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1. INTRODUCTION 

T h e  i n c o m p l e t e  g a m m a  f u n c t i o n  a n d  i ts  c o m p l e m e n t a r y  f u n c t i o n  a r e  u s u a l l y  
de f ined  b y  

7(a,  x)  = e - i t  a-l dr, F ( a ,  x) ffi e - t t  ~-1 dt .  (1.1) 

B y  E u l e r ' s  i n t e g r a l  for  t h e  g a m m a  func t ion ,  

7(a,  x) + F ( a ,  x) = F ( a ) .  (1.2) 

W e  a re  i n t e r e s t e d  in  c o m p u t i n g  b o t h  f u n c t i o n s  for  a r b i t r a r y  x, a in  t h e  h a l f - p l a n e  

ffi {(x, a)  : x >  0, -oo  < a < oo}. 

T h e  f u n c t i o n  F ( a ,  x) is m e a n i n g f u l  e v e r y w h e r e  in ~ ,  e x c e p t  a long  t h e  n e g a t i v e  
a -ax is ,  w h e r e  i t  b e c o m e s  inf in i te .  T h e  de f i n i t i on  of  T(a, x) is less  s a t i s f ac to ry ,  
i n a s m u c h  as  i t  r e q u i r e s  a > 0. T h e  d i f f icul ty ,  h o w e v e r ,  is  e a s i l y  r e s o l v e d  b y  
a d o p t i n g  T r i c o m i ' s  v e r s i o n  [14] o f  t h e  i n c o m p l e t e  g a m m a  func t ion ,  

x--a 
7*(a,  x) = ~ 7(a ,  x),  (1.3) 
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incomplete Gamma Functions • 467 

which can be continued analytically into the entire (x, a)-plane, resulting in an 
entire function both in a and x, 

y*(a,  x) = e -XM(l '  a + 1; x) _ M ( a ,  a + 1; -x)  (1.4) 
r ( a  + 1) r ( a  + 1) 

Here, 

a z a(a + 1) z 2 
M(a, b; z) = l + .~ ~ ÷ b(b + l) 2! 

+ . . .  

is Kummer's function. Moreover, 7* (a, x) is real-valued for a and x both real, in 
contrast to F(a, x), which becomes complex for negative x. 

Our objective, then, is to compute the functions y*(a, x) and F(a, x), suitably 
normalized, to any prescribed accuracy for arbitrary x, a in ~ .  We do not attempt 
here to compute 7* (a, x) for negative x, which may well be a more difficult (but, 
fortunately, less important) task. We accomplish our task by selecting one of the 
two functions as pr imary  function, to be computed first, and computing the other 
in terms of the primary function by means of 

r(a, x) = r(a)(1 - xay*(a, X)} (1.5) 

o r  

r(a, x)~ 
7 * ( a ,  x )  = x - a  1 r(a) J " (1.6} 

If y*(a, x) is the primary function, we evaluate it by Taylor's series. For F(a, x) 
we use a combination of methods, including direct evaluation based partly on 
power series, recursive computation, and the classical continued fraction of 
Legendre. Although our procedure is valid throughout the region )gz, excessively 
large values of a and x will strain it, particularly when a * x >> 1 (cf. Section 5). 
In such cases it may be preferable to use asymptotic methods, e.g. the uniform 
asymptotic expansions of Temme [12]. We shall not consider these here, however, 
nor do we implement them in our algorithm. 

An evaluation procedure of the generality attempted here is likely to be of 
interest in many diverse areas of application. Widely used special cases of 
y*(a, x) or F(a, x) include Pearson's form of the incomplete gamma function 
[10], 

I(u, p) = (uJ-pp + 1)P+~y*(p + 1, uJpp + 1), u _ O, p > -1 ,  (1.7) 

the xLprobability distribution functions 

~/' ) /'1 2~ . [p  1 
P(Xz]~ ' )=k '2X J ~' k ~ , ~ X  z , 

1 F ( ~ I  ) 
Q(X2] ~) = k2' 2 ×2 , (1.8) 

the exponential integrals 

E,(x) = x ' - lF( -p  + 1, x) (1.9) 
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468 Walter Gautschl 

(which, for p = - n ,  a negative integer, yield the molecular  integrals A,(x)  [7]), 
and the error  functions 

erf  x ffi x~*(½, x2), erfc x ffi (1/J-~)F(½, x2). (1.10) 

When a is integer-valued, 7*(a, x) becomes an e lementary  function, 

~,*(-n, x) ffi x n, T*(n + 1, x) = x-~"+~)[1 - e-Xe,(x)], n = 0, 1, 2, ..., (1.11) 

where en(X) = ~ o  xk/k!.  

2. NORMALIZATION AND ASYMPTOTIC BEHAVIOR 

T he  purpose of normalizing functions is twofold: In the first place, one wants to 
scale the function in such a way tha t  underflow or overflow on a computer  is 
avoided in as large a region as possible. In the second place, one wants to bring 
the function into a form in which it is used most  natural ly and convenient ly in 
applications. The re  is little doubt  as to what  the proper  normalizat ion ought  to 
be for F(a ,  x) and ~,*(a, x), when a is a positive number.  T h e  formulas (1.7), (1.8}, 
(1.10), and (1.11), indeed, all point  toward the normalizat ion 

F(a,  x) 
G(a, x) = ~ ,  g*(a, x) ~- x a ' y * ( a ,  X), 0 ----- X < 0% a > O. (2.1) 

P(a)  

We then  have, by (1.5), 

G(a, x) + g*(a, x) = l,  0 _ < x < o o ,  a > O. 

I t  is equally clear tha t  division by F (a )  to normalize P(a ,  x), when a is negative 
or zero, is undesirable, as this would generate functions identically zero for x > 0, 
when a is integer-valued, and would cause complications in evaluating exponential  
and molecular  integrals (el. (1.9)). Growth  considerations, on the o ther  hand, 
suggest a multiplicative factor  eXx -a. The  function ~,*(a, x) behaves ra the r  
capriciously for a < 0 and is not  easily normalized. We decided (somewhat  
reluctantly) to adopt  the same normalization as in (2.1), primari ly for reasons of 
uniformity and good behavior  for large a and x. We are doing this, however,  at  
the expense of introducing a singularity along the line x - 0. For  nonposit ive a, 
we thus define 

G(a, x) = eXx-"F(a, x), g*(a, x) ffi xay*(a, x), 0 <_ x < 0% a <_ O. (2.2) 

Our efforts will be directed towards computing G(a, x) and g*(a, x) in the 
region Zz. 

I t  is useful to briefly indicate the behavior  of G(a, x) a n d g * ( a ,  x) in the various 
parts  of the region ~f. The  limit values, as x approaches zero for fixed a, are 
readily found to be 

G ( a , O ) = l ,  g*(a ,O)  = 0  i f a > O ,  

G(a,O)--o% g*(a ,O)  ff i l  i f a = O ,  

G(a, O) = 1/[ a I, g*(a, O) -- oo if a < O. 

(2.3) 

(It should be noted tha t  g*(a ,  x), considered as a function of two independent  
variables, is indeterminate  at  a ffi 0, x = 0.) If  l a l  is bounded and x large, we 
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Incomplete Gamma Functions 469 

deduce from well-known asymptot ic  formulas [13, p. 174], 

e-Xxa-1 
G(a, x) ~ , a > 0 bounded, 

F(a )  

1 
G(a, x) ~ - ,  a <_ 0 bounded,  x --) oo. (2.4) 

X 

g*(a ,  x) ~ 1, { a I bounded, 

Equal ly  simple is the case I x I bounded and a --) oo (over positive values of a) ,  in 
which case [13, p. 175] 

G ( a , x )  ~ 1, I x l b o u n d e d ,  

e - X x  a 
g*(a,  x) ~ F ( a  + 1) '  Ixl  bounded, 

a(>O) ---) oo. (2.5) 

An indication of the behavior  of these functions, when both  variables are large, 
can be gained by setting x = pa, p > 0 fixed, and lett ing a --0 oo. Laplace's method,  
applied to the integrals in (1.1), then gives 

Similarly, 

t 1, 0<p<l, ½, p f f i l ,  a - - .  oo, 
G(a, pa) ~' p ae-(p-1)a 

2~'a~a ( p -  1) '  p > l ,  

p ae (l--p)a 

g*(a ,  pa) ~ 

0 < p < l ,  
(1 - p ) '  

½, p = l ,  a---> 00. 

1, p > 1, 

G ( - a ,  pa) ~ 
(p + 1)a ' 

0 < p < ~ ,  a - - ,  oo, 

2 sin ~ra 

(p + 1) 

g * ( - a ,  pa) ~ a ~ 0 ( m o d l ) ,  

1 i fpe  p+l>_l, 

p -ae-a(P+D if pe p+I < 1, 

(2.6) 

a ---) oo. (2.7) 

3. CHOICE OF PRIMARY FUNCTION 

Either of the two functions F(a, x), ~,*(a, x) can be expressed in terms of the 
other  by means  of the relations 

F(a ,  x) 
r ( a ,  x) -- F (a ) (1  - xay*(a,  x)}, "/*(a, x) = x -a 1 " ~ a ~  J "  (3.1) 

In our choice of pr imary  function, we are guided primarily by considerations of 
numerical  stability. We must  be careful not  to lose excessively in accuracy when 
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we perform the subtractions indicated in braces in (3.1). No such loss occurs if 
the absolute value of the respective difference is larger than, or equal to, ½. This 
criterion is easily expressed in terms of the ratio 

F(a, x) 
r(a, x) = F(a) (3.2) 

Indeed, the first relation in (3.1) is stable exactly if ] r(a, x) I _ ½, while the second 
is stable in either of the two cases r(a, x) >_ 3 and r(a, x) <- ½. As a consequence, 
an ideal choice of  the primary function is 7*(a, x) i f  } <_ r(a, x) <_ 3, and 
F(a, x) i f  I r( a, x) I <_ ½; in all remaining cases either choice is satisfactory. 

For the practical implementation of this criterion, consider first a > 0, x > 0. 
In this case, 0 < r(a, x) < 1, and r(a, x) increases monotonically in the variable 
a ([14, p. 276]). Since l im~0 r(a, x) ffi 0 and, by (2.5), lim~_.~ r(a, x) ffi 1, there is 
a unique curve a = a(x) in the first quadrant x > 0, a > 0, along which r(a, x) 
= ½, and r(a, x) ~ ½ depending on whether a ~ a(x). Since, by (2.0, r(x, x) ~ ½ 
as x --. o% we have a(x) * x for x large. By numerical computation it is found that  
in fact a(x) - x for all (except very small) positive x, the value of a(x) consistently 
being slightly larger than x. As x --. 0 one finds a(x) ~ In }~In x, which suggests 
the approximation a(x) - a*(x), where 

x + ¼ ,  ¼_<x<oo, 
a*(x) ffi (3.3) 

In½/Inx, 0<x___¼. 

The proper choice of primary function thus is r ( a ,  x) (rasp. G(a, x)) if 0 < a <_ 
a(x), and 7*(a, x) (resp. g*(a, x)) if a > a(x), where a(x) may be approximated 
by a*(x) in (3.3). 

In the case a _ 0, x > 0, the second relation in (3.1) is stable if F(a) < 0, i.e. if 

- m  - 1 < a < -m,  (3.4) 

where m _> 0 is an even integer. If m _> I is an odd integer and a as in (3.4), then 
for x not too large there is a possibility that 7*(a, x) will vanish. The second 
relation in (3.1) is then subject to cancellation errors. A similar problem of 
cancellation, however, would occur if 7*(a, x) were calculated directly (e.g. from 
its Taylor expansion in the variable x). Furthermore, if 7*(a, x) were the primary 
function, the first relation in (3.1) would create serious (though not unsurmount- 
able) computational difficulties for values of a near (or equal!) to a nonpositive 
integer (cf. the relevant discussion in [3]). All these considerations lead us to 
adopt .F(a, x) (resp. G(a, x)) as the primary function, whenever a _ 0. 

In summary, then, our choice of primary function is r ( a ,  x) (resp. G(a, x)), i f  
-00 < a <_ a(x), and 7*(a, x) (resp. g*(a, x)), i f  a > a(x). Here, a(x) is adequately 
approximated by a* (x) in (3.3). 

4. THE COMPUTATION OF G(a, x) 

As discussed in Section 3, it suffices to consider the region -oo < a <_ a*(x),  
x _> 0. We shall break up this region into the following three subregions: 

RegionI: O<_x<_xo, -½ <-a<-a*(x) .  
RegionII: 0_<x<_x0, - o o < a < - { .  
Region III: x > Xo, -00 < a <- a*(x). 
ACM TransacUons on Mathematical  Software, Vol 5, No 4, December 1979. 
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T h e  breakpoin t  Xo will be chosen to have  the  value x0 ffi 1,5. (A mot iva t ioh  for 
this choice is given in subsect ion 4.1.) We use a different me thod  of comput~ition 
in each of these three  subregions. In Region I we first compute  F(a ,  x) direct ly 
f rom (1.4) and (1.5), and then  use (2.1) or (2.2), dependhig off Whether a > 0 or 
a _< 0, to obtain G(a, x). In  Region I I  we employ  h recurrence  relat ion in the 
variable a, the s tar t ing value being computed  by  the me thod  appropr ia te  for 
Region I (except, possibly, when  x < ¼). In  Region I I I  We us~ fi cont inued fract ion 
due to Legendre.  We now proceed to describe and just ify these  var ious me thods  
in more  detail. 

4.1 Direct Computat ion of F(a, x )  and G(a, x) 
for 0 < x < Xo, - ½ "< a <_ a* (x )  

Using (1.5), we can write 

X a X a 
r ( a ,  x) = F(a)  - - -  + - -  [1 - r ( a  + 1)7*(a, x)] .  

a a 

We let 

and propose  to use 

X a 
u = r(a) - - - ,  

a 

X a 
v = - -  [ 1  - r ( a  + 1)7*(a, x)], a 

( 4 . 1 )  

( 4 : 2 )  

F(a,  x) = u + v (4.3) 

as a basis of  computa t ion  in Region I. T h e  breakpoin t  x0 will be determined,  
among  other  things, f rom the requ i rement  t ha t  the relat ive error  genera ted  in 
(4.3) (due to respect ive errors  in u and v) be within acceptable  limits. 

Before analyzing these errors, we observe  t h a t  bo th  quant i t ies  u and v have  
finite limits as a --* 0, when x > 0. Indeed, 

l im u = - 7  - In x, lim v = E,(x) + 7 + In x, (4.4) 
a-*O a ~ 0  

where 7 -- .57721... is Euler ' s  constant  and E,(x) is the  exponential  integral. T h e  
first relat ion follows a t  once f rom 

F ( l + a ) -  1 x a -  1 
u = - - ,  ( 4 . 5 )  a a 

the  second f rom (4.3) by  letting a --~ 0 and noting t ha t  F(0, x) = E,(x). 
Fur thermore ,  f rom (1.1) and (1.3), we have  

v = ta-~(1 - e-')dt, (4.6) 

valid not  only for a > 0, but  even for a > - 1 .  In  part icular,  therefore,  

v > 0  i f a  > - l , x  > 0 .  (4.7) 

Using Tay lo r ' s  expansion in {4.6) it is possible to compute  v very  accurately,  
essentially to machine  precision. T h e  same  can be said for u, except  t ha t  near  the  
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Fig. 1. The subregions u ~ 0 m Region I 

l ine w h e r e  u = 0 (see F igure  1) t he  p rec i s ion  will be  a t t a i n e d  on ly  in t e r m s  of  the  
abso lu t e  error ,  no t  t he  re la t ive  error .  I f  t he  abso lu t e  a n d  re la t ive  e r ro r  of  u is e ,  
and  E,, r espec t ive ly ,  and  Ev is t he  re la t ive  e r ro r  o f  v, t h e n  the  re la t ive  e r ro r  Ev of  
F (a ,  x), c o m p u t e d  b y  (4.3), will be  

e ,  + v(,, u~, + GE,, 
El"  --~ 

U-I-V U-l-v 

T h e r e f o r e ,  if ~ ffi max(  I E, [, [¢~ [ ), we have ,  in v iew of  (4.7), 

zlul  
l e v i < _ (  if  u > o ,  IE,,I--- 1 +  ( if 

u + o ]  

Similar ly ,  if e ffi max(  ] e ,  i, ] E~, I ), t h e n  

l + v  
I(,-I < e. 

u - F v  

u < o. (4.8) 

(4.9) 

I t  is seen  f r o m  the  f i rs t  r e l a t ion  in (4.8) t h a t  (4.3) is pe r f ec t ly  s tab le  if  u > 0, 
excep t  poss ib ly  w h e n  u is v e r y  close to  zero,  in wh ich  case  t he  abso lu t e  (not  
re la t ive)  e r ro r  of  u is w h a t  ma t t e r s .  E v e n  then ,  howeve r ,  one  f inds  t h a t  t he  e r ro r  
magn i f i ca t ion  in {4.3) is negligible,  s ince a long  the  line u ffi 0 in Reg ion  I t he  
f ac to r  1 + 1/v mul t ip ly ing  e in (4.9) is a lways  less t h a n  3.8. In  t he  sub reg ion  
u < 0 of  Reg ion  I i t  ha s  b e e n  d e t e r m i n e d  b y  c o m p u t a t i o n  ~ t h a t  t he  magn i f i ca t i on  
f ac to r  

21ul #(a ,  x)  ffi 1 + - -  
u + v  

' A prelLmmary version of an algorithm for computing F(a, x) and 7*(a, x) (see [3]) was used for thin 
purpose. 

A C M  T r a n s a c t i o n s  o n  M a t b e m a t m a l  S o f t w a r e ,  V o l  5, N o .  4 ,  D e c e m b e r  1979 .  



I n c o m p l e t e  G a m m a  F u n c t i o n s  

Table  I M a x i m u m  Error  Magnif icat ion in Formula  (4.3) 

473 

x0 0 5 1.0 1.5 2.0 2.5 3.0 

#(-½, x0) 3.426 18.34 56.25 142.6 327.3 706.5 

in (4.8) decreases monotonically as a function of a. It is easily verified, moreover, 
that in the same subregion the quantity ~(a, x) increases monotonically as a 
function of x. Therefore, the maximum error magnification occurs at the corner 
(-½, Xo) of Region I. Table I shows the value of # at this corner point in 
dependence on xo. A similar behavior is exhibited by the magnification factor in 
(4.9). Its values at (-½, Xo), however, are generally smaller than those in Table I. 

Since the continued fraction used in Region III converges rather more slowly 
when x gets small, we have an interest in choosing xo as large as possible. 
Unfortunately, this runs counter the increased instability of (4.3}. By way of a 
compromise, we will adopt the value Xo = 1.5, thus accepting a possible loss of 
between 1 and 2 decimal digits. This choice of xo also strikes a reasonable balance 
in the computational work on either side of the boundary line separating Region 
III from Region I. 

For the actual computation of u, we use (4.5) when I a I < ½ and the first of 
(4.2), otherwise. The term in (4.5) involving the gamma function will be written 
in the form 

F ( I + a ) - I  _ I . F ( 1  + a ) . {  1 1 ,} 1 

a a F(1 + a) [ a l < , ~  ' 

and evaluated using the Taylor expansions of [F(1 + a)] -~ and [F(1 + a)] -~ -1 ,  
respectively. High-precision values of the necessary coefficients are available in 
[16, table 5]. Similarly, for the remaining term we write 

x a - 1 e a In x 1 
m - - .  l r l  x ,  

a a l n x  

and evaluate the first factor on the right by Taylor expansion whenever [ a In x I 
<1 .  

The computation of v is most easily accomplished by series expansion. From 
(4.6) we find immediately 

or, equivalently, 

= ( _ _ X ) n  

v = - x a , . 1  ~ (a  + n )n ! '  a > - l ,  (4.10) 

xa+l oo (a  "Jr 1 ) ( - - x )  k 
v -  ~ tk, tk = = a +  lk.o ( a + k + l ) ( k +  1)!' k 0 ,1 ,2  .....  

The terms tk can be obtained recursively by 

(a  + k ) x  
t o = l ,  t , = -  tk-1, k- -  1 ,2 ,3  ..... 

( a + k +  1 ) ( k + l )  
ACM Transactions on Mathematmal Software, Vol. 5, No. 4, December 1979. 
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I n  an  effort  to  r educe  the  n u m b e r  of  a r i thme t i c  opera t ions ,  we define pk = 
(a + k)x, qk = (a + k + 1)(k + 1), rh = a + 2k + 3, and  genera te  {tk} by  m e a n s  
o f  

po = ax, qo = a + l, r o = a + 3 ,  t o - - l ,  

pk'--P,-~ + x, 

qk = qk-1 + rh-~, 
k = 1, 2, 3 . . . . .  

rk = rk-i + 2, 

tk = -pk" tk-1/ qk, 

This  requi res  on ly  th ree  addi t ions ,  one  mul t ip l ica t ion,  and  one division per  
i te ra t ion step. 

I t  is w o r t h  not ing  t h a t  overf low poses  no  ser ious  t h r e a t  in c o m p u t i n g  F(a ,  x)  as 
described.  Indeed ,  F (a ,  x)  decreases  in x, hence  is la rges t  a long the  left b o u n d a r y  
of  Reg ion  I. T h e  respect ive  b o u n d a r y  va lues  a re  finite, equal  to  ½ F(a )  -- 
(1/2a)F(a + 1), if a > 0, and  infinite, if a -_- 0. As  x --) 0 for  fixed a _ 0, F (a ,  x)  
behaves  like E d x )  ~ - y - In x, if a = 0, and  like - x " / a ,  if  a < 0. In  all cases  
(a > 0, and  - ½ < a _ 0) the  va lues  of  F (a ,  x)  are  m a c h i n e  r ep resen tab le  if a, 
1/a, and  x are. 

Hav ing  c o m p u t e d  F(a ,  x),  one  ob ta ins  G(a, x)  f r o m  the  first  re la t ions  in (2.1) 
and  (2.2), accord ing  as a > 0 or  a < 0, respect ively .  T h e  s e c o n d a r y  func t ion  
g*(a, x) t h e n  follows f r o m  G(a, x)  by  

t e-XxaG(a, x) 1 F (a )  , a < 0, 

g * ( a , x ) =  1, a = O ,  

1 - G ( a ,  x),  a > 0. 

(4.11) 

4.2 Recursive Computation of G(a, x) 
f o r O < x < x o ,  - o o < a < - ½  

W e  let  2 m = [½ - a] ,  so t h a t  

a = - m + e ,  -½<~<_½, 

G(a, x) = G ( - m  + ~, x) ,  

where  m is an  in teger  g rea te r  t h a n  or  equal  to  1. Def in ing  (3, = G ( - n  + e, x),  
n = 0, 1, 2 . . . . .  t he  wel l -known recu r rence  re la t ion  in the  var iable  a, sat isfied by  
F (a ,  x),  yields 3 

Go = G(¢, x),  
(4.12) 

1 
G , =  (1 - x G,_I}, n = l ,  2 . . . .  , m .  

n - E  

2 The symbol [r] denotes the largest integer less than or equal to r. 
The normalization (2.2) for G(~, X) must be adopted here, even if e > 0. 
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The  error  propagation pa t te rn  in (4.12) is very  similar for all e in -½ < e _< ½. 
When  x is small (x :< 0.2), the error  is consistently damped for all n. When  x is 
larger, there  is an initial interval 1 _< n __ no in which the error  is amplified, and 
a subsequent  interval n > no of rapid error  damping. As x increases, bo th  no and 
the maximum error  amplification increases. The  latter,  however,  is well within 
acceptable limits, if x _ Xo = 1.5, the error  never  being amplified by  more  than  a 
factm of 5.7. The  case • = 0, which is typical, is analyzed in [5, example 5.4 and 
fig. 3]. (Note, in this connection, tha t  G ( - m ,  x )  = eXEm+l(X),  where Em+~(x)  i s  the  
exponential  integral of order  m + 1.) T h e  recurrence relat ion (4.12), therefore,  is 
extremely stable in the region in which it is being used. 

The  initial value Go = G(• ,  x )  can be computed by the method  appropriate  
for Region I (see Section 4.1), except  when x < ¼ and e > a*(x),  in which 
case g * ( • ,  x )  is computed first (see Section 5), whereupon G(¢, x) is obtained 
in a stable manner  from g*(e, x),  using G(• ,  x )  = F ( e ) e " x - ' ( 1  - g*(e, x))  
(cf. footnote 3). 

4.3 Computation of G(a, x) for x > Xo, -oo < a ~ a*(x)  
by Legendre's Continued Fraction 

The  following continued fraction, due to Legendre, is well known ([11, p. 103; 1, 
eq. 6.5.31]), 

1 1 - a  1 2 - a  2 
x - " e ~ F ( a ' x )  x +  1+ x+  1+ x+  (4.13) 

It  converges for any x > 0 and for arbi t rary real a. We can write (4.13) in 
contracted form as 

x - a e X F ( a ,  x )  = 
x + a 0 +  X + a l +  

ak = 2 k  + 1 - a ,  

flo = 1, flk = k ( a  - k ) ,  

X + ~ 2 + ' ' ' '  

k = 0, 1, 2 .. . .  , 

k = 1, 2, 3, ..., 

or, alternatively,  in the form 

1 a l  a2 a3 
(x  + 1 - a ) x - a e ~ F ( a ,  x) . . . . . . . .  , (4.14) 

1+ 1+ 1+ 1+ 

where 

k ( a  - k )  
ah = (x  + 2 k  - l - a ) ( x  + 2 k  + l - a ) '  k = 1 , 2 , 3 , . . . .  (4.15) 

We investigate the convergence character  of the  continued fraction in (4.14) for 
x > x0 = 1 .5 ,  - o o  < a _ a*(x), which is Region III, in which (4.14) is going to be 
used. 
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I t  is well known (cf., e.g. [15, p. 17if]) tha t  any  cont inued fract ion of  the form 
(4.14) can be evaluated as an infinite series, 

where  

1 a l  a 2  a 3  ® 
. . . . . . . .  ~ tk, (4.16) 
1+ 1+ 1+ 1+ .k-0 

to = 1, tk = pip2 . . .  pk,  k = 1, 2, 3, ..., (4.17) 

- -ak (1  + pk-1) 
po ffi O, pk = lX + ak(1 + pk-~) ' k --- 1, 2, 3 . . . . .  (4.18) 

T h e  n th  part ial  sum in (4.16), in fact, is equal  to the  n t h  convergent  of  the 
cont inued fraction, n = 1, 2, 3, .... I f  we let Ok ffi 1 + Pk, ther, the  recursion for #k 
in (4.18) t ransla tes  into the  following recursion for Ok: 

1 
= , k -- 1, 2, 3 . . . . .  (4 .19)  oo ffi 1, Ok 1 + akak-1 

Consider  now the case of  ak as  given in (4.15). I f  k < a (thus a > 1), then  
ak > 0 (since a ___ x + 5), and it follows inductively f rom (4.19) t ha t  0 < Ok < 1; 
hence - 1  < pk < 0. In  view of (4.17), this  means  t ha t  (4.16) initially behaves  like 
an a l ternat ing series with t e rms  decreasing monotonica l ly  in absolute  value. "" 

I f  k > a, then  ak < 0, and ok m a y  become larger t han  1. However ,  if 0 < ok-1 
___ 2, we claim tha t  1 < ok -< 2 whenever  x _> 5- Indeed,  for the  uppe r  bound we 
mus t  show tha t  1 + akok-1 >-- ½, i.e. akok - i  >-- --½, or, equivalently,  ] ak ] ok-~ -< ½. 
Since ok-1 - 2, it suffices to show ] ak ] < 5, which is equivalent  to 1 _< (x - a) 2 + 
4 k x .  Since k __ 1 and x > 0, the la t ter  is cer tainly t rue  if x _> 5, which proves  the  
assert ion ok -< 2. T h e  o ther  inequality,  1 < ok, is an easy consequence of 
1 + akok-~ > 0, establ ished in the  course of  the  a rgumen t  jus t  given, and the 
negat ivi ty  of  ak. Since for the  first k with k > a we have  0 < ok-1 --< 1 (by vir tue 
of the  discussion in the  preceding paragraph ,  or  by  vir tue of  o0 = 1), it follows 
inductively tha t  1 < Ok <-- 2 for all k > a, hence 0 < pk --- 1. In  the  case k ffi a, we 
have  ak ffi 0 and Ok ffi 1, thus  pk = 0, and the  a rgumen t  again applies. 

We have  shown tha t  [pk[ --< 1 for all k _> 1, t ha t  is, the  t e rms  in the  series of 
(4.16) are nonincreasing in modulus,  whenever  - o o  < a <- a * ( x ) ,  x >_ 5, in 
part icular,  therefore,  when  (x, a) is in Region I I I  under  consideration.  Moreover ,  
the series changes  f rom an a l ternat ing series (if a > 1), initially, to a mono tone  
series, ul t imately.  

In  the  region a > a*(x), convergence of Legendre ' s  cont inued fract ion m a y  
deter iorate  considerably in speed, which, toge ther  with the  appropr ia te  choice of  
p r imary  function, is the reason we prefer  a different m e t h o d  for a > a*(x) (cf. 
Sect ion 5). 

Computa t ional ly ,  the  s u m m a t i o n  in (4.16), with the  ak given in (4.15), can be 
simplified similarly as in (4.10). We now define pk = - k ( a  - k ) ,  qk = (X + 2 k  - 

1 - a ) ( x  + 2k + 1 - a),  rk = 4(X + 2k + 1 - a), sk ffi 2k - a + 1, and genera te  the  
t e rms  tk in (4.16) by  means  of 
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p 0  = 0~ q o = ( x - l - a ) ( x + l - a ) ,  r o f 4 ( x + l - a ) ,  

s 0 - - - a +  1, p0--0 ,  t0 - -1 ,  

p k  = Pk-~ + Sk-I 

qk = qk-1 + rk-~ 

rk  = rk-1  + 8 

S k - ~  Sk - l  + 2 

vk = pk(1 + pk-1) 

Tk 

q k -  vk 

tk = pktk-~ 

k = 1, 2, 3 .. . . .  (4.20) 

This  requires six additions, two multiplications, and one division per term. 

5. THE COMPUTATION OF g*(a, x) = x~y*(a, x) 

We need to consider only the region a > ~*(x), x >_ 0, in which g*(a ,  x )  is the 
pr imary function (cf. Section 3). Among the tools available for computing 
-/*(a, x) are the two power series 

F (a  + 1)eXT*(a, x )  = e x ~ a ( - x ) "  ® x" ~o ( a ¥ ~ - ~ !  - r ( a  + 1) ~ o r ( a  ~:n + 1)' (5.1) 

which follow immediately from (1.4), and the continued fraction 

1 x (a + 1)x (a + 2)x 
F (a  + 1)e'7*(a, x) = . . ,  (5.2) 

1 -  a + l + x -  a + 2 + x -  a + 3 + x -  

which can be derived from Perron 's  cont inued fraction for ratios of  K u m m e r  
functions [4]. In our prel iminary work [3] we used the first series in (5.1), if x _< 
1.5, and the continued fraction {5.2), if x > 1.5. Our preference for the al ternating 
series in (5.1) was mot ivated  by the fact tha t  7*(a, x) in [3] served as pr imary  
function in the whole strip 0 _< x _< 1.5, -oo < a < oo. In this case the first series 
in (5.1) has the advantage of terminating after  the first term, if a = 0, and of 
presenting similar simplifications if a is a negative integer. These  advantages had  
to be reconciled with problems of internal  cancellation, which increase as x gets 
larger. In the present  setup, these considerations become irrelevant, and indeed 
for a > a*(x) the second series in (5.1) is clearly more  attractive,  all te rms being 
positive (hence no cancellation), and convergence being quite rapid, even for x 
relatively large (in which case a > x + ¼). 

How does this series compare  with the continued fraction (5.2)? Ra the r  
surprisingly, the answer is: T h e y  are identical! In o ther  words, the successive 
convergents of the continued fraction are identical with the successive partial  
sums of the series. To  see this, let A,, B ,  be the numera tors  and denominators  of 
the continued fraction in (5.2), so that,  in particular, 
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B1 = 1, B2 ffi a + 1, 

B ,  ffi (a  + n - 1 + x)B, , -~ - (a  + n - 2)xBn-2, n ffi 3, 4, .... 

One  eas i ly  ver i f i es  by  i n d u c t i o n  t h a t  

B l f f i l ,  B , = ( a + l ) ( a + 2 ) . . .  ( a + n - 1 ) ,  n ffi 2, 3, .... (5.8) 

F r o m  t h e  t h e o r y  o f  c o n t i n u e d  f r a c t i o n s  i t  is  k n o w n  t h a t  

A ,  A , - l f f i  ( _ 1 ) , _  ~ ala2 . . .  an 
Bn  Bn-1 B , , - I B .  ' 

w h e r e  a~ = 1, a2 = --x ,  an ffi - - ( a  + n - 2)x  (n > 2) a r e  t h e  p a r t i a l  n u m e r a t o r s  in 
(5.2). I t  fol lows,  b y  v i r t u e  of  (5.3), t h a t  

A n  A . - I  x "-1 
n ~  2; 

B ,  B , -~  ( a + l ) ( a + 2 ) . . .  ( a + n - 1 ) '  

h e n c e  

A n  n ( A k  A k - l )  _~ ~ X k-a 
8n--1+ 2 Bk-,/ 1+ 

- k-2 ( a  + 1 ) ( a  + 2)  . . .  ( a  + k - 1 ) '  

w h i c h  is t h e  n t h  p a r t i a l  s u m  of  t h e  se r i e s  on  t h e  fa r  r i g h t  o f  (5.1). 
S i n c e  se r i e s  a r e  eas i e r  to  c o m p u t e  t h a n  c o n t i n u e d  f r ac t ions ,  we p r o p o s e  to  

c o m p u t e  g* (a ,  x )  b y  

oo X n 

g * (a ,  x )  = xae -x ~-o (5.4) 
F ( a  + n + 1) 

e v e r y w h e r e  in  t h e  r eg ion  a > a* (x ) .  
T h e  use  o f  (5.4) in t he  r eg ion  a > a * ( x )  is c o m p a r a b l e ,  w i th  r e g a r d  to  

c o m p u t a t i o n a l  effort ,  td  t h e  use  o f  L e g e n d r e ' s  c o n t i n u e d  f r a c t i o n  in  t h e  ne igh-  
b o r i n g  r eg ion  a < a * ( x ) ,  x > 1.5, e x c e p t  w h e n  x is  v e r y  la rge  a n d  a - a * ( x ) ,  in  
w h i c h  case  L e g e n d r e ' s  c o n t i n u e d  f r ac t i on  is m o r e  eff icient .  S o m e  p e r t i n e n t  d a t a  
a r e  s h o w n  in T a b l e  I I .  W e  d e t e r m i n e d  t h e  n u m b e r  o f  i t e r a t i o n s  r e q u i r e d  for  8 
d e c i m a l  d ig i t  a c c u r a c y  in  L e g e n d r e ' s  c o n t i n u e d  f r a c t i o n  (4.14), w h e n  a ffi a*(x} 
(1 - h),  a n d  in  t h e  p o w e r  se r i e s  (5.4), w h e n  a -- a* (x ) (1  + h) ,  w h e r e  h was  g iven  
t h e  v a l u e s  0.001, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, a n d  x ffi 10, 20, 40, 80, ..., 
10240. T a b l e  I I  s h o w s  for  e a c h  x t h e  m i n i m u m  a n d  m a x i m u m  n u m b e r  o f  i t e r a t i o n s  

Table II. Number of Iterations m Legendre's Continued Fraction (4.14) and in Taylor's Expansion 
(5.4) for 8-Digit Accuracy 

x = l O  x- -20  x- -40  xffi80 xffi160 x=320  

rain max rain max min max rain max rain max mm max 

Legendre 7 10 6 15 5 19 4 25 4 32 3 41 
Taylor 13 24 13 31 14 42 14 57 14 77 14 106 

x =640 x ffi 1280 x ffi 2560 x ffi 5120 x = 10240 

Legendre 3 52 3 65 3 82 2 101 2 124 
Taylor 14 146 14 202 14 279 14 387 14 536 
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as h varies over the values specified. The number  of iterations consistently 
decreases with increasing [ h [, so tha t  the maximum occurs on the boundary line 
a --- a*(x). In order to properly evaluate the data  in Table II, one must  keep in 
mind tha t  each iteration in Legendre's continued fraction, using the algorithm in 
(4.20), requires seven additions, two multiplications, and one division, whereas 
each iteration in Taylor 's  series requires only two additions, one multiplication, 
and one division. Thus, Legendre's continued fraction is 2 - 2½ times as expensive, 
per iteration, as Taylor 's  series. 

6. TESTING 

The algorithm in [2] and a double precision version of it were tested extensively 
on the CDC 6500 computer at  Purdue University against a double precision 
version of the procedure in [3]. The double precision algorithms were used to 
provide reference values for checking the single precision algorithm, and on a few 
occasions, to check against high precision tables {notably the 14S tables in 
[8]). Other reference values were taken from various mathematical  tables in the 
literature. 

The tests include: 

(i) the error functions (1.10), checked against tables 7.1 and 7.3 in [1]; 
(ii) the case (1.11) of integer values a = n, -20  _ n _ 20; 

(iii) the exponential integral E~(x) in (1.9) for integer values p -- n, 0 _~ n _~ 20, 
and fractional values of v in 0 _< p _< 1, checked against tables I, II, III  
in [9]; 

(iv) Pearson's incomplete gamma function {1.7), checked against tables I and II 
in [10]; 

(v) the incomplete gamma function P(a, x) = (x/2)aT*(a, x/2), checked against 
the tables in [6]; 

(vi) the X 2 distribution (1.8), checked against table 26.7 in [1]; 
{vii) the molecular integral A,(x),  checked against table 1 in [7] and the more 

accurate tables in [8]. 

An important  feature of our algorithm is the automatic monitoring of overflow 
and underflow conditions. This is accomplished by first computing the logarithm 
of the desired quantities and by making the tests for overflow and underflow on 
the logarithms. As a result, minor inaccuracies are introduced in the final 
exponentiation, which become particularly noticeable if the result is near the 
overflow or underflow limit. 

7. SEQUENCES OF INCOMPLETE GAMMA FUNCTIONS 

Expansions in terms of incomplete gamma functions require the generation of 
sequences G. = G(a + n, x) or g.* = g*(a + n, x) for fixed a and n = 0, 1, 2 .. . .  , 
or of suitably scaled sequences {k.Gn}, {k.*gn*}, where k.  ~ 0, ~.* ~ 0 are scale 
factors. (For the purpose of the following discussion, the choice of these factors 
is immaterial; we shall assume, therefore, ~. = ~.* = 1.) I t  would be wasteful to 
compute the G. and g.* individually, for each n, by some evaluation procedure 
(such as the one developed in Sections 3-5). More efficient is the use of recurrence 
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relat ions satisfied by  G,  and  g,*.  We  discuss this in the  case a > O, x > O, which 
is a case of pract ical  importance.  

7.1 Generat ion of G,  = G(a + n, x) 

F rom the difference equat ion G(a + 1, x) = G(a, x) + x"e-X/F(a + 1), letting 
a = a + n, one finds immedia te ly  the  recurrence relat ion 

X,~+ne-x 
G,+I = G,  + n = 0, 1, 2 . . . . .  (7.1) 

F (a  + n + 1) '  

T h e  numer ica l  s tabi l i ty  of  (7.1) is de te rmined  by  the  solution h ,  = 1 of  
the  associated homogeneous  recurrence relation, th rough  the  "amplif icat ion 
factors"  [5] 

I Goh, F(a,  x) F (a  + n) 
pn ~- Gn = F(a)  P(a  + n, x)" (7.2) 

Indeed,  if s and t are a rb i t ra ry  nonnegat ive  integers, a small  (relative) error  e 
injected into (7.1) at  n - s will p ropaga te  into a (relative) error  ~pt/p, at  n -- t, 
causing the error  to be d a m p e d  if pt < p~ and magnif ied if pt > p,. To  achieve 
consis tent  error  damping,  hence perfect  numer ica l  stabili ty,  the  recurrence rela- 
t ion {7.1) ought  to be applied in the direction of  decreasing p,. 

Since F(a ,  x)/F(a) increases f rom 0 to 1 on the  interval  0 < a < oo [14, p. 
276], we see f rom (7.2) tha t  p,  decreases  monotonical ly  f rom 1 to F(a,  x)/F(a), as 
n increases f rom 0 to o0. I t  follows tha t  the recurrence relation (7.1) is perfectly 
stable in the forward direction. T h e  proper  way to compute  the  sequence {G,}, 
therefore,  consists in first evaluat ing Go = G(a,  x) (using our  evaluat ion procedure,  
for example) ,  and then  applying (7.1) for n = 0, 1, 2, ... to successively generate  as 
m a n y  of the G~ as desired. 

7.2 Generation of gn* = gn*((x + n, x) 

From the difference equat ion g*(a + 1, x) = g*(a, x) - x~e-=/r(a + 1), we now 
find the recurrence relat ion 

x~+, e-X 
g * + ~ f f i g ' * - F ( a + n + l ) '  n f f i 0 , 1 , 2  . . . . .  (7.3) 

which has  associated the amplif icat ion factors  

Igo*h,*l Y(a,x) F ( a + n )  
P"* = g,--'-"-;-- = F(a)  "/(a + n, x ) '  (7.4) 

since h,* = 1 and g,* = 7(a + n, x ) /F(a  + n). Noting tha t  F(a ,  x)/F(a) = 1 - 
y(a, x)/F(a),  and tha t  the rat io  on the  left increases monotonica l ly  f rom 0 to 1 as 
a function of a, it follows tha t  y(a, x)/F(a) decreases  monotonica l ly  f rom 1 to 0, 
hence tha t  pn* increases monotonica l ly  f rom 1 to oo as n increases f rom 0 to oo. 
Therefore ,  the recurrence relation (7.3) is perfectly stable in the backward 
direction. Wishing to compute  g,* for n = 0, 1, 2 . . . . .  N, say, we should therefore  
use our  evaluat ion procedure  o n  gN* -~ g*(a + N, x),  and then  employ  (7.3} in the 
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form 

gn* = g ~ + l  "~ 
X~+ne-X 

F ( a  + n + 1)'  
n f N - 1 ,  N - 2  . . . . .  0, 

to generate all remaining values of g.*. 
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