Numerische Mathematik 4, 117 —123 (1962)

On inverses of Vandermonde
and confluent Vandermonde matrices

By

WALTER GAUTSCHI*

1. Introduction

A Vandermonde matrix of order » is a matrix of the form

1 1
(1.1) Vo=V (x, 2%, ..., %)= "+ 7 "l (e>1),
x;ﬁ—1 x’z‘_l gt

where x, are real or complex numbers. By a confluence of the /-th column into
the k-th column we mean the following limit operation: Replace in the I-th
column #; by %, & and subtract from it the k-th column; divide this new l-th
column by ¢ and then let &—0. '

1f the resulting matrix is denoted by U, ,, we have

1 ... 1 0 1 ... 1
Xy .. X% g 1 Kipy oo %y,
. 2 2 2 2
('1 2) (Jn,kl == X1 ... X 2xk Xig1 -0 Xy
DO o N (R | I e P

In other words, U, ,, is the same matrix as V, except for the /-th column, which
is the derivative of the A-th column.

A matrix that is obtained from {1.1) by one or more coniluences of columns
is called a confluent Vandermonde matrix. The following, for example, is a
confluent Vandermonde matrix of order 2#, obtained by confluences of the

columns #—+1 into 1, n+ 2 into 2, ..., 2% into n:
1 R | 0 0
(1.3) U, — xl xn 1 1
A2 (g ) AT (o — f) 220
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The purpose of this paper is to estimate the norm of inverses of Vandermonde
and confluent Vandermonde matrices. Such estimates are expected to be useful
in various questions of numerical analysis. In the construction of Gauss-type
quadrature formulas, for example, norm estimates of the inverse of the matrix
(1.3) may be used to assess the errors in the zeros and weight factors from those
in the moments.

It will be convenient to adopt the following matrix norm,

(1.4) |4 =max Z|a,”|, A=(a,,).

1=v=n

The use of this particular norm is no real restriction since for any other norm
|4]y, one has m|4|<|A|, <M |4| with positive constants m, M depending only
on #, and not on A (see [3], Satz IV).

2. Preliminaries
We denote by ¢, the m-th elementary symmetric function in the » variables
Xy, Kgy ooey X,

Op=0p(%p, .o, %) =20 %, %, ...%,  (1Sm=<n), oco=1.
Lemma. We have

@) 14 (o + ol + o+ loa] = IT (14 |=)),

where equality holds if and only if all x, are located on the same ray through the
originm, that 1s, if and only if

(2.2) x,=|x]e?  (=1,2,..,m).

Proof. Let p(x)=J] (x—=x,). Then

In particular,

(2.3) p(—=1)=(—1)"2o,.
On the other hand, by definition,

(2.4) p(—1)=(—1)" [ (1+ ).

y=

We distinguish three cases.
Case I. All x,>0. Then all ¢,,=0, and from (2.3) and (2.4) we find

"

(ol = S o= (= 1" (= 1) = IT (1 ) = I] (1-+ |).

0 py=1 p=1

3
j| D=

This proves (2.1) with equality sign.
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Case II. All x, satisfy (2.2). Then o,,(%, ..., %,) =¢"%0,(|%]|, ...,
n ”n
Z laml = de(lxli: vy
=0 m=0

by the result of Case I.
Case III. There is at least one pair of variables, say {#,, 2,), such that

%, %5 =3=0, arg x,=arg x,. Then
loo] =|m+ 2+ + x| <ot x| + 2] 4 + |5
<|x1!+lx2l+‘x3’+"‘+|xnl,

x,]), and

) = I (1+ | )

p=

that is,

lov(x, - 2 ) <o {jal - |#]) -
Since also

[ow (1, )| S ([®l]s -0 |#%a]) (m=>1),
we find, using again the result of Case I,
ZJ,G"'(xl’ L)< goam(|x1|, o m]) = 1—71 (1+ |%,]) .

This proves (2.1) with strict inequality, and the lemma is completely proved.

Later we also use the notation ¢/, to denote the m-th elementary symmetric
function in the » —1 variables x, with ¥, missing,

ok =0, (%, o Kty iyt ooy Ky) -
By the symmetry of ¢,, we have for A<u

A
O (%) oo Kty Faas s Ky b X1y o0 %)

—
=0h (%, o, K1 b Kt e Kty K1 -5 %) -

(2-5)

3. Inverse of Vandermonde matrix
We prove now
Theorem 1. Let x,==x,, for v==u. Then, with the matrix norm defined in (1.4),
we have

3.4) W= max [T 02
v =i= l

If the x, satisfy (2.2), then (3.1) is actually an equality.
Proof. Let V; 1:(111#) It is well known (see [2, p.306], or [1]} that

)u—l U;}—-,u o

I {(x—2)

v

(32) v}.y: (—— 1

Therefore,

Z’v“] |xv‘“”zl (A=1,2,...,n).

Theorem 1 now follows nnmedlately from the lemma in section 2.
9'
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We note that the last statement in Theorem 1 cannot be reversed, that is,

if (3.1) holds with equality sign then it does not necessarily follow that all x

v

lie on the same ray through the origin. This is shown by the example n=3,

X =8, x%3=2, x3=-—1, for which
11 1 —2/54
Va=[ 8 2 —1], Vit= 8/18
64 4 1 16/27

—1/54  1/54
7118 —1/18
—1027  1)27

Here, |V5!| = max (4/54, 16/18, 1)=1, and the bound on the right of (3.1) equals
max (1/9, 1, 1) =1, so that (3.1) is in fact an equality, even though x, x;<<0.

4. Inverses of confluent Vandermonde matrices

In this section we establish norm estimates for the inverses of the confluent
matrices U, 4;, U,, defined in (1.2) and (1.3), respectively. At the same time
explicit expressions are derived for the elements of U,};.

Theorem 2. Let x,4=%, for va=pu (v, u=1,2,....1—1,1+1, ..., n), and let

1+ %] (A==k,1)

[%— %]
(4.1) a,=

vk, 1

max [1+ |x,], 1+ (14 ]%]) Zn: lTlTH (A=EF).
y=1 v

Then, with the matrix norm defined in (1.4), we have

_ LIS PA
(4-2) |0k = max 4, gmﬁL

lxv" ﬂ(}_[ ’

il IEFN

Proof. Assume for the sake of definiteness that £<</. Let us introduce the

“perturbed” Vandermonde matrix

Vis(€ =V, (%0, ..., %1, %+ & %4y, o) %),

and the auxiliary matrix

1 0 0 0
0...1...—¢1...0
(4-3) Ekl(g)'— :
0...0. e .0
6 O 0 M1
k-th I-th

column column

k-th row

l-th row

Then it is not difficult to see, that by definition of confluence,

Un,kz =3i_r)r$ Vn,kl (€) Egy(e) -
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From this we get
(4.4) U= hné Exi () Viale),

provided that the limit on the right-hand side exists.

Inverting (4.3) we have
1...0...0...0

0...1...1...0 \ Athrow
Exie)=] : : : : -
0...0...6...0 }lthrow

0...0...0...1
k-th [Ith
column column

Therefore, if ¥, },(¢) = [v;,(¢)], we find

7111_(‘9) e vln.(a)

501(8) F 02 (8) - Dya(e) £ o)
Eg1 (&) Vaki(e) = : :

£ v,:l(e) £ vl.;,(e)

V,1(€) v, (&)

Since V, ,, is a Vandermonde matrix, the elements of its inverse are given

by (3.2), that is
)
([ q\s—1 On—n
(45) vl/t (8) - ( 1) H (Z,,—/’Vi) .
e

It is understood here, that x,, wherever it occurs, is to be replaced by x,-+e.
If A==k, I the expression in (4.5) has a well defined limit, as £—0, namely

A
: (g1 O'n_”(xl,..., Xi—1, ¥, xl+1,...,xn) z ED.
(4.6) limu,,(e)=(—1) () 1T o5 (A=Fk1)

v,

If A=k, we have, using (2.5), with A=%, p=I, t=1x,+¢,

k
- —1 Oy (x1|~"r /’L’l_l,x]g“"'ﬁ, xl—{-lx---/xfi)n
) = (= A e T

4.7 i
4.7 B (—1)#t JL_”(xl,...,xkq,xk—l—e, Khats .-y ¥n)

- £ gl(xv—‘xk)
If, finally, A=/ then ’

o {(—1)# oﬁ,ﬂ”(xl,...,xk_l,xk,xk+1,...,x,,)

(4:8) Ule) == T G r—2)

vk, L



122 ‘WALTER GAUTSCHI:

The sum of the two expressions in (4.7) and (4.8} is seen to have the form
e

(—1)* e [o(x-+ &) w1(x) — o (¥) w1 (x+ £)] where o, 7 stand for the numerator
and denominator functions, both considered as functions of x=x,

Since
o) m(n)
a(x+¢) olry _  dx
a(x) ~ a(xte) =¢ 72 (x) +ole) (£ —0)
we obtain
EA {"""“ 11 "”"J
(4.9) lim [v, , () + v, (e)] = (— 1)* e :
o0 H (”v_xk)2
vk, 1
Let us carry out the differentiation in the numerator. We first observe that
o
e anﬁ,,uai,f” 1 (e=1,2,...,n), ot =0,

where 03, denotes the m-th elementary symmetric function in the #» — 2 variables
x, with both x, and x; missing. Next we note that

0

Txk 11 (%— )
vkl ;ﬁ 1
I (x—x) @7,%_“
PE-F W

Therefore, we obtain from (4.9)

(410) T ona(0) 0,01 = (o ok

Finally, from (4.8) we see that

. o
(4.11) lim e, (6) = (— 1) 7"
vkl

The relations (4.6), (4. 10) and (4.11) now show not only that the limiting

matrix in (4.4), and thus U}, exists, but they also give explicit expressions for
the elements u;, of Uk,

) From these, and from the lemma in section 2 we
conclude
< 14 | %] 147,
u < 4 l k)l »
le Mll = |’Vk“xz| S lxv"‘x;,] ( =+ )

”n

Sl (41a) 3 et T 520

5 =)’

gll“lﬂl§(1+lxk|) 7 sl

+11 lxv_xkl ’

which is equivalent to (4.1), (4.2). Theorem 2 is proved.

The argument in the proof of Theorem 2 can be applied repeatedly to deal

with matrices that are derived from a Vandermonde matrix by more than one
confluence of columns. One so obtains, for example, the following
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Theorem 3. Let x,==x, for v=p (v, u=1,2, ..., n), and let

(4.12) bl——max{1+|h|, 1+2(1+lxl|)2|”i"a|}'
y=1 4
v A

Then, with the matrix norm defined in (1.4), we have

. o Atlm) |
(4.13) V2] = max b (g ) '
v

va_le|
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