~} < e < }.
When x is small (x < 0.2), the error is consistently damped for all n. When x is
larger, there is an initial interval 1 = n < n, in which the error is amplified, and
a subsequent interval n > n, of rapid error damping. As x increases, both no and
the maximum error amplification increases. The latter, however, is well within
acceptable limits, if x < xo = 1.5, the error never being amplified by more than a
factor of 5.7. The case € = 0, which is typical, is analyzed in [5, example 5.4 and
fig. 3]. (Note, in this connection, that G(—m, x) = €*Ep.i(x), where E.. (x) is the
exponential integral of order m + 1.) The recurrence relation (4.12), therefore, is
extremely stable in the region in which it is being used.

The initial value Gy = G(e, x) can be computed by the method appropriate
for Region I (see Section 4.1), except when x < % and € > a*(x), in which
case g*(e, x) is computed first (see Section 5), whereupon G(e, x) is obtained
in a stable manner from g*(e, x), using Gle, x) = T{e)e*x™(1 — g*(e, x))
(cf. footnote 3).

4.3 Computation of G(a, x) for x > xo, —® <a < a*(x)
by Legendre’s Continued Fraction

The following continued fraction, due to Legendre, is well known ([11, p. 103; 1,
eq. 6.5.31)),

X eI‘(a,x)=x—+—1—+—x—+T;---. (4.13)

It converges for any x > 0 and for arbitrary real a. We can write (4.13) in
contracted form as

cax Bo B B
x % I'(a, x) = ee,
x+a+ x+a+ x+a+
ar,=2k+1-aq, k=012 ..,

Bo=1  Pr=k(a-k), k=123,..,

or, alternatively, in the form

—a _ 1 a a; as
(x+1-a)x e‘I‘(a,x)—ﬂ- T Ir e (4.14)

where

_ k(a — k)
T +2%-1-a)x+2k+1-a)

ag

k=123, ... (4.15)

We investigate the convergence character of the continued fraction in (4.14) for
x> xp = 1.5, — < @ = a*(x), which is Region III, in which (4.14) is going to be
used.

ACM Transactions on Mathematical Software, Vol. 5, No. 4, December 1979.
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It is well known (cf,, e.g. [15, p. 17ff]) that any continued fraction of the form
(4.14) can be evaluated as an infinite series,

— e e s 4 s EX t , .
1+ 1+ 1+ 1+ _E.:o * (4.16)
where
th =1, Ik = p1P2 *** Pk, k=123, .., (4.17)
—ax(l + pr-
po=0, p=—2ren) 193 (4.18)

TTY ol + o)

The nth partial sum in (4.16), in fact, is equal to the nth convergent of the
continued fraction, n = 1, 2, 3, .... If we let 6. = 1 + ps, then the recursion for p;
in (4.18) translates into the following recursion for o;:

1
=1, T k=123, ... 4.19
0o Ok 1+ arors ( )

Consider now the case of a; as given in (4.15). If 2 < a (thus a > 1), then
ax > 0 (since a = x + ), and it follows inductively from (4.19) that 0 < 0». < 1;
hence —1 < pi < 0. In view of (4.17), this means that (4.16) initially behaves like
an alternating series with terms decreasing monotonically in absolute value. *’

If 2 > a, then a: < 0, and o may become larger than 1. However, if 0 < 03—
=< 2, we claim that 1 < o, < 2 whenever x = }. Indeed, for the upper bound we
must show that 1 + az0,-1 = 4, i.e. arop-1 = —4, or, equivalently, | ax| ox-1 = 4.
Since 6x-1 < 2, it suffices to show | ax | < }, which is equivalent to 1 < (x — a)® +
4kx. Since k = 1 and x > 0, the latter is certainly true if x = 4, which proves the
assertion o, < 2. The other inequality, 1 < o, is an easy consequence of
1 + aror-1 > 0, established in the course of the argument just given, and the
negativity of a,. Since for the first 2 with £ > a we have 0 < g;-1 = 1 (by virtue
of the discussion in the preceding paragraph, or by virtue of g, = 1), it follows
inductively that 1 < o, =< 2 for all 2 > a, hence 0 < p; < 1. In the case 2 = a, we
have a; = 0 and 6z = 1, thus px = 0, and the argument again applies.

We have shown that |px| =< 1 for all £ = 1, that is, the terms in the series of
(4.16) are nonincreasing in modulus, whenever —» < a = a*(x), x = 4, in
particular, therefore, when (x, ) is in Region III under consideration. Moreover,
the series changes from an alternating series (if @ > 1), initially, to a monotone
series, ultimately.

In the region @ > a*(x), convergence of Legendre’s continued fraction may
deteriorate considerably in speed, which, together with the appropriate choice of
primary function, is the reason we prefer a different method for a > a*(x) (cf.
Section 5).

Computationally, the summation in (4.16), with the a, given in (4.15), can be
simplified similarly as in (4.10). We now define px = ~k(a — k), qr = (x + 2k —
l1—a)x+2k+1—-a), r=4(x+2k+1-a), sx =2k — a+ 1, and generate the
terms # in (4.16) by means of
ACM Transactions on Mathematical Software, Vol. 5, No. 4, December 1979
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po=0, go=(x—1—a)x+1—-a), ro=4(x+1=-a),
Ss=—a+1 p=0 L=]1,

Pr = Pr-1+ Sk—1
Gr = Qr-1+ '
rv.=ry,+8

Sp= Sp_1+ 2

2= pa(l + paos) k=123, ... (4.20)
Tk

e = qr — Tk

e = pitr—1

This requires six additions, two multiplications, and one division per term.

5. THE COMPUTATION OF g*(a, x) = x*y*(a, x)

We need to consider only the region a > a*(x), x = 0, in which g*(a, x) is the
primary function (cf. Section 3). Among the tools available for computing
v*(a, x) are the two power series

-] a(_x)n @K n
+ 1)e*y* =y ———= — .
Ila + e*y*(a, x) = e P e I'a+1) nz-:ol"(a A (5.1)
which follow immediately from (1.4), and the continued fraction
1 +
(@ + De'y*(a, x) = — ad etz _(a+2)x (5.2)

- a+l+x— a+2+x— a+3+x—

which can be derived from Perron’s continued fraction for ratios of Kummer
functions [4]. In our preliminary work [3] we used the first series in (5.1), if x <
1.5, and the continued fraction (5.2), if x > 1.5. Our preference for the alternating
series in (5.1) was motivated by the fact that y*(a, x) in [3] served as primary
function in the whole strip 0 < x < 1.5, —» < a < . In this case the first series
in (5.1) has the advantage of terminating after the first term, if a = 0, and of
presenting similar simplifications if a is a negative integer. These advantages had
to be reconciled with problems of internal cancellation, which increase as x gets
larger. In the present setup, these considerations become irrelevant, and indeed
for a > a*(x) the second series in (5.1) is clearly more attractive, all terms being
positive (hence no cancellation), and convergence being quite rapid, even for x
relatively large (in which case a > x + }).

How does this series compare with the continued fraction (5.2)? Rather
surprisingly, the answer is: They are identical! In other words, the successive
convergents of the continued fraction are identical with the successive partial
sums of the series. To see this, let A,, B, be the numerators and denominators of
the continued fraction in (5.2), so that, in particular,
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B =1, Bi=a+1,
B,=(a+n-1+x)Bp,-i—~(a+n-2)xBp-2, n=34,...

One easily verifies by induction that
Bi=1 Bx=(a+1@+2---(ea+n-1), n=23, ... (5.3)

From the theory of continued fractions it is known that

An _ An-l _ (_l)n_l aaz -+ Qn
Bn Bn-l Bn—an ’

where a; = 1, a; = —x, a, = —(a + n — 2)x (n > 2) are the partial numerators in
(5.2). It follows, by virtue of (5.3), that

An An—l xn—l

—B:—Bn-l—(a+1)(a+2) oo (a+n-1) n=2
hence
An n Ak Ak‘l n xk—l
—=1+ —_———=14 s
B, Ez <Bk Bk_l) ;;.:g a+)a+2)---(a+k~-1)

which is the nth partial sum of the series on the far right of (5.1).
Since series are easier to compute than continued fractions, we propose to
compute g*(a, x) by
g*(a, x) = x%"* Y, - (5.4)
e l(@a+n+1)
everywhere in the region a > a*(x).

The use of (5.4) in the region a > a*(x) is comparable, with regard to
computational effort, to the use of Legendre’s continued fraction in the neigh-
boring region a < a*(x), x > 1.5, except when x is very large and a = a*(x), in
which case Legendre’s continued fraction is more efficient. Some pertinent data
are shown in Table II. We determined the number of iterations required for 8
decimal digit accuracy in Legendre’s continued fraction (4.14), when a = a*(x)
(1 — A), and in the power series (5.4), when a = a*(x)(1 + h), where A was given
the values 0.001, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and x = 10, 20, 40, 80, ...,
10240. Table II shows for each x the minitnum and maximum number of iterations

Table II. Number of Iterations in Legendre’s Continued Fraction (4.14) and mn Taylor’s Expansion
(5.4) for 8-Digit Accuracy

x=10 x =20 x =40 x = 80 x = 160 x = 320

min max min max min max mn max min max min  max

Legendre 7 10 6 15 5 19 4 25 4 32 3 41

Taylor 13 24 13 31 14 42 14 57 14 77 14 106
x = 640 x = 1280 x = 2560 x = 5120 x = 10240

Legendre 3 52 3 65 3 82 2 101 2 124

Taylor 14 146 14 202 14 279 14 387 14 536
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as h varies over the values specified. The number of iterations consistently
decreases with increasing | 2|, so that the maximum occurs on the boundary line
a = a*(x). In order to properly evaluate the data in Table II, one must keep in
mind that each iteration in Legendre’s continued fraction, using the algorithm in
(4.20), requires seven additions, two multiplications, and one division, whereas
each iteration in Taylor’s series requires only two additions, one multiplication,
and one division. Thus, Legendre’s continued fraction is 2 — 24 times as expensive,
per iteration, as Taylor’s series.

6. TESTING

The algorithm in [2] and a double precision version of it were tested extensively
on the CDC 6500 computer at Purdue University against a double precision
version of the procedure in [3]. The double precision algorithms were used to
provide reference values for checking the single precision algorithm, and on a few
occasions, to check against high precision tables (notably the 14S tables in
[8]). Other reference values were taken from various mathematical tables in the
literature.
The tests include:

(i) the error functions (1.10), checked against tables 7.1 and 7.3 in [1];
(it) the case (1.11) of integer values a = n, =20 = n = 20;
(iii) the exponential integral E,(x) in (1.9) for integer values r =n, 0 < n < 20,
and fractional values of v in 0 =< » = 1, checked against tables I, II, III
in [9];
(iv) Pearson’s incomplete gamma function (1.7), checked against tables I and II
in [10];
(v) the incomplete gamma function P(a, x) = (x/2)*y*(a, x/2), checked against
the tables in [6];
(vi) the x” distribution (1.8), checked against table 26.7 in [1];
(vii) the molecular integral A.(x), checked against table 1 in [7] and the more
accurate tables in [8].

An important feature of our algorithm is the automatic monitoring of overflow
and underflow conditions. This is accomplished by first computing the logarithm
of the desired quantities and by making the tests for overflow and underflow on
the logarithms. As a result, minor inaccuracies are introduced in the final
exponentiation, which become particularly noticeable if the result is near the
overflow or underflow limit.

7. SEQUENCES OF INCOMPLETE GAMMA FUNCTIONS

Expansions in terms of incomplete gamma functions require the generation of
sequences G, = Gla + n, x) or g,* = g*(a + n, x) for fixedaand n =0, 1, 2, ...,
or of suitably scaled sequences {\.G.}, {A\.*g.*}, where A, # 0, A,* £ 0 are scale
factors. (For the purpose of the following discussion, the choice of these factors
is immaterial; we shall assume, therefore, A, = \,* = 1.) It would be wasteful to
compute the G, and g,* individually, for each n, by some evaluation procedure
(such as the one developed in Sections 3-5). More efficient is the use of recurrence
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relations satisfied by G, and g,*. We discuss this in the case a > 0, x > 0, which
is a case of practical importance.

7.1 Generation of G, = G(a + n, x)

From the difference equation G(a + 1, x) = G(a, x) + x%¢ */I'(a + 1), letting
a = «a + n, one finds immediately the recurrence relation

xu+ne-—x
i1 = Gp + =——,
G T(a+n+1)
The numerical stability of (7.1) is determined by the solution A, = 1 of
the associated homogeneous recurrence relation, through the “amplification
factors” [5]

n=012, .. (7.1

Gohn| T(a,x) T(a+n)
G. | T(a T(a+n,x)

Indeed, if s and ¢ are arbitrary nonnegative integers, a small (relative) error e
injected into (7.1) at n = s will propagate into a (relative) error €p./p. at n = ¢,
causing the error to be damped if p; < p, and magnified if p, > p,. To achieve
consistent error damping, hence perfect numerical stability, the recurrence rela-
tion (7.1) ought to be applied in the direction of decreasing pn.

Since I'(a, x)/T'(a) increases from 0 to 1 on the interval 0 < a < « [14, p.
276], we see from (7.2) that p, decreases monotonically from 1 to I'(a, x)/T(a), as
n increases from 0 to «. It follows that the recurrence relation (7.1) is perfectly
stable in the forward direction. The proper way to compute the sequence {G.},
therefore, consists in first evaluating Go = G{a, x) (using our evaluation procedure,
for example), and then applying (7.1) for n = 0, 1, 2, ... to successively generate as
many of the G, as desired.

7.2 Generationofg,* =g,*(a + n, x)

From the difference equation g*(a + 1, x) = g*(a, x) — x“¢™*/T'(a + 1), we now
find the recurrence relation

a+n —x

x e

* = "* _____’
E =8 TR I atl)

n=012, ., (7.3)

which has associated the amplification factors
&o*h,*
&"

since h,* = 1 and g,* = y(a + n, x)/I'(a + n). Noting that I'(a, x)/T(a@) =1 -
v(a, x)/T'(a), and that the ratio on the left increases monotonically from 0 to 1 as
a function of a, it follows that y(a, x)/I'(a) decreases monotonically from 1 to 0,
hence that p,* increases monotonically from 1 to o as n increases from 0 to .
Therefore, the recurrence relation (7.3) is perfectly stable in the backward
direction. Wishing to compute g,* forn = 0, 1, 2, ..., N, say, we should therefore
use our evaluation procedure on gn* = g*(a + N, x), and then employ (7.3) in the
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form

oa+n —x

* % X €
n = 8n VN T = —11 T4y ey Yy
8 g+1+1,(a+n+1) n=N N-2 0

to generate all remaining values of g,*.
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