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ABS1RACT. Results on the condition number of Vandermonde type matrices obtained 
during the last 25 years are reviewed. Equal emphasis is given to real and complex nodes. 
Recent work dealing with nodes placed sequentially on circular and elliptic contours in the com
plex plane receives special attention. 

I. INTRODUCTION 

Many problems in applied and numerical analysis eventually boil down to solving large 
systems of linear algebraic equations. Since the matrices and right-hand sides of such 
systems are typically the result of (sometimes extensive) computations, they are subject 
to an unavoidable level of noise caused by the rounding errors committed during their 
generation. It is then a matter of practical concern trying to estimate the effect of such 
uncertainties upon the solution of the system. 

A common answer - and one which we shall adopt in the sequel - concerning any 
nonsingular system 

Ax= b, det A ;t: 0, (1.1) 

is to compute (or estimate) the condition number 

cond A = I I A 1 I · I I A -l I I (1.2) 

of the system, where I I· I I denotes a suitable matrix norm. Norms, for matrices 
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A = [aij], that will be used here are the oo - norm, 

I I A I I oo = m~x l: I aij I , (1.3) 
L j 

the Euclidean (or spectral) norm, 

(1.4) 

where p(·) denotes spectral radius, and the Frobenius norm, 

I I A I IF = -Jtr(AA R) = ~~I aij 12 (1.5) 
L,j 

If ex = I lox I I I I I xI I is the relative error in the solution x of (1.1), caused by relative 
errors eA = I loA I Ill I A I I, eb = I lob I Ill I b II in the system, then the condition 
number in (1.2) indicates how much larger ex is compared to eA and eb, that is, roughly 
speaking, 

(1.6) 

It always seemed important to us that the conditioning of matrices be investigated 
for many special classes of matrices. In this spirit, we began, 25 years ago, to take up 
the class of Vandermonde matrices. The original motivation came from unpleasant 
experiences with the computation of Gauss type quadrature rules from the moments of 
the underlying weight function. The sensitivity of the problem then indeed depends on 
the condition of certain (confluent) Vandermonde matrices with real nodes. Since then, 
we have intermittently looked at the conditioning of such matrices, considering not only 
real, but also complex nodes, and have enlarged the class of matrices by including 
Vandermonde-like matrices involving polynomial systems other than the system of 
powers. Here we present a brief survey of results obtained over the years, including 
also some original material (in Sections IV, V and VI). 

To establish terminology and notation, we call a Vandermonde matrix a matrix of 
the form 

1 1 1 

Zl Z2 Zn 

Vn = ' 
Zj E <J:, n > 1, (1.7) 

n-1 
z1 

n-1 
z2 

n-1 
Zn 

where zi are pairwise distinct real or complex numbers called the nodes. More gen
erally, a Vandermonde-like matrix, with nodes zi, is a matrix of the form 
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Po(z d Po(z2) 

p 1 (z J) P 1 (z2) 
Vn = (1.8) 

Pn-1Cz1) Pn-1 (z2) 

where {pd is a system of linearly independent polynomials, often with Pk E Pb the 
class of polynomials of degree k. Such matrices (or their transposed) are encountered, 
for example, when one deals with polynomial interpolation or with interpolatory 
approximation of linear functionals (see, e.g., [1]), the form (1.7) or (1.8) occurring 
depending on the choice of basis elements in polynomial spaces. Vandermonde systems 
with matrix ( 1. 7) are also an important ingredient in Remes' algorithm for constructing 
best uniform polynomial approximations. 

A brief outline of the paper is as follows. Sections II-IV are devoted to ordinary 
Vandermonde matrices Vn, (1.7). We begin in Section II with some basic inequalities 
for I I v;;-1 I I oo- These are then applied in Section III to obtain estimates for the condi
tion number condoo Vn for certain real node configurations. The bottom line here is that 
Vn is ill-conditioned when all nodes are real. Indeed, the condition number, in many 
cases (and perhaps always), grows exponentially with the order n of the matrix. The 
scenario changes drastically if one allows complex nodes. The roots of unity, for exam
ple, give rise to perfectly conditioned Vandermonde matrices. Other sequences of nodes 
on the unit circle are studied in Section IV. Some, like the Van der Corput sequence, 
perform nearly as well, and do so in a linear sequential, rather than triangular, fashion. 
Others, like "quasi-cyclic" sequences, do much worse. The remaining two sections 
discuss Vandermonde-like matrices with the polynomials Pk in (1.8) chosen to be 
orthogonal polynomials. In Section V we consider special real, as well as arbitrary 
complex nodes, in Section VI nodes placed sequentially on elliptic contours in the com
plex plane, and a Chebyshev system of polynomials Pk· 

II. A BASIC INEQUALITY FOR INVERSES OF VANDERMONDE MATRICES 

The inversion of a linear system with the Vandermonde matrix (1.7) as coefficient 
matrix can be easily described in terms of the elementary Lagrange interpolation poly
nomials 

n z - zfi 
eA.(z)= I1 

f1=1 ZA_ - Z Jl 
Jl<'A 

'A= 1,2, ... , n, 

associated with the nodes z 1, z 2 , ... , zn. Indeed, if we expand eA. in powers of z, 

n 
eA.(z) = L UJ..jlZf!-l' 

f1=1 

(2.1) 

(2.2) 
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the inversion is accomplished by multiplying the ~th equation by u"-fl' ~ = 1,2, ... , n, 
and adding up the results. In view of l~c(zv) = O~cv (the Kronecker delta), this will 
express the A.th unknown linearly in terms of the right-hand members of the system. 
Hence, 

Combining (2.1) and (2.2) yields 

v;;1 = [u"-fl]1 $'1c$ n. 
1$j.J.$n 

n 

UA.1 + UA.2Z + · · · + UA,nZn-1 = 1t~c IT (z- zJ.l.), 
J.L=1 

fliCA 

where 

Therefore, we have the alternative representation 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where cr~ denotes the mth elementary symmetric function in the n-1 variables zJ.L with 
z A. removed. 

Theorem 2.1. For arbitrary zv E <r, with zv-# zJ.L ifv:;:. 11. there holds 

where Vn is the matrix in (1.7). The upper bound is attained if zJ.L = I z J.Ll eie, 
~ = 1, 2, . . . , n,for SOme frxed 0 E R. 

Proof (Sketch). The upper bound in (2.7), and the statement about equality, fol
low from (2.6) and from a simple fact (see the Lemma in [7, p.l18]) about elementary 

n 

symmetric functions Om = O"m(X 1, ... , Xn) in n variables, namely that L, I O"m I ~ 
m=O 

n 
IT (1 + I Xv I), with equality precisely if all xv lie on the same ray through the origin. 
v=l 

For the lower bound we use the fact that 

n n 

L, I a fl. I 2:: I an I IT max ( 1, I ~v I ) 
j.J.=O v=1 

(2.8) 

holds for any polynomial p (z) = a0 +a 1 z + · · · + anzn, an :1:- 0, having the zeros ~1, 
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~2 •... , ~n• with equality if and only if p (z) = anzn. This is a simple consequence of 
Jensen's fonnula (see [10, §2]). Applying (2.8) to the polynomial (of degree n-1) in 
(2.4) then easily yields the lower bound in (2.7); see again [10] for details. D 

III. REAL NODES 

An important case in which equality holds for the upper bound in (2. 7) is when all 
nodes are nonnegative, zv = xv :2:: 0. Then, letting 

n 

Pn(z) = I1 (z- Xv) 
V=l 

denote the node polynomial, we can write (2.7) in the fonn 

(3.1) 

(Xv :2:: 0). (3.2) 

The techniques used in the first part of the proof of Theorem 2.1 can be adapted (cf. [8, 
Theorem 4.3]) to also deal with the case of real nodes located symmetrically with 
respect to the origin: Xv E R with Xv + Xn+l-v = 0 for v = 1,2, ... , n. In place of 
(3.2), one obtains 

lpn(i) I 
I I V;1 I I 00 = -----,..----.....,...----..,... 

1 + x 2 
__ v_ lp~(Xv)l 
1 +xv 

(Xv + Xn+l-v = 0, Xv E R). (3.3) 

min 
x. ~ 0 

Since for given nodes Xv the nonn I I Vn I I oo is easily calculated, the results (3.2), (3.3) 
allow us to evaluate the condition number condoo Vn exactly in the respective cases. For 
example, if I Xv I s 1 for all v, then 

(3.4) 

We illustrate (3.2)-(3.4) with a number of examples, ordered in decreasing sever
ity of ill-conditioning. 

Example 3.1. Harmonic nodes Xv = 1/v, v= 1,2, ... , n. 

Here, an easy calculation gives lpn(-1)1 = n+l, and letting Sv = 
(1 +xv)lp~(xv)l, one finds 
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(v + 1)!(n - v)! 
~ = -'-----'---'--'--

vnn! 
v= 1,2, ... , n. 

There follows 

. ~ < s:: = n+1 mm uv _ un . 
v nn 

(Actually, this holds with strict inequality, for n > 2, as can be shown by a more 
detailed analysis). Consequently, by (3.4) and (3.2), 

condoo Vn > n n+l (Xv = 1/v). (3.5) 

Note that the condition number in (3.5) grows more rapidly than n!, which is far worse 
than the condition of the notorious Hilbert matrix, which grows "only" exponentially! 

Example 3.2. Equidistant nodes on [0,1]: xv = v-1 , v = 1,2, ... , n. 
n-1 

Defining~ as in the previous example, an elementary computation gives 

1 (-1) 1 = (2n- 2)! ~ (n+v-2)(v-1)!(n-v)! 
Pn (n-1)!(n-1)n-l ' = (n-1t 

Putting v = Kn, 0 < K < 1, and studying ~Kn for n ~ oo, reveals that, asymptotically, 
~Kn is a minimum when K = ~ , and ~+ n - 1t en (2e )-n as n ~ oo. Combining this in 

Eq. (3.2) with the asymptotic expression for lpn(-1)1, obtained by Stirling's formula, 
and noting that I I Vn I I oo = n, yields 

cond V - -{2 · gn oo n 41t • n ~oo. (3.6) 

We are now down to exponential growth, but expect that the rate of growth can 
still be reduced by placing the nodes symmetrically with respect to the origin. This is 
confirmed in the next example. 

2(v-1) 
Example 3.3. Equidistant nodes on [-1,1], Xv = 1- , v= 1,2, ... , n. 

n-1 

Here we use (3.3). An asymptotic analysis similar to the one in the previous 
example, but more involved, shows that [8, Example 6.1] 

1 _...!._ 1t n( ...!__ 1t + ...!__ In 2) 
condoo V n - - e 4 e 4 2 , n ~ oo. (3.7) 

1t 

Note that the exponential growth rate is now exp [ ! 1t + ~ In 2] = 3.1017 . . . , 
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compared to 8 in the asymmetric case of Example 3.2. 

Can we do better if we take the Chebyshev nodes in ( -1, 1)? 

Example 3.4. Chebyshev nodes Xv = cos((2v- 1)1t/2n), v = 1,2, ... , n. 

Applying (3.3), one can prove [8, Example 6.2] that 

199 

(3.8) 

Here the growth rate 1 + {2 = 2.4142 . . . is indeed smaller than for equally spaced 
symmetric nodes, but not by a whole lot. 

Seeing the condition of Vn continually improving through the series of examples 
above, one cannot help wondering whether there is an optimal set of real nodes 
xT = [x 1 ,x2 , ... , Xn] (say, with x 1 > x 2 > · · · > Xn), and if so, what they are and 
what optimal growth rate of condoo Vn they produce as n ~ oo. As far as the existence 
of the optimum is concerned, the answer is easily seen to be affirmative (cf. [9]). We 
even conjecture (but have no proof as yet) that the optimal nodes are unique, subject to 
the above ordering. If this were true, it would follow [9, Theorem 3.1] that the optimal 
node configuration is symmetric with respect to the origin. Seen in this light, the recent 
result [14, Theorem 3.1] 

condoo Vn > 2n12 (n > 2, Xv symmetric) (3.9) 

is of interest, since it shows that, accepting the above conjecture, the condition of Van
dermonde matrices grows exponentially for any set of real nodes. Nevertheless, the 
growth rate indicated in (3.9) is not believed to be sharp, and the search for the optimal 
growth rate remains an interesting open problem. There is a result analogous to (3.9) 
for arbitrary positive nodes, namely [14, Theorem 2.1] 

condoo Vn > 2n-l (n > 1, Xv ~ 0). (3.10) 

Both bounds in (3.9) and (3.10) can be slightly sharpened (cf. Theorems 3.2 and 2.2, 
respectively, in [14]). 

IV. COMPLEX NODES 

The fact that real nodes lead to ill-conditioned V andermonde matrices is not surprising 
if one considers that powers constitute, as is well known, a poor basis for polynomial 
approximation on the real line; see, e.g., the discussion of near linear dependence in [3, 
pp. 119-120], or of the conditioning of the power basis in {11]. In contrast, replacing 
the powers by Chebyshev polynomials, and considering the corresponding 
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Vandermonde-like matrices (1.8), can lead to perfectly conditioned matrices if one 
chooses the (real) nodes appropriately; cf. Section V below. 

Now it so happens that the powers are indeed "Chebyshev polynomials" on any 
disc in the complex plane centered at the origin, in the sense of deviating least from 
zero (in the uniform norm on the disc, or on the circumference of the disc) among all 
monic polynomials of the same degree. Therefore, one expects better conditioning of 
ordinary Vandermonde matrices if one allows the nodes zv to be complex. 

If we measure the condition in the Euclidean norm (1.4), and consider for simpli
city the unit disc, then the nth roots of unity indeed minimize cond2 Vn; in fact, 

condzVn = 1 if Zv = z~n) = ei(v-l)Zrc/n, V= 1,2, ... , n. (4.1) 

This is an easy consequence of the orthogonality of trigonometric functions. The roots 
of unity, therefore, would seem to be an ideal choice for work on the unit disc, if it 
weren't for the fact that they form a triangular array of nodes, i.e., for each n, as indi
cated in (4.1), there are n distinct nodes zr) which change as n is increased by 1. In 
applications to interpolation and quadrature, this would require that the function to be 
interpolated, or integrated, be obtained on a two-dimensional set of points. It is an 
interesting question to ask how well one can do with a linear array of nodes on the unit 
circle. 

One naive answer to this is to first note that the set of kth roots of unity, for k 
even, contains as subset the (k/2)th roots of unity. We may therefore generate a linear 
sequence of nodes by adjoining to the 2k-I th roots of unity every other 2kth root of 
unity, going around the circle in the positive direction, and doing this for 
k = 1,2,3, .... More precisely, if 

(4.2) 

for some k ;;:: 1, then 

(4.3) 

We call this sequence, for lack of a better word, the quasi-cyclic sequence on the circle. 
(Such sequences have been used by Biermann, Niethammer and Varga [4, p. 522] in the 
context of semiiterative methods for systems of linear algebraic equations.) With this 
choice of nodes, whenever n is a power of 2, the corresponding Vandermonde matrix Vn 
is perfectly conditioned, but otherwise, there is a chance, especially for large n, that the 
condition may deteriorate significantly. The bounds in Theorem 2.1, unfortunately, are 
too far apart to give much useful information. We therefore computed the condition 
number for Vn numerically, using, as seems natural on the circle, the Euclidean matrix 
norm (1.4). The results for cond2 Vn are depicted on a logarithmic scale in Figure 4.1 
for 3 :5: n :::; 64. As expected, the condition number shoots up to considerable heights 
between two successive (large) powers of 2. 
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l.Oe06 

l.Oe04 

l.Oe02 

l.OeOO 

4 8 16 32 64 

FIG. 4.1 The condition ofVandermonde matrices (1.7)for 
n=3(1)64 with nodes taken from the quasi-cyclic sequence (4.3). 

8 

6 

4 

2 

4 8 16 32 64 

FIG. 4.2 The condition ofVandermonde matrices (1.7)for 
n=3(1)64 with nodes taken from the Vander Corput sequence (4.6). 
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How, then, can we avoid these large peaks? More specifically, for an integer n 
satisfying 2k-l < n < 2k, in which order should we adjoin the set of 2k-lth roots of 
unity by alternate 2kth roots of unity such that max cond2 Vn is minimized? We 

z•-l < n < 2. 

don't know the solution to this problem, but a good candidate for an optimal (or nearly 
optimal) node sequence is obtained as follows. 

For any integer v ~ 0, written in binary form 

V=.L,cj2j, VjE{0,1}, 
j=O 

define the fraction c v E [0, 1) by 

00 

"" 2-j-1 Cv = £.../ Vj . 
j=O 

(4.4) 

(4.5) 

The sequence {cv};,0 is known as the Van der Corput sequence. We then take as 
nodes 

21tic,.., 1 2 3 
Zv = e , V = , , , .... (4.6) 

(Such nodes were used to good advantage by Fischer and Reichel [5, p. 228] in connec
tion with the Richardson iteration method; see also Fischer and Reichel [6], Reichel and 
Opfer [17].) It is easily seen that for n = 2k-l the set {zv: v = 1,2, ... , n} consists of 
all the nth roots of unity, just like in the quasi-cyclic case. For values of n between 
2k-l and 2k, however, the nodes (4.6) are picked in a zigzag manner from the 2kth roots 
of unity, rather than cyclically around the circle as in (4.3). This achieves a more 
evenly distributed set of nodes, and one can hope that the condition number cond2 Vn 
remains correspondingly smaller. This is indeed confirmed by a computation for 
3:::; n:::; 64, the results of which are summarized in Figure 4.2. (A similar picture, 
extended through n = 148, has previously been published by Reichel and Opfer 
[17].) Further computations [15] reveal a rather astonishing pattern for the eigen
values and eigenspaces of the matrix Vn v:f - a Hermitian Toeplitz matrix - which 
served as an inspiration for the work in [2]. There, it is proved, in particular, that all 
eigenvalues of Vn v;! are powers of 2, the largest, Amax• always being equal to 
Amax = 2k, and the smallest, Amin = i , where e = 0 if n is odd, and 0 < e :::; k otherwise. 
There follows 

(4.7) 

with equality on the left holding for every odd n. The various "levels" exhibited in 
Figure 4.2 thus have heights 2k12 , k = 2, 3,4, . . . . Comparison of Figures 4.2 and 4.1 
clearly illustrates the significant improvement achieved by the Vander Corput sequence 
over the quasi-cyclic sequence. Similar phenomena on ellipses (and also on intervals) 
will be discussed in Section VI. 
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V. V ANDERMONDE-LIKE MATRICES INVOLVING ORTHOGONAL POL YNO
MIALS 

As observed at the beginning of Section IV, the choice of orthogonal polynomials as 
bases in problems of approximation on the real line leads to Vandermonde-like matrices 
(1.8) which can be expected to have better condition than ordinary Vandermonde 
matrices. It is the purpose of this section to study the condition of such matrices in the 
case where 

Pk(z) = Pk(z; da), k = 0, 1,2, ... , (5.1) 

are orthonormal polynomials with respect to some (positive) measure da on the real 
line, 

.{, p,(x)p,(x)dcr(x) ~On ~ { ~: r =s, 
r "# s. 

(5.2) 

In most applications, the nodes zv are real and contained in the support of da, 

Zv = Xv E R, Xv E supp da. (5.3) 

A choice that appears particularly natural is that of the zeros of Pn( ·; da), 

Xv =x~n), Pn(Xv ;da) = 0, v = 1,2, ... ' n. (5.4) 

In this case the condition condFVn of Vn (in the Frobenius norm (1.5)) can be expressed 
very simply in terms of Christoffel numbers Yv = y~n\da) belonging to the measure da, 
i.e., in terms of the weights in the Gauss-Christoffel quadrature formula 

-'.. f(x)da(x) = ± Y~n)f(x~n)) + Rn(f), Rn(P2n-I) = 0. (5.5) 
V=} 

(As is well known, y~n) > 0 for v = 1,2, ... , n.) Indeed, we have 

Theorem 5.1. The condition of Vn in (1.8), where Pk are the orthonormal polyno
mials (5.1), (5.2) and the nodes Xv given by (5.4), equals 

[ l 1/z n n 1 
condF Vn = L Yv L - , 

v=l V=! Yv 
(5.6) 

where Yv = y~n\da) are the Christoffel numbers of da, and the norm used in (5.6) is 
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the Frobenius norm I I· I IF in (1.5). 

The proof rests on the fact that 1/y~n) are the squares of the singular values of Vn, 
which in tum is a consequence of the discrete orthogonality property of orthogonal 
polynomials (cf. [12]). Note also that condFVn ~ n for any set of positive numbers Yv· 

Our first example is the analogue of the example involving the roots of unity, in 
the sense that it achieves optimality. 

Example 5.1. The Chebyshev measure dcr(x) = (l-x2)-'12 dx on [-1,1]. 

Here, the Christoffel numbers y~n) are all equal to 1t/n. Indeed, the Chebyshev 
measure is the only measure for which this is true for all n. (There are other measures, 
however, for which equality of Christoffel numbers holds for selected values of n; see, 
e.g., [13, §6], [16]). It then follows from (5.6) that condFVn = n, i.e., Vn is optimally 
conditioned. 

Nevertheless, optimality is achieved at a price: a triangular array of nodes (just 
like earlier with roots of unity). We will show in Section VI how one can find a linear 
array of nodes that also produces well-conditioned matrices Vn, (1.8). 

Not much worse than the Chebyshev measure are those of Legendre and Che
byshev of the second kind. 

Example 5.2. dcr(x) = dx and dcr(x) = (1-x 2)'12 dx on [-1,1]. 

Here one computes from (5.6) the following condition numbers for selected values 
of n: 

TABLE 1 The condition of Vandermonde-like matrices 
for Legendre and 2nd-kind Chebyshev polynomials 

(Numbers in parentheses indicate decimal exponents.) 

n Legendre Chebyshev 2nd kind 

5 5.362(0) 5.916(0) 
10 1.155(1) 1.483(1) 
20 2.494(1) 3.924(1) 
40 5.367(1) 1.071(2) 
80 1.148(2) 2.976(2) 

In stark contrast, Laguerre and Hermite polynomials give rise to extremely ill
conditioned matrices Vn, for example, condF V 40 = 1.924(30) and 3.699(14) in the two 
respective cases. This is due to the presence of very small Christoffel numbers. 

If zv are arbitrary complex nodes, one can prove a result similar to, but weaker 
than, (5.6); it involves the Christoffel function, rather than Christoffel numbers. We 
recall that the Christoffel function (for some measure dcr) is defined by 

YnCzo;dcr) = min { lp(x)l 2dcr(x), z0 E <r, 
p E IP._, 

(5.7) 

p(z 0)=1 
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where the minimum is over all complex polynomials of degree ::; n-1 taking on the 
value 1 at z0 . Alternatively, 

n-1 

[Yn(z;da)r1 = r lpk(z;dcr)l 2 . 
k=O 

In place of (5.6) we then have [12] 

(5.7') 

(5.8) 

To prove (5.8), and at the same time give a version of (5.8) involving equality, 
one must first of all invert the matrix Vn in (1.8). This can be done similarly as in Sec
tion II for powers by expanding the fundamental Lagrange polynomial (2.1) not in 
powers, as in (2.2), but in the orthogonal polynomials Pk(z) = Pk(z; da), 

n 

lv(z) = L avllPf.l-I (z), V = 1,2, ... , n. 
j.l=1 

Then as before, one finds 

Now 

V- 1 --A A [ ] n ' = avj.l . 

{ ± llv(x)l 2dcr(x)={ LLavllPf.l-l(x)Lav~cP~c-I(x)da(x) 
V=l v f.l A. 

= L L avllav~c .( Pfl-1 (x)P~c-t (x)da(x) 
v fl,A. 

on account of the orthonormality of the Pk· Consequently, 

On the other hand, 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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which, on account of (5.7'), gives 

l IV" lip= r i: --1--]'/2 
~= 1 Yn(z v ; dcr) 

Gautschi 

(5.13) 

The assertion (5.8) now follows by multiplying the two expressions in (5.11) and (5.13) 
and observing that 

by (5.7), sincetv e Pn-1 and Ev(zv) = 1. 

We note, ~owever, that the product of (5.11) and (5.12) is exactly equal to 
condpV11 , and can easily be computed, at least for conventional measures dcr, the first 
factor by Gaussian quadrature and the other by recurrence. 

Analogous results can be derived, in essentially the same way, for orthogonal 
polynomials {pk( · ;dcr)} that are not normalized (for example, for monic polynomials). 
Letting 

dr = { p'f(x;da)dcr(x), k = o, 1,2, ... , (5.14) 

and denoting D = diag(d0 ,d 1, ... , d11 _ 1), the appropriate matrix norm to be used is 
then 

(5.15) 

(which clearly satisfies all the axioms of a matrix norm, including submultiplicativity, 
I lAB IIF,D ~ I lA IIF,D liB IIF,D ). In place of(5.11), one obtains 

(5.16) 

and (5.12) must be modified to read 

(5.17) 

The condition condF,DVn is then again computable as the product of (5.16) and (5.17), 
and can be estimated from below by 
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(5.18) 

For orthononnal polynomials, we have D =I, and the results (5.16)-(5.18) reduce to 
(5.11), (5.12) and (5.8). 

VI. V ANDERMONDE-LIKE MATRICES INVOLVING CHEBYSHEV POL YNO
MIALS ON ELLIPSES 

We have noted in Section IV that the powers are "Chebyshev polynomials" (i.e., monic 
polynomials of minimum unifonn nonn) on the disc. It is similarly known that the 
(monic) polynomials 

Po(z) = 1, k = 1,2, ... (0 < p $ 1), (6.1) 

where Tk denotes the Chebyshev polynomial of the first kind, are the "Chebyshev poly
nomials'' on the ellipse eP with boundary given by 

(6.2) 

if 0 < p < 1, and on the interval [-2,2] (the limit of (6.2) as p ---7 1), when p = 1; cf. 
[17]. (The ellipse eP is scaled so as to have capacity 1.) This suggests the study of 
Vandennonde-like matrices (1.8) with polynomials Pk given by (6.1) and nodes located 
on the elliptic contour (6.2), either in quasi-cyclic order, or in the order detennined by 
the Vander Corput sequence. Thus, in the fonner case, with v given as in (4.2), and 
assuming 0 < p < 1, 

and in the latter case, 

2rtic v-1 - 2rric v-1 
zv=e +pe , (6.4) 

where {cv};,0 is the Vander Corput sequence (4.4), (4.5). In the limit case p=l, these 
fonnulae have to be slightly modified, since we do not want to run back and forth 
through the interval [-2,2]. We then assume, in the quasi-cyclic case, 

1 + 2k-l < v $ 2k + 1 ( k 2:: 1), (6.5) 
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FIG. 6.1 The condition ofVandermonde·like matrices (1.8)for 
n=3(1)64 involving "Chebyshev polynomials" on the ellipse ep and 

nodes taken from the quasi-cyclic sequence (6.3) resp. (6.3 1). 
(a) p = .25 (b) p = .5 (c) p = .75 (d) p = 1. 
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z1 =-2,1 z2 =2, zv =2cos 1t(2(v-2k-1)-3)/2k, v= 3,4,... (6.3 1) 

in the case of the Van der Corput sequence, we let 

zl=-2, Zv+1=2cos(1tCv-1), V=1,2,3, .... 
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FIG. 6.2 The condition of Vandermonde-like matrices (1.8) for 
n=3(1)64 involving "Chebyshev polynomials" on the ellipse E:p and 
nodes taken from the Vander Corput sequence (6.4) resp. (6.4 1). 

(a) p = .25 (b) p = .5 (c) p = .75 (d) p = 1. 
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We computed cond2 Vn for 3 ::;; n ::;; 64 in the case of ellipses eP with p = 
.25(.25).75 (for the case p=O, see Section IV), and for the segment [-2,2] (i.e., the case 
p=l). The results are shown graphically, on a logarithmic scale, in Figure 6.1 for nodes 
given by (6.3) [resp. (6.31)], and in Figure 6.2, on a linear scale, for the nodes (6.4) 
[resp. (6.41)]. As can be seen, Van der Corput sequences again perform significantly 
better than quasi-cyclic sequences. The condition, in fact, is known to grow at most 
polynomially inn, if 0::;; p < 1, and at most like nO(logn) if p = 1; cf. [17, Section 3]. 
In the case of quasi-cyclic sequences, when 0 < p < 1, it is interesting to observe two 
large peaks between successive powers of 2, in contrast to the cases p=O and p=l, 
which exhibit only one (a surprisingly large one when p=l). 
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