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Part I

Commentaries

In all commentaries, reference numbers preceded by “GA” refer to the numbers
in the list of Gautschi’s publications; see Section 4, Vol. 1. Numbers in boldface
type indicate that the respective papers are included in these selected works.



11

Orthogonal polynomials on the real line

Gradimir V. Milovanovié¢

In about two dozen papers, Walter Gautschi developed the so-called constructive
theory of orthogonal polynomials on R, including effective algorithms for numerically
generating orthogonal polynomials, a detailed stability analysis of such algorithms
as well as several new applications of orthogonal polynomials. Furthermore, he
provided software necessary for implementing these algorithms (see Section 23,
Vol. 3) and applications.

Let P be the space of real polynomials and P,, C P the space of polynomials of
degree at most n. Suppose du(t) is a positive measure on R with finite or unbounded
support, for which all moments y, = [ t*du(t) exist and are finite, and o > 0.
Then the inner product

(pg) = / p(a(t)du(t)

is well defined for any polynomials p,q € P and gives rise to a unique system of
monic orthogonal polynomials 7 (-) = 7 (- ; dp); that is,

i (t) = m(t;dp) = t* + terms of lower degree, k=0,1,...,

and

0, mn#k,
Tk, Tn) = ||Tn 25 n —
(Tk, ) = [|7nl]” 6k a2 = k.
11.1. Three-term recurrence relation

Because of the property (tp,q) = (p,tq), these polynomials satisfy a three-term
recurrence relation

7Tk+1(t) = (t—ak)ﬂ'k(t)—ﬁkﬂ'k_l(t), k=0,1,2..., (11.1)

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 2: Selected Works with 3
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7049-6_1,
© Springer Science+Business Media New York 2014



4 Gradimir V. Milovanovié

with 7mo(t) = 1 and 7_1(¢) = 0, where (o) = (ax(dw)) and (Br) = (Bx(dp)) are
sequences of recursion coefficients which depend on the measure du. The coefficient
fo may be arbitrary, but is conveniently defined by Sy = po = [ du(t). In the
case of a discrete measure dpu = dup, i.e., when p(t) has only N points of increase,
the system of polynomials {m;} consists of only N polynomials mg, 7y, ..., N1
(discrete orthogonal polynomials).

There are many reasons why the coefficients oy and S in the three-term re-
currence relation (11.1) are fundamental quantities in the constructive theory of
orthogonal polynomials (for details see [GA81]). For example, oy, and S provide
a compact way of representing and easily calculating orthogonal polynomials, their
derivatives, and their linear combinations, requiring only a linear array of parame-
ters.

The same recursion coefficients oy and 8 appear also in the Jacobi continued
fraction associated with the measure du,

) = /R du() By B

.
z—t Z—opg— Z— Qp—

which is the Stieltjes transform of the measure dy (for details see [GAB3, p. 15],
[17, p. 114]). The nth convergent of this continued fraction is easly seen to be

Bo B Baaa on(2)

= 11.2
Z—op— 2 —Qp— z2—apn_1 Ta(z)’ ( )
where o,, are the so-called associated polynomials defined by
— t
R z—1
They satisfy the same fundamental relation (11.1), i.e.,
or+1(2) = (2 — ar)or(z) — Brok-1(2), k>0,
with starting values o¢(z) =0, 0_1(z) = —1.
The functions of the second kind,
t
o) = [ 2Yau, k2o (113)
R % — t

where z is outside the spectrum of du (the Stieltjes transforms of 7y), also satisfy
the same three-term recurrence relation (11.1) and, under some mild conditions,
represent its minimal solution (cf. Section 21, Vol. 3) normalized by o_1(z) = 1. This
has been observed by Gautschi in [GAT75] and is a remarkable result, very important
for computation in the areas of orthogonal polynomials, special functions, and
numerical analysis. Gautschi [GAT75] showed that this minimal solution can be



11.1 Three-term recurrence relation 5

computed accurately by means of his continued fraction algorithm presented in
[GA29]. Namely, if one wishes to compute gx(z) for k = 0,1,...,n, then for some

v > n one generates quantities 7 and o{”) by

) _ g, T}(gglzL(), k=wvv—1,...,1,0,
Z—ak—T‘kU

Q—Ul):L Q](CU) :T](ill_)]_@;(:_)l, k=0,1,...,n.

The quantities Q,(CU)(Z) then tend to gx(z) when v — oo, for every k = 0,1,...,n.
For some standard measures du, Gautschi also provides good estimates for the
starting index v, given n and the desired accuracy.

Notice that the rational function (11.2) has simple poles at the zeros z = z, i,

k=1,...,n,of the polynomial 7, (t). By Ay we denote the corresponding residues,
ie.,
. on(z) 1 / 7 (t)
Mg = 1 - = dp(t
ok z_ffgk(z xnk)ﬁn(z) T (Xnk) JRE— Tk #lt),

so that the continued fraction representation (11.2) assumes the form

ICIN SY (11.4)

T— Tk
1 n,k

The coefficients A, . play an important role in Gauss—Christoffel quadrature for-
mulae, being the Christoffel numbers associated with du. Using procedures of
numerical linear algebra, notably the QR or QL algorithm, one easily computes the
zeros of the orthogonal polynomials 7, rapidly and efficiently as eigenvalues of the
leading nth-order principal minor matrix of the Jacobi matriz associated with dpu,

[ a0 VP 0]
VBl o1 VP2
J(d:u) = \/E (%)

0

The first components of the corresponding normalized eigenvectors give also imme-
diately the Christoffel numbers A, i (cf. [12, GA65]).

Unfortunately, the recursion coefficients are known explicitly only for some nar-
row classes of orthogonal polynomials. One of the most important classes for which
these coefficients are known explicitly are surely the so-called very classical or-
thogonal polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials),
which appear frequently in applied analysis and computational science. Orthogonal
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polynomials for which the recursion coefficients are not known we call strongly non-
classical polynomials. In this case, if we know how to compute the first n recursion
coefficients oy and B, k = 0,1,...,n — 1, we can compute all orthogonal polyno-
mials of degree < mn by a straightforward application of the three-term recurrence
relation (11.1).

In [GA81] Walter Gautschi starts with an arbitrary positive measure du(t),
which is given explicitly, or implicitly via moment information, and considers the
actual (numerical) construction of orthogonal polynomials to be a basic computa-
tional problem: For a given measure dyp and for given n € N, generate the first n
coefficients ay(dp) and Br(dp), k=0,1,...,n—1.

At that time, and even more so in the “pre-computer” era, the problem was given
surprisingly little attention in the literature, probably because it has a straight-
forward theoretical solution. Indeed, if one knows the moments ug, & > 0, the
polynomial 7 (¢; du) can be expressed in the form

Mo M1 - HE—1
1 |1 p2 o pr
R vl FR )
[k M1 oo pog—1 tF
where the Hankel determinant
Ho M1 v HEk—1

A= T
Hk—1 Kk - H2k—2

is nonvanishing. The coefficients in the three-term recurrence relation can also be
expressed in terms of Hankel determinats (or by Darboux’s formulae),

o 1 A (: (tﬂkﬂﬁc)), By = Ap_1Dk41 (: (Th, Th) )>’ (11.5)

T Mg Ap (k> T A2 (Th—1, Th1

where A} denotes the determinant obtained from Ay, by replacing the last column
(k=1 i - - - prok—2] ™ by (1 prrgr - - por—1]"-

Thus, the recursion coefficients oy, and S in (11.1) can be computed from (11.5)
in terms of Hankel-type determinants, but this involves excessive complexity and is
subject to extreme numerical instability. In the numerical construction of recursion
coefficients an important aspect is the sensitivity of the problem with respect to
small perturbations in the data (for example, perturbations in the first 2n moments
wk, k=0,1,...,2n — 1, when calculating the coefficients for k < n — 1). There is a
simple algorithm, due to Chebyshev, which transforms the moments to the desired
recursion coefficients, [1]7" 5" — o, Bk]iZq, but its viability is strictly dependent
on the conditioning of this mapping. The latter is usually severely ill conditioned
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so that these calculations via moments, in finite precision on a computer, are quite
ineffective. The only salvation, in this case, is to either use symbolic computation,
which however requires special resources and often is not possible, or else to use
the explicit form of the measure. In the latter case, an appropriate discretization of
the measure and subsequent approximation of the recursion coefficients is a viable
alternative.

11.2. Basic procedures for generating the recursion coefficients

There are three well-known approaches for generating recursion coefficients: the
method of (modified) moments, the discretized Stieltjes—Gautschi procedure, and the
Lanczos algorithm.

11.2.1. Method of (modified) moments

In an attempt to avoid ill-conditioning, one can use the so-called modified moments
my = [z or(t)dp(t), k = 0,1,2,..., where pj are monic polynomials of degree k
“close” in some sense to the desired polynomials 7. Usually, the polynomials py
satisfy a three-term recurrence relation of the form (11.1), with coefficients a; (€ R)
and by (> 0) (instead of ay and Bx). Then there is a unique map K, : R?" — R??
that takes the first 2n modified moments into the desired n recurrence coefficients
ay and B, i.e., [mk]iigl — ok, ﬁk]Z;é An algorithm for realizing this map (modi-
fied Chebyshev algorithm) is formulated and summarized schematically in Gautschi
[GA81]. In a somewhat different form, the algorithm has been first proposed by
Sack and Donovan [29], and modified by Wheeler [33]. A derivation can also be
found in [GA64]. For a; = by = 0 we have pi(t) = t* and the modified moments
my, reduce to the standard moments py,.

A rigorous and detailed analysis of the map K,, was given by Gautschi in [GA81]
(see also [GA94] and especially his excellent survey [GA146] on applications and
computational aspects of orthogonal polynomials). The novelty of his treatment
consists in representing K, : R?” — R2" as a composition of two maps, K, = H,, o
G, where G, : [mk]iigl — [n.k, An,k)f—; is the map from the modified moments
to the Gauss—Christoffel nodes and weights, and Hy, : [Ty &, A kliey — [k, m]Z;l,
the map from the Gauss—Christoffel quadrature rule

[ 7060 =3 A @)+ Bl FulPaer) =0,
k=1

to the desired recursion coefficients. Notice that x, x, K = 1,...,n, are the zeros
of the orthogonal polynomial 7, associated with the measure du. The parameters
Tn gk and Ap g, k=1,...,n, also appear in (11.4).

The components H,, and G,, of the map K,, can be analyzed individually with
regard to their numerical condition, which in turn yields a bound on the condition
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of the composite map. The map H,, is usually fairly well conditioned, but G,, is the
more sensitive one. The map K,, for standard moments, [1]3" 5" +— [k, B]}Zg, is
severely ill conditioned when n is large. By using modified moments, the map may

become better conditioned, very much so when the measure has finite support.

11.2.2. Discretization methods

The basic idea for these methods is an approximation of the given measure du by
a discrete N-point measure, usually through an appropriate quadrature rule,

d () d,uN Zwkét—xk wg > 0,

where 6 is the Dirac delta function. Thereafter, the first n recursion coefficients are
approximated by those of the discrete measure,

ak(d:u) ~ ak(d:uN)7 ﬁk(d:u) ~ ,Bk(d,UN), k= 1727' sy N

The approximate coefficients are computed by a discretized Stieltjes procedure. It
takes N > n and uses Darboux’s formulae in (11.5) for ¥ < n — 1, computing the
inner products as finite sums by

(p,q)n = /RP( )a(t) dpn (t Zwkp (zx)q(xk).

All aspects of discretization methods, theoretical and practical, are carefully
analyzed by Gautschi in [GA81] (questions of convergence, problems of computing
recursion coefficients of discrete measures, appropriate choices of discretizations,
numerical stability of the procedure, etc.). The idea of discretizing inner products
appeared already in the 1968 paper [GA31], where the discretization is effected
by the Fejér quadrature rule. Because of Gautschi’s important contributions, the
method is now known as the discretized Stieltjes—Gautschi procedure.

11.2.3. Lanczos algorithm

An alternative approach for obtaining the recursion coefficients of a discrete measure
is the Lanczos algorithm, which is based on ideas of Lanczos and Rutishauser (for
details see [GA146] and Gautschi’s book from 2004 [GAB3, pp. 97-98]).

11.3. Examples of interesting classes of orthogonal polynomials

Walter’s work and his contributions in the constructive theory of orthogonal poly-
nomials allow the construction of many new classes of polynomials and their ap-
plication in diverse areas of applied and numerical analysis (numerical integration,
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interpolation processes, integral equations, probability, moment-preserving spline
approximation, summation of slowly convergent series, approximation theory, etc.),
as well as in many other areas of applied and computational science.

In this subsection we mention some interesting nonclassical measures du(t) =
w(t) dt for which the recursion coefficients o (dp), Sk(dp), k =0,1,...,n—1, have
been obtained in the literature and used in the construction of Gaussian quadra-
tures and other applications of orthogonal polynomials. Many interesting examples,
including discrete and continuous measures, were considered by Gautschi [GA81] in
order to illustrate the strengths and weaknesses of the various constructive methods
and to test the underlying theory.

1) Christoffel’s example du(t) = [(1—k*t?)(1—t?)]"/2dt on [-1,1],0 < k < 1,
was treated in [GA81, GA94] by the method of moments, using modified moments
relative to Chebyshev polynomials of the first kind.

2) The logarithmic weight w(t) = t*log(1/t), a > —1, on (0,1) was first con-
sidered by Piessens and Branders [28] for some particular values of a. Gautschi
[GA81, GA117] gave a complete stability analysis and used the modified moments
relative to shifted Jacobi polynomials [GA67] in his construction, even for the more
general measure du(t) = t*(1 —t)?log(1/t) dt, where a, 3 > —1.

3) The half-range Hermite measure du(t) = exp(—t2) dt on [0,00) was dealt
with in [GA81] by using the discretized Stieltjes—Gautschi procedure. Orthogonal
polynomials with respect to the same measure, but on a finite interval [0, ¢] (Maxwell
velocity distribution), were considered for ¢ = 1 and n = 10 by Steen, Byrne, and
Gelbard [30]. A stable construction is given by Gautschi in [GA122].

4) Polynomials orthogonal with respect to multiple-component distributions,
e.g., du(t) = [(1 —3)~Y2 4 a]dt on [~1,1], a > 0 (adding a multiple of the
Legendre weight function to the Chebyshev weight function), was considered in
[GAS1].

5) In [GA90] Gautschi developed constructive methods for a class of polynomials
orthogonal on two symmetric intervals with respect to the measure du(t) = w(t) dt
on [—1,1], where

0 (2 = )P —t2), te[-1,-ul¢ 1],
w(t) =
0 elsewhere, 0<(¢<l,p>-1,qg>-1, veR.

An analysis is given of certain phenomena of instability in connection with nonlinear
recursions. The special case y =1, p=¢=-1/2,(=(1—-7r)/(1+7r) (0<r<1)
arises in the study of the diatomic linear chain (cf. J. C. Wheeler [34]). Gautschi
showed how to use the recurrence relations for related polynomials orthogonal on
[¢,1] to generate the coefficients S in the desired three-term recurrence relation.
For certain special values of the parameters p, ¢ and y, he obtained fj explicitly
in closed form. For general parameters, the theory of this class of polynomials has
previously been studied by Barkov [2]. In 1989 Locher [14] obtained an explicit
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representation of these polynomials in the case v = 0 (and in some other cases
where v is an even integer), from which the recurrence relation can be derived.

6) The Airy weight w(t) = exp(—t3/3) on (0, +00) was considered in the chem-
istry literature [13], but the numerical results obtained were accurate to only 1 — 2
decimal digits (cf. also Section 15.1). The inhomogeneous Airy functions Hi(¢) and
Gi(t) arise in theoretical chemistry (e.g. in harmonic oscillator models for large
quantum numbers); their integral representations [13] are given by

1 [tee
Hi(t) = —/ w(z)e* dz,
0

™

1 [+ 2
Gi(t) = _7_r/0 w(z)e 2 cos(\/Tg xt + ?ﬂ) dzx.

These functions can effectively be evaluated by Gaussian quadrature relative to the
Airy weight w(t) once the orthogonal polynomials with respect to this weight are
known. Gautschi [GA84] computed their recursion coefficients for n = 15 to 16
decimal digits after the decimal point, using standard double-precision arithmetic.

7) The reciprocal gamma function w(t) = 1/T'(¢) as a weight function on (0, +00)
was considered by Gautschi in [GA80]. It could be useful as a probability density
function in reliability theory (see Fransén [10]).

8) Einstein’s and Fermi’s weight functions on (0, 400),

t 1
wy(t) = e(t) = T and wa(t) = p(t) = et
arise in solid state physics. (For this example, see also Section 15.5.) For w;(z),
wa (), w3(z) = e(x)? and wy(r) = ¢(x)?, in a joint paper with Walter Gautschi
[GA93], we determined the recursion coefficients ay, and S8 for n = 40 to 25 decimal
digits, and gave an application of the respective Gauss—Christoffel quadratures to
the summation of slowly convergent series whose general term is expressible in
terms of a Laplace transform or its derivative. (For this, see also Section 25.2, Vol. 3)
It was our first joint paper. The story of our collaboration has recently been told by
Walter Gautschi [GA201] on the occasion of my 60th anniversary. Our collaboration
has started in the mid eighties of the last century, just at the time when Walter
developed his constructive theory of orthogonal polynomials. I was then in my
thirties, so his influence on my scientific work and my further development was of
crucial importance; for this I am very grateful to him.
9) For the hyperbolic weights on (0, +00),

1 sinh ¢

and wo (t) = ,
cosh?t ) cosh?t

w1 (t) =

I constructed the recursion coefficients ay, B for n = 40 to 30 decimal digits [19]
using the discretized Stieltjes—Gautschi procedure with a discretization based on
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the Gauss—Laguerre quadrature rule. The Gaussian quadratures relative to these
weights were used in the summation of slowly convergent series (for details see
[19-21]); see also Dahlquist [7-9] and [25] for related work.

10) The weight distribution du(t) = t*Ko(t)dt on [0,00), @ > —1, where
Ky is the modified Bessel function, arose in work of R. Wong [35]. In [GA81]
Gautschi showed how to decompose and discretize the inner product (p,q) =
fooo p(t)q(t) du(t) in order to apply an appropriate Stieltjes—Gautschi procedure.
Recently, Gautschi [GA169] described procedures for the high-precision calculation
of the modified Bessel function K, (t), 0 < v < 1, and the Airy function Ai(t),
for positive arguments ¢, as prerequisites for generating Gaussian quadrature rules
having these functions as a weight function.

Recent progress in symbolic computation and variable-precision arithmetic now
makes it possible to generate the coefficients o and §i in the three-term recurrence
relation (11.1) directly by using the original Chebyshev method in sufficiently high
precision. Respective symbolic/variable-precision software for orthogonal polyno-
mials is available (Gautschi’s package SOPQ in Matlab — see Section 23, Vol. 3— and
the Mathematica package OrthogonalPolynomials [5,26]). Thus, all that is required
is a procedure for the (symbolic) calculation of the moments in variable-precision
arithmetic. Gautschi [GA176] illustrates this approach in the case of orthogonal
polynomials having such unorthodox weight functions as 1 + sin(1/¢) on [0,1], or
exp(—t — 1/t) on [0, co], which are respectively densely oscillating at one endpoint,
or exponentially decaying at both. In each case the moments of the weight function
are expressible in terms of special functions which can be evaluated to arbitrary
precision. Similarly, in [GA195] Gautschi considered Freud and half-range Hermite
polynomials, Bose—Einstein polynomials, and Fermi-Dirac polynomials.

Very recently, Gautschi [GA205] considered orthogonal polynomials relative to
the Jacobi weight function w(x) = (1 — 2)*(1 + 2)?, a, 8 > —1, but orthogonal
on a strict subinterval [—c, ¢] or [-1,¢], 0 < ¢ < 1, especially with regard to their
numerical computation. Such sub-range Jacobi polynomials 7 (z) can be expressed
in terms of polynomials orthogonal on [—1, 1] relative to the weight function w(ct)
resp. w($(1+c)t— (1 —c)) and constructed using a discretized Stieltjes-Gautschi
procedure. Gautschi also considered corresponding Gaussian quadrature rules.

11.4. Christoffel modifications of the measure — modification
algorithms

Let du(t) be a positive measure with finite support supp(du) = [a, b,

P4 m
u(t) ==+ [J¢t—w), v@)=]]—vx)

k=1 k=1
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be two real polynomials, relatively prime and not vanishing on [a, b], the sign + or
— in u(t) being chosen so that u(t)/v(t) > 0 on [a,b]. Define a new measure

du(t) = %du(t)7 t € [a,b]. (11.6)
The main problem is to generate the three-term recurrence coefficients of the mod-
ified measure (11.6), ar = ag(dp) and Br = Br(dir), from those of the original
measure, ay = ag(dp) and Br = Bi(dw). Methods for implementing this transfor-
mation are known as modification algorithms. The first result in this area is due to
Christoffel [4], who in 1858 expressed u(t)m, (¢; dfi), when v = 1 and du(t) = dt, in
determinantal form as a linear combination of orthogonal polynomials 7,1, (¢; du),
v =20,1,...,¢. The case with v(t) #Z 1 was solved hundred years later by Uvarov
[31].

Modifications by linear and quadratic factors and divisors play an important
role in the computational use of orthogonal polynomials. Subsequent to a paper
of Galant [11], who considered modification by a linear factor, Gautschi [GA77]
in 1982 developed general modification algorithms for linear and quadratic factors
u(t) =t —x and u(t) = (t — )% + y? and analogous divisors. Based on work by
Verlinden [32], these methods can be simplified considerably and in this simplified
form are included in Gautschi’s book [GAB3, §2.4] along with Matlab software. An
interesting quadratic factor is u(t) = (t — x)2. It can be treated by techniques
of numerical linear algebra (cf. [GA170]). Namely, in order to obtain J,(dfi) one
applies a single step of the QR algorithm with shift = to the Jacobi matrix J,12(dp)
of order n 4 2 and then discards the last two rows and columns of the resulting
matrix.

In [GA134] Gautschi (with Shikang Li) considered dfi(t) = [m,(¢; du)]? du(t)
and constructed the orthogonal polynomials 7, (¢; diz) and their recursion coeffi-
cients from the coefficients ay(dp) and SBi(dp) of the polynomials 7, (t; du). They
proposed a stable computational algorithm, which uses a sequence of QR steps with
shifts, but for all four Chebyshev measures they obtained the desired coefficients
analytically in closed form. These ideas have been used in [6] to develop a ratio-
nal algorithm for quadratic Christoffel modification and to apply it to constrained
L2-approximation.

Recently, Gautschi [GA206] has developed algorithms for computing the recur-
sion coeflicients in the three-term recurrence relation of repeatedly modified orthog-
onal polynomials, the modifications involving division of the orthogonality measure
by linear functions with real or complex coefficients. Several interesting examples
are given, including Bose—Einstein distributions and the Szegé—Bernstein measure.

11.5. Sobolev-type orthogonal polynomials

In the last two decades, interest arose, and grew, in the development of orthogo-
nal polynomials with respect to an inner product of Sobolev type, i.e., involving
derivatives up to a given order with corresponding positive measures. There is a
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growing literature on this kind of orthogonal polynomials, largely concerned with
analytic and algebraic properties (cf. [15]). Computational aspects were first dis-
cussed systematically by Gautschi and his student M. Zhang [GA145], where the
inner product considered is a bilinear functional involving derivatives up to some
order s (> 1) with arbitrary positive measures du,, v =0,1,...,s,

N 0
=3 / P () () dp (1), (11.7)

Here H, denotes the Sobolev space Hy(R) = {f : >.0_ [o[f®)(£)]? duu(t) < oo}
They developed two numerical methods for determining the coefficients in the (long)
recurrence relation for orthogonal polynomials of Sobolev type,

k
M1 (t) = tmi(t) = > Bhmeu(t), k=0,1,....
v=0

The first is based on modified moments of the constitutive measures and generalizes
what for ordinary orthogonal polynomials is known as “modified Chebyshev algo-
rithm”. The second is a generalized Stieltjes—Gautschi procedure. The numerical
features of these methods are illustrated in the case of old, as well as new, Sobolev
orthogonal polynomials. The coeflicients in the recurrence relation can be used to
compute the zeros of m,(t) as eigenvalues of an upper Hessenberg n x n matrix.
Based on numerical experimentation, a number of conjectures are formulated with
regard to the location and interlacing properties of the respective zeros.

In [GA151] Gautschi develops two recursive schemes for computing a special
class of Sobolev-type orthogonal polynomials, considered previously by F. Marcellan
and A. Ronveaux [16]. The inner product involves functions with an arbitrary
positive measure du(t) on R, and a derivative of fixed order r with a one-
point atomic measure, i.e., [f,g] = (f,9) + f(c)g"(c), r > 1, ¢ € R, and
(f.9) = Jg f(t)g(t)du(t). Gautschi combines in an elegant way known algebraic
properties of such Sobolev orthogonal polynomials with algorithmic ideas of his own
to arrive at effective methods for computing these polynomials numerically. He il-
lustrates them in the case of Hermite, Laguerre and Legendre measures, and uses
them to explore numerically the zeros of the respective Sobolev-type orthogonal
polynomials.

In the very interesting paper [GA153] Gautschi and Kuijlaars, using potential-
theoretic methods, study the asymptotic distribution of zeros and critical points of
Sobolev polynomials ,, orthogonal with respect to the inner product (11.7) with
s = 1, assuming that dug and du; are compactly supported positive measures on
the real line with finite total mass and infinite ¥ = supp(uo) U supp(p1). Under
appropriate assumptions they show that the critical points (zeros of x/,) have a
canonical asymptotic limit distribution supported on the real line. In certain cases
the zeros themselves have the same asymptotic limit distribution. They also give a
new result on zero distributions of asymptotically extremal polynomials.
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11.6. Further extensions and applications

Gautschi’s work on the constructive theory of orthogonal polynomials has had a
great impact on the general development of the theory of orthogonal polynomials
and led to many new applications of orthogonal polynomials in numerical integra-
tion, interpolation processes, approximation and optimization theory, spline theory,
integral and differential equations, linear algebra, and in many other fields of ap-
plied and computational science. In particular, the development of appropriate
software has encouraged a number of new applications. His article [GA81] alone is
cited over 150 times (according to the Web of Science) in papers from the previously
mentioned areas of mathematics, mechanics, computer science, physics, chemistry,
engineering, etc.

In conclusion, I would like to mention a few generalizations and applications of
Gautschi’s ideas in my own work.

(a) Construction of s-orthogonal polynomials. These polynomials {m, s(t)}72
(with a fixed s € N) are characterized by the nonlinear orthogonality relation

/ ()] du(t) =0, v=0,1,...,n—1,
R

and play an important role in the construction of so-called Turdn quadratures
with multiple nodes (cf. [23]). In [18] we first reinterpret these relations as ordi-
nary orthogonality conditions relative to the positive measure (implicitly defined)

dpin,s(t) = [WH,S(t>]28 du(t),
/tuﬂ'n,s(t)d,un,s(t)zov v=01,...,n—-1,
R

and then apply Gautschi’s idea of the discretized Stieltjes procedure to the corre-
sponding system of nonlinear equations. In a joint paper with Walter Gautschi
[GA154], and more recently in [GA211], the method was applied to construct
Gauss—Turan quadrature formulae. (For this, see also Section 15.5.) These methods
have led to further progress in the theory of quadratures with multiple nodes.

(b) Orthogonal polynomials on radial rays. In 1997 I introduced a class of
polynomials orthogonal on radial rays in the complex plane [22]. For the numer-
ical construction of the corresponding recurrence coefficients I used a generalized
Stieltjes—Gautschi procedure [24].

(¢) Multiple orthogonal polynomials. A nice survey of these polynomials, known
also as Hermite-Padé polynomials, was given by Aptekarev [1]. In 2003, with my
student Stani¢, I gave an application of the generalized Stieltjes—Gautschi procedure
to the numerical construction of a special class of multiple orthogonal polynomials
(see [27]). Using these polynomials, we also described a method for the stable
construction of Borges quadrature rules [3].
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Polynomials orthogonal on the semicircle

Lothar Reichel

In two papers, jointly with Henry J. Landau and Gradimir V. Milovanovié¢, Wal-
ter Gautschi investigates polynomials that are orthogonal with respect to a non-
Hermitian inner product defined on the upper half of the unit circle in the complex
plane. For special choices of the weight function, these polynomials are related
to Jacobi polynomials. Their recurrence relation and properties of their zeros are
investigated, and applications to Gauss quadrature are explored. We first discuss
the importance of orthogonal polynomials that satisfy recurrence relations with few
terms, and then focus on the special properties of orthogonal polynomials on the
semicircle.

12.1. Recurrence relations for orthogonal polynomials

Orthogonal polynomials are important in analysis, approximation theory, and com-
putational mathematics. They provide a convenient basis both to express and
compute polynomial approximants. The n x n matrix determined by the recursion
coefficients for the first n + 1 orthogonal polynomials is helpful for computing the
nodes and weights of the n-point Gauss quadrature rule. Moreover, orthogonal
polynomials form the foundation for numerous iterative methods in linear algebra,
including the conjugate gradient method for the solution of large linear systems of
equations with a symmetric positive definite matrix, and the symmetric Lanczos
process for the computation of a few selected eigenvalues and associated eigenvec-
tors of a large symmetric matrix. Very nice discussions of the many applications
of orthogonal polynomials in scientific computation is provided by Gautschi in his
survey article [GA170] as well as in his wonderful book [GAB3]. Further examples
of usage of orthogonal polynomials in linear algebra can be found in the recent book
by Golub and Meurant [8].

The symmetric Lanczos process is a manifestation of the Stieltjes procedure for
generating the recursion coefficients for polynomials orthogonal with respect to an

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 2: Selected Works with 17
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7049-6_2,
© Springer Science+Business Media New York 2014
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inner product on a real interval. These polynomials satisfy a three-term recurrence
relation. The symmetric Lanczos process is the foundation for the conjugate gra-
dient method for the iterative solution of large linear systems of equations with a
symmetric positive definite matrix. The existence of a recurrence relation for the or-
thogonal polynomials with few terms reduces the computational effort and storage
requirement for the conjugate gradient method. The availability of these recurrence
relations also reduces the computational effort required by the symmetric Lanczos
process for the computation of a few selected eigenvalues and associated eigenvec-
tors of a large symmetric matrix. Analogously, the three-term recurrence relation
for orthogonal polynomials is fundamental for the efficiency of the QR algorithm
for the computation of all eigenvalues and possibly eigenvectors of a symmetric
matrix. A variant of this algorithm is commonly applied to compute the nodes and
weights of Gauss quadrature rules associated with a positive measure on a real in-
terval; see, e.g., [GA170], [8, Secs. 6.2.3, 10]. The use of orthogonal polynomials for
data-fitting is natural and the existence of a three-term recursion relation reduces
the computational effort; see, e.g., Elhay et al. [7] and Gautschi [GA170, Sec. 4].

The above discussion illustrates that the existence of orthogonal polynomials
that satisfy a recurrence formula with few terms is of significant interest in scien-
tific computation. The aforementioned numerical methods use the three-term recur-
rence relations of polynomials that are orthogonal with respect to an inner product
defined by a nonnegative measure on a real interval. Also matrix-valued polynomi-
als that are orthogonal with respect to a symmetric positive definite matrix-valued
measure satisfy a three-term recurrence relation and find applications in scientific
computation; see, e.g., [2], [8, Sec. 2.7].

Polynomials that satisfy short recurrence relations different from three-term
relations are of interest in computations as well. For instance, Szeg6 polynomials
and the associated reversed polynomials satisfy pairs of short recurrence relations.
Szeg6 polynomials find numerous applications in statistics and signal processing
[10, 12], and their recurrence relations form the basis for an efficient QR algorithm
for computing all eigenvalues, and possibly also all eigenvectors, of a unitary upper
Hessenberg matrix [9, 19]. This QR algorithm can be applied to compute the nodes
and weights of Gauss—Szegd quadrature rules associated with a positive measure
on the unit circle [12]. The short recurrence relations of Szegé polynomials are
important for the development of efficient algorithms for data-fitting applications
as well; see, e.g., [1].

Orthogonal polynomials with respect to most inner products with support in
the complex plane do not satisfy a short recurrence relation or pairs of short re-
currence relations. For this reason the inner product sometimes is replaced by a
bilinear form chosen to obtain families of polynomials that satisfy short recurrence
relations. These polynomials give rise to oblique projection methods, such as the
nonsymmetric Lanczos process, and they can be used in iterative methods for the
solution of large linear systems of equations with a square nonsymmetric matrix,
and for the computation of a few eigenvalues and associated eigenvectors of such
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a matrix; see, e.g., Brezinski [3] for discussions and applications. A difficulty with
these methods is that the recurrence formulas may break down and then require a
special recovery procedure; see, e.g., Brezinski et al. [4] and references therein.

In 1985, before the publication of the first paper by Gautschi and Milovanovié
[GA95] on orthogonal polynomials on the semicircle, only polynomials orthogonal
with respect to an inner product on an interval or on a circle were known to satisfy
recurrence relations with few terms and not to suffer from the possibility of break
down. The results of this paper and of the more complete investigations [GA97,
GA104] therefore were quite surprising. The uncovering of the many nice proper-
ties of orthogonal polynomials on the semicircle was very important for analysis,
approximation theory, and computational mathematics, and has spurred related
work. The following subsection describes some important properties of orthogonal
polynomials on the semicircle and the last subsection discusses some applications
and more recent work.

12.2. Orthogonal polynomials on the semicircle

Let w be a weight function that is positive at infinitely many points in the open
interval (—1,1), is integrable on this interval, and can be extended to a function
w(z) holomorphic in the open unit half disk Dy = {z € C: |z| < 1, Im(z) > 0};
the function w may be singular at +1. Introduce the inner product

(f.9) = / F(2)g(e)w(z)(iz) "z = / " F(e)g(e ()b, (12.1)

where ¢ = v/—1 and I' is the upper unit semicircle in the complex plane C. Also
define the inner product

e / f@ila)ola)d. (12.2)

where the bar denotes complex conjugation. All integrals are assumed to exist,
possibly as suitably defined improper integrals. The inner product (12.2) is pos-
itive definite. Therefore, there is a family of infinitely many monic orthogonal
polynomials {p;}72, such that

. >0, j=k, ——
[p]7pk] {207 ]#k, ]7k—071727... .

The inner product (12.1) is non-Hermitian. It therefore is not obvious that there
is a family of infinitely many monic orthogonal polynomials {r; };?‘;0 such that

) 7&07 ]:k7 . _
(7, k) {:07 Ptk G k=0,1,2,... .
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Gautschi et al. [GA104] showed that under the mild restriction

Re(1,1) = Re (/Oﬂ w(ew)cw) #0,

the orthogonal polynomials 7; exist. Moreover, they can be expressed in terms of
the orthogonal polynomials p;. Specifically, we have

ﬂ—k(z>:pk(z>_i0k—1pk—l(z)7 k2071727"' ) p—l(z>:O7 (123)

where ,
1ok (0) + 7gx(0)
ipopr—1(0) — qu—1(0)

The ¢x(0) denote the values of the associated polynomials

1
qr(z) = / ZMw(z)dm, q-1(z) = —1,

—1 zZ—X

Op_1 = . k=0,1,2,....

at the origin, and o = (1, 1) is the zeroth moment with respect to the inner product
(12.1). Using the fact that the polynomials p; satisfy a three-term recurrence
relation, Gautschi et al. [GA104] obtain from (12.3) that the polynomials 7, satisfy
a three-term recurrence relation of the form

Te+1(2) = (2 — dag) T (2) — Brme—1(2), k=0,1,2,..., (12.4)

with 7_1(2) = 0 and mo(2) = 1.
The recursion formula (12.4) indicates that the eigenvalues of the tridiagonal

matrix ) }
iog 1 O
ﬂl ial 1
B2 i 1
Jk _ ' ) ) c (Ckxk
1
NO) Br—1 iag_1 |

are the zeros of 7.

If the weight function w satisfies w(z) = w(—z) and w(0) > 0, then the subdiag-
onal entries of the matrix .J; are real, and .J, can be transformed to a real matrix.
Moreover, Gautschi et al. [GA104, Thm. 6.2] show that all zeros of the orthogonal
polynomials 7 live in the open upper half of the unit disk in C except possibly for
a single zero on the positive imaginary axis.

Finally, Gautschi et al. [GA104, Thm. 6.2] discuss the special case of Jacobi-
and Gegenbauer-type weight functions. The latter are given by

1

w(z) = (1 — 22212, A > —3 (12.5)
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where the fractional powers are understood in terms of their principal branches.
The zeros of the orthogonal polynomials 7g, k > 2, associated with a Gegenbauer-
type weight function (12.5) are shown to be simple, distributed symmetrically with
respect to the imaginary axis, and contained in the open upper unit half disk. Fur-
ther results on the zeros of polynomials orthogonal on the semicircle are presented
by Gautschi in [GA113].

12.3. Extensions and applications

A fairly natural modification of the work by Gautschi et al. [GA97, GA104] is to
consider an inner product on a subarc of the upper half of the unit circle. De Bruin
[6] investigated properties of polynomials orthogonal with respect to a possibly non-
Hermitian inner product on an arc of the unit circle, symmetric with respect to the
imaginary axis. Functions of the second kind and Stieltjes polynomials for such
inner products are described by Milovanovié and Rajkovié [17]. Milovanovié¢ [16]
discusses Gauss quadrature rules and provides error bounds for integrals defined on
the semicircle. Relations of polynomials orthogonal on the semicircle or on a circular
arc to polynomials orthogonal with respect to an inner product on certain contours
in C are explored by Milovanovi¢ and Rajkovié [15]. Applications of orthogonal
polynomials on the semicircle to differentiation are described by Calio et al. [5],
and their use in zero-finders is commented on by Petkovié et al. [18]; see also
Milovanovié¢ [13, 14] for discussions on applications. A recent account of orthogonal
polynomials on the semicircle can be found in Gautschi [GAB3, Sec. 1.8].

Acknowledgement. I would like to thank Gradimir Milovanovié¢ for comments and
references.
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Chebyshev quadrature

Jaap Korevaar

Here we review Gautschi’s work on Chebyshev quadrature, first his 1975 survey
paper, and then original work by him and his colaborators.

13.1. Advances in Chebyshev quadrature

The paper [GA55] gives an account of the history and developments in Chebyshev
quadrature, which is still quite valuable today. Gautschi begins by developing
precise terminology. Let du be a positive measure on a finite or infinite interval J,
with endpoints a, b, that has finite power moments p, = [; 2"du(z) of all orders
r > 0. One now considers quadrature formulas with equal weights,

/Jf(ﬁ)du@) = Z %f(ﬂﬁk) FR(f), e=c™, ap =alM. (13.1)
k=1

Gautschi calls this a Chebyshev quadrature rule if R, (f) = 0 for all polynomials of
degree < n (so that ¢ = ), and all nodes zy are real. He speaks of a Chebyshev
quadrature rule in the strict sense if the nodes are distinct and contained in J.
Finally, any formula (13.1) with real nodes is called a Chebyshev-type quadrature
formula. The nodes need not be distinct and the rule need not be polynomially
exact to any degree (not even degree zero).

The monic polynomial of degree n with zeros zj = x,(cn) is denoted by p, (x; du).
For a Chebyshev quadrature rule, the polynomial can be obtained from the moments
. They give the power sums of the roots up to degree n, so that the coefficients
can be obtained by using symmetric functions. The roots may now be computed
to any degree of accuracy. Formula (13.1) is a Chebyshev quadrature rule if and
only if all roots of p,(x;du) as obtained from pyg, ..., p, are real.

Gautschi first surveys the case (13.1) with J = [—1,1] and du(z) = dx. Here
Chebyshev computed the classical “Chebyshev quadrature rules” (with only real

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 2: Selected Works with 23
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7049-6_3,
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nodes) for n = 2,3,...,7. A little later, Radau found such a rule for n = 9, and
a formula involving nonreal nodes for n = 8. The ingenious work by Bernstein
in the 1930s finally showed that for the measure du(x) = dz, there are no cases
with only real nodes beyond those that were known already. Subsequent authors
have computed the formulas with complex nodes for larger n, and studied the
distribution of the roots of p,,(z;du) in the complex plane.

Gautschi next discusses Chebyshev’s construction of p,(z;du) for the case J =
[—1,1] and du(z) = (1 — 22)~2dz. It leads to what is now called the Chebyshev
polynomial T, (z) and to the corresponding Gauss-type quadrature formula with
equal weights. Of course he also mentions Ullman’s extension, which at the time
came as quite a surprise. Next there is a thorough discussion of nonexistence results,
also for other intervals and measures. In this area Gautschi published his paper
[GA50]; see below. He also includes a simple proof of the fact that no Gauss-type
quadrature formula on [—1, 1], except the one mentioned above, is at the same time
a Chebyshev formula for each n.

For Chebyshev-type quadratures the report surveys the maximum degree of
polynomial exactness p = py,(du). For J = [—1,1] and du(z) = dx, Bernstein had
already obtained the inequality p < 44/n. In this context one may now mention a
1993 paper by Kuijlaars [9].

The next subject is optimal Chebyshev-type quadratures of various kinds. Here
it is natural that multiple nodes appear. In this area Gautschi published four
papers: [GA46] (jointly with H. Yanagiwara), [GA53] (jointly with L.A. Anderson),
[GA5T7] and [GA58] (jointly with G. Monegato), of which only the first and the last
are reviewed separately. Here we also mention later work by the reviewer and
Meyers [3].

Multidimensional Chebyshev-type quadrature problems have been considered
by J. L. H. Meyers in his PhD thesis [10], and by the reviewer and Meyers in [4],
[5]; cf. the reviewer’s survey [6]. The problem of finding O(n?) suitable nodes on
the two-sphere (with area measure) is related to the Chebyshev-type problem for
the interval J = [—1,1] and du(z) = dz. In this connection one may mention the
recent work [1] of Bondarenko, Radchenko and Viazovska on the sphere-conjecture
of the reviewer and Meyers; cf. also (with thanks to Kuijlaars) the related work of
Kane [2].

We finally mention papers by the reviewer and L. Bos [7], cf. [§], on a charac-
terization of algebraic curves by Chebyshev quadrature.

13.2. Chebyshev-type quadratures

The paper [GA46] by Gautschi and Yanagiwara deals with Chebyshev-type quadra-
ture for J = [—1,1] and du(x) = dz. Tt ties in with Bernstein’s result that formula
(13.1) (with real nodes) can have algebraic degree of exactness p = n only when
n <7 and n =29. In that case the nodes are symmetric with respect to the origin,
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so that in fact, p = 2[n/2] + 1. In order to obtain useful formulas for other degrees,
the authors (primarily) deal with the following modified problem. Determine real
symmetric nodes z; which minimize

|Rn (zPT1)|  with p=2[n/2] -1, (13.1)

subject to the constraint that R, (z7) = 0 for j = 1,2,...,p. For n = 8 and
n > 10, the authors show that every real solution must have multiple nodes, as
was suggested by empirical work in the literature. By Bernstein’s work there must
be nonreal nodes when n > 20. For n = 8 and 10 < n < 19 the authors compute
symmetric nodes, and conclude that for n = 12 and n > 14, the modified problem
has no solution with only real nodes.

In [GA50] Gautschi deals with Chebyshev-type quadratures on [0,00) and
(—00,00). It was known that for Laguerre or Hermite weights, there cannot be
Chebyshev formulas in the strict sense when n > 3, or for n > 4, respectively.
Gautschi shows that for such weights, Chebyshev-type quadratures likewise exist
only for certain severely limited values of n.

The paper [GA58] by Gautschi and Monegato is, in a sense, a continuation of
[GA46]. In that paper the nodes were chosen so as to minimize | R, (2P*1)| with
p = 2[n/2] — 1. Here it is shown, among other things, that the same nodes in fact
minimize |R,, (z7)| for every j > p+ 1.
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Kronrod and other quadratures

Giovanni Monegato

This section is devoted to Gautschi’s work on Kronrod quadratures and other spe-
cial quadrature rules. For Gauss-type quadrature rules, see Section 15.

14.1. Kronrod rules

The most popular quadrature rules for the approximation of integrals, defined
on bounded or unbounded intervals, are certainly the Gaussian ones. Given any
“weight function” w(z) having constant sign on the interval of integration (a,b)
and finite moments, the Gaussian rule is an interpolatory formula of the form

b n
[ @) f@)de = 3 wnif (o) + Ralf) = GulF) + alf)

i=1

whose nodes {z,;} coincide with the n zeros of the polynomial of degree n orthogo-
nal on (a, b) with respect to w(x). It is the unique quadrature rule having maximum
degree of exactness 2n — 1. Several representations for the remainder term R, (f)
have been derived under different smoothness assumptions on the function f. While
these are of interest for knowing the convergence behavior of the rule when the func-
tion f has a given smoothness property, they are of little help to obtain an error
estimate for a given choice of the number n of nodes, not necessarily large.

A practical criterion commonly used to obtain such an estimate for any given
value of n is

|Rn () = [Gr(f) — G(f)]

with m ~ n + 1, when the function f is very smooth, and m =~ 2n otherwise.
Notice that the Gaussian rules associated with two different values of n may have
at most one common node. This happens when both rules have an odd number
of nodes symmetrically distributed in the interval (a,b), that is, when the weight
function w is an even function with respect to the midpoint of the interval. Thus
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the computational cost of the above estimate runs from a minimum of 2n + 1 to a
maximum close to 3n function evaluations. Notice also that to apply this criterion,
one has to know a prior: the degree of smoothness of the function f. Moreover,
even if this is known, it may not be obvious how to choose m > n + 1.

In 1964 A. S. Kronrod [5] proposed a practical and very efficient technique for
estimating R, (f) in the case of the Gauss-Legendre rule. This new approach,
taking m = 2n + 1 regardless of the degree of smoothness of f and for G,,(f) a
(2n+1)-point quadrature rule, here denoted by Ka,11(f), has the abovementioned
minimum (total) cost of 2n + 1 function evaluations. The rule Ko, 11(f) is taken
to be of interpolatory type and of the form

1 n n+1
/1 f(z)de ~ Z f(@ni) + Z wnj f Ynj) =t Konta1(f), (14.1)
- i=1

where the nodes {z,;} are those of the n-point Gauss-Legendre formula G, (f)
while the additional nodes {y,;}, and all weights, are chosen so that the degree of
exactness of Ka,,11(f) is at least 3n+1 (3n+2 when n is odd). Kronrod constructed
this rule for all n < 40. The tables he presented show that the new abscissas are
real, symmetric, contained in (—1, 1), and alternate with the x,,;’s; moreover, all the
weights are positive. Gautschi [GA177] in a short note published in 2005 pointed
out that the same idea was suggested much earlier in 1894 by R. Skutsch.

Quadrature theory tells us that the polynomial F,,11(z) of degree n + 1 having
the nodes {yn;} as zeros must satisfy the orthogonality relations

1
/ Pn(ac)EnH(x)xkdx =0, k=0,1,...,n,
-1

where P, (z) is the Legendre polynomial of degree n, whose zeros define the abscissas
{zn:}. It was I. P. Mysovskih [11] in 1964 and, independently, P. Barrucand [1] in
1970, who pointed out that such polynomials E,11(z) have been studied already
by Stieltjes [19] in 1894 and later in 1935 by G. Szegd [20] in the more general
case of ultraspherical (or Gegenbauer) orthogonal polynomials P () with weight
function w(z) = (1 —22)*~1/2, A > —1 on (—1,1). Szegd in fact showed that for

0 < X\ < 2 the zeros of the corresponding polynomial E,(Q_)l(x), now called Stieltjes

polynomial, are all in (—1, 1), are distinct, and interlace with those of M (). Thus,
for the above values of the parameter A, the Kronrod rule K éz)ﬂ, having degree at
least 3n + 1, exists. Nothing was known, however, about the case A ¢ (0, 2], or the
more general case of Jacobi weight functions w(z) = (1 — z)*(1 +z)?, a, 8 > —1.

To my knowledge, Gautschi [GA107] has been the first to draw attention to the
above (earlier) work of Mysovskih.

Concerning other types of classical weight functions, Ramskii [17] in 1974 pub-
lished a paper where the Kronrod idea was applied to the Gauss—Laguerre and
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Gauss—Hermite quadrature rules. In particular, he constructed the new “extended”
rules for all values of n < 20. In the Laguerre case, the additional nodes are real
only for n = 1, although one being negative, and the associated weights are positive;
for 2 < n < 20 some of the nodes are complex. In the Hermite case, the Kronrod
rule exists, with all nodes real, only when n = 1, 2,4, and the weights in these cases
are all positive. In that same year, this paper was reviewed by Walter Gautschi for
Mathematical Reviews (MR0353638 (50#6121)).

At the end of August 1974, when I started my stay at Purdue University to
do research under the supervision of Walter Gautschi, he showed me the review of
Ramskii’s paper and proposed to prove a conjecture stated therein. This introduced
me to Kronrod’s work.

After several attempts without success, I gave up and started to examine some
questions related to the Legendre case. Some preliminary results were published
in 1976 (see [7]). But the major issue was the positivity of all the weights of
Kronrod quadrature rules in the case of the ultraspherical weight. In 1977, when
I had already returned to the University of Turin, I succeeded to prove positivity
when 0 < A <1 [8]. In that same year, a partial answer to the original research
proposal made by Gautschi was given by David Kahaner and myself [4]. We were
able, indeed, to prove nonexistence, except for the values of n stated by Ramskii, of
Kronrod extended rules with real nodes and positive weights. A proof in the case
where positivity of the weights is not required is not yet known.

Some results on existence and nonexistence of Kronrod rules associated with the
Gegenbauer and Jacobi weights are mentioned in my 1982 survey paper [9]. But it
is in the Gautschi and Notaris paper [GA109] of 1988 that this question has been
treated more systematically by numerical computation. For values of n < 40 the
authors determined intervals in A, resp. regions of the (a, 8)-plane in the Jacobi
case, for which the corresponding Kronrod rules exist and have all the desired
properties. On the basis of this computational work, they made several conjectures
concerning existence and properties of Kronrod rules, which gave some guidance
for further research. A few of them have been proved later by F. Peherstorfer and
his collaborators.

Indeed, in 2000, F. Peherstorfer and K. Petras [15] were able to show that in
the ultraspherical case, for A > 3 and n sufficiently large, the Stieltjes polynomials
have only a few real zeros. On the other hand, for A = 3 and n sufficiently large, all
nodes of the Kronrod rules are real and have the desired interlacing property and
some, but not all, of the weights are positive. The case A € (2, 3) is still open. The
same authors have also derived existence/nonexistence results in the Jacobi case
for special choices of the parameters «, 5. More recently, in 2007, Peherstorfer and
de la Calle Ysern [16] examined the case A < 0. They proved that all nodes of the
Kronrod rules are real, contained in (—1, 1) except for two of them, and interlace,
and that all weights are positive.

Kronrod-type extended rules can also be associated with Gauss—Lobatto and
Gauss—Radau rules; some results on their existence and properties are mentioned
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in [9], where new Kronrod rules, defined on (—1, 1) and associated with the weight
function

—oco <7<,

were also considered, and their existence proved for all values of n, with all nodes
in (—=1,1). For these, Gautschi and T. J. Rivlin [GA111] in 1988 proved that
all the weights are positive; furthermore they produced explicit formulae for the
weights. A year later, Gautschi and Notaris [GA114] considered the more general
case of any one of the four Chebyshev weights divided by an arbitrary quadratic
polynomial that remains positive in [—1,1]. They showed that, except for a very
few identified exceptions, the Kronrod rules exist with all the desirable properties,
and their degrees of exactness grow like 4n, rather than 3n, as in the usual case.
Similar properties have been proved also in the case of a positive linear divisor
polynomial. In 1990, it was shown independently by Notaris [12] and Peherstorfer
[13] that Kronrod rules exist, with positive weights, even when the above divisor is
an arbitrary (positive) polynomial of degree m < n.

In the same year, Perherstorfer [14] considered another large class of weight
functions of the form

w(x) = /1 —22|D(e?)|?, = =cosh, 6cl0,7],

where D(z) is analytic, real on R, and D(z) # 0 for |z| < 1. Also for this class he
showed that the associated Kronrod rules exist and have the desired properties for
n sufficiently large.

In 1988 Gautschi [GA107] wrote a very nice and complete survey paper on Kron-
rod rules, which became a standard reference for researchers working on Stieltjes
polynomials and Kronrod quadratures.

The last paper related to this topic was written by Walter Gautschi together
with Walter Gander in 2000 (see [GA160]). It dealt with the construction of an
adaptive automatic integration routine, based on two (successively) nested Kronrod
extensions of a 4-point Gauss—Lobatto rule. The development of this new algorithm,
which includes a particularly efficient stopping criterion, was motivated by some
serious deficiencies the authors had detected in two adaptive integration routines
provided at the time by Matlab. From the numerical testing performed by the
authors, their new routine, for which they provided a Matlab code, showed excellent
performance, even when compared with the best IMSL and NAG routines available
at that time. The interest in this new routine is also evidenced by 135 (till now)
citations in the Web of Science, with an average per year of more than 10. In most
of the citing papers, the new routine is used to solve a variety of problems arising
in several areas of engineering (including medical and biological engineering) and in
mathematical finance, applied statistics, computational and physical sciences. The
paper has also stimulated a few authors to search for further improvements. We
mention in particular the works of T. O. Espelid [2], L. F. Shampine [18], and of
P. Gonnet [3].
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14.2. Quadratures for functions having singular or difficult
behaviors

Another theme that has attracted the attention of Walter Gautschi has been the
numerical integration of functions having singularities on or near the interval of
integration that tend to adversely affect convergence of standard quadrature rules.

In the note [GA30] published in 1967, Gautschi examined the convergence of
two well-known quadrature rules of interpolatory type already studied by L. Fejér
in 1933. Their abscissas are the zeros of the Chebyshev polynomials of the first and
second kind. Specifically, Gautschi showed that they converge not only for contin-
uous functions, but also for functions having monotonic (integrable) singularities
at one or both endpoints of the interval of integration.

In [GA128] he considered integrals extended over the half-infinite interval (0, 0o),
whose integrands have an algebraic singularity at the origin of type %, a > —1,
and behave like =7, 8 > 1, as « — 00, with 8 — a > 1. For such integrals he
examined two types of quadrature formulae, both of the form

/OOO w(x) f(z)dx ~ Z wi f(zk). (14.2)
k=1

The first, introduced earlier by R. Kumar and M. K. Jain in [6], is the Gaussian
rule defined by the weight function

J:Ol

e (14.3)

w(z) =

Thus it has maximum polynomial degree of exactness 2n — 1. In the second,
Gautschi sets w(z) = = and determines the nodes and weights by requiring exact-
ness of the rule for all of the following functions f(z):

1

A5 277k k=0,1,...,2n — 1.

The first rule has the severe limitation 2n < § — a on the number n of nodes, and
thus can be applied only when f is relatively large. Gautschi’s rule does not have
this drawback. In his paper, Gautschi has shown that both rules can be reduced
to Gaussian formulae relative to appropriate Jacobi weight functions, and hence
can be generated by standard mathematical software. Numerical testing recently
performed in [10] confirms that the rule proposed by Gautschi, besides being very
easy to construct, is indeed very efficient.

Gautschi’s quadrature rule can also be interpreted as a formula of type (14.2),
with w(z) given by (14.3), which has the property that it integrates exactly the
rational functions (1 +2)7%, k=0,1,...,2n — 1. Thus it is a Gaussian rule based
on rational interpolation. Quadrature formulas of this type have subsequently been
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proposed and studied independently in [GA137] and by W. Van Assche and I. Van-
herwegen in [21]. For additional work in this area, see Section 15.4.

Finally, in the 1993 paper [GA136], Gautschi examined the numerical evaluation
of two integrals of interest in solid state physics and in many astrophysical problems,
the generalized Fermi-Dirac integrals

* gk\/1+ 6x/2
x x
Fr(n,0) = ——dx, 6>0, neR,
k(n,0) . ] T =20,
where k = %, %, g, and the associated Bose—Einstein integrals
o .k
1+ 0x/2
Gr(n,0) = %dx, 0>0,n<O0.
0 € -

Gautschi pointed out that two methods proposed 1989 and 1991 in the physics
literature disregard the major obstacle to rapid convergence (when 6 is relatively
small), namely the presence of a sequence of (complex conjugate) poles at

x=n+2v—-1ir, v=123,...,
in the case of F}, and at
r=nx2vir, v=0,1,2,...,

for G. Starting from this observation, he then proposed a new and more efficient
approach, based on a (rational) quadrature formula of the type

/ g(x)z™e Tdx ~ Zwrg(xr),
0 r=1

which erases the adverse effects of the poles in the vicinity of the real line. In
the case of F, he sets m = k and (uniquely) defines the rule by requiring exact
integration of all pairs of rational functions
9(@) =1+ ¢2)™", gl@)=01+Gz)™" v=12..n

where

S S

Yo+ (- Dir
and the asterisk means complex conjugation. For Gy, he sets m = k — 1 and
proceeds as in the previous case, choosing
1

G = o+ 2vin

As shown by the author through numerical testing, the proposed rules are very
satisfactory for high-precision calculation of Fermi-Dirac and Bose-FEinstein inte-
grals, in particular when this evaluation is required only for a few values of their
parameters.
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15

Gauss—type quadrature

Walter Van Assche

Walter Gautschi’s work in this area has had a profound impact, especially on the
computational and practical aspects of Gauss quadrature. I have heard people refer
to it as Gautschian quadrature, just to emphasize Walter’s many contributions to
the theory and computation.

To fix notation, suppose one wants to approximate the integral of a function f
by a sum using only n evaluations of the function:

b n
/ @) (@) = 3 Mo f@rn) + Ea(f). (15.1)
a k=1

Here the general case is considered where integration is with respect to a positive
measure p on the real line, supported on the finite or infinite interval [a,b], but
quite often only a weight function w on [a, b] is used. If {zy, : 1 < k < n} are the
zeros of the nth-degree orthogonal polynomial p,, for the measure p, i.e.,

b
/ pn(x)a:’C du(z) =0, 0<k<n-1,

one can find weights {Ax,, : 1 <k < n} such that E,(f) = 0 for every polynomial
f of degree at most 2n — 1, and hence the quadrature gives the exact value of the
integral for polynomials of degree less than or equal to 2n — 1. These weights are
known as Christoffel weights or Christoffel numbers, and the quadrature formula is
known as the Gauss quadrature formula or, as Walter Gautschi usually calls it, the
Gauss—Christoffel quadrature formula. In his book [GAB3, §1.4.2] Gautschi uses the
term Gauss-type quadrature to refer to this class of quadrature formulas, including those
modified by Radau and Lobatto (cf. Section 15.2). Carl Friedrich Gauss originally
(1816 [5]) considered the case where  is the uniform measure on [—1, 1], for which
the corresponding quadrature nodes are the zeros of the Legendre polynomial P,,;
Elwin Bruno Christoffel [2] in 1877 extended this to more general weight functions.

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 2: Selected Works with 35
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7049-6_5,
© Springer Science+Business Media New York 2014
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Szegé calls it Gauss—Jacobi mechanical quadrature in his book [10, §3.4], whereas
Stroud and Secrest [9] refer to it as Gaussian quadrature formulas in their book
(which contains many tables).

15.1. Construction of Gauss quadrature formulas

For the construction of Gauss quadrature formulas one basically needs to compute
the n zeros 1, < --+ < &, of the orthogonal polynomial p,, and the Christoffel
numbers {)‘jm : 1 < j < n}. The measure p is given and one needs the first 2n
moments (ftx)o<k<2n—1 Of p to find the zeros and the Christoffel numbers:

n

b
e = / oF dp(z) = Z(xj7n)k)\j7m 0<k<2n-1.
a j=1

Gautschi shows in [GA31] that the map (uk)o<k<2n—1 — (Tjns Ajn)1<j<n is ill
conditioned and gives some lower bounds for the condition number &, showing that
for a large class of weights on [—1, 1] this &,, grows exponentially like (17 +6/8)" =
(1 ++/2)*" and he concludes that

“The lesson to be learned from this analysis is evident: the moments
are not suitable, as data, for constructing Gauss—Christoffel quadrature
formulas of large order n. Apart from the fact that they are not always easy
to compute, small changes in the moments (due to rounding, for example)
may result in very large changes in the Christoffel numbers.”

He proposes an alternative procedure in which the inner product involving the
measure u (or weight w) is replaced by a discrete inner product

N
(f,9)n = Z wi, N f (Yr,N)9(Yk,N )5 wg,N >0,
k=1

in such a way that ,
Jim (Fa)y = [ f@ota) dnto)

for all polynomials f and g. In his later work he refers to this as the discretized
Stieltjes procedure [GA81, §2.2], [GA117, §4.2]; it has since become known as the
discretized Stieltjes—Gautschi procedure (cf. Section 11.2.2). The orthogonal poly-
nomials (7, N )nen for this discrete inner product then have the property that

lim 7, n(z) = pn(z),
N—oo

and the corresponding zeros and Christoffel numbers converge to the required quan-
tities for the Gauss quadrature,
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: (N)
lim Ti, = Tjn,

im AW
N—o0 J5m

Jm A = X
In order to be practical, one needs to find a suitable discrete inner product (-, ).
Gautschi suggests using the Fejér quadrature formula (introduced by Fejér in 1933
[4] and studied by Gautschi in 1967 [GA30]) or the Gauss—Chebyshev quadrature
formula to do the discretization. The convergence can be accelerated by Newton’s
method.

Another procedure was proposed by Sack and Donovan in 1969 and quickly
picked up by Gautschi in [GA40]. Instead of starting from the moments

b
Mk=/ 2" dp(x),

it uses modified moments
b
n= [ ao) duo)

where the (g )nen are given orthogonal polynomials for a measure v on [«, 3],

B
| a@)aa) dvia) = 5
(0%
and hence satisfy a three-term recurrence relation

Qi (x) = 1 qut1(x) + Brqr(x) + argr—1(x).

If one chooses the measure v close to the measure p (in particular with the same
support [a,b] = [a, 5]), the mapping from the modified moments to the zeros and
Christoffel numbers is often well conditioned. In [GA40] Gautschi gives an up-
per bound for the condition number and various asymptotic estimates for Jacobi
weights. He also gives an algorithm for generating orthogonal polynomials (p,,)nen
for the measure p, starting from the modified moments. Numerical examples (and
tables of Gaussian quadrature on an accompanying microfiche supplement) show
that this is indeed a very convenient way to construct Gauss quadrature formulas.

A very convincing way to show people that the mapping from moments to zeros
and Christoffel numbers is ill conditioned is given in [GA84] where Gautschi displays
a table for the nodes {z;, : 1 < j < n} and Christoffel numbers {};,, : 1 < j <n}
for n = 15 and weight w(z) = e=*"/3 on [0, 00), which appeared in the Journal of
Chemical Physics in 1980. Table 1 shows 16 decimals but only the first two are
correct. Gautschi also gives Table 2 with his own computation using a discretized
Stieltjes procedure and a suitable partition of the infinite interval [0, c0) into eight
subintervals. Instead of saying that the first table is wrong, Gautschi describes four
tests which can be used to check the accuracy of the table and leaves it to the reader
to decide that the second table is accurate to 16 decimals. He also explains why
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Table 1 was thought to be accurate: it passes two of the tests. The first test is to
check the quadrature formula on the moments, i.e., on the functions f(z) = x* with
0 <k <2n—1, and indeed both tables show that the quadrature formula produces
the moments accurately to about 15 correct decimals. But this is an extreme case
of correlation of errors. Test 2 suggested by Gautschi is to compute the coefficients
in the recurrence relation

wpk(z) = apr1Pr41(2) + bkpr(x) + agpr—1(), k>0,

of the orthogonal polynomials using the quadrature formula, and then to check
whether

n
2n 2 2 2
Han = E /\j,"l‘j,n +ajas---ay,
j=1

which follows from the formula for the error term E, (2?") of the Gauss quadra-
ture formula. This test too does not distinguish between the two tables. The two
other tests show that Table 1 is not accurate but Table 2 is. Test 3 is to com-
pute the recurrence coefficients using the quadrature formula and to check them
with the explicit formulas in terms of Gram determinants (cf. Eq. (11.5) of Sec-
tion 11.1). This test indeed shows that the accuracy of the recurrence coefficients
decreases by one decimal in each step for Table 1, but remains stable for Table
2. Test 4 is to compute the sum of the nodes, which is the trace of the Jacobi
matrix and which can be computed as the ratio of two determinants. This test
also shows that Table 1 is only accurate to two decimals, whereas Table 2 gives
12 accurate decimals. I have computed the nodes and Christoffel numbers for this
weight and n = 15 using Maple (which nowadays is a convenient way to perform
multiprecision computations) and found that one needs to work with a precision of
45 decimals (Digits:=45) to produce Table 2 if one starts from the moments and
uses the method with which Table 1 was generated. Gautschi’s approach requires
only double precision and hence is to be preferred. A Matlab suite for generating
orthogonal polynomials and related quadrature rules can be found on his website
http://www.cs.purdue.edu/archives/2002/wxg/codes/ under the heading 0PQ.

15.2. Gauss—Radau and Gauss—Lobatto quadrature

The Gauss quadrature formulas can be extended somewhat to include information
of the function at the endpoints of the interval [a,b]. For Gauss—Radau quadrature
one uses a fixed node at one of the endpoints a or b, and then n nodes in (a,b) are
taken such that for every polynomial f of degree < 2n

b n
| H@u@) de =t (@) + 30 A w50,
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which is the Gauss—Radau quadrature rule with fixed left endpoint, or

b n
/ F@ywe) de = 2 f0) + 3 A (50),

Jj=1

which is the Gauss—Radau quadrature rule with fixed right endpoint. Even though
these formulas use n+ 1 quadrature points, the effect of fixing one quadrature point
is to reduce the degree of the polynomials which can be correctly integrated by one.
Recall that the Gauss quadrature rule with n 4+ 1 points has degree of exactness
2n + 1, which is one higher than the Gauss—Radau rule. The n other nodes are all
in the open interval (a,b) and turn out to be zeros of the orthogonal polynomial
of degree n for the modified weight function (x — a)w(x) when one fixes the left
endpoint a, or (b — z)w(z) when one fixes the right endpoint b. These orthogonal
polynomials are known as kernel polynomials [1, §1.7] and can be expressed in terms
of the Christoffel-Darboux formula.

For Gauss—Lobatto quadrature one uses both endpoints as fixed nodes and one
looks for n nodes in (a,b) such that

b n
/ F@ywle) de = A f(@) + Mf )+ 3 Ajnf(2im)

Jj=1

for every polynomial f of degree < 2n+1. There are n+2 quadrature nodes, but two
nodes are now fixed at @ and b, resulting in the reduction of the polynomial degree of
exactness by 2 (Gauss quadrature with 7+ 2 nodes has degree of exactness 2n + 3).
The n remaining nodes turn out to be the zeros of the orthogonal polynomial of
degree n for the modified weight (z —a)(b— x)w(x). These orthogonal polynomials
can be expressed in terms of the orthogonal polynomials for the weight w by means
of a formula of Christoffel [10, §2.5].

An e-mail from someone inquiring how to fix an underflow problem when com-
puting high-order Gauss—Lobatto quadrature rules for the Legendre case w(z) =1
on [—1,1] prompted Walter Gautschi to investigate the more general case of Jacobi
weights w(z) = (1—2)*(14+x)” on [~1,1] in [GA163]. The Gauss-Lobatto formula
then uses the quadrature nodes 41 and the zeros of the orthogonal polynomials for
the weight (1 — 22)w(z), which is again a Jacobi weight but now with parameters
(e + 1,8+ 1). Gautschi first notes that underflow can be avoided by computing
the two modified elements of the Jacobi matrix directly as functions of « and 3,
rather than by solving the usual 2x2 system of linear equations (which for large
n becomes singular, numerically). He then gives explicit formulas for the weights
A1 and A_; and for the interior weights in terms of the Jacobi polynomials P,SQ’B )
evaluated at the interior nodes. He compares the results obtained by direct com-
putation using his formulas with the results obtained by computing the modified
Jacobi matrix and the first components of the eigenvectors. The conclusion is that
the direct computation using the explicit formulas is more accurate in 90% of all
the 8,400 cases he investigated.
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Gauss—Radau quadrature for the Jacobi weight is investigated in [GA164] where
again explicit formulas are found for the weight at the boundary and for the interior
weights in terms of the Jacobi polynomials evaluated at the interior nodes. No
numerical results are presented but the explicit formula for the boundary weight
is said to be more accurate than the result computed using the eigenvector of the
modified Jacobi matrix. For the interior weights, however, in about two-thirds of
the cases computed, the results of the direct computation are found less accurate
than the results obtained by using the eigenvectors of the modified Jacobi matrix.
[GA164] also deals with the Gauss—Radau formula for the Laguerre measure w(z) =
x%e~" on [0,00) and an explicit formula for the weight \g is given, together with
a formula for the interior weights in terms of the Laguerre polynomials evaluated
at the interior nodes. Again no numerical results are presented but the conclusion
is said to be much like in the case of the Jacobi weight, i.e., the boundary weight
is always considerably more accurate by means of direct computation than via
eigenvectors, whereas for the interior weights the result using the eigenvectors is
generally more accurate than the explicit formula.

In [GA126] Walter Gautschi and Shikang Li extend the Gauss-Radau and
Gauss—Lobatto idea by allowing the endpoints to appear with multiplicity 2. This
amounts to using also the derivatives of f at the endpoints, i.e., for Gauss—Radau
quadrature with fixed left endpoint

b n
[ H@hu@)de = df(@) + 0f (@) + 3 (i) + EL).
a J=1

If one takes for the n nodes z;, the zeros of the orthogonal polynomial of degree
n for the modified weight (x — a)?w(z), then EF(f) = 0 can be achieved for every
polynomial of degree at most 2n+1. Of course a similar formula can be constructed
for the right endpoint. Gautschi and Li show that the weights in this quadrature
formula are all positive and they give explicit formulas for the weights Ag and \;
when w is the Chebyshev weight function on [—1, 1] of any of the four kinds,

w(z) = (1 —2)*2(1 + 2)FV/2,

They also handle the extension of Gauss—Lobatto quadrature, where

b n
/ F@yw(@)de = Xof (@) + A f'(@) + D Ajnf (@) + mof (0) = pnf'(0) + E (f).

Note the negative sign before p; f’(b). Choosing the n nodes z;, as the zeros of
the orthogonal polynomial of degree n for the weight (z — a)?(b — z)?w(x) then
results in EZ(f) = 0 for every polynomial of degree at most 2n + 3. All the weights
are again positive and the weights Ao, A1, po, 1 are explicitly given for the four
Chebyshev weights. Their paper ends with various examples.
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There is nothing really special about multiplicity two in Gauss—Radau or Gauss—
Lobatto quadrature, so the natural next step is to consider having nodes of arbitrary
multiplicity at one or both endpoints of the interval [a,b]. This is worked out
in [GA173] in a general setting, and in [GA194] for Jacobi and Laguerre weight
functions. The generalized Gauss—Radau formula has the form

b r—1 n
[ @u@rde = SO0 @) + 3" i) + B (),
a k=0 j=1

where r > 1 is the multiplicity of the endpoint a. The degree of exactness is
2n—1+4r,i.e., one has EnR’T(f) = 0 for every polynomial of degree at most 2n—1+r,
if one takes for the internal nodes {xjm : 1 < j < n} the zeros of the orthogonal
polynomial of degree n for the weight function (x — a)"w(x). For the generalized

Gauss—Lobatto quadrature, similarly,

b r—1 n r—1
/ Fayw(x)de =3 AP FP @)+ 3 N f(an)+ > (DA FO0) + BL (£),
a k=0 j=1 k=0

where E,E,T (f) = 0 for every polynomial f of degree at most 2n — 1 4+ 2r when the
internal nodes are the zeros of the orthogonal polynomial of degree n for the weight
(x —a)"(b — z)"w(z). Note the alternating sign for the weights at the endpoint
b. This is useful in the case of a symmetric weight w(—x) = w(z) on a symmetric
interval, where )\gk) = )\lgk) for 0 < k < r—1. For questions regarding the positivity
of the weights, see Section 7.6.2, Vol.1.

Gautschi developed in [GA173] a routine for computing these generalized Gauss—
Radau and Gauss—Lobatto formulas for arbitrary r, and Matlab routines are
downloadable from his website http://www.cs.purdue.edu/archives/2002/wxg/
codes/ under the heading HOGGRL.

15.3. Error bounds for Gauss quadrature

So far we witnessed Gautschi’s skills in constructing Gauss quadrature formulas. He
also is a very skillful analyst able to find sharp bounds for the error E,(f) in Gauss
quadrature on [—1,1] for functions f which are analytic in a domain D containing
[—1,1]. Together with Richard Varga he starts in [GA85] from the contour integral
representation

B) = 3 [ Kal2)f()

where the kernel is
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and T is a contour in D surrounding [—1,1]. A straightforward estimation gives

¢(T)

where £(T") is the length of the contour I'. The first maximum depends only on p
and the second maximum only on the function f, thus separating the dependence
of the error on the quadrature rule and on the function to be integrated. If I"
is the circle {|z| = r} with » > 1, then Gautschi and Varga show that for a
large class of measures p the maximum of | K, (z)| is attained on the real line and
is either K, (r) or |K,(—r)|, and they show that it can be evaluated accurately
and efficiently by recursion. This class of measures includes the Jacobi weights
du(z) = (1 — 2)*(1 + 2)# dx for arbitrary o, 3 > —1. They also investigate elliptic
contours I' = {z = L(re”” + Le=),0 < § < 27} for which they show that in the
case of Chebyshev weights @ = 8 = +1 and @ = —3, f = 1 the maximum of
| K, (z)| is attained on the real positive axis, hence equal to K,,((r+1/7)/2), except
for the Chebyshev weight of the second kind (« = 8 = %) for which the maximum
is located on the imaginary axis when n is odd, and near the imaginary axis when
n is even. The problem is much more complicated for general Jacobi weights; in
this case some empirical results are worked out.

The problem for the elliptic contour and Chebyshev weights is taken up again
in [GA119] with Tychopoulos and Varga, and a more detailed analysis is made for
the Chebyshev weight a = 8 = % and n even. They show that for r > r,, 41, where
rn+1 > 1 is the root of an explicitly stated algebraic equation, the maximum of
| Ky (2)| occurs on the imaginary axis while for r < r,4; it is near the imaginary
axis within an angular distance less than 7/(2n 4+ 2). Furthermore, the sequence
(rn)n>2 decreases monotonically to 1.

A similar error bound analysis is done in [GA123] and [GA121] for Gauss—Radau
quadrature and Gauss—Lobatto quadrature where the endpoints have multiplicity
one and two, respectively, and integration is with respect to any of the Chebyshev
weight functions. The original analysis can be carried over fairly well since most of
the ingredients still involve orthogonal polynomials, albeit with a modified weight
function. Furthermore, if one starts with a Chebyshev weight function, then the
modified weights are still Jacobi weights and the corresponding orthogonal polyno-
mials are linear combinations of Chebyshev polynomials.

15.4. Gauss quadrature for rational functions

The quadrature formulas so far are designed to integrate functions that are close
to polynomials. If one deals with functions having poles (outside the interval of
integration) or other singularities, then the best thing to do is to absorb that infor-
mation in the weight function, or, which amounts to the same thing, to construct
quadrature formulas that exactly integrate rational functions with prescribed loca-
tion of the poles. This kind of rational quadrature is something I was interested
in myself through the thesis of one of the PhD students in my department; see
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[12], where we studied the case of poles of multiplicity one or two. The following
characterization appears in [GA137] and [GA167]:

Theorem 1. Let {(; : 1 < k < M} be complex numbers such that —1/(y, ¢ [a,b] and
define

M M
wm(x> = H(l—i—Ckx)Sk? m = Zska
k=1 k=1

where s, € N. Assume that the weight w(x)/wm (z) admits the n-point Gaussian
quadrature formula

/a @)

with ES(f) =0 for every polynomial f of degree at most 2n — 1. Then

n

Ww(& de =) wfinf (@in) + B (F).

b n
/ g (@) dr =3 Njng(@m) + Fa(g)y  Ajn = 0Cwm(esn),  (15.2)

j=1
has the property that

— —S — —
Balg) =0 i {g(a:) = (1k+Ckx) L k=12, M, s=1,2,...,5,
g(z) =z, k=0,1,2,...,2n —m — 1.

Hence one can construct n-point quadrature formulas for rational functions by us-
ing the n-point Gaussian quadrature formula for the weight w(x)/wy, (x) which has
prescribed poles outside [a, b] with given multiplicities. Furthermore, Gautschi de-
scribes in [GA137] and [GA167] a way to compute the quadrature formula (15.2),
either by a partial fraction decomposition and modification algorithms, or by the
discretization method, which we described earlier. A number of examples illus-
trate the efficiency of the quadrature rule. Some other types of rational quadrature
rules are also given in [GA167] such as the rational Fejér quadrature rule, ratio-
nal Gauss—Kronrod quadrature, rational Gauss—Turan quadrature, and rational
Cauchy principal value quadrature. The latter three are described in more detail
in [GA162], where many numerical examples are given.

15.5. Gauss quadrature for special weights

The methods for constructing orthogonal polynomials, their recursion coefficients
and the corresponding Gaussian quadrature, which were proposed by Gautschi,
have been applied to a number of interesting explicit cases. In [GA93] Walter
Gautschi and Gradimir Milovanovié¢ worked out the details for the weights
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z” 1

(er — 1) or(z) = [CETG x € [0, 00),

e(z) =

for r = 1 and r = 2. The weight €; is known as the Einstein function and ¢; as
the Fermi function. Integrals involving the functions €, occur in phonon statistics,
lattice specific heats, and in the study of radiative recombination processes. In-
tegrals involving the functions ¢, are encountered in the dynamics of electrons in
metals and heavy doped semiconductors. For the weights €, (r = 1, 2) they propose
to compute the recursion coefficients of the orthogonal polynomials by means of a
discretized Stieltjes—Gautschi procedure based on the Gauss—Laguerre quadrature
rule, which uses the zeros of the Laguerre polynomial L,, as quadrature nodes. This
indeed makes a lot of sense since €;(z) ~ ze™ and ex(x/2) ~ z%e™% as © — oo,
so that these weights behave near infinity as the weight w(x) = e~* for Laguerre
polynomials, up to polynomial growth. A different procedure is suggested for the
weights ;. because the poles +im of these weights are closer to the real axis. Instead,
a composite Fejér quadrature rule is proposed where the interval [0, 00) is decom-
posed into four subintervals [0, 10] U [10, 100] U [100, 500] U [500, co]. These methods
are illustrated by a number of numerical results. Tables of the recursion coefficients
are included in the appendix of [GA93] and the quadrature nodes and quadrature
weights are included in a supplement to [GA93]. A particularly interesting appli-
cation is the summation of certain series Y - | (£1)"a, where a,, is expressible as

n=1
a Laplace transform or the derivative of a Laplace transform. Indeed, if

i — /0 T fe ar,

then
- - < f(@) /°°
-1 ta, = t = t
Sy a= [ as [ oao
and when
oo d o0
_ —nt _ —xt
an—/o L (e ™ dt = dx/o st
then

oo o . N
nz::lan = /0 f(t) ot 1 dt = /0 f()ex(t) dt.

Several examples of infinite series of this type are worked out, showing the efficiency
of Gauss quadrature for evaluating slowly converging infinite series. Particularly
useful is the advice they give for each example and ways to circumvent problems
that occur.

In [GA154] Gautschi and Milovanovié join forces again, but now their interest
is in constructing Gauss—Turdn quadrature rules, which are of the form
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1 k—1 n
IR zz A1) + Eus()),

using the derivatives f() for 0 < i < k — 1 at the quadrature nodes. Turdn showed
that for k = 3 the nodes can be chosen in such a way that the formula is exact
for polynomials f of degree at most 4n — 1. In general one can choose the nodes
{zjmn : 1 < j < n} in such a way that E, x(f) = 0 for polynomials of degree
< (k+ 1)n — 1 whenever k = 2s+ 1 is odd, but this does not work when & is even.
The nodes are zeros of the monic polynomial 7, that minimizes the L+ norm

1
/ [ ()] d.
-1

This can be extended to positive measures du on the real line and Gauss—Turan
quadrature is possible for £k = 2s + 1 odd, with nodes being the zeros of the monic
polynomial 7, minimizing the L**!(x) norm. This minimization is equivalent to
the conditions

/[wn( 2 du(x) =0,  r=0,1,....,n—1,
R

and the corresponding polynomials m, are known as s-orthogonal polynomials.
Gautschi and Milovanovi¢ observe that these s-orthogonal polynomials are the poly-
nomials ,_, from a sequence of orthogonal polynomials (7 ,)k<n for the varying
weight [, (2)]2® du(z):

/R[wn(x)]?smm(x)xj du(z) =0, j=0,1,...,k—1.

Note, however, that the s-orthogonal polynomials 7,, are implicitly defined in this
way, since the varying measure involves the polynomial 7,,. Gautschi and Milo-
vanovi¢ propose a method for computing the recurrence coefficients of the orthogo-
nal polynomials starting from an initial guess for the unknown polynomial m,, and
then applying an iterative procedure (Newton-Kantorovi¢ method) to compute the
recursion coefficients of the orthogonal polynomials (7, )o<k<n, which in the end
gives the required 7,, = 7, ,,. The elements in the Jacobian, which one needs for the
Newton method, are integrals which can all be computed exactly by using Gaussian
quadrature for the (nonvarying) measure p taking (s + 1)n quadrature nodes. The
procedure is illustrated with numerical examples. For the Chebyshev measure of
the first kind on [—1, 1], the monic polynomials minimizing

1 k41
|7 ()]
=

are the monic Chebyshev polynomials of the first kind T},(x)/2"~!, hence the nodes
for the Gauss-Turdn formula are cos((2j — 1)7/2n), 1 < j <n.
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In his most recent paper [GA211], Gautschi returns to Gauss—Turdn quadrature,
suggesting an improvement of the procedure described above in the case of Laguerre
and Hermite weight functions.

Another example where Gautschi’s construction of Gauss quadrature rules works
well is Gauss quadrature for refinable weight functions, which appear in multireso-
lution analysis and wavelet analysis in particular. In [GA161] Gautschi worked with
Laura Gori and Francesca Pitolli on Gaussian quadrature for a weight ¢ satisfying

$(x) =Y a;p(2x — j),

JEZ

where

ajzz—h[(mf1)+4(2h—m—1)(m_1)], h>m> 2.

J J—1
The function ¢ is only computable at dyadic points

xk:—mT—H—i—kQ_T, k=0,1,2,...,(m+1)2",
hence these points are used for the discrete inner product needed for the discretiza-
tion method. The inner product is taken as Simpson’s quadrature. Numerical
results and examples illustrate the proposed procedure.

The more recent paper [GA198] deals with weight functions with logarithmic
factors, such as v(z) = 2% *(x — 1 — logx) on [0,00) and w(x) = (1 — x)*(1 +
x)?log(2/(1 + x)) on [~1,1], which are logarithmic modifications of the Laguerre
weight and the Jacobi weight, respectively. The procedure is to use a (symbolic)
modified Chebyshev algorithm based on ordinary as well as modified moments
executed with sufficiently high precision. The natural choice for modified moments
for the weight v is to use Laguerre polynomials,

UNES / % ¥(x — 1 —logz)Lf(x) dz,
0

and for w it is natural to make the change of variable x = 2¢ — 1 and use the shifted
Jacobi polynomials,

1
v = / t2(1 — ) log(1/t) P (2t — 1) dt.
0

These modified moments can be expressed explicitly in terms of special functions
and evaluated to arbitrary precision. As usual, a number of examples illustrate the
numerical results.
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15.6. The circle theorem for Gauss-type quadrature

If one plots the n Gaussian weights (suitably normalized) against the n Gaussian
nodes, one finds that, asymptotically as n — oo, they come to lie on a half circle
when the weight is supported on a finite interval and satisfies a mild condition. This
is known as the circle theorem and was first established by Davis and Rabinowitz
[3] in 1961 for Jacobi weights w(z) = (1 — 2)*(1 + z)? on [~1,1].

Theorem 2. Let w be a weight function on [—1,1] in the Szegd class, i.e.,
1
d
/ 1ogw(x)—x > —00
—1 1-— {,C2

and suppose that 1/w € L1(A) for a compact interval A C (—=1,1). Then

n)\'n
— L~y 1 -2, n — 0o,
w(zjn)

for all nodes x;, (and corresponding weights Aj ) that lie in A.

This theorem is useful if one wants to check whether the quadrature weights
that one computed for a certain weight w are indeed reliable: if they don’t follow
the circle theorem, then one cannot trust the computed results. The circle theorem
basically follows as a corollary of the asymptotic behavior of Christoffel functions

1
—n—1 95/,
Do Pi(2)

of a weight w, where (p,, )nen are the orthonormal polynomials for w. Indeed, Nevai

proved that
lim nA,(z) = mw(z)V1 — 22 (15.3)

n—oo

An(z) =

holds almost everywhere in A under the conditions given in the theorem. The
relation Aj,, = An(z;,») then gives the circle theorem. See [8, §4.5] for a discussion
on asymptotics for the Christoffel functions, which shows that the idea of the circle
theorem predates Davis and Rabinowitz [3]. The asymptotic behavior in (15.3) for
weights w on [—1, 1] holds almost everywhere on an open interval A C [—1, 1] under
the weaker condition [7, Thm. 8]

/ logw(z)dx > —o0.
A

Gautschi extends this circle theorem in [GA180] to Gauss—Radau and Gauss—
Lobatto quadrature for weights w satisfying the conditions in Theorem 2. He also
considers Gauss—Kronrod quadrature
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1 n n+1
[ @) e = 308 @) + 30 N i) + Bl
- j=1 k=1

where {z;, : 1 < j < n} are the Gaussian nodes and the Kronrod nodes {z} ,, :
1 <k <n+1} and the weights {);, : 1 < j <n} and {)\,’;n :1<k<n+1}are
such that FE,(f) = 0 whenever f is a polynomial of degree at least 3n — 1. (For
Gauss—Kronrod quadrature, see also Section 14.1.) The Kronrod nodes are the
zeros of the polynomial 7,11 which is the orthogonal polynomial of degree n+1 for
the (nonpositive) weight p,(x)w(z), with p, the orthogonal polynomial of degree
n for the weight w:

1
/ Tpg1(2)2% p, (2)w(z) dz = 0, k=0,1,2,...,n.
-1

The Kronrod nodes are not necessarily in the interval [—1,1] and may in fact be
complex, but when all the Kronrod nodes are real, distinct, in the interval (—1,1),
and different from the Gauss nodes, there is indeed a chance for a circle theorem
to hold. Gautschi proves such a circle theorem for Gauss—Kronrod quadrature for
a restricted class of weights.

The function 7v/1 — 2?2 in the circle theorem and in (15.3) is in fact the reciprocal
of the density of the equilibrium measure for the interval [—1, 1] (the Chebyshev
weight of the first kind). If one considers weights on a compact set F of the real line,
then a variant of the circle theorem would be

n)\jm 1

w(zjn)  we(Tjn)

)

where wg is the density of the equilibrium measure of the compact set . This
holds, for instance, almost everywhere on A C E when FE is a regular set and
[11, Thm. 1]

/ logw(z)dx > —o0.
A

Gautschi illustrates this when the weight w is supported on two disjoint in-
tervals and remarks that the equilibrium measure is explicitly known for a set
E =T71([-1,1]), where T is a polynomial, referring to my joint work [6] with Jeff
Geronimo in 1988.

Before concluding this presentation, this may be a good place to reaffirm that
Walter Gautschi has written quite a few nice and interesting papers on Gauss-
type quadrature, which are very influential and even essential when one plans to
make numerical computations. Furthermore, he is very well aware of the existing
literature, has a good taste in the choice of specific problems and examples, and
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his papers are a pleasure to read. Some of the codes are available on his web-
site http://www.cs.purdue.edu/archives/2002/wxg/codes/ showing that he is
willing to share his knowledge and results with the international community.
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MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 146
APRIL 1979, PAGES 742-743

On the Preceding Paper
“A Legendre Polynomial Integral”
by James L. Blue

By Walter Gautschi

Abstract. The modified moments of the distribution do(x) = x* In(1/x)dx on [0, 1},
with respect to the shifted Legendre polynomials, are explicitly evaluated.

The result in the theorem of Section 2 of [1] can be generalized as follows: Let
va(@ = [ X ImAXPIx)dx, a>=1, n=0,1,2,...,
where Py(x) = P,(2x — 1) is the shifted Legendre polynomial of degree n. Then

m m2m=-m-—1)!

D" EmID a=m <n,m >0 an integer,
1) Vp(@) =
1 ) 1 < 1 1 noatl-k .
atl)a+ti’ k§l(a+1+k a+l—k>$kr__11 a1 +p Otervise

The result in [1] is the case a = 0 of (1). For the proof, we note that
v (@) =—27(+D f_’l(l +0*In(5(1 + )P, (1) dt
)]

=2~ (a+t1) | { 1 a _ ! o
lim _[_1(1 + 0% In(1 + )P (r)dt —In 2 L (1 + 0)°P,(Ddt},
where P,(¢) is the Legendre function of degree v. It is well known [2, p. 316, Eq.
(15)] that

1 2°H 120 + 1) B
©) Jo @+ oRar = Matv+ret1-» *°°L

Differentiating (3) with respect to « gives

JLa+oma+or@ar

@ 2211 + 1)

" Te+v+2f@+1-7)

{In2+2¢y@+1)-Yl@+v+2)-Yy@+1-v)

with Y(x) = I'(x)/T(x) the logarithmic derivative of the gamma function. The assertion
(1) now follows by inserting (3) and (4) in (2) and by using the recurrence relations
I + 1) = xI'(x), Y(x + 1) = Y(x) + 1/x, together with the fact that for any integer

Received May 31, 1978.
AMS (MOS) subject classifications (1970). Primary 33A65.
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r=0,

M); — (— 1)1 —
Trte) D)7 ase 0.

The method of proof also allows the evaluation of integrals of the form
1
v, k@ = [ %[ (10)]*P}(x) dx,
by repeatedly differentiating (4) with respect to a.
Department of Computer Sciences
Purdue University
West Lafayette, Indiana 47907
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MATHEMATICS OF COMPUTATION
VOLUME 36, NUMBER 154
APRIL 1981

Minimal Solutions of Three-Term
Recurrence Relations and Orthogonal Polynomials*

By Walter Gautschi

Abstract. We observe that the well-known recurrence relation p, . ((2) = (z — a,)p.(2) —
b.p,_(2) for orthogonal polynomials admits a “minimal solution” if z is outside the
spectrum of the mass distribution ds(¢) with respect to which the polynomials are orthogonal
and if the moment problem for this distribution is determined. The minimal solution, indeed,
is £,(z) = f p.(1) ds(t)/(z — ¢), and can be computed accurately by means of the author’s
continued fraction algorithm. An application is made to special Gauss-type quadrature
formulas.

1. Introduction. Minimal solutions of three-term recurrence relations, and their
computational implications, are discussed systematically in [7]. Effective algorithms
for computing minimal solutions have been developed in [7], [16], [17] and continue
to be the subject of further study (see, e.g., [14]; [26], [S), [2], [24], [25]), [3]). With
these powerful algorithms at hand, it seems desirable to delineate large classes of
recurrence relations for which the presence of minimal solutions can be ascertained
and the minimal solution itself identified. Even more desirable is an understanding
of the deeper reasons for the occurrence of minimal solutions, in terms of intrinsic
features of the subject area in which they arise.

Few attempts have been made along these lines. The work of Thacher [22], [23]
on power series solution of linear differential equations with polynomial coeffi-
cients may be considered a beginning, inasmuch as the presence of minimal
solutions (of the recurrence relation satisfied by the expansion coefficients) is
conjectured to be related in a specified way to the type of singularities in the
differential equation. Here we wish to consider the recurrence relation

(l.l-) Y1 =(Z—a)y,—by,_, n=123,...,5,>0,

associated with the moment sequence of a mass distribution ds(7) on the real line.
We make the simple observation, apparently overlooked so far, that for any z
outside the spectrum of ds(f) the recurrence relation (1.1) possesses a (readily
identifiable) minimal solution whenever the moment problem for ds(t) is determined
(Section 3). If the spectrum of ds(¢) is bounded (i.e., there is zero mass outside some
finite interval), then the moment problem is always'determined; hence a minimal
solution always exists.

Received July 7, 1980.
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Our observation opens up a large class of recurrence relations to which the
algorithms mentioned above can be usefully applied. One such application (to
special Gaussian quadrature rules) will be discussed in Section 4, and an ap-
propriate algorithm in Section 5. .

In the case of the Jacobi distribution on [-1, 1], the existence of a minimal
solution (when z €& [-1, 1]) can easily be inferred from the asymptotic theory of
difference equations [7, Theorem 2.3). This is no longer the case for distributions
on infinite intervals, such as the generalized Laguerre, or Hermite, distribution.

2. Orthogonal Polynomials and Associated Polynomials. Let ds(f) be a mass
distribution on the finite or infinite interval [a, b] (i.c., s(f) a nondecreasing
function with infinitely many points of increase), and let ds(f) admit finite mo-
ments of all orders,

@.1) mo=["rat), n=012,....
a
Let { p,(z)} be the (monic) polynomjals orthogonal on [a, b] with respect to ds(¢),
b
22) [ () ds() =0,  n#m.
a
As is well known, they satisfy a three-term recurrence relation of the form

Pre(2) = (z — a)p(2) = bp,_i(2), n=0,1,2,...,

Pa(2) =0,  po(z) =1,

where a, are real, and b, > 0, all n. (b, is arbitrary, but will be set equal to m,.)
The polynomials

(24) 4.(2)=f:£::—fﬂgdt(t), n=012,...,

@y |

are called the polynomials associated with the orthogonal polynomials p,. It is
easily seen (and well known) that they also satisfy the recurrence relation (2.3), at
least for n > 1. Indeed, by (2.3),

Pas+1(2) = Pasi(t)
= Zp"(Z) - Wn(’) = an[pn(z) - pn(’)] - bn[pn—l(z) - pn—l(t)]
= (z = Op,(1) + (z = a,)[ P.(2) = Pa(1)] — B[ Pazi(2) = Pu_i(9)],
hencé, dividing by z — ¢ and integrating,
s | %@ *pa(0) ds() + (z — 800,(2) — bygu_i(2)  A=012...,
24(2) =0, gofz) =0.
By orthogonality, the integral on the right of (2.5) vanishes if n > 0, and equals m,,
if n = 0. Consequently,
{qn+l(z) = (z - an)qn(z)_ bnqn—l(z)s n=1, 2’ 3, ey

(26) W) =0 a(z) = my
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((2.6) also holds for n = 0, if we redefine g_,(z) =-1 and assume b, = m,.) Since
Po(2) = 1,p,\(2) = z — ay, hence the Wronskian of p,, g, is equal to my at n = 0, we
see that {p,(z)} and {g,(z)} are two linearly independent solutions of the recur-
rence relation (1.1).

3. Minimal Solutions and the Moment Problem. A solution f, of the recurrence
relation (1.1) is said to be minimal [7] if there exists a linearly independent solution,
8, of the same recurrence relation such that

3.1 lim 3 =0.

n—»00 gll

We show that the existence of a minimal solution is closely related to the
determinacy of the moment problem for ds().
Let

(2) F(z) 'f..b 20, re[ab].

It is known [I8, Satz 4.1] that the integral (3.2) has an “associated continued
fraction”
) b, b,

Z—G - z—a— z— a8~ * (bo = mo),

(33) F(z) ~

where a,, b, are the same coefficients as those appearing in the recurrence relation
(1.1). Furthermore, the nth convergent of the continued fraction in (3.3) is equal to

q,/p., Where p,, g, are defined in (2.3) and (2.6), respectively,

by b .. b ="~(‘), n=123....
Z2—@— z2—a- z-a,_, p,(2)

(3.4)

We are interested in the case in which the continued fraction in (3.3) converges to
the integral F(z),

o 5e00) _
(3.5) Jim 2.G) F(z), z@&[a,b].
If (3.5) holds true, then indeed
(36) f(2) = F(2)p,(2) — 4,(2)
is a minimal solution of (1.1). This follows at once by observing that (3.5) implies
£(2) 2.(2)

3. —- - - 0.

3.7 2.2) F(2) 2.) -0 asn—> o

In view of (2.4) and (3.2), we can write f, in the alternative form
(338) f,(z)==fb&'(;)_;‘i('), z&[ab], n=0,12,....

If we define (see the parenthetic remark after (2.6)) by = mg, ¢_,(z) =-1, then f, in
(3.6) satisfies (1.1) not only for n > 1, but also for n = 0, and we obtain the
convenient starting value

39) fula) = 1.
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Any condition which guarantees (3.5) is a sufficient condition for (3.8) to be a
minimal solution of (1.1). We now recall some such conditions. If the interval [a, b]
is finite, then (3.5) always holds, by virtue of Markov’s theorem [18, Satz 4.2]. If
[a, b] is a half-infinite interval, say [0, o], we have (3.5) if the Stieltjes moment
problem for the moment sequence (2.1) is determined [18, Satz 4.14 and Satz 4.10).
A sufficient condmon for the latter, due to Carleman, is [20, Theorem 1.11]

S mm = o,
n=1
Similarly, for the doubly-infinite interval [-oo, 00] (in which case z in (3.5) is
necessarily complex), the validity of (3.5) is assured if the Hamburger moment
problem for the moment sequence (2.1) is determined [18, Satz 4.15 and Satz 4.11).
Sufficient conditions for the latter, due to Carleman, are [20, Theorem 1.10 and p.
59]

o0 o0
> m/* =0, or X b;'/?=co.

n=1| n=1
Since, for a finite interval [a, b], the moment problem for (2.1) is always de-
termined [20, Corollary 1.1}, we may summarize by saying that condition (3.5) is
satisfied, hence f,(z) in (3.8) is a minimal solution of (1.1), whenever the moment
problem for the moment sequence (2.1) is determined. Most distributions ds(f) that
arise in practice indeed correspond to a determined moment problem.

4. Generation of Special Gaussian Quadrature Rules. Let ds(7) be a mass distribu-
tion, as in Section 2, and assume first that its support is a (finite or infinite)
subinterval [a, b] of the real line. Let x be real, outside of [a, b), and consider the
new distribution

_ _as(1)

@.1) T

Given the recurrence relation (2.3) for the orthogonal polynomials { p,} associated
with ds(¢f) we are interested in constructing the (monic) orthogonal polynomials
{m,} with respect to do(¢), and the corresponding Gaussian quadrature rules, all of

which clearly exists uniquely.
A good general procedure for accomplishing our task consists in first determin-
ing the coefficients a,, B8, for the desired polynomials,

(4 2) ”n-‘-l(z) = (z - an)‘”n(z) - Bn"u—l(z)’ n=012...,

' 74(2) =0, m(z)=1,
in terms of the coefficients a,, b, of the given orthogonal polynomials and in terms
of the “modified moments™ of do(?),

=/’ ’"I(;)_dst("), n=01,2,..

a<t<b, x€R\[ab].

(43)

and then to compute the eigenvalues and first components of the corresponding
eigenvectors of the tridiagonal symmetric Jacobi matrix (with elements a,, n =
0,1,2,..., on the main diagonal, and elements \/E,n- 1,2,3,..., on the
side diagonals), using the implicit QL algorithm. For details see [8, Section 5], [10},
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[9]. Although this approach may not be the best possible, in terms of efficiency (for
more direct methods, see [11], [19])), it has the distinct advantage of numerical
stability, particularly when the interval [a, b] is finite. Essential for the success of
this approach, however, is the accurate determination of the modified moments in
(4.3). These are seen to be identical with f,(x) (or -f,(x), if x <a) in (3.8)-a
minimal solution of the recurrence relation (1.1), if the moment problem for ds(¢) is
determined. An effective algorithm for the computation of this minimal solution
will be discussed in Section 5.

A similar application can be made to weight distributions of the type (cf. also

(12p

ds(t
(44) do(t) = +
(x—0"+y
where the support [a, b] of ds(£) may or may not coincide with the whole real line.
The modified moments, in this case, are given by

ds
(45) y,,-f"—"'-(—')—z—(ﬂ—, n=01,2....
a (x—1)+y
They are easily expressed in terms of f,(2) in (3.8). Indeed, letting z = x + iy, and
observing that :

, a<t<b, x€R, y>0,

_1__3_.!_( 1 __1 )
(x— 2 +y? 2p\z—t z-¢)

one finds immediately
Im £,(2)
(4.6) Vy = ———Im—z—' .

Thus again, in the case of determinacy, we can generate », accurately in terms of
the minimal solution f,(z) of (1.1).

S. An Algorithm for Calculating the Minimal Solution f,(z). A number of
algorithms are known for computing minimal solutions of a three-term recurrence
relation: Miller’s backward recurrence algorithm [1, p. xvii], the author’s algorithm
based on continued fractions [7], Olver’s algorithm [16], and an economic reformu-
lation of Olver’s algorithm due to Van der Cruyssen [24). Our experience with these
algorithms, when applied to some typical minimal solutions £,(z), has been mixed.
All algorithms, but the author’s, have proved prone to overflow, particularly when
x is moderately close to the half-infinite interval [a, b] = [0, 0] in (4.1), and
z = x + iy moderately close to [a, b] = [-o0, o0] in (4.4). The algorithms converge
very slowly in these cases. We have tried to combat overflow in Olver’s algorithm
by rewriting it in terms of appropriate ratios, but were not entirely successful. (An
alternative way of dealing with the overflow problem, at the expense of approxi-
mately doubling the work, is to use extended-range arithmetic packages, as in [21],
[13].) On the other hand, our own algorithm in [7], although not subject to overflow
conditions, requires good estimates of the starting index (for backward recurrence)
to remain competitive with the other algorithms. Fortunately, such estimates can be
derived for the most common distributions ds(f) occurring in practice. For this
reason, in the present context, we tend to prefer the continued fraction algorithm of
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[7] over the other algorithms mentioned. As “normalizing condition” we use the
simple condition (3.9), which obviates the need of computing fy(z) separately.

Suppose, then, that we wish to compute f,(z) forn=0,1,2,..., N. Let» > N,
and let quantities 7 and £ be generated according to

M=0 r = n=pr—1...,1,0,

(5.1) Yz —a, -1
Q=1 fO=r2,62, n=012...,N.

(Recall that by = my.) If £,(2) is a2 minimal solution of (1.1), then [7, p. 39]

(52) Jlim D =f(z), n=012...,N.

To implement (5.1), (5.2), one starts with some initial value of the index » and
keeps increasing », say by 5, until [fC* — fO < ¢|fC*)) for all n =
0,1,2,..., N, where ¢ is an appropriate (relative) error tolerance. (Alternatively,
one could apply the convergence test on the r?, rather than the £, and thus
avoid the computation of £ for all but the final value of ».)

For this algorithm to be effective, it is imperative that realistic estimates be
available for the initial value of the index », given N and the error tolerance e. Such
estimates can be derived from known asymptotic results [6] concerning the be-
havior of f,(z) and p,(2) for large n.

To begin with, we recall from [7, (3.18)] that the relative errors can be approxi-
mated by

S ( &,
53 N2 g, -2
( ) s gv+l &4 -’;l
where { g,} is any solution of (1.1) which is linearly independent of the (minimal)
solution {f,}. In view of (3.7), we may choose g, = p,(z), in which case g_; = 0.
Since | p,/f,| = o as n — o0, we have, for N sufficiently large,

foer /I

Prser’ Pn

The ratios f,,,/p,+, (v > N) and f, /py in (5.4) can be estimated, at least for some
common weight distributions ds(¢), from the asymptotic formulas for £, /p, given in
the Appendix of [6]. .

For the Jacobi distribution ds(t) = (1 — 1)*(1 + 1)? dt on [-1, 1}, where a >-1,
B >~-1, for example, using Eq. (A.1) in [6], one finds for z bounded away from
[-1, 1] that

fy+|(2) fN(Z) - [ . 1 ]2(D+1—N) v R
62 P.+1(2) / Pu(2)  z 4 (- D)z + 1)~ > PN,

independently of a and B. (In evaluating the square roots in (5.5), the principal
values of arg(z — 1) and arg(z + 1) are to be used.) For the maximum error in (5.4)
to be less than e, we thus find for » the estimate

In(1/e)
21|z + (z — )V + )Y’

), n=012...,N,

K ()] == |e(?)] ==
54) max (6] o)

(5.6) v>N+
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This is applicable to modified moments of the type (4.5), with Jacobi distribution
ds(?), in which case z = x + iy in (4.6) is complex, with y > 0. The estimate (5.6)
also applies to (4.3), where z = x is real outside of [-1, 1}, and can then be written
in the simpler form

, in1/¢
5.6 v>N , R\[-1,1].
69 AT RIS H

The contours in (5.6), i.c., the lines of constant |z + Vz—1|=p > 1, are
ellipses with foci at + 1 and sum of semiaxes equal to p; cf. [4, p. 19].

In the case of generalized Laguerre distributions ds(t) = t%™ dt on [0, oo}, where
a > 0, we apply Eq. (A.6) in [6] and combine this with the well-known asymptotic
formulas [15, 9.7.1 and 9.7.2] for modified Bessel functions, to obtain,

f’+l(z) fN(z)
) / Pn(2)
Ao = Jeenre).
»>N-—>oo.

() ~exp[4[\[

Here, z is assumed fixed in the complex plane cut along the positive real axis, and
0 < arg z < 2. For our maximum error in (5.4) to be less than e, it suffices to
choose » such that

a+1 In(1/¢)

N+25— +

__a+l
2

v >

(58) 4Vz| cos 3(g - )

0<g=argz <2m

The contours in (5.8), i.c., the lines of constant V|z| cos 3(¢p — #) = Vp, are
now parabolas with focus at the origin and vertex at (—p, 0).

Finally, the case of Hermite distribution ds(s) = e~ df on (-o0, 00) can be
reduced to the case a = + ; of the generalized Laguerre distribution by observing
that H,,(z) = L{™'/2(z%), H,, , ,(2) = zL{"/?(z?), hence, for z nonreal,

f‘” e H(1) dt -5z f‘” e"‘*"’l‘{ 42(1) dt
-~ Z— 22—t ’
where + or — holds, depending on whether 7 is odd or even, and where §,(z) = 1
for n odd, and §,(z) = z for n even. Proceeding as before, we now find for » the
estimate

2
59 y>2(vN +4l|:ﬂ{:)¢ O<gp=arg:z <m.

The contours in (5.9) are straight lines parallel to the real axis.

Numerical experience has shown the estimates (5.6), (5.8), (5.9) to be quite
realistic. In the majority of cases examined, one repetition of the algorithm (5.1)
(with » incremented by 5) suffices to confirm the desired accuracy. Occasionally,
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two repetitions are required, and only rarely three (and this only When » is quite
large). On the other hand, when lowered by 5, the estimates, with few exceptions,
proved inadequate to achieve the desired accuracy.
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POLYNOMIALS ORTHOGONAL WITH RESPECT TO THE
RECIPROCAL GAMMA FUNCTION!

WALTER GAUTSCHI
Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, U.S.A.

In [1], [3] it is suggested that the reciprocal gamma function 1/I'{t),0 < ¢ < o0,
properly normalized, may be useful in reliability theory as a probability density
function. To evaluate the expected value

Ef = ¢ I Cfodyre), =1 / J.%I"‘(t)dt,
0

0

of a function f, it will be necessary to apply appropriate quadrature schemes.
Natural choices are the Gauss-Christoffel quadrature formulae with respect to the
weight distribution di(t) = dt/I'(t) on [0, «0]. These can readily be obtained once
the recursion relation

ey (8) = (t—o)m(t) = Bemy - 1 (2), k=012,..,
molt) = 1, n_y(t)=0

is known for the respective (monic) orthogonal polynomials =, (' ;d4) (see, e.g., [7],
[5,85.1].

We have computed the recursion coefficients a,, B, (Where B, = [ dA(t)) to 20
decimal digits for 0 < k < 39, using a discretization procedure originally proposed
in [4] and refined in [6, §2.2]. The refinement consists in using a composite Fejér
quadrature rule to discretize the required inner products

J’mnf(t)dl(t), rmi(t)dl(t).

0 0

! Sponsored in part by the National Science Foundation under grant MCS-7927158.
Received Feb. 1, 1982.
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The interval [0, oo] is decomposed into 10 subintervals,

Table 1. Recursion coefficients for the polynomials orthogonal on [0, oc] with respect

[0,] = U [5¢—1),5] U [45, =],

r=1

to the weight distribution dAt() = dt/I'(t).

k % B
0 1.9345670421478847212 2.8077702420285193652
1 2.7879436158411281033 1.0939363340686113155
2 3.5739604354093584045 2.3372879608862272825
3 4.3091(53098871069965 3.7441907365233042123
4 5.0058282584209047028 5.3119976010285601927
5 5.6727517332400777399 7.0335091327854930762
6 6.3158519817302918703 8.9011136859679101404
7 6.9393802176042965886 10.907913582772256131
8 7.5464565802642664718 13.047905143126414819
9 8.1394403777087012176 15.315898546377090832
10 8.7201633775933510257 17.707387474765001489
11 9.2900805740637845048 20.218427273043616394
12 9.8503704972102283522 22.845534195510892734
13 10.402003889465003792 25.585605138673464849
14 10.945791990799772276 28.435854235129588910
15 11.482421313858540088 31.393762617254118444
16 12.012479234667014793 34.457038306760120054
17 12.536473190369455701 37.623583882761530657
18 13.054845330588925070 40.891470158867125297
19 13.567983872331197187 44.258914541921217535
20 14.076232022477626524 47.724263073365304131
21 14.579895076761311877 51.285975395967277563
22 15.079246131908767385 54.942612066839360237
23 15.574530729178107620 58.692823769704697997
24 16.065970664623260125 62.535342077993342771
25 16.553767142458203825 66.468971494666667355
26 17.038103405347763134 70.492582551193826168
21 17.519146944326302125 74.605105791493263410
28 17.997051367989314956 78.805526500259759656
29 18.471957993324414724 83.092880061354758722
30 18.943997207459574857 87.466247852622676490
31 19.413289639591964888 91.924753599919767509
32 19.879947174626524801 96.467560126280306425
33 20.344073834028053459 101.09386644272912757
34 20.805766544658069470 105.80290513583357056
35 21.265115812622111611 110.59394001409378659
36 21.722206316167302173 115.46626398102261382
37 22.177117429273655261 120.41919710751600921
38 22.629923685647095095 125.45208488005816070
39 23.080695191249406477 130.56429660459561072
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whereupon the Fejér quadrature rule (cf. [4]), suitably transformed, is applied to
each subinterval. The decomposition is designed to make the contribution of the
infinite interval [45, 2] sufficiently small so as to induce rapid convergence of the
discretization process. The results, computed in double precision on the CDC 6500,
are shown in Table 1.

Note that f, is the constant F computed in [3] to 61 decimal digits, and in [2] to
80 decimal digits. Table 1 permits the calculation of the orthogonal polynomials up
to degree 40, hence the construction of Gauss-Christoffel formulae with up to 40
points.
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ON GENERATING ORTHOGONAL POLYNOMIALS*
WALTER GAUTSCHIt

Abstract. We consider the problem of numerically generating the recursion coefficients of orthogonal
polynomials, given an arbitrary weight distribution of either discrete, continuous, or mixed type. We discuss
two classical methods, respectively due to Stieltjes and Chebyshev, and modern implementations of them,
placing particular emphasis on their numerical stability properties. The latter are being studied by analyzing
the numerical condition of appropriate finite-dimensional maps. A number of examples are given to illustrate
the strengths and weaknesses of the various methods and to test the theory developed for them.

Key words. orthogonal polynomials, recurrence relations for orthogonal polynomials, Stieltjes
procedure, discretized Stieltjes procedure, Chebyshev algorithm, modified Chebyshev algorithm,
condition numbers

1. Introduction. Let dA(f) be a nonnegative measure on the real line R, with
compact or infinite support, for which all moments

1. B7p,,=j A,  r=0,1,2,- -,
R

exist and are finite, and o> 0. With dA there is associated a uhique system of (monic)
orthogonal polynomials, i.e., a system of polynomials 7, = (- ; dA) such that

(i) =, () has exact degree r and leading coefficient 1,

ifr=s,

0 [ momoan]{Zy 20

In general, the system {=,} consists of infinitely many polynomials, but reduces to a
finite number N of polynomials o, 71, -+, #n—1, if A(f) has exactly N points of
increase. We denote such a measure by dAn(¢), and call it a discrete measure and the
associated polynomials discrete orthogonal polynomials.

The problem we wish to consider is the actual (numerical) construction of the
polynomials ,(+; dA), given an arbitrary measure dA(¢). The problem has received
surprisingly little attention in the literature, even though orthogonal polynomials
originated in connection with concrete questions of applied analysis (e.g., numerical
integration, least squares approximation, series expansions, continued fractions, etc.).
The reasons for this are probably twofold: In the first place, much of the practical
work involving orthogonal polynomials is based on special measures dA(f) of the
classical types, for which the orthogonal polynomials are explicitly known and the
constructive aspects are therefore trivial. Secondly, even in the case of general
measures, our problem has a straightforward mathematical solution: It is well known
how to express, or how to compute, orthogonal polynomials in terms of the moments
(1.1). This point of view, in fact, is typical for the “pre-computer” era; when executed
in finite precision on a computer, however, the approach via moments is utterly
ineffective on account of the explosive growth of rounding errors. Other more effective
procedures have been proposed and analyzed by Forsythe [6] for discrete orthogonal
polynomials, in connection with least-squares data fitting, and more recently by Sack

* Received by the editors September 9, 1981, and in final form January 6, 1982. This research was
sponsored in part by the National Science Foundation under grant MCS-7927158.
+ Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907.

71



290 WALTER GAUTSCHI

and Donovan [25], Gautschi [11], [13] and Wheeler [29], for continuous distributions,
in connection with the problem of Gaussian quadrature. It is our purpose, here, to
bring this work into better historical perspective, to reorient it towards the problem
of constructing orthogonal polynomials (rather than Gaussian quadrature rules), and
to expand upon it and refine it in various directions.

First we must clarify what we mean by ‘constructing orthogonal polynomials.”
We take the position, here, that the fundamental quantities in the constructive theory
of orthogonal polynomials are the coeflicients in the basic three-term recurrence
relation. As is well known, every system {7, (- ; dA)} of (monic) orthogonal polynomials
satisfies a recurrence relation of the form

(1.2) 7Tk+1(t) = (t_ak)'ﬂ'k(t)"'ﬁkﬂ'k—l(t), k= 03 1, 29 R

W—l(t) = Oa 770(t) = 1’

where ay, B are real constants with 8, >0. It is the coefficients a;, Bx that provide
the key for the constructive use of orthogonal polynomials. There are many reasons
for this, chief among which are the following:

(i) The coefficients ay, Br provide a compact way of representing orthogonal
polynomials, requiring only a linear array of parameters. The coefficients of orthogonal
polynomials, or their zeros, in contrast need two-dimensional arrays.

(ii) Knowing the coeflicients ay, B; it is easy to compute the polynomials 7, and
their derivatives recursively by (1.2) and the relations obtained from (1.2) by differenti-
ation, for any fixed ¢ within or without the spectrum of dA. The procedure is not only
straightforward, but also quite stable, much in contrast to the evaluation of =, in terms
of its coefficients.

(ili) Equally simple is the evaluation of finite sums ) ¢, (¢) of orthogonal
polynomials by Clenshaw’s algorithm (see, e.g., [14, § 1.5.3]).
(iv) The functions of the second kind,

(1.3) p,(z)=JR§5£i3dA(t), r=0,1,2,---,

where z is outside the spectrum of dA, also satisfy the same recurrence relation as in
(1.2) (where ¢ is to be replaced by z), and in fact, under very weak assumptions on
the measure dA, represent the minimal solution of (1.2) normalized by p_;(z) = 1.
They, too, therefore can be calculated accurately by known algorithms (cf. [18]).

(v) From the coefficients a;, B we can construct the Jacobi matrix associated
with dA, i.e., the symmetric tridiagonal matrix

Qo ‘/E:
vB1 VB,
(1.4) J= B1 (431 B2 1

VB az \/.Bs

.
.

which in turn allows us to compute the zeros of 7, rapidly and efficiently as eigenvalues
of the nth order segment of J, using modern procedures of numerical linear algebra,
notably the QR (or QL) algorithm. The first components of the corresponding eigen-
vectors, indeed, also yield immediately the Christoffel numbers associated with dA
(see, e.g., [20], [16]).
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(vi) The coefficients ay, B; enter in Jacobi’s continued fraction associated with
the integral [ dA (¢)/(z —t), as well as in the corresponding Stieltjes continued fraction
(cf.[14, § 1.4.2)).

(vii) The coefficients B, determine the normalization constants by virtue of
fr m2(t) dA(t)=BoB1 " * * B, (cf. [3, Chapt. 1, Thm. 4.2(b)] or (2.2)).

We thus consider the following problem to be fundamental in the constructive
theory of orthogonal polynomials: Given dA(t), compute as many of the coefficients
ay, B in (1.2) as are desired.

The next important question concerns the “codification” of the measure dA: In
what form should dA (¢) be given or what do we assume known about dA ? The classical
way of codifying dA is through its moments (1.1). The problem then becomes: Given,
for some integer n >0, the first 2n moments po, p1,* * * , han-1 0f dA, compute the first
n coefficients oy, Br, k =0,1,+ -, n—1. (It will be assumed throughout that B,=
fr dA(£) = po, even though By in (1.2) is arbitrary.) The solution of this problem gives
us access to the first n + 1 orthogonal polynomials 7o, 71, * *, 7a.

There are several known procedures for solving this problem, of which two will
be discussed in §§ 2.1 and 2.3. Unfortunately, the problem itself is highly sensitive to
small perturbations in the moments, so that any algorithm which (theoretically) solves
the problem will be subject to severe growth of errors when executed in finite precision.
It is this unfortunate experience which motivates a careful study of the underlying
(nonlinear) map R*" - R*", i.e., in the present case, the map from the first 2n moments
i, to the first n recursion coeflicients a;, 8. What we need to know is the numerical
condition of this map, and of analogous maps for other related problems. This will
be the subject of § 3, the particular map above being discussed in § 3.2. The novelty
of our treatment, in part, consists in representing the respective map as a composition
of two maps, the first being from the moments (or related quantities) to the Gaussian
quadrature rule, the second from the Gaussian quadrature rule to the desired recursion
coefficients. Each component map can be analyzed individually with regard to its
numerical condition, which in turn yields a bound on the condition of the composite
map.

A better codification of the measure dA was first proposed by Sack and Donovan
[25] and involves the so-called modified moments v, = (g p.(t) dA(t), where {p,} is an
appropriate system of polynomials, often already orthogonal with respect to some
classical measure. An algorithm that obtains the recursion coefficients from modified
moments will be described in § 2.4. The condition of the underlying map is studied
in § 3.3, where the principal result (Theorem 3.1) supersedes earlier results of ours,
with regard to both generality and sharpness.

Methods based on the idea of discretizing the measure dA (t) were proposed in
[11]and [19], and will be further dealt with in §§ 2.2, 2.5, and 3.4. They are applicable
whenever dA has the form dA(f) = w(¢) dt, where w is continuous on some open
interval, or on the union of a finite number of open intervals, and zero on the
complementary set in R, whereby integrable singularities are allowed at the endpoints
of the interval(s). The methods, in fact, are applicable to more general measures which
in addition to the piecewise continuous component also contain a discrete point
spectrum. ' ‘

In § 4 the use and performance of the various methods discussed in § 2 will be
illustrated by means of concrete and nontrivial examples involving orthogonal poly-
nomials with respect to both discrete and continuous (also piecewise continuous)
distributions dA. Detailed comparisons are made between the actual performance of
the algorithms and the expected performance based on the theory of § 3.
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2. Basic procedures. There are essentially two classical procedures for generating
the recursion coefficients of orthogonal polynomials. The first is based on the explicit
inner product representation (2.2) of these coefficients, the constructive potential of
which appears to have first been recognized by Stieltjes. We call the resulting method
the Stielties procedure. The second method, due in the case of discrete orthogonal
polynomials to Chebyshev, derives the desired coefficients directly from the moments
of the underlying measure. We call this the Chebyshev algorithm.

Both procedures require substantial additional implementation work in order to
make them effective tools of modern high-speed computation. The Stieltjes method
can be implemented effectively by a discretization procedure proposed by Gautschi
[11]. The resulting discretized Stielties procedure, especially in the refined form
described at the end of § 2.2, is by far the most reliable and the most generally
applicable procedure. Its major limitation is the possibility of relatively slow conver-
gence, particularly in cases of integration measures with infinite support. Chebyshev’s
algorithm, in a more effective form involving modified moments, has been rediscovered
by Sack and Donovan [25] and Wheeler [29]. We refer to their procedure as the
modified Chebyshev algorithm. Its major difficulties are two-fold. First, there is the
possibility of moderate to severe ill-conditioning, particularly, but not exclusively, in
the case of infinite intervals of orthogonality. Secondly, the algorithm requires the
accurate computation of modified moments, which is usually a highly nontrivial task.
The latter difficulty can be alleviated to some extent by a suitable discretization, as
is briefly proposed in [19, § 5.3] and further discussed in § 2.5. If modified moments
are easily available and ill-conditioning poses no problem, the modified Chebyshev
algorithm is certainly the method of choice, on account of its superior speed.

In the following subsections we present a more detailed description and discussion
of each of these individual procedures. Applications to specific examples will be given
in § 4.

2.1. Stieltjes procedure. It is well known that the system of (monic) polynomials
orthogonal with respect to the measure dA (¢) satisfies a three-term recurrence relation
of the form .

7rk+1(t) = (t"ak)ﬂk(t)—ﬁkﬂ'k—l(t), k= 0’ 1! 2’ ey

2.1
@D ma(t)=0,  mo()=1,
where
_frtmi(t) dr() 3 o
ak_-jﬂ‘n'i(t)dA(t), k"O’laZ, )
(2.2) i 20 dn
g OB

i ) dA(Y

In particular, 8, >0 for all k =1; B, in (2.1) is arbitrary, but is conveniently defined
as Bo = fa dA (7).

The general formulas (2.1) were given already by Christoffel [4], who has different
expressions for the ay, Bi. The formulas in (2.2) are due, independently, to Darboux
[5, pp. 411-413] and Stieltjes [26, Oeuvres I, p. 382]. Stieltjes observed how (2.1),
(2.2) can be used to successively generate 1y, 2, 73, *  + . Indeed, since 7o =1, the
first coefficient ao can be computed from (2.2) with k =0, which then allows us to
obtain (¢) from (2.1). Knowing o, 71, we can get a;, 81 from (2.2), hence ()
from (2.1), etc. We call this procedure, alternating recursively between (2.1) and (2.2),
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the Stieltjes procedure. Stieltjes did not elaborate on how to evaluate the integrals in
(2.2). Presumably, he considered this a straightforward task, since, given the first
2k +2 moments in (1.1) and given the coefficients of 7, and 1, it is an easy matter
to compute a; and B in terms of these quantities, and then to obtain the coefficients
of my+1 from (2.1).

Unfortunately, in this form Stieltjes’s procedure is practically useless, since
rounding errors propagate very rapidly. As pointed out in [11], the rapid growth of
errors is a reflection of the highly ill-conditioned nature of the map from the first 2n
moments o, i1, * * * , 2a—1 to the first n coeflicients ag, * * *, @p—1, Bo, * * * , Bu-1. We
will have more to say about this in § 3.2.

If the measure dA (f) = dAn(¢) is a discrete N-point measure, the integrals in (2.2)
become sums and can be computed directly, without recourse to moments. In this
case, the Stieltjes procedure, also publicized by Forsythe [6], is generally quite stable,
although it may happen that the coefficients ay, Bx, when k is approaching N, and N
is large, will suffer in accuracy (cf. Examples 4.1 and 4.3).

2.2. Discretized Stieltjes procedure. Suppose, to begin with, that
(2.3) d\(t)=w(t)dt on(-1,1),

where w is a nonnegative weight function with finite moments u, = ]11 fo(t)dtr=
0,1,:-+,2n-1, and uo>0. Our objective is to compute ay, B, k =0,1,:-+,n—1.
In an attempt to escape ill-conditioning in the Stieltjes procedure we proposed in [11]
to approximate the integrals in (2.2) by a suitable quadrature rule,

1

N
@9 [ p0e®di= T wplmdolm)+Ra(pe),  N>n,
-1 m=
with nodes ¢, =t%" ¢ (-1,1) and weights w,, = wi>0. We require this rule to
converge as N -0 whenever p is a polynomial. It is easily seen that this procedure
amounts to approximating the desired orthogonal polynomials 7, k =0, 1, -, n, by
the discrete orthogonal polynomials mn, kK =0, 1, + -+, n, orthogonal with respect to
the N-point measure dA (¢) having abscissas ¢\ and jumps w & w (t%"). In fact, under
the assumption made, i.e., under the assumption
1

1
2.5) J-1 p(t) dAn(t)~> J:l p(t) dA(1), N->oo, allpeP,

one can prove that [11]
min(t)> me(t) as N ->oo,

for each fixed kK, 0=k =n".

An attractive quadrature rule to be used in (2.4) is Fejér’s rule, i.e., the interpola-
tory quadrature rule with nodes at the Chebyshev points & = cos ((2m —1)7/2N).
Among the considerations favoring this choice are the following:

@) & and wl’ are expressible in closed form in terms of trigonometric
functions (cf. [11], [12]). Accordingly, the Fejér rule can be computed more rapidly
than, say, the Gauss-Legendre quadrature rule. Some relevant timings are given in
Table 2.1, where the method of Golub and Welsch [20] was used to generate the
Gaussian rule.

(ii) Convergence (2.5) takes place not only for continuous functions w, but also
for functions w that have singularities at the endpoints of [-1, 1], provided they are
monotonic and integrable [10].
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TABLE 2.1
Timings (in seconds) for generating the n-point Fejér and the n-point
Gauss-Legendre quadrature rule on the CDC 6500.

n Fejér Gauss
10 2.0(-3) 4.3(-2)
20 6.0 (—3) 1.5(-1)
40 2.2(~2) 5.5(-1)
80 7.8(-2) 2.1(0)
160 29(-1) 7.5(0)
320 1.1 (0) 29(1)
640 4.5(0) 1.1Q2)

(Numbers in parentheses indicate decimal exponents.)

(iii) The discrete polynomials 7 n, Or rather, their coefficients ayn, Bi,n, can be
generated efficiently by the modified Chebyshev algorithm (see § 2.4), which ought
to be quite stable on account of the point spectrum consisting of Chebyshev points
(cf. Example 4.2).

(iv) If w P, then Rn(pw) =0 for all p € P,,_,, whenever N =2n +s, and con-
sequently our discretization process gives exact answers, when N =2n +s, except for
rounding errors.

Nevertheless, when singularities are present, convergence in (2.5) can be rather
slow. An example in point is the case of square-root singularities, say w(t)=
w1()(1—£)""2, where w, is smooth on [—1, 1]. In this case, the Fejér rule converges
too slowly to be of practical use. Much more effective is the Gauss—Chebyshev rule

1
[ b= dt=T 3 pln)os(im) + Rupon)

where again f,, = cos ((2m —1)7r/2N). Similarly, one may wish to apply a Gauss-Jacobi
rule in cases where w(f) = w1(£)(1 —1)*(1+1)?, a >—1, B >—1 (cf. Example 4.10).

If the basic intervalisnot[—1, 1], but[a, b], —00 = a < b =0, we select a monotone
function ¢ (a linear function, if [a, 5] is finite) which maps [~1, 1] on [a, b] and use

b
2.6) [ P00 d= % wnp(m)eo(d () () + Ra(po)

in place of (2.4) (cf. [11]). This again leads to a discrete measure dAn(t), the abscissas
and jumps now being ¢ (£,,) and wpw (@ (tn))d' (1), respectively. In this way, arbitrary
finite or infinite intervals can be handled.

The method described, actually, has still wider applicability. We may indeed allow
dA(t) to be composed of a piecewise continuous weight distribution and a discrete
distribution, whereby the former is supported on the union of a finite number of
disjoint intervals, and the latter contains a finite number of distinct points. One or
both of the extreme intervals of the piecewise continuous component may extend to
infinity. To cope with this more general situation, all we need to do is to apply our
discretization process, with suitable functions ¢ in (2.6), individually to each com-
ponent interval, add up all the contributions, and then add to the resulting discrete
measure the discrete measure of the given point spectrum. The convergence of the
process, of course, is in no way affected by the addition of the given point spectrum,
although its stability properties may be altered significantly (see Example 4.8).
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As a simple example, suppose w is piecewise constant on the continuous part of
the spectrum. Then the process not only converges, but in fact is exact for N =2n,
since each integral in (2.2) for ay, B, 0=k =n-—1, is integrated exactly by the
composite N-point Fejér rule (cf. (iv) above; see also Example 4.7).

Our treatment of the piecewise continuous part of the spectrum can also be
interpreted as expressing the weight function in the form of a sum of individual weight
functions (each equal to zero, except in one of the component intervals). This suggests
further generalizations, whereby the weight function is assumed to be a sum of weight
functions, each supported on its own interval, and each treated by a separate quadrature
rule. Some of these intervals may then in fact coincide. This will be very effective in
cases where different components of the weight function (possibly on the same interval)
must be dealt with by different quadrature rules; see Examples 4.6, 4.9 and 4.10 for
illustrations.

2.3. Chebyshev algorithm. Chebyshev [2, Oecuvres I, p. 482], in the case of
discrete orthogonal polynomials, observed that the coefficients ay, Bx can be obtained
directly in terms of the quantities

2.7) Ot =j me(£)t' dA(2)

(for which Chebyshev used the symbol (k, /)), by means of

ao=—">-, Bo= 00,0,
00,0 .
Okk+1 Ok-1,k
2.8) = P s
K.k k—1,k—1
k=1,2,3,:---.
Ok
Bk - ’
Ok—1,k—1

The o, in turn, can be generated recursively from the moments u; by [2, Oeuvres I,
p. 482]

2.9) Okl = Ok—1,141~ Qr—10%k-1,1 — Br-10k 2,1, l=k,k+1,-++,2n-k-1,
01,0~ O, aol = M.
Given the first 27 moments uo, u1, * * * , 42,1, this will produce the first n coefficients

@, """, &y-1 and Bo, " * +, Bu-1. We refer to (2.8), (2.9) as the Chebyshev algorithm.

Being based on the moments pu,, the algorithm unfortunately suffers from the
same effects of ill-conditioning as does the Stieltjes procedure, when implemented in
terms of moments. In many cases it is possible, however, to stabilize the algorithm
by introducing modified moments in place of ordinary moments.

2.4. Modified Chebyshev algorithm. Let {p.(s)} denote a system of (monic)
polynomials satisfying a recurrence relation

Pk+1(t) = (t—ak)pk(t)_bkpk—l(t)’ k =O’ 11 2’ Tty
p-1(6)=0,  po(t)=1,

where ay, b;, are assumed known. We then call

(2.10)

@.11) V,=J p(O (e, r=0,1,2,---,
R
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the modified moments of the measure dA relative to the polynomial system {p,}. If
ay = by =0 for all k, then pi(¢) = t*, and the modified moments reduce to the ordinary

moments (1.1).
Chebyshev’s algorithm generalizes very naturally to the case of modified moments.

One defines
(2.12) o =j mOpt) dA (D),
R

and obtains the first n coefficients ay, B, k =0, 1, - + -, n — 1, from the first 2n modified
moments v, r=0,1, - +,2n—1, by the following modified Chebyshev algorithm.

Initialization:
0'_1,1=0, I=1,2,~-,2n—2,
oo, =V 1=0,1,---,2n—1,
(2.13¢)
Vi
ao=0ap+—,
vo
Bo=vo.
Continuation: For k=1,2,---,n-1

O = Ok-1,141 — (O —1— A1)Ok-1,1 — Br—10k-2,1

+b10‘k_1,1-1, l=k,k+1,---,2n——k—-1,
(2.13,)

Okk+1 _ Ok-1k

ar = ag + s
Okk Tk—-1,k-1
—__ Okk
Br = .
Ok—1,k—1

The algorithm is summarized schematically in Fig. 2.1, where the “computing star”
shows which of the oy, (indicated by black dots) are related to one another in the

K Star :
n-|p-——-----—- OO
[¢] [0 e °
[*] [ o e o o
] [¢] e o o e o o
Z O, 174
<—"%0,247"4
© o o o o o o o é—qLL‘O

0] 2n-|

F1G. 2.1. The modified Chebyshev algorithm (schematically for n = 5).

78



ON GENERATING ORTHOGONAL POLYNOMIALS 297

identity (2.13;). The circled dot indicates the quantity which is computed in terms of
the others in the star. The entries in boxes are those used to compute ay, Bx. The
diagonal entries, incidentally, furnish the normalization constants

(2.14) T =j 72 dA(e), k=01, n~1.
R

(Chebyshev’s algorithm proceeds similarly, except that it starts from the moments u;,
and the left arm of the computing star is missing.) The algorithm (2.13), in a somewhat
different form, was first proposed by Sack and Donovan [25], and in the form given
here by Wheeler [29]. A derivation can also be found in [15].

The modified Chebyshev algorithm often proves to be exceptionally stable,
particularly when 7, and p, are orthogonal polynomials on finite intervals (see, e.g.,
Examples 4.4 and 4.5). On infinite intervals, disjoint intervals, and also in the case
of discrete spectra, the underlying map, however, is likely to become ill-conditioned,
sometimes even severely so (see, e.g., Examples 4.1, 4.3, 4.6, 4.7 and 4.8). Some new
theoretical insights into these questions of condition are given in § 3.3.

2.5. Discretized (modified) Chebyshev algorithm. The tendency of becoming
ill-conditioned is one of the limitations of the modified Chebyshev algorithm. Another
is the difficulty inherent in the accurate calculation of the modified moments (2.11).
It is possible, however, as suggested in [19, § 5.3], to apply the same discretization
dA(t)~dAn(t) that was used in the Stieltjes procedure (cf. §2.2) to the modified
moments. One thus approximates v, by

2.15) Vi = j p.(0) dAn(2),

and then calculates the associated recursion coefficients a;,x and B, x by the modified
Chebyshev algorithm. The procedure converges under the same conditions as the
discretized Stieltjes procedure. It is essential, however, that convergence (in relative
accuracy) be tested on the By, and not on the v, , since the latter may vanish and,
besides, need not be required to have full relative precision (cf. Example 4.4). The
range of applicability of this procedure can be extended, as in the case of the discretized
Stieltjes procedure, to measures dA (f) composed of piecewise continuous components
as well as point spectra. It is important to realize, however, that any ill-conditioning
present in the modified Chebyshev algorithm will manifest itself also in its discretized
version. There are fewer problems of this kind with the discretized Stieltjes procedure.

3. Questions of numerical condition. The modified Chebyshev algorithm of § 2.4
realizes the map K, : R*" > R*" which associates to the first 2z modified moments v,
the recursion coefficients ay, B, k =0,1,--+,n~1, for the respective orthogonal
polynomials: :

K,:v->p,
(3.1) p

T T
v =[vo,v1, *, v2n-1], p =lag,***,an-1,B0,"* ", Bn-1].

Throughout this section we assume that 8o = [ dA (¢) = v,.
For the purpose of studying the numerical condition of the map K,,, it is convenient
to think of K,, as the composition of two maps,

(3.2) K,=H, G,

where G, is the map from the modified moments », to the Gauss-Christoffel quadrature
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rule,
(3.3) G,.v->v, ‘yT=[A1,'--,A,,,'rl,---,T,.],

and H, the map from the Gauss-Christoffel quadrature rule to the recursion
coeflicients,

(3.4 H,:y->p.

Here, A, =A™, 7, = 7" are the Christoffel numbers and Gaussian abscissas (the zeros
of m,(; dA)), respectively, associated with the measure dA(¢), so that

(5 [0 @@= £ M) +RA,  Ru®ai)=0.

As one would expect, the map G, is the more sensitive of the two. The map H,
is usually fairly well-conditioned; its condition is discussed in § 3.1. In § 3.2 we briefly
recall the ill-conditioned nature of the map G, when the vector » consists of ordinary
moments. The condition of G, in the general case of modified moments is studied in
§ 3.3. As condition number of a map M:x - y from one finite-dimensional space into
another we generally adopt the quantity (see, e.g., [15])

llx e GOl
Iyl

where Jy is the Jacobian matrix of M, and ||-|| a suitable vector norm and subordinate
matrix norm. In cases where the vector x (or y) has components of widely varying
magnitude, this condition number may not be very meaningful on account of the
falsification introduced by the factor ||x|| (or 1/|ly[). In such cases we use more refined
measures of the condition. Recall also that cond (H,, ° G,)) =cond (H,,) cond (G,,).

3.1. Condition of the map H,. By virtue of (2.2) and (3.5), the map H,, can be
described by

(3.6) (cond M)(x) = y = Mzx,

Yr=1 Anmi(n)
=R s k=0,1,2,'-',n—-1,
¥ Zv=1 A,,?Ti('fy)
(3'7) BO= El )\m

Yoo1 Aari(r,)
z:=1 /\vﬂi—l (711),

B =

We are here in a case where the condition number (3.6) is often not appropriate,
since the Christoffel numbers A, vary greatly in magnitude, particularly if the interval
of orthogonality is infinite. We therefore use the one-dimensional equivalent of (3.6),
applied to each a, and Bi individually, considered as functions of one particular A,
or 7,. Thus, we write

(cond ar)(A,) = Gf ax #0), etc.,

Au (aak/aAv)
273

where in the case a; =0 the division by a; is omitted.
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An elementary calculation then yields

Y (cond ax)(A,) = dx! zl AJAL ki),
v=1 v=

n

Y (cond ay)(r,)=di" Zl AT |8emi(n,) + 24, 0mic (7)) wi (7)),
v=1 v=

(3.8) . .
21 (COﬂd Bk)(Av) = dzl §1 Aul'n”%c(q-v) _ﬂk"%c—l (Tu)‘,

L (cond fu)(r) =247 T Aufnallme(r)mi(r) = Bemya(r)mhs (1),

=

where

de= 5 mi<n>=j 2O A,  k=0,1,-+,n—1,
v=1 R

L a0, L2 %% if e #0,
O = { Ak Ay,k= (273
1 ifak=0, Ty ifak=0.

A suitable condition number, cond H,, for the map H, is now the maximum of all
the numbers in (3.8), as k variesover0, 1, « - -, n — 1. Numerical values of this condition
number, for some classical polynomials, are shown in Table 3.1.

TABLE 3.1
The numerical condition of the map H,, for some classical orthogonal polynomials.

n Legendre Chebyshev Laguerre Hermite
5 6.968 (0) 7.186 (0) 6.724 (0) 1.596 (1)
10 1.785 (1) 1.823 (1) 2.143(1) 6.254 (1)
20 4.530(1) 4.742 (1) 4.269 (1) 2.042 (2)
40 1.071(2) 1.135(2) 8.525 (1) 6.181 (2)
80 2.526 (2) 2.644 (2) 1.761 (2) 1.807 (3)

It is seen that the map H, in these cases is relatively well-conditioned, cond H, growing
about linearly in n. The well-conditioning of H,, however, is not always assured; see,
e.g., Examples 4.1, 4.3 and 4.8. '

The coefficients ay, Bi are less sensitive to perturbations in the A, than to perturba-
tions in the 7,. Indeed, from (3.8) it follows immediately that '

21 (cond ax)(A,) = max A&, i (cond B)(A,)=2. 7

If the polynomials are orthogonal on [—1, 1] with respect to a symmetric weight
function, then the bound in the first inequality is <1.

Results in terms of the “global” condition number (3.6) are comparable to those
in Table 3.1 in the case of Legendre and Chebyshev polynomials, but completely
unrealistic in case of Laguerre and Hermite polynomials. For Laguerre polynomials,
e.g., the condition numbers based on (3.6), using the uniform norm, range from
1.06 x 10° for n =5 to 7.65x 10%! for n = 40. This is a rather striking example of how
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the introduction of inappropriate norms in the study of condition may completely
distort the true nature of sensitivity.

3.2. Condition of the map G, in case of ordinary moments. We assume in (3.3)
that » is the vector of ordinary moments,

VT=[lL0’ M1y " ° 'sﬂZn—l]’ Mrzj trdA(t)-
R
The map G, then amounts to solving the nonlinear system of equations,

3.9) L AT =wm,  r=0,1,2,--+,2n-1
v=1
If F, is the map y - » defined by (3.9)', its Jacobian Jg, is readily computed to be
Jpn = TA,

where
A=diag(1, trty 1,A1: tet ,An)’

1 -1 0 co 0
o T 1 ces 1
T=|r+ - 7 27 cee 27,
!%n—l . e 2n 1 (2n 1)7_2n—2 “ e (2n 1)T2n—2

Since Jg, =J E,f , we have according to (3.6),

lolia~* T
llvl
From the analysis in [11], in particular Theorem 2.1 and the discussion preceding it

(which assumed [0, 1] as the support of dA (¢), but extends easily to arbitrary measures
on the positive real line), one gets

(cond G,)(v) =

Il 1 { 1+7,\2
cond G, =i— ——— max {(1+7, ( “) },
Iyl max, n, ™ S0 Py
or, equivalently,

b [m.(-1T
=yl max, A, min, {(1+7,)[74(r)FY

(3.10) cond G, =

where ||v|| = maxos,=2n-1 &r, |I7]| = max (max, A,, max, 7,) and supp (dA) € R... Since the
point —1 is well outside the spectrum of dA, the lower bound in (3.10) must be expected
to grow rapidly to infinity as n - 00, on account of the asymptotic behavior of orthogonal
polynomials outside the spectrum (for relevant results see, e.g. [27, Thms. 8.21.7,
8.22.3]).

Here also, the result (3.10) may be misleading if the interval of orthogonality is
infinite, since the moments u, then likely grow rapidly. In analogy to § 3.1, it is better,
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in these cases, to use the more refined condition numbers

2r=1 2n-1 , T—l o

Zo (Cond A,,)(“,r) = go lﬂ_(_/\_)_’_*’l_,’
(3.11) 2n—-1 2 —_1 , (T_:) , v=1,2,--+,n,
Y (cond,)(u)= I WAL ntwretl

0 r=0 ’/\-vTvl ’

and take as cond G, the maximum of these 2n quantities. Unfortunately, they no
longer admit simple expressions in closed form, but can be readily computed, for
example by means of the algorithm for 77" in [8, § 4].

In Table 3.2 we illustrate the condition of the map G, for the examples dA (¢) = dt
on [0,1], dA(t)=1n(1/t) d¢ on [0,1], dA(t)=¢""dt on [0,00] and dA(f)=e " dt on
[0, 00]. The third column gives the lower bound in (3.10), the fourth column the
maximum of the 2»n condition numbers in (3.11), and the last one the actual error
growth observed. The latter is taken to mean the largest relative error in the ay, Bx, kK =
0,1,-++,n—1, divided by the machine precision, in our case 3.553x107"°, The
coefficients ay, B« were computed by Chebyshev’s algorithm; cf. §2.3. (Since the
moments of the Laguerre distribution are integers, we first subjected them to random
perturbations at the level of the machine precision before applying Chebyshev’s
algorithm.) In the first two examples, for n = 12 one of the B, (the last one) came out
to be negative; hence no results are shown for n = 14. Note that the second and fourth
example involve nonclassical orthogonal polynomials.

It is seen that in the first two examples, where the interval of orthogonality is
finite, the observed error magnification indeed follows the trend predicted by either
of the two condition numbers. In the last two examples, involving infinite intervals
of orthogonality, this is only true for the condition number based on (3.11); the other
grossly overestimates the error growth, for reasons explained earlier.

TABLE 3.2
The condition of the map G, in the case of ordinary moments and dA (f) = w(t) dt.

w(t) n cond G, (3.10) cond G, (3.11) err. growth
1 2 1.997 (1) 4.132(1) 2.400(1)
on[0, 1] 5 6.803 (4) 3.802 (5) 6.280 (4)
' 8 7.080 (8) 6.161 (9) 8.977 (8)

11 1.111 (13) 1.302 (14) 2.108 (13)

14 ~ - -

In(1/¢) 2 4.863 (1) 1.932 (1) 2.655(1)
on[0, 1] 5 2.133(5) 7.071 (4) 2.411 (4)
8 2.391(9) 7.370 (8) 8.010 (7)

11 3.889 (13) 1.156 (13) 3.851(12)

14 - - -

e’ 2 1.665 (1) 1.549 (1) 3.500(0)
on [0, 0] 5 4.416 (6) 9.665 (3) 5.991(2)
8 7.006 (13) 5.968 (6) 1.600 (5)
11 1.078 (22) 3.829(9) 6.508 (7)
14 8.170 (30) 2.521(12) 9.164 (9)
e " 2 6.823 (0) 2.106 (1) 1.162 (2)
on [0, o] 5 2,698 (4) 4.691(4) 8.070 (3)
8 8.044 (8) 1.073 (8) 3.890 (6)

11 6.445 (13) 2.555(11) 3.274 (10)

14 1.001 (19) 6.243 (14) 5.373(13)
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3.3. Condition of the map G, in case of modified moments. We now assume in
(3.3) that the vector » contains the modified moments,

VT = [VOa Vi,* ', V2n—1]s Vr =J‘ Pr(t) dA (t)’
(i

where {pi} is a system of (monic) polynomials orthogonal with respect to some measure
dl(t),

[ pow i =0, r=s.
R

The support of dI(t) may be finite or infinite, and need not necessarily coincide with
the support of dA(t). The condition of the map G, in this case has previously been
studied in [13]. Our treatment here improves upon that work in several respects. First,
we obtain considerably more realistic bounds for the condition number. Secondly,
our new bound is valid irrespectively of whether dI(¢) has finite or infinite support,
in contrast, e.g., to Theorem 2.1 of [13]. Finally, the bound can be evaluated exactly
by Gaussian quadrature, in contrast, e.g., to the bound (2.33) in [13], where L,,,, and
hence kf.2), does not allow exact evaluation by quadrature. The improvement is achieved
by employing the more natural L,-norm in place of the L,-norm used in [13], and
rests on the fact that for any real matrix A,

(3.12) Al =Vp(ATA)=Vir (ATA) =]Al5

where p(+) denotes the spectral radius, tr(-) the trace, and || ||+ the Frobenius norm

lAlls = \/ .Z, al?i’ A =[ay].

As before, we let 7, =7, A, = A" denote the Gaussian abscissas and Christoffel
numbers, respectively, belonging to the measure dA (¢). Furthermore,
h(t) =L@ -20Lx)t-1)],
(3.13) ) v=12,-"-,n
kv(t) = lu(t)(t_Tv)s
will denote the fundamental Hermite interpolation polynomials associated with the
abscissas 71,* * *, Tny 1.€.,
ho(r.)=8,u,  hu(r.)=0,
(3.14) e o vu=1,2-,n,
kv(Tu) = O’ ku(‘ru.) = 8:44.’
where §,,, is the Kronecker symbol and /, are the fundamental Lagrange interpolation

polynomials.
It will be convenient to consider not the map » - v in (3.3), but the map

G,:v->y,
where 7 is the vector of normalized modified moments
5=d V%,  d, =J P20 dlt), r=0,1,---,2n—1.
R
This has the theoretical advantage of making the 7, independent of the normalization

of the orthogonal polynomials {p,}. For algorithmic purposes, however, the passage
from » to 7 is not required, and in fact not recommended; cf. § 2.4. The additional
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diagonal map introduced,
D,:v->y,

of course, is harmless, since each individual transformation », - 7, involves just one
multiplication and is therefore perfectly well-conditioned.

For the map G, we now have:

THEOREM 3.1. The condition of the map G,, in the sense of (3.6), with ||-|| the
Euclidean norm, can be estimated as follows:

| 12
(3.15) (cond G,)( S| ”{ Lyzl (h 0+ 2k (z)) dl(t)} ,
where
(3.16) E="E % = £ a2en,

Proof. The map G, amounts to solving the system of nonlinear equations

d(y) =y,
where

o,(v)=d;"* ¥ Ap(r), r=0,1,--+,2n-1.
=1

The Jacobian Jg, (#) of G, therefore, is the inverse of the Jacobian @, of @, so that

(3.47) (cond G.)(7 {}”‘,}ncb Wl

An elementary calculation yields
®,(y)=D7'PA,
where
D =diag (do”, di%, - - -, d3021),  A=diag(1,+-+, 1,41, +, W),
and
po(r)  +++ po(m)  po(r) -+ po(ra)

p| Bl o opm) pim) e pi(m)

p2n—l(7'1) e p2n—l(7n) pén—l (Tl) v pIZn-l (Tn)
Therefore, using (3.12),
(3.18) oy (I=IA""P7'D||=|A™'P7'D||r.

As previously observed in [13], the inverse of P can be expressed in terms of the
expansion coeflicients in

2n 2n
hv(t) = gl avu.pu.—-l(t)’ kv(t) = §1 bvu.pu,—l(t)

as

A

-1 _
P "[B

| A=lend B=[)
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Since

(A'PT'D),. =d} 20y,  (AT'PT'D)yeny = —1—d”2 buus
one obtains

- 1
D= § E duoi(ab+ 570k,

v=1pu=1

On the other hand,

2n 2n
[ mo dl(t>=j S @puo1(t) T yepus() dI(E)
R R pu=1 k=1

=Y G j Prs(OPer(t) dI(2)

T3
2n 2
= Z dn-—la vus
w=1
by virtue of the orthogonality of the p, with respect to dl(¢). Similarly,
2n
[Boa0=5 d,b
R n=1
Therefore,
AP DlE=[ 3 (ko) +—fk %0) dito),

which in view of (3.17), (3.18) proves the theorem. [

We remark that the integral in (3.15), since the integrand is a polynomial of
degree =4n -2, can be evaluated exactly (up to rounding errors) by the 2n-point
Gauss—Christoffel quadrature formula associated with d/(¢). This causes little problem,
since dl is usually one of the standard integration measures and, besides, the integrand
is positive. Furthermore, the integrand is conveniently evaluated in the form

Sooilo, =) (1=20, (= 7.,)P+A%(t—7.))
i lp =) H* ’

(3.19) Vg (h 0+ 2k,,(t)>

where

Py = H (TV—TM-)’ g, = Z 1 ]
w=1 w=1Ty ~ Tu
n#Ev n#EY
as follows directly from (3.13) and the fact that} /. (r)=1and [, (t) = Pt [Muw, t—17)
for the Lagrange polynomials. Of course, the evaluation of (3.19), as well as of ||y||
in (3.16), requires knowledge of the Gaussian abscissas and Christoffel numbers for
dA ().

We will have occasion to comment further on the result (3.15), when we discuss
specific examples in § 4. Suffice it to say, here, that Gaussian abscissas 7, that are
distributed approximately uniformly (as they tend to be for discrete orthogonal
polynomials based on an equally spaced point spectrum) give rise to integrals in (3.15)
that are likely to be very large for large n on account of the violent oscillations of &,
and k, near the extreme nodes 7,. Abscissas 7,, on the other hand, that are distributed
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more like Chebyshev points are expected to yield much smaller values for these
integrals, hence better condition for the map G,

The sharpness of (3.15) can be tested by considering dl(¢) = dA (¢), in which case
the map G, essentially reduces to the (well-conditioned) map H;'. The integral in
(3.15), nevertheless, does not appear to allow an easy evaluation or estimation in
simple form, except in special cases. One such special case is the Chebyshev measure
dA(t)=(1-""%dt on [-1, 1], for which the integral in question can be evaluated
by the Turdn quadrature formula [28],

1 n
[ o= ae=  Dufn)+a w) + L+ R )

where 7, =cos ((2v —1)mr/2n), which is exact for all feP,,_; and known in closed
form [22]:

T T T 2
A,=—, A =——s Y Ab=—s(1=172),
n 4n3T 4n3( ™)

One finds, in view of (3.14),

f 5 [hi(t)+)%2ki(t)](1—t2)“”2 dt= 3 [,\,+2A'g(:\%+hz(7,))]

1p=1 v=1

noAY 2n* n
S7+2 Y S=m+—5 Y A,
v=1Ay T v=1

since h(7,)<0 foxj all ». Observing that

Lo T & af2r—] )__ZT_.L_TL
VEIAV 4n3.,2=:1sm ( 2n 7

one gets

1
n 1 B 1
X [hi(t)+—2-ki(t)](l—t2) V2 gt —.
-1u=1 Ap. 4ﬂ'

Finally, since vo=, v,=0 for r>0, hence 170=‘/—ﬂ—', v,=0 for r>0, and since
Yo i (A2 472)=(7%/n)+(n/2), we obtain

m+1/4 ~\/21r2+1/2 a5 1> 0
w/n+n/2 n ’

admittedly a somewhat too optimistic result (made so by the factor 1/||y|| in (3.15)).

The same considerations apply to the example d/(t)=(1—¢>)""?dr on [-1, 1]
and dA (t) = dAn(2) the discrete N-point measure with abscissas at the Chebyshev points
tm=cos (2m—1)w/2N),m=1,2,-- N, and jumps equal to 7/N, provided that
n=N.

(cond G,,)(%) = \/

3.4. The condition underlying the discretized Stieltjes procedure. Itis not entirely
clear what should be the appropriate map that underlies the discretized Stieltjes
procedure. In the simplest case dA (f) = w () df on [—1, 1], the input data surely include
the values w(t2’) of the weight function at the discretization points ¢, m =
1,2, -+, N, but may also include these points themselves, as well as the quadrature
weights wn . From these data the procedure then determines the desired coefficients

i, Bnk=0,1,---,n—1, or more precisely, their discrete approximations
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arn B, k=0,1,: -+, n—1. Analogous considerations apply to the more general
measures dA (¢) considered at the end of § 2.2.

The map in question, therefore, is similar to the map H, considered in § 3.1, and
in fact may be thought of as an approximation H, » of H,. Since our interest is in the
condition of these maps, where orders of magnitude is all that matters, we may as
well take the condition of H, as indicative of the sensitivities inherent in the discretized
Stieltjes procedure. It will be seen by numerical examples that cond H, indeed agrees
reasonably well with the actual error growth observed in the discretized Stieltjes
procedure.

4. Examples. The purpose of this section is to illustrate the performance of the
procedures of § 2, and the underlying theory of § 3, in a number of examples that we
hope are representative. All computations reported were carried out on the CDC 6500
computer in single precision, except for the computation of errors, which was done
in double precision.

4.1. Discrete orthogonal polynomials.

Example 4.1. The discrete orthogonal polynomials #.(x) of Chebyshev.

These are orthogonal with respect to the N-point discrete measure with abscissas
at the integers 0,1, -+ -, N—1 and jumps equal to 1/N:

N-1
4.1 1 Y (k) (k)=0, r#s, rs=0,1,--- ,N—-1,
N 2o

We prefer to deal with the (monic) polynomials
'2

@n!

which satisfy the recurrence relation (2.1) with

4.2) m(x) = N~"t,(Nx),

1 1
==1-— =0,1,:+: -1
(247 2 ( 1 N) ’ k 0; ’ ’ N ’
1-(k/N)

4(4-1/k%
and have their point spectrum on the interval [0, 1]. As N - o0, the polynomials (4.2)

tend to the monic Legendre polynomials (shifted to the interval [0, 1]).
We first illustrate in Table 4.1 the ill-conditioning of the map G, from the ordinary

moments

(4.3)

Bo=1, Br = k=1,2,---,N-1,

1 1N1 k r
M‘r‘:J‘ tdAN(t)'“_ Z ( ) r=0919”',2n—19
N =0

TABLE 4.1
The condition of the map G, in the case of ordinary moments and discrete
Chebyshev measure dA(t) = dAn(t), N =20.

n cond G, (3.10) cond G, (3.11) err. growth
2 1.957 (1) 4.110 (1) 2.456 (1)
5 6.109 (4) 5.047 (5) 2.110(5)
8 5.318 (8) 1.768 (10) 1.028 (10)

11 4.366 (12) 1.406 (15) 3.286 (14)
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with N =20, to the n-point Gauss—Christoffel formula, in the format that was already
used in Table 3.2. As is evident from Table 4.1, Chebyshev’s original algorithm rapidly
loses accuracy, at the rate of somewhat more than one decimal digit per degree!
More stable, though not entirely unproblematic, is the modified Chebyshev
algorithm, which we illustrate in Table 4.2 by recording the bound (3.15) for the
condition of G,, as well as the actual error growth observed. The latter is now defined
as the L,-norm of the relative errors in the coefficients ay, Bi, kK =0,1, -, n—1,
divided by £v2n, where ¢ is the machine precision. We feel that this is the appropriate
measure, since the result (3.15) is baséd on the Euclidean norm. The modified moments
chosen are those relative to the (monic) Legendre polynomials for the interval [0, 1].

3 TABLE 4.2
The condition of the map G, in the case of Legendre moments and discrete Chebyshev measure
dA(t) =dAn(t), N =10, 20, 40, 80,

N n cond G, err. growth N n cond G, err. growth
10 5 2.515 (0) 4.713 (0) 40 15 2.020(1) 1.679 (2)
10 6.311 (4) 7.349 (4) 25 1.311 (6) 1.016 (7)
20 5 7.859 (—-1) 3.537(0) 35 5.015 (14) 1.110 (15)
10 1.932 (1) 1.105(2) 80 10 4.885 (-1) 3.126 (0)
15 2.952 (4) 1.421(5) 20 6.480 (0) 1.240 (2)
20 3.328 (10) 9.646 (10) 30 3.936 (3) 8.320 (4)
40 5 6.463 (—1) 2.106 (0) 40 4.800 (7) 1.013 (9)
10 9.953 (-1) 7.182 (0) 50 1.738 (13) 1.759 (16)

The magnitude of cond G, is solely determined by the integral in (3.15), since
[7ll and [ly|l in this example both have order of magnitude 1. The steady growth of
cond G, can be explained by the fact that as n approaches N, the Gaussian nodes of
dAn(t) become more and more equally distributed. (They are equally spaced when
n = N.) The Hermite interpolation polynomials 4, and k, in (3.13) therefore exhibit
the violent oscillations characteristic of equally spaced nodes, which accounts for the
large values of the integral in (3.15). Chebyshev nodes on [0, 1], according to this
explanation, ought to result in substantially smaller conditions, a fact that will indeed
be confirmed in the next example.

The error growth shown in Table 4.2 is consistently somewhat larger than what
is indicated by cond G,. This is because the growth of error in the coefficients ay, Bi
includes also the effects of the map H,, the condition of which is shown in Table 4.3.

One might think that the large oscillations of 4, and k, could be filtered out by
choosing a measure d/(f) in (3.15) which is very small (or even equal to zero) near
the end zones of the interval [0, 1]. While this indeed reduces the magnitude of the
bothersome integral, the other factor |7 in (3.15) increases so much more that the
condition of G, in fact gets worse.

Substantially more stable is the Stieltjes procedure, measured both in terms of
the condition of the map H,, (cf. § 3.4) and in terms of actual performance. For N =10
and 20, cond H, is less than 22.08 and 50.80, respectively, for all » = N, whereas the
actual error growth observed is by factors of at most 10.86 and 16.66, respectively.
For N =40 and N =80 we have the situation indicated in Table 4.3. It shows that
ill-conditioning and consequent instability set in as n approaches N, relatively late
for N =40, but sooner for N = 80. The condition of H, is seen to correctly predict
the trend of instability, but overestimates it by several orders of magnitude.
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TABLE 4.3
Stability of the Stieltjes procedure for the discrete Chebyshev measure dA(t) = dAn(t), N =40 and 80.

N n cond H,, err. growth N n cond H, err. growth

40 =35 =7.2(3) =24(1) 80 =50 =2.6(3) =1.95(1)
36 1.030 (5) 2.122(2) ) 55 4.751 (6) 7.015 (3)
37 1.755 (6) 3.835(3) 60 2.937 (10) 4.284 (7)
38 4.419 (7) 9.216 (4) 65 2.220 (12) 1.088 (12)
39 1.641 (9) 3.361 (6) 70 2.172(12) 1.668 (15)
40 1.205(11) 2.487 (8) 75 2.006 (12) 1.668 (15)

We report these results solely to illustrate the behavior of the various procedures
in a typical case of a discrete measure involving equally spaced points. There is, of
course, no need to apply these procedures, since the recurrence relation is known
explicitly (cf. (4.3)).

Example 4.2. Polynomials orthogonal with respect to the discrete inner product

N
[p9 q]N = kzl Wkp(tk)q(tk)a
where # =i’ are the Chebyshev points on [~1, 1] and w;. = w{"’ the weights of the
N-point Fejér quadrature rule. This example is of interest in connection with our
discretization of the Stieltjes procedure (cf. § 2.2).

It seems natural, in this case, to run the modified Chebyshev algorithm with the
modified moments relative to the (monic) Chebyshev polynomials of the first kind.
The map G, then turns out to be perfectly well-conditioned; see Table 4.4. For N = 10,
20, 40, 80 and for selected values n = N, we found cond G, never to exceed 1.2, and
to be usually less than 1. The map H,, likewise, appears to be quite well-conditioned.
Accordingly, both the modified Chebyshev algorithm, as well as the Stieltjes procedure,
perform exceedingly well. The respective error growths are shown in the last two
columns of Table 4.4.

TABLE 4.4
Performance of the modified Chebyshev algorithm and the Stieltjes procedure in Example 4.2.

err. growth err. growth

in Chebyshev in Stieltjes

N n cond Gn cond H, algorithm procedure
10 5 1.169 (0) 6.968 (0) 1.969 (0) 3.750 (0)
10 8.925 (-1) 2.133(1) 1.969 (0) 1.472 (1)
20 5 1.169 (0) 6.968 (0) 1.969 (0) 6.000 (0)
10 9.152 (-1) 1.785 (1) 1.994 (0) 9.969 (0)
20 6.473 (-1) 5.054 (1) 1.045 (1) 2.053 (1)
40 10 9.152 (-1) 1.785 (1) 1.994 (0) 1.200 (1)
20 6.684 (—1) 4.530(1) 5.996 (0) 1.200 (1)
40 4.597 (-1) 1.213(2) 3.146 (1) 2.697 (1)
80 20 6.684 (1) 4.530 (1) 5.996 (0) 2.300 (1)
40 4.773 (-1) 1.071 (2) 9.998 (0) 2.300 (1)
80 3.250 (-1) 2.827 (2) 7.948 (1) 8.435(1)
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Example 4.3. “Truncated Charlier polynomials”, orthogonal with respect to the
inner product

—a

e “a"
k!

For N -0, these become the Charlier polynomials, whose recurrence formula is
known explicitly.

The modified Chebyshev algorithm, at least when used in conjunction with
modified moments based on Laguerre polynomials, performs rather poorly on this
example. The main reason is the rapidly deteriorating condition of the respective map
G,.. This is illustrated in Table 4.5 for the case a = 1 and N =40. Practically identical
results are obtained for larger N, and quite similar ones for smaller values of N.

N-1
[p,qln = kgg pk)qk), a>0.

TABLE 4.5
Performance of the modified Chebyshev algorithm
with Laguerre moments in Example 4.3.

N n cond G, err. growth -
40 2 4.113 (0) 0.0
4 1.832 (3) 1.365 (2)
6 3.963 (6) 5.622'(4)
8 2.006 (10) 2.217(9)
10 1.793 (14) 2.907 (13)

For comparison we give in Table 4.6 some analogous information for the Stieltjes
procedure.

TABLE 4.6
Performance of the Stieltjes procedure in Example 4.3,

N n cond H, err. growth

40 5 8.130 (0) 5.995 (0)
10 2.740(1) 1.027 (1)
15 4.635(1) To2241(0)
20 6.661 (1) 3.547(1)
25 7.215(5) 8.444 (7)
30 1.532(11) 7.290 (14)

4.2. Polynomials orthogonal on an interval,

Example 4.4. An example of Christoffel [4, Ex. 6]: dA(¢) = w(t) dt with w(t)=
[A-k**1-)TYon[-1,1],0<k <1.

What intrigued Christoffel was the fact that the associated orthogonal polynomials
{m,(t)}, when considered as functions of x = L; w(t) dt, constitute a sequence of doubly
periodic functions orthogonal in the sense

K

I m, (ms (1) dx =0, r#s,
-K
where K denotes the complete elliptic integral K = I(l, w(t) dt.

Since (1-k2*)7"? is analytic in a neighborhood of the segment [—1, 1], the
desired polynomials must be ‘“‘close’ to the Chebyshev polynomials of the first kind.
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This suggests the use of the latter as input to the modified Chebyshev algorithm, i.e.,
the construction of the desired recursion coefficients from the modified moments

1
(4.4) ve=[ bt d

-1
with respect to the monic Chebyshev polynomials po=To, p,(t)=T,(t)/2" ', r=
1,2, . These moments can be computed as follows. Letting first = cos ¢ in (4.4)
gives

i do 1 (7 cOs ro

9 en] R -
( ) Vo o (1__k2 c.082 ‘P)I/Z 4 2 1 o (1__k2 COSZ ‘p)lfz @ r

Now put 6 = 7/2 — ¢ in the Fourier expansion
1 ) © )
PP I SN Y + n 2
A-Ksin’ 8)" Colk?)+2 Y C,(k°)cos2né

n=1

and substitute the result in (4.5). By the orthogonality of the cosine functions one
immediately obtains

vo=wCo(k?),

(4.6) - )

S V2m=(—1) 'im_——lcm(k )a m=1’2’31"',
while of course v3m-1=0,m=1,2,3,-++. On the other hand, y,=C.(k’),n=
0,1,2, -, is a minimal solution of the three-term recurrence relation

1 1+4° 1 '
4.7) (n+§)y,,+1+n qq y,,+(n———-)yn_1=0, n=1,2,3,---,

2
satisfying
4.8 yo+2 % =1,
where

k2
1= 2=k

(see, e.g., Luke [23, p. 36]). Our algorithm in [9, Eq. (3.9)], in conjunction with the
normalizing condition (4.8), then yields the Fourier coefficients C,(k?), hence the
modified moments (4.6), very accurately and efficiently. The algorithm works well
even when k? is quite close to 1. Note, in fact, that (4.7) is a difference equation of
the Poincaré type, with characteristic equation

1+4>
u2+-—q—‘—1—u+1=0, 0<q<l,

having two real roots uy, u, with |us|>1>|u,| and

1

Uy
—|==.
q

Uz
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(The minimal solution y, = C,(k?) “corresponds” to u,.) If k>=1—¢,0<e « 1, then

+Ve\? -

515_(1 \/_) =1+4Ve+8¢ +126Ve+ 16 +0(e?), £-0,
€

so that for k% =.999, for example, we have ¢ = 107>, hence

Y113,
Us

which is still an adequate separation of the roots.

In addition to the modified moments being accurately computable, it turns out
that the modified Chebyshev algorithm is extremely stable. For all values of k> that
we tried (0<k’= .999), and for degrees n up to_ 80, the error growth factor never
exceeded 3.258, and the condition number cond G, never 3.153.

We have also used the discretized Stieltjes procedure, as well as the discretized
modified Chebyshev algorithm (cf. §§2.2 and 2.5), with good success, using the
Gauss—-Chebyshev quadrature rule in place of Fejér’s. The advantage of testing
convergence on the relative accuracy of the coefficients B, n, rather than on that of
the modified moments », 5 (cf. § 2.5), can be clearly demonstrated in this example.
The modified moments indeed decrease very rapidly (unless k? is close to 1), so that
insistence on hlgh relative accuracy in these moments would not be meaningful. For
example, if kK*=.5n= 20, we find that

Bi,n — B

k

=8.81x10™"* for N =60,

Osk=n-1
while for the same value of N,

VN —Vy
Yy

=176 x10°,

orazn-1
the maximum being attained for r = 36, where », =2.3825 - - - x 107>,

Example 4.5. Logarithmic singularity: dA (¢) =In (1/¢) dt on [0, 1].

The modified moments relative to (shifted) Legendre and Jacobi polynomials are
known explicitly for this measure, and even for more general measures such as
ar(t)=t*(1-)® In(1/1) dt, a, B >—1 (cf. [1],[7], [17], [21]). The modified Chebyshev
algorithm, based on Legendre moments, produces results which are essentially accurate
to machine precision; the largest error growth factor observed in the range 1=r =80
is2.82. The reason for this excellent performance is to be found in the well-conditioning
of the maps G, and H,, for which we show in Table 4.7 the bound (3.15) for cond G,
and cond H,, computed on the basis of (3.8).

TABL}_E 4.7
The condition of the maps G,, and H, in Example 4.5.

n cond G',. cond H,

5 5.903 (0) 7.835(0)
10 1.090 (1) 2.040 (1)
20 2.058 (1) 4.623 (1)
40 3.981 (1) 1.095 (2)
80 7.818 (1) 2.548 (2)
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The discretized Stieltjes procedure, in contrast, converges rather slowly, making it
difficult to obtain an accuracy much higher than 6 or 7 significant decimal digits.

Example 4.6. Half-range Hermite measure dA (¢) = e dr on [0, ©].

Here, the map H, is quite well-conditioned (cond H,, =2.28 X 10 for n = 80), in
contrast to the map G,, which becomes rapidly ill-conditioned if modified moments
relative to Hermite or Laguerre polynomials are used, which appear to be natural
choices. Interestingly, Laguerre polynomials give significantly worse conditionings
than Hermite polynomials, which is also borne out by a correspondingly faster error
growth in the coefficients ay, B« ; see Table 4.8. Accordingly, the modified Chebyshev
algorithm is not effective in this example. Acceptable results, with some effort, can
be had by the discretized Stieltjes procedure, which for n =40, e.g., produces
ap, B, k=0,1,-++,n—1, to about 12 correct decimal digits, requiring a discretization
parameter N = 560. Much better results are obtained if the interval [0, o] is decom-
posed as [0,3]U[3,6]U[6,9]U[9, 0] and the discretized Stieltjes procedure is
applied in the manner described at the end of § 2.2, using Fejér’s quadrature rule
(suitably transformed) in each subinterval. Again for n = 40, this will yield 15 correct
decimal digits with N =80. The method is similarly applicable to more general
measures dA(t)=e " dt on [0, ], p > 1.

. TABLE 4.8
The condition of G, in Example 4.6 for modified moments based on Hermite and
Laguerre polynomials.
Hermite moments Laguerre moments
n
cond é,, err. growth cond G" err. growth
2 1.554 (1) 5.713 (0) 7.270(1) 2.296 (1)
4 2.524 (3) 3.261(2) '1.349 (6) 1.045 (6)
6 6.739 (5) 6.300 (4) 1.297 (11) 9.663 (10)
8 2.206 (8) 2.386 (8) 3.127 (16) 3.112 (16)
10 8.026 (10) 2.696 (11) 5.547 (21) -

4.3. Polynomials orthogonal with respect to multiple component distribu-
tions. As already observed in § 2.2, the discretized Stieltjes procedure can also handle
measures dA(f) of a more general type, for example, measures on a set of disjoint
intervals or measures including a point spectrum. The discretized Stieltjes procedure
in these circumstances is often far superior to the modified Chebyshev algorithm,
which tends to become unstable. We illustrate this by a number of examples, of which
Example 4.11 may prove useful in the numerical solution of large systems of linear
algebraic equations by iterative methods [31].

Example 4.7. Piecewise constant weight function: dA (1) = w(t) dt, where w(f) =1
on[—1,-¢JULE 1] and w(t) =0 elsewhere, 0 <¢<1.

Equivalently, dA(¢) = [w1(f) + w,(¢)] dt, where w,, w, are the characteristic func-
tions of the intervals [—1, —¢] and [£, 1], respectively. The discretized Stieltjes pro-
cedure, as amended at the end of § 2.2, works extremely well, even for £ relatively
close to 1; the map H, remains well-conditioned. Some relevant data are given in
Table 4.9. (The discretized Stieltjes procedure in this example converges after one
iteration, if the discretization parameter N is chosen appropriately; cf. § 2.2).

The modified moments »,,r=0,1,---,2n—1, based on Legendre polynomials
are easily computed (exactly) by n-point Gauss-Legendre quadrature. The ensuing
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TABLE 4.9
Performance of the discretized Stieltjes procedure in Example 4.7.

£ n cond H,, err. growth 3 n cond H,, err. growth

3 5 7.683 (0) 8.233 (0) i 5 1.974 (1) 1.392 (1)
10 2.138(1) 9.956 (0) 10 5.520 (1) 1.392 (1)
20 5.230(1) 1.522 (1) 20 - 1.295(2) 1.800 (1)
40 1.248 (2) 1.937(1) 40 3.072(2) 1.803 (1)

5 5 1.060 (1) 1.390 (1) 9 5 6.585 (1) 2.463 (1)
10 2.979(1) 1.426 (1) 10 1.919 (2) 2.463 (1)
20 7.159(1) 1.426 (1) 20 4.469 (2) 3.894 (1)
40 1.709 (2) 1.598 (1) 40 1.073 (3) 5.773(1)

modified Chebyshev algorithm, however, becomes severely unstable, even for moder-
ately large £, on account of ill-conditioned maps G,. This is documented in Table
4.10. The same is true for the discretized modified Chebyshev algorithm.

TABLE 4.10
Performance of the modified Chebyshev algorithm in Example 4.7.
'3 n cond G, err. growth '3 n cond G, err. growth
.3 5 1.335(0) 2.118 (2) 7 ) 6.454 (1) 7.081 (2)
10 7.754 (0) 1.955 (2) 10 6.457 (4) 4.198 (5)
20 1.276 (3) 6.537 (3) 20 8.012 (11) 8.015(12)
40 1.169 (8) 7.077 (8) 40 3.748 (26) 9.648 (15)
5 5 4.830 (0) 1.914 2) 9 5 9.263 (3) 1.244 (4)
10 3.658(2) 1.640 (3) 10 1.171(9) 1.838 (9)
20 7.650 (6) 4.445 (7) 20 2.630 (21) 8.940 (16)
40 1.057 (16) 3.683 (14) 40 - -

By virtue of symmetry, the orthogonal polynomials {#,} of Example 4.7 can be
expressed in terms of polynomials orthogonal on a single interval. Indeed, letting
() =p; (£?), Tarea()=1p; (£?), r=0,1,2,--+, the polynomials p;(x) are
orthogonal on [¢?, 1] with respect to the weight function w™*(¢)=¢""2. If a, Br are
the recursion coefficients for {p; (x)}, then

BO=2(1—£)9 Bl=a(—;-a

B
B k=1,2,3, -
Bzi+1=ar —Bai

are those for the desired polynomials {, ()} (cf. [3, Chapt. I, §§ 8-9]). The discretized
Stieltjes procedure could also be used to generate ay, 8%, but would then require
an infinite process, rather than the finite one when applied directly to the weight
function w.

Example 4.8. Adding a point spectrum to the distribution dA (¢) of Example 4.7,
where £=.5. v

We make the distribution asymmetric if we add a point spectrum consisting of a
single point, say at #; =2, with jump w; = 1. The effect of this is a slight worsening of
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the condition of é,, and a profound impairment of cond H,. As a result, one now has
difficulty not only with the modified Chebyshev algorithm, but also with the discretized
Stieltjes procedure, although the latter “survives” a bit longer; see Table 4.11.

TABLE 4.11
Performance of the modified Chebyshev algorithm and the discretized Stieltjes procedure
in Example 4.8.

Error growth

n cond G, cond H, mod. Chebyshev discr. Stieltjes

4 1.612 (1) 2.021 (1) 6.621 (1) 2.898 (2)

8 1.174 (3) 4.088 (1) 1.146 (7) 4.627 (2)
12 9.217(4) 6.658 (1) 4,712 (11) 5.700 (2)
16 6.950 (6) 4.218 (4) 4.686 (17) 1.876 (4)
20 5.120 (8) 4.334(9) - 1.910 (9)
24 2.135(10) 2.833(14) - 4.456 (14)

Adding another point, #, = —2, with jump w, = 1, restores symmetry, but neither
significantly improves, nor worsens, the condition of H,.

We know of no stable method to compute orthogonal polynomials of the type
introduced in Example 4.8.

Example 4.9." Adding a constant to the Chebyshev weight function: dA () =
[1-¢*)""*+a]dt on[-1,1],a>0.

The discretized Stieltjes procedure applied directly to dA(f) = w(t) dt, w(t) =
(1=1*)""?+a converges extremely slowly, regardless of whether the discretization
is effected by Fejér’s or the Gauss—-Chebyshev quadrature rule. The reason for this
is easily seen if one writes w (¢) = (1 — ) "/’[1+a(1 - ¢*)"/*] and notes that the function
in brackets has infinite derivatives at t =+1. On the other hand, treating the two
additive components of w independently, as suggested at the end of § 2.2, and applying
the Gauss—Chebyshev quadrature rule to the first, and Fejér’s to the second, Stieltjes’s
procedure converges trivially. Results obtained for selected values of a in the range
0=a=1000, and 0=r =80, are accurate almost to machine precision, the largest
error growth factor being 9.219(1). The condition numbers cond H, are slowly
decreasing as a function of a, from the values for Chebyshev polynomials, when
a =0, to those for Legendre polynomials, when a - oo (cf. Table 3.1).

Equally accurate, but considerably faster (by a factor of more than 10 for n = 80)
is the modified Chebyshev algorithm, based on Chebyshev moments

vo=m+2a,

——1—J.1 T(t)d/\(t)-———g——- reven#0
vy T » r 2r—-2(r2_ 1)3 s
v, =0, r odd.

The maximum bound (3.15) for the condition of G, is found to be 6.748 (for
a =1000, n = 80), and the maximum error growth factor 1.146(1).

! This example was proposed to the author by Professor M. Golomb.
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The recursion coefficients B;, k >0, behave as expected, when a varies from 0
to co: There is a smooth (but not monotone) transition from the Chebyshev case to
the Legendre case.

Example 4.10. A weight distribution involving a modified Bessel function:
dA(2) = t"Ko(t) dt on [0, 0], u > —1.

Gauss—-Christoffel quadrature rules with this weight distribution are proposed by
Wong [30] to obtain asymptotic approximations to oscillatory integrals.

It is known that

R(t)+Io(t)ln(%), 0<t=1,

V2 e7'8(1), 1st=00,

Ko(t)=

where R and S are well-behaved smooth functions on their respective intervals and
I, is the ‘“regular” modified Bessel function. For R, § and Iy, high-accuracy rational
approximations are available; see Russon and Blair [24]. Using the “multiple
component’ version of the discretized Stieltjes procedure, as described at the end of
§ 2.2, we decompose the inner product (p, q) =[5 t“Ko(t)p(t)q(2) dt as follows,

Tl 1
(b= | PROPOGOIdr+ [ 110 () atpDg(0] dr
+e” ro e [(1+0)* 728 (1+)p(1+0q(1+0)] ds,
0

and discretize the first integral by an N-point Gauss—Jacobi quadrature rule with
parameters a =0, B = u, the second by an N-point Gauss—Christoffel quadrature rule
relative to the weight distribution t* In (1/¢) dt on [0, 1], and the last one by an N-point
Gauss—Laguerre quadrature rule. The first and last of these quadrature rules are easily
obtained from the respective Jacobi matrices (see § 1, Eq. (1.4), and the remarks
following this equation), while the second can be generated by the modified Chebyshev
algorithm, as indicated in Example 4.5.

In this way, the desired orthogonal polynomials (and Gauss—Christoffel quadrature
rules) can be generated accurately and in a stable manner. If u =0, or u =—1/2, for
example, one gets the recursion coefficients ay, Bx, 0=k =n, accurately to 15
significant decimal digits by taking N =100 for n =20, and N =160 for n =40. In
contrast, the discretized Stieltjes procedure based on the (transformed) Fejér
quadrature rule requires N =230 for u =0 and n =10, just to get six correct
decimal digits, and becomes prohibitively expensive for much larger values of »
or higher accuracy.

Example 4.11. Find a polynomial P,(t) of degree =n, with P,(1) =1, such that
fo PX(t)w(t) dt = min, where w(f)=¢ on [0, ¢, @(1)=1 on [£ 1], @(f)=0 on [n, 1],
and £ >0,0<¢é<n<1.

The solution is known to be the polynomial orthogonal on [0, 1] with respect to
the weight function (1—1fw(¢) (cf. [3, Chapt. I, § 7]). If m.(*) = m.(-; 1 —Dw(¢) dt)
denotes the monic orthogonal polynomial, then P, (t) = m,(t)/m,.(1), and the desired
minimum value is BoB: - * * B/ m=(1). The recursion coefficients ai, B« for {m,} are
obtained in a stable manner by the discretized Stieltjes procedure, which can be made
to converge after one iteration. Selected results (for the minimum value of
jo P2()w(¢) dt) in the case £ =1/3, n =2/3, are shown in Table 4.12.
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TABLE 4.12
Minimum values for the extremum problem of Example 4.11.
1 1
€ n min I Pﬁw dt € n min I Pﬁw dt
o o
.0 5 4.890 (-9) 6 5 7.984 (-7)
10 1.107 (-16) 10 1.551 (-12)
20 5.479 (-32) 20 5.733 (-24)
40 1.317 (-62) 40 7.653 (—47)
2 5 5.382 (-7) .8 5 8.758 (-7)
10 1.107 (-12) 10 1.707 (-12)
20 4.038 (—24) 20 6.308 (—24)
40 5.347 (-47) 40 8.420(-47)
4 5 6.950(-7) 1.0 5 9.386 (—-7)
10 1.364 (—12) 10 1.842 (-12)
20 5.030 (—24) 20 6.802 (—24)
-40 6.703 (—47) 40 9.075 (—47)
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To Germund Dahlquist on his 60th birthday
Abstract,

Constructive methods are developed for a class of polynomials orthogonal on two symmetric
intervals. An analysis is given of certain phenomena of instability in connection with nonlinear
recursions. Special cases arising in the study of the diatomic linear chain are worked out explicitly.
In one of these cases the associated n-point Gauss-Christoffel quadrature formula has equal weights
whenever # is even.

1. Introduction.

We consider constructive methods for orthogonal polynomials {n,(-;dA)}
corresponding to the measure dA(t) = w(t)dt on [ —1, 1}, where

2 2 2
WD o) - {W(z ~Ep( -y, te[~1,—¢ v[E1],
0 elsewhere, O0<é<lp> —-lLg> ~1,7eR

The theory of such polynomials has previously been studied in [1] (for y = 1),
also in the more general (asymmetric) case where the factor [t| is replaced by
ft+af. The special case y =1, p=qg= —% E=(1—-r)/(1+r) O<r<1)of
(1.1) arises in the study of the diatomic linear chain {13], where r = m/M has
the meaning of a mass ratio, m and M (m < M) being the masses of the two
kinds of particles alternating along the chain?). The object is to generate the
coefficients B, in the basic recurrence relation

(&) =0, me(t) =1,

1.2
( ) nk+1(t) = tnk(t)-ﬂknk—l(t)s k &S 09 la 2"-"

'y Research supported in part by the National Science Foundation under grant MCS-7927158A1.
%) In reference {13] the basic interval is {0,1], rather than [—1,1] as in (1.1).
Received February 1984. Revised May 1984.
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for the desired orthogonal polynomials. J. C. Wheeler in [13] employs the
modified Chebyshev algorithm (cf. [6,§2.4]) for this purpose, using a rather
ingenious choice of modified moments that induces numerical stability. Here
we wish to point out (Sections 2-4) that the recursion coefficients of interest,
even in the more general case indicated in (1.1), can be generated directly by
simple nonlinear recursions. Care must be exercised, however, in the selection of
these recursions to avoid numerical instability. In the special cases y = +1,
p = q = +3, further manipulation of these recursions yields the coefficients of
the basic recurrence relation in closed form (Section 5). Finally, in Section 6, we
observe that the Gauss-Christoffel quadrature formula associated with the
weight function (1.1) for y = 1, p = ¢ = —} has equal weights whenever their
number is even, and that this is the only symmetnc Gauss—Chr;stoffeE quadrature
formula with that property.

The author wishes to thank Professor J. C. Wheeler for letting him see a
preprint of his paper [13].

2. Generation of the recurrence relation.

The weight function @ in (1.1) is even and its two support intervals are
symmetric with respect to the origin. The associated orthogonal polynomials 7
are therefore even or odd depending on the parity of r, and they can be
represented in terms of polynomials orthogonal on a single interval.

Letting

(2’1) 7‘2r(3} = p:(tz)’ 3{214-1({} = IP; {t2)9 ro== G‘) 19 29' L1

the polynomials pZ(x) are orthogonal on [£2, 1] with respect to the weight
function’

(22) 0f(x) = o(x?)xFV2 = xOFI2(x - E2y(1 —x)4, £ <x <.

If we denote by &, B the recursion coefficients for the {monic) polynomials

{p (x)},
(2.3) pii(x)=0, py(x)=1,

P 1(x) = (x—of )ps ()= B pi_i(x), k=0,12,...,

then the desired (monic) polynomials, as is well-known (cf. [2, Ch. I, §§8-9]),
have the recursion coefficients )

By =ag
(2-4+) ﬁ2k = ﬁ:/ﬁlk—l}
k=1,23,...
Baxer =0 =B
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Likewise, in terms of «f and the recursion coefficients «,, B, for the
polynomials {p,” (x)}, we have

By =ag
(247) Bax =al{—lmﬁ2k-1} k=123,...
Baisr = Bi /B
On the other hand, if &, A are the recursion coefficients of the
orthogonal polynomials with respect to the weight function (2.2) transformed
to the standard interval [ —1, 1], i.e,, with respect to

1 2\ (¥ 1)/2
(2.5) h*(1) = (t+ 1—“_%2-) (L+0P(—1), —1<t<l,
then
2.6%) af =31-ENE +301+8), k=012,

BE = 31— )AL, k=1,23,...

The problem thus boils down to computing the recursion coefficients d&;, B for
the weight function @*(¢) in (2.5). Once obtained, they yield «f and BE by
means of (2.6%) and thus B, by means of (2.4%). Either sign may be chosen,
the choice depending on convenience or numerical stability.

Before discussing numerical stability, we prove

THEOREM 2.1.  There holds

27 lim o = $(1-¢)%  lim Byyy = 2(1+0)%

k- k— o0

Proor. The weight function (2.5) belongs to the Szegd class, i.e., it satisfies the
conditions in [12, Theorem 12.1.2]. From [12, Eqgs. (12.7.4), (12.7.6)] it then
follows that

(2.8) lim ¢ =0, lim ff =4
k- o0 k=
regardless of the sign in (2.5). Consequently, by (2.6%),
(29) lim af =3(1+&),  lim B = G(1-E)P.

k= o k— o

Now denote by 7, 7%, and $* the leading coefficient of the orthonormal
polynomial of degree r relative to the weight functionwon [~ 1, —&] U [& 1], 0*
on [£%,1], and &* on [ —1, 1], respectively. By (2.1) one has

(2‘10) Ya2r 'Yr-‘., y2r+l = yr_5
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and an elementary computation yields

1
211)  @F) 7= J [pF (x)Pw* (x)dx = (1~ 20T tizrarterari(ry=2,
qz

By a theorem of Szegd [12, Eq. (12.7.2)],
(2.12) 55~ 29t asr - oo,

where

1

(2.13) E = ﬁ'lfzexp{—(Zn)“l J

-1

lnd’)i(t)(lwtz)_”zdt}.

Now B, = y2_,/y%, r Z 1, so that, using (2.10), (2.11),

Ba = (Vzk—x/')’zk)z = (Vk_—lf%f)z = %(1—52)(?3;—1/331f)2=

hence, by (2.12),

(2.14) Pa ~$1=EG7 /7P, k> oo,
Similarly,
(2.15) Bary ~3A=E)G* /7Y, k- .

This shows that both limits in (2.7) exist. Letting k — o0 in (2.4%), and
noting (2.9), one sees, in fact, that these limits must be the roots of the quadratic
equation B2 ~4(1 +&E2)B+ (H(1—E%))? = 0, i.e., the quantities on the right in (2.7).
It remains to identify roots with limits.

Using (2.13) in (2.14) gives

P/ =exp {(2::)*1 jl ln[dﬁ(z)/c;)-(z)}(l_tz)—md,}
-1

1
=exp{w(2n)"f tn(t+g)(i—r2)‘“2dt}, o= (1+&)/(1-E%).

-1
But
1

Jl In(t+@)(1—1%)™"2dr = f In(@* —e*)(1—¢%)~ 4t

-1 0

1
=nlng+ J In(1—g~2e2)(1 —1¢2)"124s
0

= nln g+nIn[3(1+(1-¢ %)) = xin[}e+(*— 1))},

104



ON SOME ORTHOGONAL POLYNOMIALS OF INTEREST . . . 477

where Gradshteyn & Ryzhik [9, Eq. (4.295.29)] has been used for the last
integral. There follows

(G/37P =2/(e+(@*—1)'"?) =2(1-8)/(1 +2),

which, together with (2.14), yields B,, ~ (1 —¢)?, as claimed. ]

We remark that Theorem 2.1 and its proof are valid for any symmetric
weight function w(t) supported on [—1, —&] U[& 1], provided the weight
function

(2.16) ®*(t) = [t+ (1 +E)/(1 =] F 203 -2 +3(1 +EH)]V2), —1 <t < |,

belongs to the Szegd class.

A heuristic argument now shows that the limits in (2.7) represent, asymp-
totically, an “attracting” stationary point of (2.4"). Indeed, replacing o, B
in (2.4%) by their limits values (2.9), one finds that a small relative perturbation &
in the limit value of fB,,_, produces in B,,., a relative perturbation
((1 =&)Y/ (1+&))%e (to first order in &), the same being true for perturbations in
B, The recursion (2.4™) thus is “attracting” near the stationary point, hence
numerically stable, the more so the closer ¢ is to 1. Just the opposite holds in
case of (2.47), where relative perturbations are being magnified by the factor
(14&)/(1=¢&))* and the stationary point (2.7) of {247) is “repelling”, the
stronger so the closer & is to 1. Interchanging the limits, on the other hand,
produces an attracting fixed point of (2.47). In the presence of rounding errors,
the recursion (2.47) is therefore not likely to converge to the correct limits, but
rather to limits which are flipped over. Thus, (2.47) must be expected to become
numerically unstable.

The choice of the sign in (2.5), therefore, may well be dictated by
considerations of numerical stability.

3. The case of general y, p and q.

For arbitrary y, the weight function in (2.5) is a general Jacobi weight
(with parameters « = ¢, § = p) multiplied by a factor which has a singularity
(branch point or pole) or a zero at —(1+¢&2)/(1—¢2) outside the interval
[—1,1]. In the case of a branch point, the associated orthogonal polynomials
(ie., the coefficients a7, ,3,;—*) may be obtained by a discretized Stieltjes
procedure (cf. [6, §2.2]), using a discretization of the inner product based
on the Gauss-Jacobi quadrature rule (with parameters a = g, § = p). This should
work well if the branch point is far away from [—1,1], ie, if ¢ is close to 1.
In this case, it is also possible, and perhaps more efficient, to use the methods in
[10, pp. 451-452], the multiplicative factor in question being well approximated
by a polynomial. Otherwise, more refined quadrature rules must be employed
that take proper account of the branch point close to [—1,1]. If (y F1)/2is a
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positive integer, one can make repeated use of the algorithm in [5, §4.1] or the
procedures in [8], all of which are reputed to be stable. In the case of a pole,
ie. if (yF1)/2 is a negative integer, repeated use of the algorithm in [5, §5.1] or
the procedure in [4, §4] is suggested according as the pole is close or farther
away from [—1,1], respectively. Alternatively, one may develop special
quadrature rules (with real nodes) which take the pole into account and use
them in conjunction with the discretized Stieltjes procedure. The simplest case,
of course, is y = %1, in which case 47, % are simply the recursion coefficients
of the appropriate Jacobi polynomials. This is considered in more detail in
Sections 4 and .

4. The case y = 1 and general p, q.

Consider first y = 1. In this case it is convenient to use the upper sign in
(2.5), that is @™ (t), which clearly is a Jacobi weight function on the
interval [ —1,1]. Therefore, & = of, § = pi are the recursion coefficients of
the (monic) Jacobi polynomials (with parameters « = ¢, f§ = p) on the standard
interval [ —1,1]. Combining (2.6*) and (2.4"), and defining B, = |1 w(t)dt, we
obtain

Bo = (1—-E1P** 10 (p+ DI (g+ 1)/T(p+q+2),
(4.1) By = 31— EMod +4(1+ &) (y=1)
.321: = (%(1—‘i.zz))zngir’(:g:m--1w } k=123
Bairr = 31— +3(1+ &) — By B

By symmetry, of course, o, = 0 for all kK 2 0. Numerical evidence indicates that
the recursion in (4.1) is quite stable for an extended range of the Jacobi
parameters o = ¢, f = p and for all £ in 0 < ¢ < 1, even very close to the end
points. We have in fact the case of an attracting fixed point; cf. Theorem 2.1
and the discussion following it,

If y= —1, it would seem most convenient to take the lower sign in (2.5),
in which case again &, = «/, fi = B}, and (2.6”) may be combined with (2.47)
to give

Bo = GU1—E)PHF(— 1+ E3)/(1—E2)),
B, =ag p=—1)

4D = O O]y
Igzmx =(%(1“fz))zﬁf/ﬁ2k e
where
@4.3) F(z) = Jl (1 4+t)P(1 - 1)t —z)" dt
-1
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is the Stieltjes transform of the Jacobi measure. Note that o in (4.2) is given by

1
j x-x " Hx = E2P(1 —x)tdx

@4)  af =% _ 2 =-P)r(p+ I (g+1)
. s _ Fla+1)
jx-l(x__éz).,(l_x)qu F(p+q+2F(~(1+&)/(1-&)
€2

To compute F(z) for z¢[—1,1] one can use the recursive algorithm in
[4,§5], which works well unless z is very close to [—1,1], ie, & is very
small.

Unfortunately, the recursion (4.2), unlike (4.1), exhibits the kind of
instability discussed at the end of Section 2. It initially produces relatively
accurate results (especially if £ is small), but then deteriorates and ends up
converging to the limits (2.7) flipped over. During the switchover, some of the f’s
even become negative! The limits (2.7) are now a repelling fixed point of (4.2).

The problem can be avoided by choosing the upper sign in (2.5) and by
computing the coefficients &, ;7 by the more elaborate methods discussed in
Section 3.

5. Thecasesy = +1and p=gq = %3}

51. Thecasep=¢q= —%

Consider first y = 1, which is the case of interest in the diatomic linear chain
model [13]. Here, of =0 (k2 0), and B{ =4, =% (k =2), so that (4.1)
becomes

fo=m

B =31+

Br =4(1-8)"/(1+¢&%)
(5.1) By = §(1+6&%+&4)/(1+ &%)

Bau = ("3{(1 —52))2/1821;—1

k=2734,...,
52k+1 x'%ﬂ“*‘&)“‘ﬁu }

where the last relation (for f,,.,) also holds when k = 1. We first consider
the even-numbered coefficients.
Letting

(5.2) a=FH1-E)7% b=31+&),

we combine the last two relations in (5.1) to obtain f,, = a/(b—P,._,),
k = 2,3,... This yields the finite continued fraction

(53) —By= o i, k22
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with constant partial numerators —a and constant partial denominators b
(except for the last ones). Denoting by A,, B, the nth numerator and denomi-
nator, respectively, of (5.3), we have from the elementary theory of continued
fractions,

Ao EO,A,.I = I;Boz I,B_l 20,

(5.4) g: _ gg::_s;:j} =12 k-1,
Ay = Ay —PrAy 2 By =B, — BB,

and

(5.5) —Box = Ai/B;. k=2734,...

Since the recursion in (5.4) for n = 1,2,...,k—1 represents a linear difference
equation with constant coefficients, it can be solved explicitly by well-known
methods. An elementary (but somewhat lengthy) computation then yields with

n={1-/(1+2)
(56)  Bau=31-0PA+7*72)/A+9*),  k=123.. (=1

For the odd-numbered coefficients one finds quite analogously,

By =1(1+&%),
(5.7) (y=1)
Baer = AU+ 2)(L+9),  k=123,...

Note that (5.6) and (5.7) confirm the limit relations established in Theorem
2.1. In the application considered in [13], where & = (1—r)/(1+47r), they yield
lim,, B = (r/(1+7)* and lim,_ Bz, = (1+r)7% in agreement®) with
what was conjectured in [13, Eq. (25)]. The relative deviations from the limits,
moreover, are given by

~2kin{1/r) —{2k+ DIn(1/n)
b 3

ey~ ("2 =1)e a1 ~ — ("1 =1)e k — o0,
so that the limits are attained exponentially fast, with a decay rate In{1/r) which
becomes larger as r deviates away from unity. This, too, has been conjectured
in [13] from numerical evidence.

Proceeding now to the case y = —1 (with p and q still being —% each), we
first note that

F(—(1+8)/1-8) = n(1-8*)/2¢,

3} To transform to the interval [0, 1] considered in reference [13], the coefficients f,, k = 1, must
be multiplied by 1/4 and o, set equal to 3 forall k Z 0.
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s0 that (4.2) and (4.4) become

Bo =7/
51 :f
By =417

©5) By = 41+

B = 31+E3)~ By

k=2734,..
ﬁzml ’*’(i’(l“fz))zfﬁzk } T

A computation very similar to the one in the case y = 1 then yields the
remarkably simple, but in the light of the discussion at the end of Section 2
understandable results

ﬁZ = %{1 _5)2’ BZk = é{i _5)2’ k -»2— 29

59
69 B, =¢ Baprr =31 +8P, k21,

(y=~-1.

1

52 Thecasep=g=3

Following the same course of computation as outlined in Subsection 5.1,
but now with f{ =4 for all k 2 1 and F(—(1+&)/(1-&)) = n(1 -&)/(1 + &),
one finds, when y = 1, and with = (1 —&}/(1 + ) as before,

Bax = $(1 =8P (1 =)L —p**2), k=1,23,..., -
(5.10) - %(1+6)2(1Mn2k+4)/(1__,12}:{-2)’ k=0,1,2,.. ('Y =1).

Similarly, when y = —1,

(GA1) Br=4(1-8P, k21, Bu., =201+ k20 (y=-1)

The orthogonal polynomials associated with (5.11) are used in [13] to define
“modified moments”,

One could, of course, continue and treat in the same manner further special
cases, for example p = 4, g = —3, but we refrain from doing this here.

6. Equally weighted Gaussian quadrature formulae.

By a classical result, due to Posse [11], the Chebyshev measure di(r) =
= (1—1*)"124¢ on [ 1, 1] is the only measure, up to a linear transformation,
for which the n-point Gauss-Christoffel formula

6.1) f fORO = T ADFE RS, RyPay) =0,
R v=1
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has equal weights
(62) A = A = e =

for each n = 1,2,3,.... We point out, here, that other equally weighted Gauss-
Christoffel quadrature formulae exist if the equicoefficient property (6.2) is
required to hold only for even values of s In fact, we determine all such
quadrature formulae which are symmetric, i¢., in which the support of dA(t) is
symmetric with respect to the origin and dAi(t) = w(t)dt with w(t) an even non-
negative function.

“Let f(t) = p(t*), where pe P, _, is an arbitrary polynomial of degree < n—1.Then
(6.1) holds with zero error, and by symmetry, assuming ¥ > t4§? > -+ > ™,
and n even,

n/2
J p(Po()dt = Y, AVp([r™]?),  peP,_,.
R, v=1

Substituting > = x, and letting m = n/2, this gives

€ L p()o(x )" 2dx =2y A¢™p([<¥™]?), peP,,_m=1,23 ..

v=1

If (6.2) holds for n=2m, m=1,2,3,..., then Posse’s result implies that
w(x'*)x~2dx is a Chebyshev measure on some finite interval on R . Normalizing
this interval to have the right end point at 1, the left end point may be any
nonnegative number less than 1, say &%, 0 < & < 1. Up to a constant factor,
therefore,

o(x'x"1? = (x—E2)" V2 {1 —x)"12, FPax<l,
and thus

_ ‘tl(tz ___52)—-112(1 _tZ)—-l/Z’ te[— la _61 W [59 I]s
64 o= {0 elsewhere.

This is precisely the weight function (1.1) withy =land p=q = -4 If £ =0,
it reduces of course to the Chebyshev weight function.
The quadrature formula in question is

(6.5) J SO =&)L —e7)~ V2de = 4™ ilf(f‘v'")*i"Rn(f),

[-L-guls1]
n even,
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where

(6.6)

Co

1-& 2v—1 1472
n) .
TV [ 3 s " 7+ 3

v=12,...,n/2

rrg'i-)v+1 = —T(v"), A" = /n

In terms of Chebyshev quadrature, we can say that the measure w(t)dt in (6.4)
has property T® and its T-sequence is T = {2,4,6,8,...} (cf. [3,§5]). Other
measures are known having the same T7-sequence [7], but the associated
Chebyshev quadrature rules, of course, cannot be Gaussian at the same time.
The weight function (6.4), however, is contained as a special case (a = 0) in
[7,Eq. 3.1)].
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Summary. Numerical methods are considered for generating polynomials or-
thogonal with respect to an inner product of Sobolev type, i.e., one that involves
derivatives up to some given order, each having its own (positive) measure as-
sociated with it. The principal objective is to compute the coefficients in the
increasing-order recurrence relation that these polynomials satisfy by virtue of
them forming a sequence of monic polynomials with degrees increasing by 1
from one member to the next. As a by-product of this computation, one gains
access to the zeros of these polynomials via eigenvalues of an upper Hessenberg
matrix formed by the coefficients generated. Two methods are developed: One
is based on the modified moments of the constitutive measures and generalizes
what for ordinary orthogonal polynomials is known as “modified Chebyshev al-
gorithm”. The other — a generalization of “Stieltjes’s procedure” — expresses
the desired coefficients in terms of a Sobolev inner product involving the orthogo-
nal polynomials in question, whereby the inner product is evaluated by numerical
quadrature and the polynomials involved are computed by means of the recur-
rence relation already generated up to that point. The numerical characteristics
of these methods are illustrated in the case of Sobolev orthogonal polynomials
of old as well as new types. Based on extensive numerical experimentation, a
number of conjectures are formulated with regard to the location and interlacing
properties of the respective zeros.

Mathematics Subject Classification (1991): 65D15, 42C05

* This work was supported, in part, by the National Science Foundation under grants DMS-
9023403 and DMS-9305430

113



160 W. Gautschi and M. Zhang

1. Introduction

Letd)\,,o0=0,1,...,s, be positive measures on the real line R having bounded
or unbounded support. We consider the Sobolev space

Hs(R)={f§ Z/V(J)]Zd)\a < OO}
o=0 YR

of functions f whose successive derivatives of order ¢ < s are square integrable
against the respective measures d \,. We assume that these measures are such
that the space of polynomials P is a subspace of H (R). We equip P with the
inner product

P, Pu, = /p(X)q(X)dAo(X) +/p'(X)q'(X)d>\1(X)+ e
(1.1) R R

+Ap(s)(X)q(S)(x)d)\s(x)a P,q G]P’,

and associated norm HpH%I: (p,p)n,. To stay away from unessential compli-
cations, we assume that d\o has infinitely many points of increase. The inner
product (1.1) is then positive definite on P, and therefore defines a unique se-
quence of (monic) orthogonal polynomials g, 7, m2, ... :

(i, =0, k#0, k=012,
(1.2)

me(x) = x* + lower-degree terms, k =0,1,2,... .

We call them orthogonal polynomials of Sobolev type. Like any sequence of
monic polynomials whose degrees increase by 1 from one member to the next,
they must satisfy a recurrence relation of the form

k
(1.3) Tt (1) =xme0) = > BEmei(x),  k=0,1,2,... .
j=0

One of our objects in this paper is to develop, and discuss, computational methods
for generating the recursion coefficients 5}‘ . These coefficients are important not
only for the recursive computation of the desired orthogonal polynomials by
means of (1.3), but also for computing the zeros of 7, as eigenvalues of an n X n
upper Hessenberg matrix. Indeed, if
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g B B B B

L gy B - B3 B

0 1 3 i
(1.4) B, =

o 0 o0 - pgp* pr!

o 0 0 - 1 A
and
(1.5) T (x) = [mo(x), T (x), ..., mu_1(x)],
then the zeros &1, &, . . ., &, of m, are precisely the eigenvalues of B,,, with 77 (¢,)
being a left eigenvector belonging to the eigenvalue &,,. This follows readily from
the relations (1.3) for k =0,1,...,n — 1 if we write them in matrix form as

x7 (x) = 1 (X)B, + m,(X)e), el =[0,0,...,1] € R".

Putting x = £, and noting that 7,,(£,) = O then yields

(1.6) &mN(E) =7 (E)B,,

which proves our assertion, since 71(£,) is a nonzero vector, its first component
being mo(£,) = 1.

Classical orthogonal polynomials (on the line) correspond to the case s =0
and have an inner product (1.1) satisfying

(1.7) P, Qu, = P, xq)u, (s =0).

As a consequence, all coefficients B}‘ with j > 1 vanish, i.e., (1.3) is a three-term
recurrence relation. In contrast, when s > 0, then (1.7) no longer holds, and we
must expect a recurrence relation of the extended type (1.3).

Almost all cases studied in the literature refer to s = 1; prominent among
these is the subcase in which

(1.8) ddo(x) =dA(x), dA(x)=~dAXx), >0,

where d ) is a positive measure and -y a positive constant. The original motivation
for considering orthogonal polynomials of this and similar types comes from
the least squares approximation problem. Here, e.g., a given function f and its
derivative f’ are to be approximated simultaneously by a polynomial © = & of
degree n minimizing

1.9 v —flf= / [7(x) — FO)PdAX) + / [/ (x) — £/ () Pd A (x)
R R
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over all m € P,. Expanding 7 in the respective Sobolev-type orthogonal polyno-
mials then yields, in the usual way, the Fourier approximation 7 of f and f’. The
first work known to us, discussing this type of approximation, is the 1947 paper
by D.C. Lewis [21], where the main emphasis, however, is on the remainder term
of the approximation (expressed by means of the Peano kernel, as it were). Least
squares approximation is also the motivation behind the work of P. Althammer
[2], who was the first to initiate a detailed study of the associated orthogonal
polynomials in the “Legendre case” d\(x) = dx on [-1,1] of (1.8). Rather re-
markably, he has shown, among other things, that, as in the classical case, each
7, has n distinct zeros located in the interior of [-1,1], for all v > 0. This is
not true, however, for arbitrary positive measures d A, as is shown in [2] by a
counterexample; see also [34] and Sect. 3.2 below. The same polynomials, but
normalized to the interval [0,1], have also been studied by W. Grobner [14], who
uses a variational approach and derives an interesting version of Rodrigues’s for-
mula for m,. Alternative representations in terms of Legendre polynomials, and
simplified proofs, are given by F.W. Schafke [36]. P. Lesky [20] generalizes
Grobner’s work to inner products (1.1) with s > 1 and d A\, (x) = v,dx, 7, > 0.
The example (1.8) with dA(x) = e *dx on [0,00] was dealt with by J. Brenner in
his thesis [6] (see also [7]). This again is an example where all zeros of 7, can be
shown (by an argument similar to Althammer’s) to be simple and positive. When
dX\(x) = e=*"dx on [—o0, o], the polynomials 7, are just the (monic) Hermite
polynomials [6, Satz 2.3.1]. Some of the results of Althammer and Grobner are
generalized to Gegenbauer measures dA(x) = (1 — x%)*~ 2dx in [27]. The exam-
ple d\o(x) = dx on [-1, 3] and d A\ (x) = yx[—1,17(x)dx +dx on [-1, 3], discussed
in [34] and generalizing an example of Althammer, is insofar of interest as for
~ sufficiently large, 7, has at most two real zeros.

The application to least squares approximation on the interval [-1,1] in the
case d A(x) = dx of (1.8) is further studied in A. Iserles et al. [15], where explicit
formulae are derived not only for the respective polynomials 7,, but also for
the Fourier coefficients. An example is given showing the advantage of Sobolev
projections (v > 0) over ordinary Legendre projections (v = 0). In [16], the same
authors study least squares approximation for the more general inner product (1.1)
(with s = 1) with measures d\g = dp, d\| = ydvy, where (dp, di)) forms a
“coherent” pair — in a sense they define — and it is found, surprisingly, under
proper normalizations, that all expansion coefficients except the last of 7, in terms
of the classical polynomials {m;( - ;d¢)} are independent of n and indeed (as
functions of ~) themselves orthogonal with respect to some (in general unknown)
measure. They also develop an efficient algorithm for computing the expansion
coefficients, which requires nothing beyond the calculation of classical expansion
coefficients in the polynomials {7 ( - ;dp)} and {m( - ;dv)}, provided again
that dy is coherent with dv. The zeros of the respective Sobolev orthogonal
polynomials are studied by Meijer in [33].

Subsequent to work of H.L. Krall, A.M. Krall, L.L. Littlejohn, T.H. Koor-
winder, T.S. Chihara and others, who inserted mass points of variable strengths
at the endpoints of the support interval of classical measures, there has recently
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been a flurry of activity regarding orthogonal polynomials of Sobolev type for an
inner product (1.1) with s = 1 in which d Ao = d \§* +d )\8 is a measure containing
an absolutely continuous component d\i¢ and a discrete component d \J, while
d\; = d)\{ is a discrete measure. The emphasis is generally on analytic and
algebraic properties, and representations of the respective polynomials, but there
are also many results on zeros. Thus, H. Bavinck and H.G. Meijer [3, 4] consider
the case where d\§ is a Gegenbauer measure on [-1,1] and d M d )\‘11 are both
supported at the endpoints 41, each with equal weights. M. Alfaro et al. [1],
F. Marcellan, T.E. Pérez and M.A. Pinar [26], and T.E. Pérez and M.A. Pinar
[35] take dAi to be an arbitrary absolutely continuous measure and d\J, d A
both one-point measures supported at the same point inside, on the boundary,
or outside the support of d . The special case of d A" being the generalized
Laguerre measure and d\J, d\{ supported (with different weights) at the origin
is studied recently by R. Koekoek and H.G. Meijer [19] and R. Koekoek [18]
and generalized to arbitrary measures d \j° on [0, oo] by H.G. Meijer [31]. For
the analogous case with s + 1 discrete measures d )\8, d )\‘11, coydX (s > 1), see
[17]. Higher-order derivatives are also considered in the papers [30] and [23],
where dA\| = --- = d);_1 = 0, and d ), is supported at a single point ¢, viz.
¢ = 0 in the former, and c arbitrary real in the latter. See also [8]. The case of
an arbitrary measure d\o on R and d\{ supported on an arbitrary point ¢ € R
is studied in [32] and an analogous case involving linear functionals in [5]. For
measures d\3° in the Nevai class and d\{ supported at a single point, and for
more general Sobolev-type inner products, an asymptotic comparison between
the Sobolev-type orthogonal polynomials and those orthogonal with respect to
d Xy is made in [39, Ch.7], [24] and [22]. Many of the examples mentioned in
this paragraph are special cases of Sobolev orthogonal polynomials relative to a
pair of “semiclassical” measures d A9, d\; studied in [28].

For a recent survey of Sobolev-type orthogonal polynomials we refer to [25].

In this paper, we first develop, in Sect.2, a computational algorithm for
generating the recursion coefficients ,6’}‘ in (1.3), which extends to Sobolev-type
orthogonal polynomials the “modified Chebyshev algorithm” (cf. [11, Sect. 2.4])
for ordinary orthogonal polynomials. Numerical experience with this algorithm,
and computational results, are reported in Sect. 3. Particular attention is given
to the zeros of the respective Sobolev-type orthogonal polynomials, for which
a number of conjectures are formulated in the case of Jacobi measures (with
and without discrete components) and generalized Laguerre measures. Finally, in
Sect. 4, we describe a version of “Stieltjes’s algorithm” appropriate for orthogonal
polynomials of Sobolev type.

2. The modified Chebyshev algorithm

We now consider the general inner product (1.1) with s > 1,

2.1) IRVEDYS / PP x)dNx), p,qeP.
i=0 /R
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Our objective, in this section, similarly as in [11, Sects. 2.3, 2.4], is to use mo-
ment information about the measures d \g,d A1, ...,d )\ to generate the desired
recursion coefficients ﬁ}‘ in (1.3). Since ordinary moments are expected to yield
ill-conditioning, we adopt modified moments, and for simplicity define them rel-
ative to a single sequence of polynomials {py}, i.e.,

(2.2) V,Ei)z/pk(x)d)\i(x), k=0,1,2,...; i=0,1,...,s.
R

As in [11], we assume that the polynomials p; satisfy a three-term recurrence
relation

pk+l(x):(x_ak)pk(x)_bkpkfl(xx k:()uluz?"'u
(2.3)

PO(X)= 17 Pfl(x)=0;

with known coefficients ay, by. The case of ordinary moments is included herein,
with the choice a; = by = 0. Normally, however, the a; are real, not necessarily
zero, and b, > 0.

In what follows, we shall use the notation

2.4) P, @ax, = / pE)q)dNi(x), i=0,1,...,s,
R
so that
2.5) @D =Y PV,q")an,
i=0

Definition 2.1. For k,/=0,1,2,... and u, v =0,1,...,s, we define
(2.6) Ok,0 = (T, Po)H,

(27) Mgf’g?l) = (7T](<u)7pév))d>\,-7 [ = 17 27 s S,

where {7 } is the sequence of orthogonal polynomials of Sobolev type associated
with the inner product (2.1), and {p;} are the polynomials (2.3) defining the
modified moments (2.2). We will need the quantities (2.7) only for u < i and
v < i (cf. (2.8)).

The following propositions are formulated with an algorithm in mind that gen-
erates the recursion coefficients ﬁ}‘ in(1.3)fork=0,1,....,n—1;j=0,1,... k,
hence the desired orthogonal polynomials up to degree n. This will generalize
what we have called the Modified Chebyshev Algorithm in [11, Sect.2.4].
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Proposition 2.2. We have, for k =1,2,.... n—1; 0=k, k+1,....2n —k — 1,

1,i) (i,i
Ok = Ok—1,041 +QeOk—1,0 +bgoy 10— 1+E l(/ikflgl Mk,lgl)

(2.8) k—1 =

k—1
—E ﬁ] Ok—1—j,0-
Jj=0

Proof. By (2.6), (2.5) and (1.3) (with k replaced by k — 1), we have

N —
MG k—1
Ok, = (T, DOH, = XTk—1,P0)ax, + Z (e, pgdan, — Z/Bj Ok—1—j,0-
i=1 =

We write the first term on the right as (mx_1,xp¢)ay,, and for the second term
note that
(cme ), pfax, = gy +im{ 5 p M,

(@ L xpDan, + i@ 0 pas,

1 —1
@ @) Dax, + i D — ).

Now we use (2.3) and its differentiated version in the form

Xp¢ = Pest + agpe +bepe_1, (xpe)(l) = PE?I + azl??)

+ bgp(l)
to obtain (2.8). O

In all subsequent propositions, empty sums are assumed to be zero by defi-
nition.

Proposition 2.3. We have, fori =1,2,...,s;u=0,1,...,i,v=0,1,...,i;k
1,2,....n—1, 0=k, k+1,...,2n —k — 2,

(w,v) _  (u,v) (u,v) (u,v)
e VSRR X T S W J S e

2.9) k1
(u—1,v) (u,v— k—1 (u V)
YUty 0 — Mk—lez Z B i s

where the fourth and fifth terms on the right are zero if u =0 resp. v = 0.

Proof. By definition (2.7) and (1.3), we have

k—1
K1
Miu;l) =@, pan, = (m— )™, pSan — Zﬁj (), _j»Pe N, -

By the product rule of differentiation,
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()™, piax, = G| +um D, pian,

= (XF,((",)l,ng))dA +M(7Tk,1 ,P;))w\,

We write the first term on the right as (Wk_l,xpz x> add and subtract Upevfl),

and note that

xpg” +up P = (pp) ™.
SiIlCCT('l(() .—01fu > k — 1 —j, the last terms with j > k — 1 — u in the
above summatlon may be deleted, and we obtain

) = (@ o) an, + w3 i,

k—1—u

—1 k—1
—o(m? 1, Py Max, — Z BN ps an,-

Continuing as in the proof of Proposition 2.2 gives (2.9). O
Proposition 2.4. We have

00,1
(2.100) ) = +ap,
00,0
and, fork =1,2,...,n — 1,
ﬁg — Okl + _ Ck—1k ,
Ok k Ok—1,k—1
k—1 o
. . C L i Ek
B = T g Ut p T E Bt
k—j 9. 9. 9. Oj—1,j—1 - ey,
(2.10) b
j=k—1k=2...,1 (if k >2),
S
: _ 0k
ﬂk — 00,k+1 +ag 00,k +bk 00,k—1 _§ :ﬁf )
k 00.0 70,0 70,0
’ ’ ’ = Ut
Proof. Using (7Tj,7'(j)}-[x = (Wjapj)H,. =0j,j, W have
=l
k
(2.11) pk=7rk+§ i, k=0,1,2,... .
A
Combining this with (2.3) and Definition 2.1, we obtain
gjke1 = (T, PrsH, =(7Tj,xpk)H —ar0jx — broj k-1
_ Ek
= T, X | T+ g —aioj i — broj

UZ Z
H.Y

00,k
(7}, X )m, + Za (7, XT)H, — ax0j x — bxoj -1
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Since, by (1.3),

T, X Tk )H, .
(2.12) @ﬂ=(1’ ) <k,
(7, ),
we get
1
k 2.k .
0j k+1 = By_jojj + Z - (mj, xm)m, — arojx — broj 1, j <k.
=0 76

Letting j = k = 0 immediately gives (2.10), since oo = 0. If j =0 < k, then
(m0, XT0)H, = ﬁf 00,0 by (2.12), and the last relation in (2.10) follows. We may
thus assume 1 < j < k. Then, since (7;,xm¢)g, = 0 if £+ 1 < j, we obtain by
using (7Tj,x7Tj_1)HJ = (7'('/,71'/')[-[»V =0j and (2.12) that

k—1
_ Ak Oj—1k Tok o
O ket = Bi_;0j + ojj + E B0 — @k — beoj k.
Oj—1j—1 = ot

Dividing both sides of the equation by o; ; and solving for B,’f_j, we get

k—1
K _ Ojk+1 Oj k Oj k—1 Oj—1,k ¢ Otk
ﬂkfj - + ag +bk - — E 0—j s

Tj.j Oj Tj.j Oj—1,j—1 = O

where, for j = k, the last sum is empty, hence equal to zero, and oy 1 = 0.
This proves the remaining relations in (2.10). O

In order to initialize the modified Chebyshev algorithm, we note that, by
Definition 2.1,

oox =, k=0,1,...,2n — 1,

0,0 j .
'U“g),k,z':l/l?)v k=071a'--32n_2,l=1,2,...’S,

which are the input moments (2.2) relative to the measures d Ao, d Ay, ..., dAs.
We will show in Corollary 2.6 how to obtain

pyt = (o, Maxn, = [opdN (), k=1,2,...,2n =2,

The quantities ug‘,’(o?, u=1,2,...,i, of course, are all zero. We begin by ex-

pressing p; as a linear combination of the p;,

k—1

(2.13) pi) = Tpi),

Jj=0
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and establish a recurrence relation for the 7']-". We define Tjk =0ifj >k orj <O0.

Proposition 2.5. We have, for k =0,1,...,2n —3;j =0,1,...,k,

k+1 _ _k k k k—1
7']- —7}_1+7']-+1bj+1+7}(aj —ak)—kaj +6j,k7

where 0; i is the Kronecker delta.

Proof. By differentiating (2.3) and using (2.13), we have

Pisi pr(x) + (x — ap)pj(x) — brpj_(x)

k—1 k—2
Pe) + Y thec — ap(x) — by 1 pi(x).
j=0

j=0
By (2.3),
(x —appj(x) = x —aj)p;jx)+(a; —a)pj(x)
= pin(x)+bipj_1(x) + (a; — ar)p;(x).
Thus,
k—1 k—2
Phar = k@) + D> 7 (P (0) + bipj 1(x) + (a5 — a)pj(x)) — b Y _7F " pi(x)
j=0 j=0
k k—2 k—1
=)+ > T p )+ Y biatiapi @) + > T a; — ap;(x)
j=1 Jj=0 j=0

k=2
—be Y 7 pix)
j=0

= (1 + 75 Dpr) + (s + T8y (@—1 — a))pr—1(x)
k—2
> @+ bty + 7@ — a) = bt T p ()

j=1
+b1 7 + 7§ (a0 — ar) — bih ~Hpo(x).

Comparing coefficients of like terms with (2.13), where k is replaced by k + 1,
we get

Tl =1+7f , if k>0,
=+ (@ —a) if k> 1,
and forj=1,2,....k —2, k >3,
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k+1 _ _k k k k—1
T =T+ bjaTi T (@ —a) — by

and

et = byt + 18 (a0 — ag) — kaé‘*I if k>2. O

With the coefficients 7'J-k on hand, we can now evaluate ,u(oo,’(”? =

fR p,i”’(x )d \;(x) as follows.
Corollary 2.6. We have, for k =1,2,...,2n — 2,

k—1
0,v) _ k  (0,v—1) _ :
Pox,i = g T boji s v=1,2,...,1i.

j=v—1

Proof. By (2.7) and (2.13),

k—1
0, - k -1
port = o0, pNax, = 0, @ Man, = > 7 (w0, Va, -
Jj=0
Since pj(v_l) =0if v — 1 >, and using again (2.7), one gets the assertion. 0O
In summary, we have the following

Modified Chebyshev algorithm
Objective: Given n > 1, compute the coefficients {ﬂjk Yo<j<k in (1.3) for k =
0,1,...,n—1, using the recursion coefficients a;, bj, 0 < j < 2n — 2 for the

polynomials {p;} and the modified moments VJ-(O) ,0<j <2n-—1,and 1/}”,
0<j<2n—2@Gfn>2),i=12,...,s.

Notational convention: 7-]." =0ifj > k orj < 0; empty sums equal zero
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Initialization:

for £=0,1,...,2n — 1 do o4 = 1/}

0 _ 00,1
60 - 70,0 + Qo

if n =1 then stop

=1
_fork:1,2,...,2n—3do
-forj:O,l,...,k do

k+l _ Kk ko ke, B k=1, ¢
T —7'j_1+7'j+1bj+1+7‘j(aj a) kaj +0j &

fori=1,2,...,s

foru=0,1,...,i

_forv:O,l,...,i
_fork=0,1,...,2n—2
if u =0 then
if v =0 then
) = 1)
else
k—1
= S
j=v—1
end if
else
Hoks =0
i end if
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Continuation:

for k=1,2,....n—1 do

for =k, k+1,...,2n —k—1 do

1,i) (ll
Okt = Ok—1,041 + Qo0 —10+DeO—1 01 + E l(Mk,LgJ — 1, )
i=1

k—1

k—1
—E B ok—1-j
Jj=0

ﬂk = Tkl _ Ok—1k
0 Ok k Ok —1,k—1

for j=k —1,k—2,....1 (ifk >2)do

ﬁ]]zfj — Tsk+l +ay Tj .k +bk Tj,k—1

0j.j 0j.j 0j.j
k—
_ Oj—1k _E :ﬁf Ao-evk
Ti—1,j—1 gy,
L L=j ’
—1
ﬂ Tokel 4 o OOk o0 k—1 go'ﬁ,k
k ™ oo, 00,0 00,0
) ) o
/=0 0,0

if k<n—1 then

_fori:1,2,...,s do

[ foru=0,1,...,i do
forv=0,1,...,i do

[ for ¢ =k,k+1,...,2n —k — 2 do

(u,v) _  (u,v) (u,v) (u, v) 1,v)
' = Y gt aeky Y g+ b "‘”Mk—uu

k—1—u

(u,v— k—1 (u v)
—Up 41 Z ﬁ My —1—j 0.

k k \
(u,v)
o W
k1 ki
(n—1=)3 - o &
2 E| E| E| ° (n—2=) 21 ° ° °
1__E|E| [¢] [e] o o 1+ o o . o o
fHfot—fei—fotfo4 [ - l
0O 1 2 3 4 5 6 7=2n-1) 0 1 2 3 4 5 6(=2n-2)

Fig. 1. The o- and p-tableaus
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The scheme generates trapezoidal tableaus for oy , and /LE("’;Z.) as illustrated in

Fig. 1 for n = 4. The boxed quantities in the o-tableau are those used to compute
ﬁ,’{‘_j. The computing stencil for both tableaus is shown in Fig. 2.

Fig. 2. The computing stencil for the o- and pu-tableaus (the circled quantity is computed in terms
of the others)

The algorithm described is considerably more complicated than the one for
ordinary orthogonal polynomials (cf. [11, Sect.2.4]), but this seems to be in the
nature of things. In particular, its complexity is O(n?), rather than O(n?). Al-
though it is not immediately evident, it can be shown by mathematical induction,
that our present scheme reduces to the earlier one when s = 0.

3. Numerical examples

We report here on numerical experience with the modified Chebyshev algorithm
for the special case s = 1 and mostly with measures dAg,d\; as in (1.8). We
experiment with both modified and ordinary moments. As was to be expected,
the latter yield poor results as n becomes moderately large. Modified moments,
on the other hand, produce rather satisfactory results, even for n large, when the
measures are supported on finite intervals, but work less well for measures with
infinite support.

All computations were done on the Cyber 205 in single precision (= 7.1 X
10~15) and double precision (= 5.1 x 1072,

3.1. The polynomials of Althammer

These correspond to the inner product (1.8) with dA(x) = dx on [-1,1]; we will
denote them here by m,(-) = 7,( - ;y) to indicate their dependence on the positive
parameter v. As v — 0 they of course approach the (monic) Legendre polyno-
mials, and as v — oo, up to the factor x> — 1, the (monic) Jacobi polynomials
77511_’12) with parameters o = 8 =1 (cf. [10]):

3.1) max;y) = (2 = Dm)(x) as v — o0, n>2.
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The latter is illustrated numerically in Table 1, where B( ‘D are the recursion

coefficients in 7rk1+11)(x) = x7r(1 1)(x) ﬂ(l D) (1 1)(x) and ﬂk the coefficients in
(1.3) for the polynomial 7rk+1( - 5y) with v = 100

Table 1. The behavior of Bj{‘ for large v (= 100)

k B maxa<; <k |6} | gy

5 23813. .. 3.62(-5) .23809. ..
10 .247680. . . 8.96(-7) 247678. . .
15 .24904270. .. 1.80(=7) .24904214. ..
20 .24948046. . . 6.34(-8) .24948024. . .

In order to get a feel for the numerical stability of the Chebyshev algorithm,
we ran it in single and double precision and determined ej’-‘, the modulus of
the difference between the double- and single-precision value of 5;‘ divided by
|ﬁ}‘\ if \ﬁ}‘] > 1, as an indicator of single-precision accuracy. We let €y =
maxo<i<,—1 Maxo<;<i €*, and show the results in Table 2, where n = 80 was
used for modified moments, and n = 20 for ordinary moments. As modified
moments we took those relative to monic Legendre polynomials, so that v, (0) =2,

(1) =27, and u(’) 0 for all £k > 0 and i =0, 1. Predictably, ordinary moments
do poorly, in contrast to modified moments, which yield results accurate to almost
machine precision. The maximum of the ej’-‘ is consistently attained for j = 1 and
for £k = 70 (except when v = 0) and k = 19, respectively.

Table 2. The accuracy of the modified Chebyshev algorithm

¥ mod. moments (n = 80)  ord. moments (n = 20)
€max €max

0.0 7.03(-15) 9.59(-4)
0.1 8.50(-14) 1.21(=-3)
0.5 9.55(-14) 3.48(-3)
1.0 1.06(-13) 3.59(-3)
10.0 5.94(-14) 1.36(-3)
100.0 8.60(-14) 6.27(—4)

Similar and somewhat more accurate results have been observed for the
Grobner polynomials (orthogonal on [0,1]).

The coefficients ﬁ;‘ are rational functions of ~, which for k =0,1,...,6 are
exhibited in [40] for the polynomials of Grobner. These explicit formulae served
as benchmarks for testing our computer routines.

While it is known that Althammer’s polynomials have their zeros in
(-1,1), for all v > O, it is an open question [10] as to whether they inter-
lace, i.e., whether the zeros of 7, alternate with those of 7,,. We examined this
question numerically and found convincing evidence for interlacing to hold. We
computed the zeros in double precision as eigenvalues of the respective matrix B
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of (1.4), for n = 2(1)40 and v = .1,.5,1.,10., 100., using the EISPACK routine
HQR (cf. [38, p. 330]) and a double-precision version thereof (kindly supplied
to us by Professor J. Demmel). We needed double precision, since some of the
eigenvalues, for n large, are fairly ill-conditioned, causing a loss of as much as
10-12 decimal digits. Still, it was possible in this way to verify the interlacing
property for all zeros except the very extreme ones (closest to 1), where even
double precision did not provide sufficient resolution to demonstrate the separa-
tion of zeros when n and/or v is large. Part of the difficulty has to do with the
fact (cf. (3.1)) that these extreme zeros tend rapidly to +1 as v — oco.

3.2. Jacobi weight functions

Letting dA\(x) = w @ (x)dx in (1.8), where w®P(x) = (1 — x)*(1 + x)” is
the Jacobi weight function on [—1, 1], we denote the corresponding orthogonal
polynomials of Sobolev type by () ( - ; ~). It suffices to consider 3 > a > —1,
since an easy computation shows that

(3.2) 70D (x;y) = (= 1) 7P (—x; 7).

We used the modified Chebyshev algorithm in single and double precision, as in
Sect. 3.1, to generate the recursion coefficients ﬁ}‘ for the polynomials 7(*)( - ; v)
and the errors eJ’-‘ . The modified moments used were those relative to the (monic)
Jacobi polynomials. In Table 3 we show, for n = 40, the maximum and minimum
of enax taken over @ = —.75(.25)1.00, B = «(.25)1.00. The values of « and
for which the maximum resp. minimum is attained are shown in the columns
headed by « and 3.

Table 3. The accuracy of the modified Chebyshev algorithm for Jacobi weight functions

0 max €max o J6] min €max o I6]

00 947(-15) —-75 -75 528150 0.00 .75
0.1 6.65-12) -75 .75 137(-14) 50 .50
05 148(-11) -75 -25 12814 .50 .50
1.0 177(-11) =75 -25 137(-14) .50 .50

100 201(-11) -75 -50 156(-14) .50 .50

1000  2.60(-11) -75 -50 1.61(-14) .50 .50

Little is known about the zeros of 7(*®( - ;) when v > 0 and «, 3 are not
both equal to zero. It is of interest, therefore, to explore these zeros numerically.
We have done so (in double precision) for the ~-values v = .1,.5,1.,10., 100.
and parameter values ranging over o = —.75(.25)5.00, 8 = «(.5)5.0 when n =
2(1)20, and @ = —.5(.5)1.0, 8 = a(.5)1.0 when n = 25(5)40. Based on these
computations, we are confident that the following conjectures are true.

Conjecture 3.1 (Location of the zeros of 7P (. ;79), a > —1, 3 > —1, v > 0).

(i) For each n, all zeros are real and distinct.
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@) If a« > 0, B > 0, all zeros are contained in (-1,1).

(i) If o < 0, B > 0, then all zeros are in (-1,1) except, from some n on, one
zero, which is larger than 1.

(iv) If a < 0, B < 0, then all zeros are in (=1,1) except, from some n on, two
zeros — one larger than 1, the other less than —1.

Conjecture 3.2 (Interlacing of the zeros). The zeros of 7T,(;j_’1’8 )( -3 7y) interlace with

those of ™ ( - ;) except for the extreme zeros outside of (~1,1) in case (iii)
and case (iv) of Conjecture 3.1.

Conjecture 3.1(i),(ii),(iv) has recently been proved in the Gegenbauer case
a = [ by F. Marcellan et al. [27]. These authors also prove an “interlacing
property” of the zeros of m{®)(-;~) with those of 7{*®)(-;0). (Cf. (3.3) below.)

3.3. Generalized Laguerre weight functions

We denote by 7(®( - ;) the orthogonal polynomials of Sobolev type belong-
ing to the generalized Laguerre weight function w®(x) = x®e~* on (0,00),
i.e., d\(x) = w'®(x)dx in (1.8). Here the modified Chebyshev algorithm, using
Laguerre moments, gradually deteriorates in accuracy as n increases, presum-
ably because of effects of ill-conditioning. This is illustrated for n = 10 in
Table 4, which shows, in the notation of the previous sections, the values of
€max = MaXo<i<n—1 MaAX<j<k 5]’.‘ for selected o and . By the time n = 15, these
values become about five orders of magnitude larger, except when ~ = 0.

Table 4. The accuracy of the modified Chebyshev algorithm for generalized Laguerre weight functions

AN -5 0 5 1.0 2.0 5.0

0.0 227(-14) 253(-14) 1.90(-14) 2.02(~14) 227(-14) 2.53(-14)
0.1 343(-7)  1.05(=7)  2.42(-8)  129(-8)  2.92(-9)  2.51(-10)
0.5 7.54-7)  135(7)  558(-8)  1.72(=8)  3.99(-9)  2.34(-10)
1.0 942(-7)  1.70(=7)  7.06(-8)  2.18(=8)  5.09(-9)  2.99(-10)
100 1.83(=5)  6.82(=6)  2.61(-6)  1.44(-6)  5.16(-7)  3.83(-8)
1000 1.57(=5)  4.10(-6)  1.84(=6)  936(~7)  3.74(=7)  2.91(-7)

Although we are limited to relatively small values of n, there is sufficient
computational evidence for the validity of the following conjectures.

Conjecture 3.3 (Location of the zeros of m¥( - ;7), a > —1, v > 0).

(1) For each n, all zeros are real and distinct.

(i) If a > 0, all zeros are positive.

(iii) If a < 0, all zeros are positive except, from some n on, one zero, which is
negative.

Conjecture 3.4 (Interlacing of zeros). The zeros of 7T’(;j_)1 -3 7y) interlace with those

of ¥ ( - ;) except for the negative zeros, if « < 0, for which the interlacing
property does not hold from some n on.
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After these computations had been done, we learned that Conjecture 3.3
was proved by F. Marcelldn et al. [29]. They have also proved an “interlacing”
property which relates the zeros of 7 ( - ;v) to the zeros of the generalized
Laguerre polynomial Ly( - ) of the same degree. If the former, in increasing
order, are £ < & < --- < &,, and the latter x; < x, < --- < X, then indeed

(3.3) EL<x1 <EH << <y < Xy

3.4. The Jacobi weight function combined with discrete measures

In this example, the two measures d A\g and d A\ in (2.1) are essentially different,
the former being a Jacobi weight function with a discrete measure supported on
+c (¢ > 0) added to it, while the latter is just a discrete measure, also supported
on £c. More precisely,

dXo(x) = ! w P (x)dx +vo[6(x — ¢) + 6(x + ¢))dx,
(3.4) Po

dAl(x):’yl[é(x —c)+6(x+c)]dx, avﬁ > _17 Y0 Z 07 " > 07

where §(-) denotes the Dirac delta function, w(®® the Jacobi weight function on
[-1,1] (cf. Sect.3.2), and

1
(3.5) Bo = / w P (x)dx .
—1

This example was studied algebraically and analytically by H. Bavinck and H.G.
Meijer [3, 4] in the (symmetric) Gegenbauer case o = 3 and for ¢ = 1. In their
second paper, they proved, in particular, that all zeros of 7, (located, of course,
symmetrically with respect to the origin) are real and simple, and that for »
sufficiently large, there is exactly one pair of real zeros outside of the interval
(-1,1). The purpose of our numerical investigation is to make “sufficiently large”
more concrete, and also to experiment with the cases « # 3 and ¢ # 1 not (to
our knowlege) treated in the literature.

We apply the modified Chebyshev algorithm with the choice p; = 131504,[3 ), the
monic Jacobi polynomials, in the definition (2.2) of the modified moments. This
then yields for the modified moments immediately

VO = 60+ 7lPP ) + B (=D] (81,0 = Kronecker delta),
(3.6)

y? = PP ) + PP (1),
which is most easily calculated by the basic recurrence relation for Jacobi poly-
nomials. (Expressions in terms of the gamma function are also available, but
since the recursion coefficients for Jacobi polynomials are needed anyway in

Chebyshev’s algorithm, we might as well use them to compute the Jacobi poly-
nomials by recurrence.) Thus, all the input quantities to the modified Chebyshev
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algorithm are readily computable. The zeros of 7, are then computed as before
as eigenvalues of the matrix B, in (1.4) produced by the modified Chebyshev
algorithm.

It appears that the presence of mass points has a deteriorating effect on
the accuracy attainable with the Chebyshev algorithm. This is demonstrated in
Table 5, which shows the maximum and minimum of ., taken over o =
—.75(.25)1.00, 8 = a(.25)1.00 and 7o, 71 = .1,.5,1.0,2.0,5.0,10.0, and the
values of 7 and ~y; for which the maximum resp. minimum is attained. Table 5
should be compared with Table 3 of Sect.3.2 (where n = 40).

Table 5. The accuracy of the modified Chebyshev algorithm for Jacobi weight functions in the

presence of mass points

n c max E€max Y0 Y1 min &max Y0 Y1
5 1 1.87(-10) .5 10.0 7.93(-14) 10.0 .1
S 4.15(-11) .1 10.0  3.03(-14) 5.0 5

1.0 1.64(-10) .1 10.0 2.34(-14) 1.0 .1

50 2.17(-10) 10.0 .1 2.30(-11) .1 1.0

10.0 1.24(-9) 10.0 1 2.25(-11) .1 50

10 1 3.67(-9) 1.0  10.0 1.30(-12) 10.0 .1
5 3.40(-9) .1 10.0  1.36(-12) 5.0 .1

1.0 1.20(=7) .1 10.0 2.17(-12) 1.0 .1

5.0 3.89(-1) 1 10.0 3.45(-5) 1 .1

20 .1 1.69(-7) 1 10.0 1.63(-9) 5 1
.5 1.20(=7) .1 10.0  3.16(-11) 2.0 .1

1.0 2.61(-4) 1 10.0  9.92(-10) 10.0 1

As far as zeros are concerned, extensive testing that included values of o = 3
=-75,-5,-25,0.,.5, 1.0, 2.0, 5.0, 10.0, all combinations of y, y; over the
values .5, 1.0, 2.0, 5.0, 10.0, and n as large as n = 20, lead us to conjecture the
following refinement of the results of Bavinck and Meijer.

Conjecture 3.5. When o= 8 > —1 and ~, > 0, then for all n > 3 the Sobolev-
type orthogonal polynomial m, belonging to the measure (2.1), (3.3) has exactly
one pair of real zeros outside of (—1,1) and all others inside. The exceptional pair
approaches the points =1 monotonically as n (> 4) tends to infinity.

The fact that £1 are limit points of the exceptional zeros has been proved
rigorously by Bavinck and Meijer [4]. The novelty of Conjecture 3.5 is, on the
one hand, the presence of a pair of exceptional zeros for all n > 3, and, on the
other, the monotonicty of convergence (except for the first two values of n, i.e.,
n =2 and n = 3).

Experiments with a # 3, —1 <a <1, a < <1, and ¢ =1, using n = 10
and running through all combinations of vy and ; as above, seem to suggest that
Conjecture 3.5 remains true also in this more general Jacobi case, except for the
monotonicity of the two zeros outside of [-1,1], which occasionally holds only
for n > 5. When ¢ > 1 (for example, ¢ = 2,5, 10), we observed that exceptional
zeros (in the sense of not being contained in the interval [—c,c]) may occur
only for n > 4, and sometimes there is only one such exceptional zero, which

131



178 W. Gautschi and M. Zhang

invariably is the one < —c. Also, the onset of monotonicity is often delayed
until » = 5. Finally, when ¢ < 1 (for example, ¢ = .5,.1), complex zeros make
their appearance, with real parts always in (—1,1). The remaining real zeros are
also in (-1,1), except for at most one on either end.

4. Stieltjes’s algorithm

The procedure of Sect. 2 turned out to be relatively complicated because we lim-
ited ourselves to employing only rational operations on the input data. Indeed,
the desired coefficients ﬁ}‘ are computed, entirely by rational operations, in terms
of moment information for the measures d\g, d\; and in terms of certain re-
cursion coefficients. If the latter belong to one of these measures, they in turn
depend rationally on the moments. If we are prepared to incur the extra costs of
algebraic operations (i.e., solving algebraic equations), we can arrive at a simpler
and more transparent, though less efficient, algorithm. In view of recent progress
in constructive methods and software for orthogonal polynomials [11, 12], we
are indeed inclined to do so and, in particular, to employ Gaussian quadrature
for the measures d ;. For simplicity, we will consider the case s = 1 in (1.1),
but the extension to s > 1 is relatively straightforward.

The obvious thing to do is to express —B}‘ in (1.3) as the Fourier-Sobolev
coefficients of m,1(x) — xm(x), that is,

(X, T —j)
(4.1) B = s
[

9 j=0717"'7k’

and to evaluate the inner products in both numerator and denominator exactly
by Gaussian quadrature rules (or other appropriate rules). To be specific, let us
assume the most important scenario in which each measure d Ay, d \; consists of
an absolutely continuous measure with a discrete measure superimposed on it:

RO

(4.2) dX\i(x) =dXN @)+ > yP6(c —xDydx,  yP >0, xVeRr, i=0,1.
p=1

Here, r') are nonnegative integers; if #@ = 0, then d)\; has no discrete compo-
nent.

If we restrict £ to be less than n (as in Sect.2), then both inner products in
(4.1) involve polynomials of degree < 2n — 1, hence can be computed exactly
(up to rounding errors) by the n-point Gaussian quadrature formulae for d A5
and d \i°. Specifically,

(xp, q)Hl = Zwugup(gu)Q(gu) + Zypxpp(xp)Q(xp)

v=1 p=1

(4.3) +> Wl IEp'E) +pENIg'(E)

v=1
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+Zyp[xpp ) +pa)lg’x)),  p.q €Pu_i,

and similarly (in fact, simpler) for (p,q)n,, where &,, w, resp. £, w,, are the
nodes and weights of the n-point Gauss formula for d Ay resp. d\i°, and where
we have written, for simplicity, r@ = r, r( =/, x,g()) = x,, etc. The polynomials
intervening in (4.1), on the other hand, are successively computed with the help
of the recurrence formula (1.3) involving coefficients ﬁk already computed. This
is precisely the analogue of an algorithm for ordlnary orthogonal polynomials
which we attributed to Stieltjes in [11]. We continue to adopt the same name in
the context of Sobolev orthogonal polynomials.
Note that, for initialization,

(XT‘-O’T[-O)H] — (x7 1)d>\0
Il 7o [I7, (1, Dax,

g = = ag(dXo) -
The required Gauss formulae for d \i° are computable by well-known eigen-
value techniques (cf. [13, 12]) based on the n x n Jacobi matrix for the measure

d\¥, i.e., the symmetric tridiagonal matrix with aé’ ), 04(1’), ... down the main di-

agonal, and \/ ,6’(’) \/ ﬁ(’), ... down the two side diagonals, where a(') o (d ;)

and 6(’) Br(d ;) are the coefficients in the recurrence relation

P (¥) = (x — e (x) — BOpe1(x),  k=0,1,2,...,
4.4)

pox)=1, p_1(x)=0

for the (monic) orthogonal polynomials pi(-) = px( - ;d\I€) associated with the
measure d A\, i = 0, 1. Software is now available [12] to compute these recursion
coefficients for essentially arbitrary measures d A¥.

Evaluating (p, q)a», for p,q € P, (exactly) by applying an n-point Gauss
formula to the absolutely continuous component dA¥® of d\; can be interpreted
as evaluating (p, q)ay, (exactly) by an (n + r)-point quadrature rule, i = 0, 1.
Alternatively, if d i # 0, we could construct an n-point Gauss formula for the
complete measure d); in (4.2) (not just the partial measure d A¥°), which results
in a simpler algorithm for computing the ﬁ;‘ (where all summations over p in
(4.3) are absent) and shifts the burden of dealing with the discrete parts of the
measures d \; onto the generation of the respective recursion coefficients in (4.4).
But software for this has already been developed [12, Sect.4.3], which is the
reason why we favor this alternative approach when applicable. For simplicity,
it is this version of the algorithm that is described in the summary below.

As already mentioned, there are no essential difficulties of extending this
algorithm to the more general inner product (1.1), where s > 1 is an arbitrary
integer and each d \; has the form (4.2). Replacing integrals against d \; by sums,
as above, one ends up, for each i = 0,1,...,s, with a set of abscissae ) and
weights w, v = 1,2, ..., vmax(i) (Which includes those coming from the discrete
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components of d)\;), at Whiph 7%, X7 and their derivatives must be evaluated.
This is done by updating w,({l)(t,(j)), for each i, and for each v = 1,2, ..., v (i),

by means of

k—1
(4.5) () = aeme- )P0 = ) BT w0,
=0

and likewise (xm)@(tY)), for each i and j, and for v = 1,2,..., Vnax(j), by
means of

k—1
4.6) (xm)P00) = x-(eme )V @+iGeme— ) V@) =D BT om0V ().
=0
This becomes rather expensive, however, giving rise to an algorithm of com-
plexity O(n*).

If the support points ¢ are the same for each i (as for example in measures
of the type (1.8)), the computation in (4.6) can be simplified, as it does not
require a double sweep over i and j; the over-all computing time, accordingly,
is reduced by about 70%.

4.1. Modified Stieltjes algorithm

Objective: Given n > 1, compute the coefficients {Bf Yo<j<k in (1.3) for k =
0,1,...,n —1, using the n-point Gaussian quadrature rules {£, w®}"_ for
dN\,i=0,1.

: - — 0 ¢ _ (D)

Notational convention: &, =&, £, =&, etc.

Initialization:

for v=1,2,...,n do

set and store

To(§) = mo(&;,) = 1

_Wé(iu) =m(§,)=0
BY = ap(d o)

if n =1 then stop
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Continuation:

for k=1,2,...,n—1 do
_f(_)rj=0,1,...,k do
for i =0,1 do
for v=1,2,...,n do

compute and store

k—1
(€9 = EDm 1 (€9) = > B 1 e(€)

£=0

k—1
T (ED) = e (ED) + DT ((€D) =Y B w68
£=0

num = {w, & ()i (€0) + Wl L€, mh(EL) + (€ Im (6}

v=I1

den =) {wylm—i (€)1 +wlm_; (€)1}
v=1

ﬂ;‘ = num /den

We have run Stieltjes’s procedure on all examples of Sects.3.2-3.4. As ex-
pected, it is much slower than the modified Chebyshev algorithm, even with the
simplification mentioned after (4.6), but often provides better accuracy. For ex-
ample, the computation for Jacobi measures summarized in Table 3 was redone
in the case n = 20 with the (simplified) Stieltjes procedure. The CPU time (on
the Cyber 205) was 237.685 seconds, as opposed to 21.248 seconds with the
Chebyshev algorithm — an increase by a factor of more than 10. On the other
hand, for v > 0, Stieltjes’s procedure returned results whose maximum errors
are consistently smaller than those for the Chebyshev algorithm, by 1-2 orders
of magnitude.

The computation of Table 4 for generalized Laguerre measures required about
2.445 seconds of CPU time, when the Chebyshev algorithm was used, and 4.943
seconds — about twice as much — when the (simplified) Stieltjes procedure was
used. Individual timings of the algorithms, however, revealed that the latter takes
about five times as long as the former (when n = 10). Again, Stieltjes’s procedure
is generally more accurate for v > 0, by 2-3 orders of magnitude, except when
a = 5, in which case Chebyshev’s algorithm happens to be more accurate, by
1-2 orders of magnitude.
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For Jacobi measures with added point spectra (cf. Sect. 3.4), the severe deteri-
oration in accuracy that was observed in Table 5 as the value of ¢ increases, does
not occur with the Stieltjes procedure, which maintains (at least for n = 5 and
n = 10) an accuracy of about 10~ and 10~ for ¢ = 5 and ¢ = 10, respectively.
As before, however, it is about five times slower than the Chebyshev algorithm
(when n = 10).
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0. Introduction

The subject of orthogonal polynomials, if not in name then in substance, is
quite old, having its origin in the 19th-century theories of continued fractions
and the moment problem. Classical orthogonal polynomials, such as those of
Legendre, Laguerre and Hermite, but also discrete ones, due to Chebyshev,
Krawtchouk and others, have found widespread use in all areas of science and
engineering. Typically, they are used as basis functions in which to expand
other more complicated functions. In contrast, polynomials orthogonal with
respect to general, nonstandard, weight functions and measures have received
much less attention in applications, in part because of the considerable diffi-
culties attending their numerical generation. Some progress, nevertheless, has
been made in the last fifteen years or so, both in novel applications of non-
classical orthogonal polynomials and in methods of their computation. The
purpose of this article is to review some of these recent developments.

In Part I, we outline a number of (somewhat disconnected) problem areas
that have given rise to unconventional orthogonal polynomials. These include
problems in interpolation and least squares approximation, Gauss quadrature
of rational functions, slowly convergent series, and moment-preserving spline
approximation. Part II then takes up the problem of actually generating the
respective orthogonal polynomials. Since most applications involve Gauss
quadrature in one way or another, the computation of these quadrature rules is
discussed first. Constructive methods for generating orthogonal polynomials,
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‘including those of Sobolev type, then follow, among them moment-based
methods, discretization methods, and modification algorithms. We conclude
by giving a brief account of available software.

The choice of topics treated here reflects the author’s past interest and in-
volvement in orthogonal polynomials. There are other applications and com-
putational aspects that would deserve equal treatment. Foremost among these
are applications to iterative methods of solving large (and usually sparse) sys-
tems of linear algebraic equations and eigenvalue problems. The pioneering
work on this was done in the 1950s by Stiefel (1958) and Lanczos (1950); mod-
ern accounts can be found, for instance in Hageman and Young (1981), Golub
and Van Loan (1989) and Freund, Golub and Nachtigal (1991). Among addi-
tional computational issues there is the problem of constructing the measure
underlying a set of orthogonal polynomials, given their recursion coefficients.
Some discussion of this can be found in Askey and Ismail (1984), and Dom-
browski and Nevai (1986).

Before we start, we recall two items of particular importance in the con-
structive theory of orthogonal polynomials: the Gaussian quadrature formula,
and the basic three-term recurrence relation. This will also provide us with
an opportunity to introduce relevant notation.

0.1. Gauss-type quadrature rules

The concept of orthogonality arises naturally in the context of quadrature
formulae, when one tries to maximize, .or nearly maximize, their degree of
exactness. Thus suppose we are given a positive measure! d\ on the real
line R with respect to which polynomials can be integrated, that is, for which
Ja t* dA(t) exists for each nonnegative integer k € No. A quadrature formula

/f(t ) dA(t Z/\,,f 1) + Ra(f), (0.1)

! For our purposes it suffices to assume that d\ is either a discrete measure, dA(t) =
dAn(t), concentrated on a finite number N of points t; < t2 < --- < tn, that is, A(t) is
constant on each open interval (¢;,ti+1), 1 = 0, 1,..., N (where tg = —00, tny+1 = +00),
and has a positive jump w; = A(t; +0)—A(t;—0) at t;, i = 1,2,..., N, or dA(t) = w(t)dt
is an absolutely continuous measure, where w > 0is mtegrable on ]R and flR w(t)dt > 0,
or a combination of both. Then for suitable functions f,

_ ioq Wif (), dA discrete,
/Rf(t) dMe) = { E_‘pp( an f()w(t)dt, dX absolutely continuous,

where supp(d\) denotes the support of dJ, typically an interval or a union of disjoint
intervals.
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with distinct nodes 7, € R and real weights A,, is said to have degree of
exactness d if

R(p)=0, allpePs (0.2)

where P4 is the set of polynomials of degree < d. It is well known that for
given 7, we can always achieve degree of exactness n — 1 by interpolating at
the points 7, and integrating the interpolation polynomial instead of f. The
resulting quadrature rule (0.1) is called the Newton-Cotes formula (relative to
the points 7, and the measure d)). Indeed, any quadrature formula having
degree of exactness d = n — 1 can be so obtained, and is therefore called
interpolatory. A natural question to ask is: what conditions must the nodes
1, and weights ), satisfy in order for (0.1) to have degree of exactness larger
than n — 1, say d = n— 1 +m, where m > 0 is a given integer? The complete
answer is given by the following theorem, essentially due to Jacobi (1826).

Theorem 1 Given an integer m > 0, the quadrature rule (0.1) has degree
of exactness d = n — 1 + m if and only if the following two conditions are

satisfied:

(i) The formula (0.1) is interpolatory.
(ii) The node polynomial wy(t) = IT})_, (t — 7,) satisfies

/R wn(O)p(t)dA(£) =0 for each p € Pp_1. (0.3)

Condition (ii) is clearly a condition involving only the nodes 7, of (0.1);
it says that the node polynomial must be orthogonal to all polynomials of
degree < m — 1. Here, orthogonality is in the sense of the inner product

(4,0) ar = /R w(v(@)dNE),  wvEP, (0.4)

in terms of which (0.3) can be stated as (wn,p)dx = 0 for every p € Ppy_y.
Once a set of distinct nodes 7, has been found that satisfies this orthogonality
constraint, condition (i) then determines uniquely the weights \,, for example
by requiring that (0.1) be exact for each power f(t) = t*, k=0,1,...,n —
1. This is a system of linear equations for the weights A, whose matrix is
a Vandermonde matrix in the nodes 7,, hence nonsingular, since they are
assumed distinct.

It is clear that m < n; otherwise, we could take p = wy, in (ii) and get
Jewi(t)dA(t) = 0, which is impossible if dA has more than n points of
increase. (In the context of quadrature rules, dA indeed is usually assumed to
be absolutely continuous and thus to have infinitely many points of increase.)
Thus, m = n is optimal and gives rise to the condition

(Wn,p)ar =0,  allp € Pny. (0.5)
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This means that w, must be orthogonal to all polynomials of lower degree,
hence (see Section 0.2 below) is the unique (monic) orthogonal polynomial
of degree n relative to the measure d\. We will denote this polynomial by
Tn(+) = mn(-; dA). The formula (0.1) then becomes the n-point Gaussian
quadrature formula (with respect to the measure d\), that is, the interpol-
atory quadrature rule of maximum degree of exactness d = 2n — 1 whose
nodes are the zeros of m,(-; dA). It is known from the theory of orthogonal
polynomials (Szeg6 1975) that these zeros are all simple and contained in the
smallest interval containing the support of dA.
There are other interesting special cases of Theorem 1. We mention four:

(1) Assume that the infimum a = inf supp (d\) is a finite number. We choose
one of the nodes 7, to be equal to a, say 71 = a. Then wy(t) = (t —a)wn—1(t),
where wp_1(t) = II}_,(t — 7,), and condition (ii) requires that

/ " Ot —a)dA(E) =0,  allp € Ppy. (0.6)

The optimal value of m is now clearly m = n — 1, in which case w,_1 is
the unique (monic) polynomial of degree n — 1 orthogonal with respect to
the modified measure dA,;(t) = (¢t —a) dA(t) — also a positive measure — that
is, wp—1(t) = mp—1(-; dAs). Again, all zeros of wy,_; are distinct and larger
than a; the resulting formula (0.1) is called the n-point Gauss-Radau formula
(with respect to the measure d\).

(2) Similarly, if both a = inf supp (d\) and b = sup supp (d\) are finite
numbers, and n > 2, and if we want ¢; = a and (say) ¢, = b, then wy(t) =
—(t—a)(b—t)wn_o(t), and wp—2(-) = mp—2(-; dAgp) for optimal m = n—2,
where dAgp(t) = (t—a)(b—t)dA(t) is again a positive measure. The formula
(0.1) with the interior nodes being the (distinct) zeros of mp_2(-; dAsp) then
becomes the n-point Gauss-Lobatto quadrature rule (for the measure d)).

(3) Replace n in (0.1) by 2n + 1, let 7, = 7™ be the zeros of 7n(+; dA) for
some positive measure d)\, and choose n 4 1 additional nodes 7, such that
the (2n + 1)-point formula (0.1) with nodes 7,, and 7, has maximum degree
of exactness d > 3n + 1. By Theorem 1 (with n replaced by 2n + 1), the
n + 1 nodes 7, to be inserted must be the zeros of the (monic) polynomial
frn+1 satisfying

/R 1 () Ta(t; AN AA(E) =0,  allp € P, (0.7)

Here, the measure of orthogonality is d:\(t) = 7, (t; dA) dA(¢), which is no
longer positive, but oscillatory. This calls for special techniques of computa-
tion; see, for instance, Monegato (1982), Kautsky and Elhay (1984), Calio,
Gautschi and Marchetti (1986, Section 2) and Laurie (1996). While 7,4
can be shown to exist uniquely, its zeros are not necessarily contained in
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the support of dA and may even be complex. The resulting (2n + 1)-point
quadrature formula is called the Gauss-Kronrod rule. It has an interesting
history and has received considerable attention in recent years. For surveys,
see Monegato (1982), Gautschi (1988) and Notaris (1994).

(4) Consider s > 1 different measures dAs, ¢ = 1,2,...,s, with common
support, and for each an n-point quadrature rule (0.1) with a common set of
nodes {7, } but individual weights {A\,s},0 = 1,2,...,s. Assume n = ms to

be an integer multiple of s. Find s such quadrature rules, each having degree
of exactness n—1+m. (This is expected to be optimal since there are n(s+1)
unknowns and (n+m)s = ns+s conditions imposed.) According to Theorem
1, each quadrature rule has to be interpolatory, and the node polynomial wy,
must be orthogonal to polynomials of degree m — 1 with respect to each
measure,

/wn(t)p(t) d\,(t) =0, allp€Pp_1, oc=1,2,...,s. (0.8)
R

One obtains the shared-nodes quadrature rules recently introduced by Borges
(1994) in connection with computer graphics illumination models, where the
models d), are colour matching functions. Instead of assuming n = ms,
one could require (0.8) to hold for p € Pp,, _1, where }5_; my; = n, and
thus ‘distribute’ the degrees of exactness differently among the s measures
d)\,. The construction of such quadrature rules calls for quasi-orthogonal
polynomials, that is, polynomials that are only partially orthogonal, as in
(0.8), and not fully orthogonal, as in (0.5).

0.2. The three-term recurrence relation

Next to the Gauss formula, another important fact about orthogonal polyno-
rhials is that they always satisfy a three-term recurrence relation. The reason
for this is the basic property

(tu, v)ax = (u, tv)ar (0.9)
satisfied by the inner product (0.4). Indeed, assume that dA has at least N
points of increase. Then the system of orthogonal polynomials mg(-; dA),
k=0,1,...,N — 1, is easily seen to form a basis of Py_;. For any integer
k < N — 1, therefore, since the polynomial

Th41(t) — tmi(t)

is a polynomial of degree < k (both 741 and ¢m; being monic of degree
k + 1), there exist constants oy, O and ~; such that

k—2
T (8) — tmi(t) = —onemi(t) — Beme-1(t) + D Wymi(t),
-

k=0,1,...,N —1,
(0.10)
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where it is understood that 7_; (¢) = 0 and empty sums are zero. To determine
ok, take the inner product of both sides of (0.10) with mg; this yields, by
orthogonality,

—(tme, m) = —ouk(me, TE),
hence
tm
o = ( k»'”k)'
(7K, Tk)

Similarly, forming the inner product with mx_y (k > 1) gives
—(tmh, 1) = —Br(T—1, T—1)-

This can be simplified by noting (tmg, 7k—1) = (T, t7k—1) = (Mg, Tk + -+ ),
where dots stand for a polynomial of degree < k. By orthogonality, then,
(tmk, T—1) = (Mg, mg), and we get

Ty, Tk

Br = (o)
(1, Th—1)

Finally, taking the inner product with m;, i < k — 1, in (0.10), we find
—(tme, m5) = Yi(ms, m3).
It is here where (0.9) is crucially used to obtain ; = 0, since (m;, 7;) # 0
and (tmg,m;) = (mg,tm;) = 0 because of tm; € Pg_;. Thus, we have shown
that
7rk+1(t) = (t“ak)ﬂ—k(t) '—:Bkﬂ.k-—l(t)v k :0’1,~~'1N— 1.3 (0 11)
w_1(t) =0, mo(t) = 1, :

where
t
o = (__7”“_”’“), k=01,...,N—1,
(7‘-/97 Wk) (012)
Tk, Tk
B’C - k:172,...,N—1.

(Th—1,Tk—1)
This is the basic three-term recurrence relation satisfied by orthogonal poly-
nomials. Since m_; = 0, the coefficient Gy in (0.11) can be arbitrary. It is
convenient, however, to define it by

Bo = (mo, M) = /R dA(t). . (0.13)

Note that by construction, my is orthogonal to all polynomials of degree
< N. If dX = dAp is a discrete measure with exactly N points of increase,
there can be at most N orthogonal polynomials, mg, 71,...,7n_1, which
implies that (7n,7n) = 0, that is, mx vanishes at all the support points of
dAy. On the other hand, if N = oo, then (0.11) holds for all £ € Ny. Vice
versa, if (0.11) holds for all k € Ny, with B > 0, then by a well-known
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theorem of Favard (see, for instance, Natanson 1964/65, Volume II, Chapter
VIII, Section 6) the system of polynomials {7} is orthogonal relative to some
positive measure dA having infinitely many support points.

The recurrence relation (0.11) is generally quite stable, numerically, and
indeed provides an excellent means of computing the orthogonal polynomials
7k(+; dX), both inside and outside the interval of orthogonality. For discrete
measures d\py, however, there is a good chance that the recurrence rela-
tion exhibits a phenomenon of ‘pseudostability’ (cf. Gautschi 1993a; Gautschi
1996b, Section 3.4.2), particularly if the support points of dAn are equally
spaced. As a consequence, the accuracy of the mg(-; dAn), if computed by
(0.11), may severely deteriorate as k approaches INV.

PART I: APPLICATIONS

1. Interpolation
1.1. Extended Lagrange interpolation

Our interest here is in the convergence of Lagrange interpolation and quadrat-
ure processes on a finite interval [—1, 1}, assuming only that the function to be
interpolated is continuous on [—1,1]. A well-known negative result of Faber
(see, for instance, Natanson 1965, Volume III, Chapter II, Theorem 2) tells
us that there is no triangular array of nodes for which Lagrange interpolation
would be uniformly convergent for every continuous function. In response
to this, Erdés and Turan (1937) showed that if one considers convergence in
the mean, then there indeed exist triangular arrays of nodes — for example
the zeros of orthogonal polynomials — on which convergence holds for every
continuous function. More precisely, given a positive weight function w on
(—1,1), we have

Jim I f=Lof lo=0, foral feCl-L1, (LD

where

lul? = [ weuo, (12)

and L, f is the Lagrange interpolation polynomial of degree < n interpolating
f at the n zeros 7y, = Ti"), t=1,2,...,n, of my(-;w), the nth-degree poly-
nomial orthogonal on [—1, 1] relative to the weight function w. Convergence
of the related quadrature process, that is,
1
lim [F@#) = (Lnf)®)]w(t)dt =0  forall f € C[-1,1], (1.3)

n—oo -1
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also holds, since the quadrature rule implied by (1.3) is simply the Gaussian
rule (see Section 0.1), which is known to converge for any continuous function.

With this as a backdrop, suppose we wish to improve on Ly, f by considering
an extended set of 2n + 1 nodes,

W ievgim f o G=L2.anbl (L)

1

the first n being as before the zeros of 7, ( - ; w), and forming the corresponding
Lagrange interpolant Lon41f of degree < 2n+ 1. Is it true that (1.1) and/or
(1.3) still hold if L, f is replaced by Loni1f?

The answer cannot be expected to be an unqualified ‘yes’, as the choice of
the added nodes {7;} has a marked influence on the convergence behaviour.
A natural choice for these nodes is the set of zeros of mp41(-;w), for which
it has recently been shown (see Criscuolo, Mastroianni and Nevai (1993),
Theorem 3.2; and Mastroianni and Vértesi (1993), Theorem 2.3) that the
analogue of (1.1), when w is a ‘generalized Jacobi weight’ (see Section 6.1,
Example 6.2), holds if and only if the Jacobi parameters a, 3 are both strictly
between —1 and 0. The analogue of (1.3) holds for any weight function w
since the underlying quadrature rule turns out to be simply the (n + 1)-point
Gaussian rule for w (all nodes 7; receive the weight zero).

Another interesting choice for the nodes 7}, first proposed by Bellen (1981,
1988), is the set of zeros of fipt1(+) = Tnt1(-; m2w),

7rn+1(’f'j;7r'rzzw) :0, .7: 1727"'1n+1 (ﬂ-n(') :Wn(';w))' (15)

Here the polynomial 7,1 is the (n + 1)st-degree polynomial of an infinite
sequence of polynomials T, (-;m2w), m = 0,1,2,... , studied in Gautschi
and Li (1993) and termed there orthogonal polynomials induced by m,. Both
questions (1.1) and (1.3), for Lgny1f, then become considerably more diffi-
cult, and no precise results are known except for the four Chebyshev weight
functions w®Pf)(t) = (1 — t)*(1 + )P, a,8 = +Z. For these it has been
shown in Gautschi (1992) that (1.1) is false unless a = 8 = —{-%, in which
case MpMp41 is a constant multiple of the 2nd-kind Chebyshev polynomial of
degree 2n + 1, and hence (1.1) (for ﬁgnH f) is a consequence of the Erd6s—
Turdn result. More recently (Gautschi and Li 1996), the analogue of (1.3) was
established for all four Chebyshev weight functions by showing that the re-
spective quadrature rules are positive and therefore convergent, by a classical
result of Pélya (1933). In the case a = 8 = ——%, for example, the weights of
the quadrature rule are given by Gautschi and Li (1996, Theorem 1).

Ai = 5, 1=1,2,...,n,
. 27/3 .
ILJ———E‘Q—éi—j', ]—1,2,...,”"{‘1.

For Jacobi weight functions w = w(®#), there are only conjectural results,
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obtained by extensive computation based on the methods of Section 7.2. From
these it appears that the analogue of (1.1) for Lant1f holds in the Gegenbauer
case a < a = # < @, where ¢ = —.31 and @ = 1.6 (perhaps even in a slightly
larger interval), and in the Jacobi case when 0 < o, < @ (again possibly
in some slightly larger domain; see Gautschi (1992, Conjectures 5.1-5.3).
The case a < 0 remains open. The analogue of (1.3) is conjectured to hold
for Jacobi weight functions with |a| < %, 18] < % (Gautschi and Li 1996,
Conjecture 3.1).

1.2. Rational interpolation

Given N + 1 distinct points {t;})Y, on R and corresponding function values
fi=f(t:), i=0,1,..., N, the problem now is to find a rational function

p(t) »
with q assumed monic of degree n and p of degree < m, such that
Tm,n(ti) = fi 1=0,1,...,N. (1.7)

To derive an algorithm, one starts from the interpolation conditions (1.7),
written in the form

p(ti) = fiq(t:), t1=0,1,...,N. (1.8)

Now recall that the Nth divided difference of a function g can be represented
in the form

Y g(t:) Al

[to,tl,...,tN]g:: E —, w; = I I(ti_tj)- (1.9)
i—0 Wi =0
J#i

Letting ¥;(t) = t/, j = 0,1,...,n — 1, multiplying (1.8) by v;(t;)/w; and
summing, yields

N N
bi(ta)p(t) _ ¥t fig(ti)
g w; ; w; ’

hence, by (1.9),

[to,tl, .. .,tN](’I/ij) = {to,tl, - ,tN](lpij), 7=0,1,...,n—1.

But 9;p is a polynomial of degree m+n—1 < N, hence the divided difference
on the left vanishes. The same is therefore true of the divided difference on
the right, that is,

> gt)i(t) =0,  j=0,1...,n—1L (1.10)

i=0 ¢
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Defining the discrete measure dAy to have support points {tg,...,tN}, and
jumps w; = f;/w; at t;, we can write (1.10) as
/ a9 dAn(t) =0,  all ) € Ppy. (1.11)
R

Thus, q(-) = 7n(-; dAN) is the nth-degree monic polynomial orthogonal with
respect to the (indefinite) measure dAy.

The denominator ¢(-) = m,(-; dA\x), when generated by methods to be
discussed in Section 6, can be checked to see whether it vanishes at any of
the points ¢; and, thus, whether the existence of the rational interpolant (1.6)
is in doubt.

If all function values are different from zero, then the numerator polynomial
p or, more precisely, its monic companion, Pmon € Pm, can also be charac-
terized as a discrete orthogonal polynomial. Indeed, it is orthogonal relative
to the measure d)\g\fl)
wi(_l) = f7!/w; instead of f;/w;. This follows immediately from (1.8) if we
write it in the form

having the same support points as dAy, but jumps

a(t:) = fp(ts), i=0,1,...,N, (1.12)
and apply the same reasoning as above to find
/ Pmon () (t) d,\ggl’(t) =0, all p € Ppy—1. (1.13)
R

To obtain p itself, it suffices to multiply pmon(-) = Tm(-; d/\x'l) ) by a suit-
able normalization factor c, for example, ¢ = foq(t0)/Pmon(to) (assuming, of
course, that q(tO) 7é 0, pmon(tO) # O)

The procedure described is particularly attractive if all rational interpolants
Tm,n With m+n = N are to be obtained, since the numerator and denominator
of Tmn, being orthogonal polynomials, can be generated efficiently by the
three-term recurrence relation (cf. 0.2). Some caution, nevertheless, is advised
because of possible build-up of computational errors. These are caused by
the indefiniteness of the inner product (-, -)4xy, in particular by the fact

that the weights w; and wz-(_l) typically alternate in sign. One expects these

errors to be more prevalent the larger the moduli of these weights, hence the
smaller the interval [to, tn]. ‘

Notes to Section 1

1.1. The potential failure of Lg,4;f to converge in the mean to f for the special
choices of nodes studied here must not so much be regarded as a critique of these
choices, but rather as a reflection of the very large class — C[—1,1] - of functions
f. Adding only a slight amount of regularity, for example Lipschitz continuity with
a parameter larger than one half, would restore (mean) convergence. For smoother
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functions, numerical evidence presented in Gautschi (1992, Table 6.1) suggests very
fast convergence.

An analogue of the Erd6s—Turén result for a class of rational interpolants has
been established in Van Assche and Vanherwegen (1993, Theorem 7).

Mean convergence of extended Lagrange interpolation with 7; the Gauss—Kronrod
points is studied in Li (1994). Other types of extended Lagrange interpolation
by polynomials are studied in Bellen (1981) for Lipschitz-continuous functions
f € Lipv, v > %, and in Criscuolo, Mastroianni and Occorsio (1990, 1991) and
Criscuolo, Mastroianni and Vértesi (1992) with a view toward uniform convergence;
see also Criscuolo et al. (1993) and Mastroianni and Vértesi (1993). For yet other
extended interpolation processes and their L,-convergence for arbitrary continuous
functions, see Mastroianni (1994).

1.2. There are well-established algorithms for constructing a rational interpolant
when one exists; see, for instance, Stoer and Bulirsch (1980, Section 2.2) and Graves-
Morris and Hopkins (1981). The approach described in this subsection, based on
discrete orthogonal polynomials (though relative to an indefinite measure) can be
traced back to Jacobi (1846) and has recently been advocated in Egecioglu and Kog
(1989). A numerical example illustrating its weaknesses and strengths is given in
Gautschi (1989).

2. Approximation
2.1. Constrained least squares approzrimation

The problem of least squares ties in with the early history of orthogonal
polynomials. We thus begin by looking at the classical version of the problem.

Given a positive measure dX on the real line R and a function f defined
on the support of d\, we want to find a polynomial p of degree at most n
minimizing the L% \-€ITor,

minimize /R () — FO2dAE) :  p € Pa. (2.1)

Often, the measure dA is a discrete measure dAn concentrated on N distinct
points of R, with N > n (cf. footnote (1) of Section 0.1). If not, we must
assume that f is in L%i y» and we will also assume that all polynomials are in
L%,. On the space P (of all real polynomials), respectively Py_y (if dA =
d\y), we introduce the inner product (0.4),

(u,v)qr = /Ru(t)v(t) dA(), u,v € P (resp. u,v € Pn-1), (2.2)

which renders these spaces true inner product spaces. There exist, therefore,
unique polynomials '
7 (t; dA) = tF + lower-degree terms , k=0,1,2,..., (2.3)
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satisfying
=0 if k#E,
(Wk,Wé)dA{ >0 if kie. (2.4)

These are the (monic) orthogonal polynomials relative to the measure dA (cf.
Section 0.2). There are infinitely many of them if the support of dA is infinite,
and exactly V of them (0 < kK < N —1in (2.3)) if d\ = dAn. The solution
of (2.1) is then given by

v — o = i) dx
p(t) _ng xkmk(t; dA), il e P (2.5)

. the (n + 1)st partial sum of the Fourier series of f in the orthogonal system

{mx}.
Suppose now that we wish to minimize (2.1) among all polynomials p € P,
satisfying the constraints

p(s;) = f(s;), j=0, i, e, m < mn, (2.6)

where s; are given distinct points on R where f is defined. It is then natural
to seek p of the form

p(t) = pm(t; f) + sm(t)6(2), (2.7)

where

oml®) = 116~ 59), (28)
j=0

Pm(-; f) being the unique polynomial in P,, interpolating f at the points

{s;}3* and 6 a polynomial of degree n—m — 1. Every polynomial of the form

(2.7) is indeed in PP, and satisfies the constraints (2.6). Conversely, every such

polynomial can be written in the form (2.7). It thus remains to determine 4.
We have

Lip®) = £ a\O = [pm(ts ) + sm(0)8(8) - £ A

_ f@) —pn(tf) 252
= [ B2 —a] s,

so that our minimization problem (2.1), (2.6) becomes

minimize / [A®) — 6@OPR2()dNE) . 6 €Ppomey,  (2.9)
. R
where
Alt) = f(t);p(':)(t;f) = [s0,51,---,8m,8]f.  (2.10)

Here, the expression on the far right is the divided difference of f of order
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m + 1 with respect to the points sg, s1,...,5m,t, and its equality with A
is a consequence of the well-known remainder term of interpolation. We
see that the desired polynomial é is the solution of an unconstrained least
squares problem, but for a new function, A, and a different measure, 52 dA.
Therefore, the solution of the constrained least squares problem is given by
(2.7) with

ol (A, 7k)s2 an
(5 t) = dkﬁk t 3 dk = __A_’_:___f__rg___ ; 211)
(®) ,CZT% ( )' (ks Tk )52, dr (
where
() = m(-5 52, ). (2.12)

It is required, therefore, to construct the orthogonal polynomials relative
to the measure s2, d), assuming those for d\ are known. This is an instance
of a modification problem; its solution by ‘modification algorithms’ will be
discussed in Section 7.2.

The same idea can be applied to least squares approximation by a rational
function

_ plt)

where ¢ is a prescribed polynomial satisfying
q(t) >0 for t € supp (dA); q(sj) #0, j=0,1,...,m. (2.14)
One finds that

: 2
minimize / [g(—tl - f(t)} dA(¢) : p € Py, (2.15)
r Lq(t)
subject to the constraints
p(s;) .
P2~ f(s)), —0,1,...,m, 2.16
is now equivalent to
o 2 Sm(t)
minimize / A®) -850 2D drt): bePama,  (217)
R g*(¢)
where
t)f(t) — t;
a@) = LI =pulBal) oo Hah). (2.18)
sm(1)
With é so obtained, the desired p in (2.13) is then given by
p(t) = pm(t:af) + sm(t)8(2)- (2.19)

The modification of the measure now involves not only multiplication but
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also division by a polynomial. This requires additional algorithms for gen-
erating the respective orthogonal polynomials, which will be the subject of
Section 7.3.

2.2. Least squares approzimation in Sobolev spaces

In order to approximate (in the least squares sense) not only functions, but
also, simultaneously, some of their derivatives, we may pose the problem

S
minimize / Y PO — FORRdN() : pePn, (2.20)
R s=0
where dMg, ..., d)\s are positive measures on R and each derivative f() is
defined on the support of the corresponding measure d\,. The natural scen-
ario in which to consider this problem is the Sobolev space

H®={7: 3 [/ ar < oo} (221)
o=0

of functions f whose successive derivatives of order ¢ < s are square integ-
rable against the respective measures d\,. If we assume that the measures
dA, are such that the space P of polynomials is a subspace of Hg(R), the
problem (2.20) can be written as

minimize ||p— f ||%{s: p € Py, (2.22)
where the norm || v ||g, = v/(u, u) g, is defined in terms of the inner product

s
(w0, = 3 / 4@ ()0 (£) ddo (8). (2.23)
o=0’R

If d)g has infinitely many points of increase, then, regardless of whether or
not some or all of the other measures d)\,, ¢ > 1, are discrete, the inner
product (2.23) is positive definite on Hg(R) and therefore defines a unique
set of (monic) orthogonal polynomials mx(-) = me(-;Hs), k = 0,1,2,...
satisfying :

=0 if k#UE,
(’R'k,’/rg)Hs{ >0 if kie. (2.24)

These are called Sobolev orthogonal polynomials. In terms of these functions,

the solution of (2.20), as in (2.5), is given by a finite Fourier series,

— = .. _ (f’ ﬂ-k)Hs '
p(t) = kgcmc(t, H,), o= e (2.25)

It is important to note that the inner product in (2.23), if s > 0, no longer
satisfies the basic property (0.9), that is,

(tu, v)n, # (w,tv)n, (s >0), (2.26)
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which means that we can no longer expect the orthogonal polynomials to
satisfy a simple three-term recurrence relation. The numerical computation of
Sobolev orthogonal polynomials (not to speak of their algebraic and analytic
properties!) is therefore inherently more complicated; we will give a brief
account of this in Section 8.

A widely used choice of measures is

dAs(t) = o dA(2), 0c=0,1,2,...,s, (2.27)

where dA is a (positive) ‘base measure’ and the 7, > 0 are positive constants
with 79 = 1. The latter allow us to assign different weights to different
derivatives. The most studied case, by far, is (2.27) with s = 1.

2.8. Moment-preserving spline approrimation

Given a function f on [0, ), we wish to approximate it by a spline function
of degree m with n positive knots. The approximation is not to be sought
in any of the usual L,-metrics, but is to share with f as many of the initial
moments as possible. This is a type of approximation favoured by physicists,
since moments have physical meaning, and the approximation thus preserves
physical properties.

The most general spline in question can be written in the form

Snm(t) =Y ay(r, — )T, (2.28)
v=1

where m > 0 is an integer, uy = de(O, u), a, are real numbers, and
0<M<m< <1 <00 (2.29)

are the knots of the spline. The arbitrary polynomial of degree m that one
could add to (2.28) must be identically zero if the moments of s, ,, are to be
finite. Since we have 2n parameters to choose from — the n coefficients a,
and the n knots 7, — we expect to be able to match the first 2n moments,

00 , 0 .
/ Snm(t)t dt = / fOrdt, j=0,1,...,2n—1. (2.30)
0 0

This problem, not surprisingly, leads to a problem of Gaussian quadrature.
Assume, indeed, for fixed n € N and m € Ng, that

(i) £ € C™ IR,

(i) / f(t)tJ dt exists for 7 =0,1,...,2n—1,

(iii) fO(”)(t) =o(t™ " #)ast— oo, for pu=0,1,...,m,
and define the measure

| (__1)m+1 m+1 g(m+1)
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Then we have the following result.

Theorem 2 Given a function f on [0, 00) satisfying assumptions (i)—(iii),
there is a unique spline function sy, m, (2.28), matching the first 2n moments
of f, (2.30), if and only if the measure d\,, in (2.31) admits a Gaussian
quadrature formula

[7 9000 = 32505 + BE(e), Eom(Prn) =0, (232
v=1

having distinct positive nodes

0<tf <tf<---<tS. (2.33)
If that is the case, then the desired spline s, m, is given by
G Ay
— — U —_—
t aV-—W, 1/—1,2,...,n. (234)

Proof. Since 7, is positive, substituting (2.28) in (2.30) yields
n Ty . oo |
}:a,,/ #(r, — )™ dt :/ Hf()dt, j=0,1,...,2n—1. (2.35)
v=1 0 Y

We now apply m (respectively m + 1) integrations by parts to the integrals
on the left (respectively right) of (2.35). On the left, we obtain

T -
ml(G+1)G+2)- - (G +m)] 1Za / £+ gt
(2.36)
=+ DG+ G4 M)+ m+ DS
v=1l-
On the right, we carry out the first integration by parts in detail to exhibit
the reasonings involved. We have, for any b > 0,

b
1

J+1

1 b L g
- /0 FLF(8) e (2.37)

j+1
IR0~

/wua— O

The integrated term clearly vanishes at ¢ = 0 and tends to zero ast = b — oo
by assumption (iii) with p.= 0, since j + 1 < 2n. The integral on the left
converges as b — 0o by assumption (ii); the same is true, therefore, for the
integral on the right. We conclude that

1 [Ty
/0 dftydt=—— [Totpmar

Continuing in this manner, using assumption (iii) to show convergence to
zero of the integrated term at the upper limit (its value at t = 0 always being
zero) and the existence of [{°t/*#f(#)(t)dt already established to infer the
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existence of [y titetl (et () dt, p = 1,2,...,m, we arrive at
(=1)m* /°° j+mt1 g(m+1
t/f(t _ ggHml p(m+1) 4y 4¢
/o 1(6)de GG+ Grm+1) Jo £

In particular, this shows that the first 2n moments of dA,, all exist. Since
the last expression obtained, by (2.35), must be equal to the one in (2.36),
we see that (2.30) is equivalent to

- g [~ YT j
(@t = [ S e ) g at
v=1 0

m!
j=0,1,...,2n — 1.

These are precisely the conditions for 7;, to be the nodes of the Gauss formula
(2.32) and for a, 7**! to be the respective weights. Both, if indeed they exist,
are uniquely determined. O .

The measure dAp, in (2.31) is neither one of the classical measures nor is
it necessarily positive, in general. Thus we need constructive methods that
also work for sign-changing measures.

The simplest example is the exponential function, f(t) = e, in which
case

1
dA\n(t) = — tmtletdt  (f(t) =€) (2.38)
is a generalized Laguerré measure with parameter @ = m+1, hence indeed one
of the classical measures. Examples of positive measures dA,, are furnished
by completely monotone functions, that is, functions f satisfying

(-1)kf®E) () >0 onRy, k=0,1,2,.... (2.39)
The physically important example of the Maxwell velocity distribution, f (t) =
e“t2 is an example leading to a sign-variable measure,
1
dAn(t) = — "I L (e At (f(E) =eP), (2.40)

where H,,, 11 is the Hermite polynomial of degree m+1. If m > 0, then H,,
has |(m + 1)/2] positive zeros, hence the measure (2.40) changes sign that
many times.

Although the spline s, ,, was constructed to match the moments of f, it
also provides a reasonably good pointwise approximation. Its error indeed
can be shown to be related to the remainder R,(i m Of the Gauss formula (2.32)
in the sense that for any ¢ > 0 one has '

F(t) = snm(t) = RS 1 (hem), (2.41)

where
hem(u) =u ™MDy — )™ 0<u< oo, (2.42)
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From a known convergence theorem for Gauss quadrature on [0, 00) (cf. Freud
(1971, Chapter 3, Theorem 1.1)) it follows, in particular, that for fixed m,

Jim snm(t) = f(t), t >0,

if f satisfies the assumptions of Theorem 2 for alln = 1,2,3,... and if d\n,
is a positive measure for which the moment problem is determined.

Similar approximation problems can be posed on a finite interval, which
then give rise to generalized Gauss—Lobatto and Gauss—Radau quadrature for
a measure d),, which again depends on f(m+1), :

Notes to Section 2

2.1. Least squares approximation by polynomials was considered as early as 1859
by Chebyshev (1859) in the case of discrete measures d\ = dAy. Although Cheby-
shev expressed the solution in the form (2.5), he did not refer to the polynomials
7k(-; dAn) as ‘orthogonal polynomials’ — a concept unknown at the time — but
characterized them, as did other writers of the period, as denominators of certain
continued fractions. A more recent treatment of discrete least squares approxim-
ation by polynomials, including computational and statistical aspects, is Forsythe
(1957). The idea of reducing the constrained least squares problem for polynomials
to an unconstrained one involving a new objective function and a new measure can
be found in Walsh (1969, p. 320). For the extension to rational functions, see Lin
(1988).
2.2. In the case of measures (2.27) with s = 1, the Sobolev-type least squares
approximation problem (2.20) was first considered by Lewis (1947), largely, however,
with a view toward analysing the error of approximation (via the Peano kernel,
as it were). The respective Sobolev orthogonal polynomials were studied later by
Althammer (1962) and Grébner (1967) in the case of the Legendre measure, dA(t) =
dt in (2.27). Other choices of measures d), in (2.23), especially discrete ones for
o > 1, have been studied extensively in recent years. For surveys, see Marcellan,
Alfaro and Rezola (1993), Marcelldn, Pérez and Pinar (1995), and for a bibliography,
Marcelldn and Ronveaux (1995). Special pairs of measures { d)g, dA;} in the case
s = 1, termed ‘coherent’, are studied in Iserles, Koch, Ngrsett and Sanz-Serna
(1990; 1991) and shown to allow efficient evaluation not only of the Sobolev—Fourier
coefficients ¢ in (2.25), but also of the Sobolev polynomials m(-; H;) themselves.
For zeros of such polynomials, see Meijer (1993), and de Bruin and Meijer (1995).
An application of Sobolev-type least squares approximation to the solution of
systems of linear algebraic equations is proposed in Moszyriski (1992). Here, s + 1
is the dimension of the largest Jordan block in the matrix of the system.

~ 2.3. Piecewise constant approximations on R, to the Maxwell velocity distribu-
tion that preserve the maximum number of moments were used in computational
plasma physics by Calder, Laframboise and Stauffer (1983), and Calder and La-
framboise (1986), under the colourful name ‘multiple-water-bag distributions’. The
connection with Gaussian quadrature was pointed out in Gautschi (1984b). Since
piecewise constant functions are a special case of polynomial spline functions, it is
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natural to extend the idea of moment-preserving approximation to spline functions
of arbitrary degree. This was done in Gautschi and Milovanovié¢ (1986), where one
can find Theorem 2 and the error formulae (2.41), (2.42), along with their proofs.
In the same paper, the sign-variable measure (2.40) was examined numerically and
shown to lead, on occasion, to Gauss formulae with negative, or even conjugate
complex, nodes. The analogous approximation on a finite interval, mentioned at
the end of Section 2.3, was studied in Frontini, Gautschi and Milovanovié¢ (1987).
Further extensions can be found in Milovanovié and Kovagevié¢ (1988, 1992), Mic-
chelli (1988), Frontini and Milovanovi¢ (1989), Gori and Santi (1989, 1992) and
Kovagevié and Milovanovié (1996), with regard to both the type of spline function
and the type of approximation.

3. Quadrature
3.1. Gauss quadrature for rational functions

Traditionally, Gauss quadrature rules (cf. Section 0.1) are designed to integ-
rate exactly (against some measure) polynomials up to a maximum degree.
This makes sense if one integrates functions that are ‘polynomial-like’. Here
we are interested in integrating functions that have poles, perhaps infinitely
many. In this case, the use of rational functions, in combination with poly-
nomials, seems more appropriate. The rational functions should be chosen so
as to match the most important poles of the given function. This gives rise
to the following problem.

Let dA be a (usually positive) measure on R, and let there be glven M
nonzero complex numbers (i, ..., {a such that

Cu # 0, 1+Cut#0 on supp (dA), p=12,...,M. (3.1)

For given integers m, n with 1 < m < 2n, find an n-point quadrature rule
that integrates exactly (against the measure d)) the m rational functions

(14 ¢ut)%, p=1,2,... M, s=1,2,...,8,, (3.2)

where s, > 1 and
M
> su=m, (3.3)
p=1 '

as well as polynomials of degree < 2n —m — 1. If m = 2n, a polynomial
of degree —1 is understood to be identically zero. We then have the extreme
case of 2n rational functions (with poles of multiplicities s, at —1/(,) being
integrated exactly, but no nontrivial polynomials. The quadrature rule is then
optimal for rational functions, just as the classical Gaussian rule is optimal
for polynomials; cf. Section 0.1. The latter corresponds to the limit case
M=m=0. :
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In principle, it is straightforward to construct the desired quadrature rule
according to the following theorem.

Theorem 3 Define
m(t) = H(l + Cut)’*, (3-4)
u—_

by (3.3) a polynomial of degree m. Assume that the measure d\/wy, admits
a (polynomial) n-point Gauss quadrature formula, that is,

Wi (t)

/ f(e) A0 _ ‘iwff(t,?)m,?(f), RS(Pyn-1) =0,  (3.5)

v=1
and define
t,=tS, A =uwlwun(t$), v=12,...,n (3.6)
Then
[o©830 = 3 hgte) + 2uto) 37
where
Ralg) =0 if g € Prnomot, or g(t) = (1+ )™, 1< p< M, 1< <

Once again, we are led to a modification problem that involves division by
a polynomial, so that the algorithms of Section 7.3 become relevant.

Proof of Theorem 3. For p=1,2,...,M; s =1,2,...,s,, define

W (t)
el = Wi g

Since m < 2n and s > 1, we have qu s € Ppy_s C Pogy—1, and therefore, by
(3.5),

dA(t) dA(t) < ¢ 'G

I i - [ ust® ) ;wu s (69)
- Z ¢ _wm(ty) _ Z

Yol Cut$)s (1+ Cuts)® Cut,,
S acond
where (3.6) has been used in the last step. This proves the Aassertion_in the
D sopiineof (3.8). _
To prove the bettem—pary of (3.8), let p be an arbitrary polynomial in

irﬁy arand o
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P2s,—m—1. Then, since pwy, € P2,—_1, again by (3.5) and (3.6),

Jiptraxe) = [ it

= Zw p tG Wm(tG Z Aup(tu

v=1

a

The existence of the Gaussian quadrature formula in Theorem 3 is assured
if it exists for the measure d\ and the polynomial wy, has constant sign on
supp (d)). This is typically the case if the complex poles —1/(, (if any)
occur in conjugate complex pairs and the real ones are all outside the support
interval of dA.

Quantum statistical distributions provide important examples of integrals
amenable to rational Gauss-type quadrature. Thus, the Fermi-Dirac distri-
bution gives rise to the generalized Fermi-Dirac integral

oo thy /141 10t
~—/ 6>0, neR (3.9

Fie(n,0) = ettt 1 t,

where the k-values of physical interest are the half-integers %, g and 5 . Sim-

ilarly, Bose-Einstein distributions lead to the generalized Bose~E1nstem in-
tegral

tk,/l + 10t
Gi(n,8) = /0 8>0, n<o, (3.10)

—-17+t -1
with the same values of k as before. For the integral in (3.9), the poles are

located at
t=n+@Qu—1)ir, p=12,3,..., (3.11)

whereas for the one in (3.10) they are at
t=n+2uir, p=0,1,2,.... (3.12)

This suggests taking for the {, in (3.1) the negative reciprocals of (3.11) and
(3.12), respectively. If in the integral (3.9) we match the first n pairs of
complex poles, we are led to apply Theorem 3 with m = 2n and

n

wan(t) = J]1(1 + &ut)? + n2t?),
p=1

where £, and 7, are the real and imaginary parts, respectively, of (, =
—(n 4 (21 — 1)iw)~L. Similarly for the integral (3.10), where we need to
match the real pole (at n) and the first n — 1 pairs of complex poles. This
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calls for Theorem 3 with m = 2n — 1 and
n—1

wan-1(t) = (1+ &t) [T 11+ &ut)* + n2eY,
pu=1

where £, and 7, are the real and imaginary parts of {, = —(n + 2u im)~L.

3.2. Slowly convergent series

It may seem strange, at first, to see infinite series dealt with in a section
on quadrature. But infinite series are integrals relative to a discrete measure
supported on the positive integers! It is not unnatural, therefore, to try to
approximate such integrals by finite sums. We do this for a special class of
series in which the general term can be expressed as the Laplace transform
of some function evaluated at an integer. Such series exhibit notoriously slow
convergence. We will show that they can be transformed into an integral
containing a positive, but nonclassical, weight function and then apply Gauss
quadrature to obtain an effective summation procedure.
Thus, suppose that

S=Sa  a=(LHE), (3.13)
k=1

where Lf is the Laplace transform of some (known!) function f, that is,

(LF)(s) = /0 oot £ () dt. (3.14)

Then by Watson’s lemma (see, for example, Wong 1989, p. 20), if f is regular
near the origin, except possibly for a branch point at t = 0, where f(¢) ~ A,
A>0,ast — 0, and if f grows at most exponentially at infinity, one has
ar, ~ k™! as k — 0o, showing that convergence of the series (3.13) is slow
~ unless A is large. However, we can write

=Y (enm =3 [Tt
/ Ze (k— 1)t ——tf(t)

U=

_ /O 1—1e~t L tf(t) dt

assuming the interchange of summation and integration is legitimate. This
yields the following integral representation:

S= / p L (t (3.15)
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involving the weight function

et) =

Such integrals occur frequently in solid state physics, where € is known as Ein-
stein’s function. (Of course, € is also the generating function of the Bernoulli
numbers.)

There are two approaches that suggest themselves naturally for evaluating
the integral (3.15). One is Gaussian quadrature relative to the weight function
€, if f(t)/t is sufficiently regular, or, if not, with respect to some modified
weight function. The other is rational Gauss quadrature of the type discussed
in Section 3.1, writing

on [0, 00). (3.16)

et —

© t f) _
S=/ et 3.17
o T-et t °© (3:17)
letting e~*dt = dA(t), and matching as many of the poles at +2uim, p =
1,2,3,..., as possible. Both approaches call for nonclassical orthogonal poly-
nomials.

To give an example, consider the series
S = , 0<rv<l, >1, 3.18
Z (k +a)™ g m= (3.18)

where a is a complex number with Rea > 0, Ima > 0. Writing the general
term of the series as

K7 (k+a)™™ = (LK),

we note that

I L PR oA
“\fra=y k), (k+a)™= =1 ° (k),

so that the convolution theorem for Laplace transforms (see, for example,
Widder 1941, Theorem 12.1a)

Lg-Lh=Lgx*h,
where

G+h0 = [ g(r)h(t — ) dr

yields

t ;
0= GO /oc“a(t—r)(t‘”m_lf""d“
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After the change of variable 7 = tu, this becomes

tm—-ue—-at 1 . 1

t atu 1 — m— -V d i

&) = A=) /0 (1 —u)" u ™ du

The integral on the right, up to a constant factor, can be recognized as
Kummer’s function M(a, 8, z) with parametersa = 1—v, 8 =m+1—v and
variable z = at (see Abramowitz and Stegun, eds, 1964, Equation 13.2.1).
Thus,

ft) =t'"gm_1(t; a,v), (3.19)
where
t"e —at
gn(t a, l/) 'f'(;:_—z————)- M(l—l/,n+2——u,at), n=0, 1,2,... . (320)

It is known that Kummer’s function satisfies a recurrence relation relative
to its second parameter (Abramowitz and Stegun, eds, 1964, Equation 13.4.2),
from which one gets for g,(-) = gn(-;a,v) the three-term recurrence relation

1 T n+4+l1-v t
t)=—— ([t 1"~ ) — = gn_1(t) }, >0,
gn+1(t) par] {(+ . )gn() - In 1()} n>

510 = i -

(3.21)
To compute gm,-1 in (3.19), it is enough, therefore, to compute go(t) =
e *M(1—v,2—v,at)/T(2—v) and then to apply (3.21). On the other hand,
go is expressible (Abramowitz and Stegun, eds, 1964, Equation 13.6.10) in
terms of Tricomi’s form of the incomplete gamma function (Abramowitz and
Stegun, eds, 1964, Equation 6.5.4)

gﬁ(t; a,v) =e % *(1 — v, —at), (3.22)
where
T*(\ 2) = o et lat (3.23)
T ()‘) . by

Since gg is known to be an entire. functlon of all its variables (see Tricomi
1954, Chapter IV), it follows from (3.21) that each function g,(t) is an entire
function of ¢. Putting (3.19) into (3.15), we thus finally arrive at

-1 00
_ -v . .
Z Fram = T e,
Rea > 0, O<r<l, m>1,

with € given by (3.16) and gm—1 an entire function of t. We can now proceed
evaluating the integral on the right as discussed above, either treating ¢t e(t)
as a weight function in ordinary Gaussian quadrature, or writing t~Ve(t) =
(t/(1—e7%))t7Ye~ and using t et dt = d\(t) in rational Gauss quadrature.
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It is worth noting that in this way we can sum series of the more general
form

S=Yk"Trk), O0<v<l, (3.25)
k=1
where 7(k) is any rational function
r(s) = g_(_s_)’ degp < degq. (3.26)
q(s)

It suffices to decompose 7 into partial fractions and to apply (3.24) to each
of them. The parameter —a in (3.24) then represents one of the zeros of g,
and m its multiplicity. If the condition Rea > 0 is not satisfied, we can sum
a few of the initial terms directly until the condition holds for all remaining
terms.

We remark that for series with alternating sign factors, that is,

e o]
S'=Y(-)ay,  ar=(LS)(K), (3.27)
. k=1
analogous techniques can be applied, with the result that
oo :
= [ rwea, (3.28)
Jo
where now
1
t) = 3.29
olt)= 577 (3.29)

is what is known in solid state physics as Fermi’s function.

Notes to Section 3

3.1. Convergence of the quadrature rule (3.5), when m = 2n, supp(d\) = [-1,1]
and {, € (—1,1) with s, = 1, for functions f analytic in a domain containing the
interval [—1, 1] in its interior has been studied by Lépez and Illan (1984). Theorem
3, in this case, is due to Van Assche and Vanherwegen (1993, Theorem 1). These
authors also consider a quadrature rule of the type (0.1) with supp(d\) = [-1,1]
whose nodes are the zeros of the rational function (1 +(,t)~! + Zz;i cu(1+¢ut)t
orthogonal (in the measure d\) to 1 and to (1 +(,t)~!, p=1,2,...,n — 1, where
Cu € (—1,1) are given parameters. This is no longer a ‘Gaussian’ formula, as would
be the case for polynomials, but leads to polynomials orthogonal with respect to the
measure dA/(wp—1wn), where wy, (t) = H:‘:l(lﬁ-cﬁ,t). The use of conjugate complex
parameters (, in the context of rational quadrature rules is considered in Lépez and
Illdn (1987). Theorem 3 in the general form stated is from Gautschi (1993b), where
one can also find numerical examples. The application of rational Gauss formulae to
generalized Fermi—Dirac integrals (3.9) and Bose-Einstein integrals (3.10) is further
discussed in Gautschi (1993c) and has proven to be very effective.
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3.2. The use of Gaussian quadrature for the purpose of summing infinite series has
already been proposed by Newbery (unpublished). Summation of series (3.13) and
(3.27) involving the Laplace transform by means of Gaussian quadrature relative to
Einstein and Fermi weight functions, respectively, was first proposed in Gautschi
and Milovanovi¢ (1985). The technique has since been applied to series of the type
(3.25), and to analogous series with alternating sign factors, in Gautschi (1991a),
and was also used in Gautschi (1991b) to sum slowly convergent power series of
interest in plate contact problems. For the latter, an alternative complementary
treatment has been given in Boersma and Dempsey (1992). Series of the type
(3.18) were encountered by Davis (1993) in his study of spirals, in particular in his
attempt to smooth certain discrete spirals ascribed by him to the 4th-century BC
mathematician Theodorus. The treatment given here is taken from Davis (1993,
Appendix A), where one also finds numerical examples. Alternative approaches
using special function theory can be found in Boersma and Dempsey (1992), and
using Euler-Maclaurin summation in Lewanowicz (1994); see also Davis (1993, pp.
40-41). Series (3.13) and (3.27) in which the terms a) are values f(k) of certain
analytic functions f are summed in Milovanovié (1994) by Gaussian quadrature
involving weight functions cosh™(t) and sinh(t) cosh™%(t) on R,. Applications
to series of the type (3.18), also with alternating signs, and to the Riemann Zeta
function, are given in Milovanovié¢ (1995).

'PART II: COMPUTATION

4. Computation of Gauss-type quadrature rules

In many applications, as we have seen in Part I, the need for orthogonal
polynomials arises via Gauss-type quadrature with respect to some measure
dA. We therefore begin by discussing the computational aspects of Gaussian
quadrature rules.

4.1. Gausstan rules

We assume that dA is a positive measure whose support contains infinitely
many points, and all moments of which exist. There then exists, for each
integer n > 1, an n-point Gauss formula

n
[IODO =010+ R, R@mo) =0 (a1)
v=1

The connection with orthogonal polynomials is well known (cf. Section 0.1).
The nodes t$ are the zeros of m,(-; d)), while the weights AG — also called
the Christoffel numbers — can be expressed in various ways in terms of the
same orthogonal polynomials. For purposes of computation, however, it is
better to characterize both quantities in terms of an eigenvalue problem.
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To describe this characterization, we recall (¢f. Section 0.2) that every
system of (monic) orthogonal polynomials 7g( - ) = mk( - ; d)) satisfies a three-
term recurrence relation

7rlc+1(t) = (t - ?r’—c—):?;)(ti_o’ﬁkwk;—r;((tt))’ _ 1 k=0, L,2..., (4.2)

where the coefficients ax = ak(dA), B = Br(dA) are real numbers uniquely
determined by the measure d), and each (. is positive. With the recursion
coefficients ay, O; we associate an infinite, symmetric, tridiagonal matrix

ag \/E 0
VB a1 VP2
Joo = Jeo(dA) = VB o2 VPBs . (43)

0

L .

the Jacobi matriz belonging to the measure dA. Its n x n leading principal
minor matrix will be denoted by

Jo = Jo(dX) = [Joo( dN)]nxn- ' (4.4)

The Gaussian nodes and weights can then be expressed in terms of the ei-
genvalues and eigenvectors of J,(dA) according to the following theorem.

Theorem 4 Let , be the eigenvalues of J,(dA), and u, the corresponding
- normalized eigenvectors, so that

Jn(dN)uy = zpu,, ulu, =1, v=12,...,n. (4.5)
Then the Gaussian nodes t& and weights AG in (4.1) are given by
t¢ =1, A = ,Bou?,’l, v=12,...,n, (4.6)
where u, 1 is the first component of u, and fp = f; dA(t).

Thus, the Gauss formula can be generated by computing the eigenvalues
and (first components of) eigenvectors of a symmetric tridiagonal matrix.
This is a routine problem in numerical linear algebra and can be solved by
powerful algorithms such as the QR algorithm with carefully selected shifts
(see, for example, Parlett 1980, Sections 8.9-8.11). The approach via eigen-
values is generally more efficient than traditional methods based on polyno-
mial rootfinding. A

Note also that the positivity of the Gauss weights /\,C,: is an immediate
consequence of (4.6).

Proof of Theorem 4. Let 7ig(-) = 7 (- ; dA) denote the normalized orthogonal
polynomials, so that g = \/(m, Tk) gx k- Inserting this into (0.11), dividing
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by \/(7k+1, Tk+1)dr, and using (0.12), we obtain
N Tk ‘ -1
Trt1(t) = t —ax) —= — B ==,
¥ ) Vo v/Br+1Bx
or, multiplying through by /B4, and rearranging,

tie(t) = arfr(t) + VBrfk—1(t) + v/ Bes1Tr+1(t), 4.7)
k=01,2,...,n—1. '

In terms of the Jacobi matrix J,, = J,(d)\) we can write these relations in
vector form as

tit(t) = Juft(t) + VB, in(t)en, (4.8)

where @(t) = [#o(t), #1(2), ..., 7n-1(t)]T and e, = [0,0,...,0,1]T are vectors
in R™. Since t$ is a zero of 7y, it follows from (4.8) that

tx(tS) = J,7(tS), v=1,2,...,n. (4.9)

This proves the first relation in (4.6), since 7 is a nonzero vector, its first
component being

o = By /2. ~ (4.10)

To prove the second relation in (4.6), note from (4.9) that the normalized
eigenvector v, is

-1/2
1 . -
Uy = CrOETCINE #(t<) (Z it ) #(tS).

Comparing the first component on the far left and right, and squaring, gives,
by virtue of (4.10),

1
> =1 Ty (tS)

On.the other hand, letting f(t) = #,_1(t) in (4.1), one gets, by orthogonality,
using (4.10) again, that

=Bouz;, v=12...,n (4.11)

n .
ﬂé/ 26#—1,0 = Z Afﬁu,1(t§) (6u—1,0 = Kronecker delta),

or, in matrix form,
PAC = gi/%e,, (4.12)

where P € R™%" is the matrix of eigenvectors, \C € R™ the vector of Gauss
weights, and e; = [1,0,...,0]7 € R™. Since the columns of P are orthogonal,
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we have

PTP=D, D=diag(d,do,...,dn), dv= #a,(t5).

Now multiply (4.12) from the left by PT to obtain
D)C =,@é/2PT61 :ﬂ5/2~ﬂ0_1/2e =e, e=[1,1,...,1]T. _

Therefore, \¢ = D~ e, that is,
1
2 = - , v=12,...,n.
Yo e A (tS) ’

Comparing this with (4.11) establishes the desired result. O

Similar techniques apply to generate Gauss—Radau and Gauss-Lobatto
quadrature rules. This will be discussed in Sections 4.2 and 4.3. Before
we do so, however, it is useful to pursue the connection between Gauss quad-
rature formulae and linear algebra just a bit further.

If U = [u1,ug,...,un] is the (orthogonal) matrix of the normalized eigen-
vectors of J-= J,(d)), then, by (4.5) and the first relation in (4.6),
JU=UD, UTU=1I  D;=diag(,¢5,...,t9) (4.13)

provides the spectral resolution of J. The second formula in (4.6), on the
other hand, can be written in matrix form as

VA =B €TU, VA= [\/Xla\/)@\/x‘gr (4.14)

where e; = [1,0,... ,0]T is the first coordinate vector. Letting @ = U T we
can summarize (4.13), (4.14) by

Q"DQ=J,  Q"VA=h e
We then have

1 of 1 T {1 OT]

0 QT V2 Dy 0 Q

[ 1 e _[ 1 \/BEe%"]
QTVX QTDQ Vhea J |

Thus, the ‘Gauss matrix’ in the middle on the far left is connected with the
(slightly extended) Jacobi matrix on the far right by the orthogonal similarity
transformation (4.15). This is important for two reasons: it shows that the
passage from the Gauss quantities (more precisely, the n square roots (AG)1/2
and n nodes t$) to the recursion coefficients (more precisely, the 2n quantities

1/2 o1/2 1/2
ﬂo/ 1/ /

vee s Bn5y, a0, 1, ...,0n-1) is a stable process in terms of linear

(4.15)
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perturbations. (Orthogonal transformations leave the Euclidean length of
vectors unchanged.) Secondly, (4.15) suggests Lanczos-type algorithms for
computing the recursion coefficients (cf. Section 6.2).

4.2. Gauss-Radau rules

We write the Gauss—Radau formula in the form
n
[ 10N = NEf(@) + S AFE) + RE(S),  RE®m) =0, (416)
v=1

where a = inf supp(d\) is assumed to be a finite number. (Everything below
will also be valid if a < inf supp(dA).) We recall from Section 0.1 (where n
is to be replaced by n+ 1) that the nodes tZ are the zeros of m,(-; d),), that
is,

Tt dA) =0, v=1,2,...,n, (4.17)

where dA.(t) = (t — a)dA(¢), and that, with the nodes so determined, the

formula (4.16) must be interpolatory, that is, have degree of exactness n.
With #g(-) = #k(-; d\) denoting, as before, the normalized orthogonal

polynomials, we adjoin to the n relations (4.7) the additional relation

tn(t) = 08 7n(t) + VBafno1(t) + \/Bar1m 1 (). (4.18)

Here, Bn = Bn(dA), Br+1 = Pr+1(dA), and o}, is a parameter to be determ-
ined; once oy, is known, (4.18) defines =, ;. Letting

w(t) = [7o(t), m1(t),- .., 7n®)]F,  eny1=10,0,...,1]T € R*,

we write (4.7) and (4.18) in matrix form as

tit(t) = Jp 1 ®(t) + \/Bnt1mp 1 (Eenst, (4.19)
where
B 0 ]
VB ’ :
mi1 = Jny1(dA) = - JBD |- (420)
V ,Bn—l Qn—1 \/B;
| 0 VB o

We now choose o, in such a way that 7* +1(@) = 0. By (4.18), this requires
that -

aitn(a) — altin(a) — /Buiin-1(a) =0,
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or, reverting to monic polynomials and recalling that 7n_1 /7 = ,3,1/ 2 1 [T,

* Wn-l(a‘)
a, =a-— . 4.21
n ﬁn T, (a) ( )
(The denominator 7, (a) does not vanish by the assumption on a.) Therefore,
Tpe1(t) = (t — a)wn(t), Wn, € Pp, (4.22)
and, by (4.19), the zeros to = a, t1,t2,...,tn of | are the eigenvalues of
Jr i1, with #(a), #(t1),...,®(ts) the corresponding eigenvectors. We now
show that t, = tf, v=1,2,...,n, that is, except for a constant factor,
wn(t) = ma(t; dAg)- (4.23)

By (4.18) we have indeed

Vﬁn+17r;;+1(t) = (t—ap)Tn(t) — \/_ﬂ—r:ﬁnd(t)
= (t— an)@n(t) = VBaTn-1(t) + (an — o7,)Tn(t)
= VBrr1fns1(t) + (om — oy, )fn(t),

where in the last step we have used (4.7) for k = n. There follows, for any
pE ]Pn—ly

Vst [ (OO O = Bass / wn(O)p(t) - (t — a)dA(t)
= [ [Brirfsn(8) + (e — @) a(t)lo(t) A(E) =

by the orthogonality of the #x. This proves (4.23).
By reasonings virtually identical with those in the proof of Theorem 4, one
finds that

AR = Bow,,  v=0,1,2,...,m, (4.24)

where u,,,l is the first component of the normalized eigenvector u, of Jj .,
corresponding to the eigenvalue t2 (where t§ = a). We thus have the following
result.

Theorem 5 The Gauss-Radau nodes t§ = a and tF, ..., tE are the eigen-

values of the matrix J3,;(dA) in (4.20), where o, is defined by (4.21). The
Gauss—Radau weights AE are given by (4.24), where u,,; is the first com-
ponent of the normalized eigenvector u, of Jj;,;(d)) corresponding to the

eigenvalue t2.

The same theorem also holds for Gauss-Radau formulae with the fixed
node at the upper end of the support interval. That is, if dX has a support
bounded from above, the number a, both in the formulation of Theorem 5
and in (4.16) and (4.21), may be replaced by b > sup supp(d\).

Computing ¢}, by (4.21) may raise some concern about the possibility of a
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large cancellation error. The example of the Jacobi measure dA(®F) t)=(Q0-
t)(1 + t)? dt on [—1, 1], however, suggests that this concern is unwarranted
In this case, say for a = —1, one indeed finds that

7Tn_1(—1) 1+ ¢ n

Bn ﬂ-n(_.]_) = —2 (1 + %ﬁ_) (1 + g__tz%) (d/\ = dA(au@))’

which for n — oo tends to —-§ so that for large n at least, there is np danger
of cancellation. It is also interesting to note that for the generahzed Laguerre
measure dA(®)(t) = t%e~tdt on [0,0), and a = 0, one has o =mn.

4.3. Gauss-Lobatto rules

Assuming that d) has bounded support, we write the Gauss—Lobatto formula
in the form

f F®)dAE) = A f(a) +Z)\Lf(t’“ )F A fO) + B0

n(P2n+1) =0,

where a < inf supp( d)\) and b > sup supp(d)). We recall from Section 0.1
that the interior nodes tZ are the zeros of m,(-; d), ), that is,

o (tL; dAgp) =0, v=12,...,n, (4.26)

where d),5(t) = (t—a)(b—t)dA(t), and that with these nodes so determined,
the formula (4.25) must be interpolatory, that is, have degree of exactness
n + 1. We proceed similarly as in Section 4.2, but adjoin to the n relations
(4.7) not one, but two additional relations:

tin(t) = anfn(t) + VBaftn-1(t) + 1/Bria ™ n1(t),
tmp1(8) = o1y () + v/ Br17n(t) + /Bt ia(t),

where oy, ., By, are parameters to be determined and an = a,(d\), B, =

Bn(dA), Bntz = Bri2(d)). We now define

RN 0 ]
VB a1 VB

Jnta = Jnya(dd) = an-1  VBn ’

(4.27)

VBn Qn ﬁ;+1
0 Brt1  Ony1 |

(4.28)
so that, with the usual notation

7(t) = [{o(t),. .., (), a1 (O]F,  eny2=1[0,...,0,1]T € R™2,
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the relations (4.7) and (4.27) can be written in matrix form as

ti(t) = Jpia®(t) + 4/ Briampia(t)enya. (4.29)

We now choose a1, B 1 such that 7y, 5(a) = 7, 2(b) = 0. By the second
relation in (4.27) this requires

(t —ap )1 () — /B iyTn(t) =0  fort=a,b,

or, using the first relation in (4.27) to eliminate Tr;; e

The expression in brackets, however, is / ﬂn+17rn+1(t); thus,

(t—any1) V Br1Tnt1(t) — Bpy1Tn(t) = for t = a,b.

Converting to monic polynomials, we obtain the 2 x 2 linear system

[ Tnt1(a) mn(a) ] [ Qpt1 } _ [ ampy1(a) ]

Tnt1(b)  mn(b) Bt b t1(b)

By assumption on a and b, we have sgn[mn,i1(a)mn(b)] = (_1)n+1 and
sgn|mn41(b)mn(a)] = (—1), so that the determinant is nonzero and, in fact,
has sign (—-1)”"‘1. The system, therefore, has a unique solution, namely

nil = (amit1(a)mn(b) — bmny1(b)mn(a))/ A,
a:»:ll = (ZL*Z;7fn+1(Ub)7fn+17(rb)+/lAn,7r (4.30)
where
Ap = Tnt1(a)mn(b) — Tn+1(b)Tn(a)- (4.31)

Since both A, and 7rn+1(a)7rn+1(b) have the sign (—1)"*1, we see that 3, >
0, so that m};_ ; and 7y 5 in (4.27) are uniquely determined real polynomials,
and J; o in (4.28) a real symmetric tridiagonal matrix. Its eigenvalues, by
(4.29), are the zeros of 7, , 5, among them a and b. Writing

Tpyo(t) = (t —a)(b — t)wn(t), wp, € Pp, (4.32)
we now show that, up to a constant factor, ‘
wn(t) = mn(t; dAap), (4.33)

so that the eigenvalues of J;; 5 are precisely the nodes of the Gauss-Lobatto
formula (4.25), including a and b (cf. (4.26)). Using in turn the second and
first relation of (4.27), we have

VBri2mpa(t) =(t — op1)mhi1(8) — /Br 1 Tn(2),
2V, :8;+1ﬁn+27r:;+2 (t) =(@t- a:;+1)[(t — 0 ) T (t) — \/B_Wn 1(t)] — Br+17n (t)
=(t— 0‘:&1)\/ Brt1Ttnt1(t) — ﬁn+17"n(t)'
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It follows that my , 5 is orthogonal relative to the measure d\ to polynomials
of degree < n, which by (4.32) implies (4.33).

Since, again by (4.29), the eigenvectors of J, 5 are #(tZ), v =0,1,...,n,
n + 1, where t(l)’ = a, tk +1 = b, the now familiar argument (used previously
in Sections 4.1 and 4.2) yields the following theorem.

Theorem 6 The Gauss-Lobatto nodes t§ = a, t& w1 = band tf ... L
are the eigenvalues of the matrix Jg5(dA) in (4.28), where o}, G5, are
defined by (4.30), (4.31). The Gauss—Lobatto weights AL are given by

/\5 :ﬂouil, v=0,12,...,n,n+1, (4.34)

where u,,1 is the first component of the normalized eigenvector u,, of J;;, 5(d\)
corresponding to the eigenvalue tL.

Since, as already noted, the two terms defining A, in (4.31) are of opposite
sign, there is no cancellation in the computation of Ay, nor is there any in
computing ;.. For o, ; this may no longer be true (indeed, o +1 =0 for
symmetric measures!), but here it is more the absolute error than the relative
error that matters.

The construction of Gauss-type quadrature formulae is just one of several
instances illustrating the importance of the recursion coefficients ay(dA),
Br(dA) for computational purposes. It is for this reason that all our con-
structive methods for orthogonal polynomials are directed toward computing
these coefficients.

Notes to Section 4

4.1. The fact that Gauss quadrature nodes can be viewed as eigenvalues of a
symmetric tridiagonal matrix — the Jacobi matrix — has long been known. The
characterization of the Gauss weights in terms of eigenvectors seems more recent;
it was noted in Wilf (1962, Chapter 2, Exercise 9) and previously, around 1954, by
Goertzel (Wilf 1980), and has also been used by Gordon (1968). The importance of
these characterizations for computational purposes has been emphasized by Golub
and Welsch (1969), who give a detailed computational procedure based on Francis’s
QR algorithm. Alternative procedures that compute the Gauss nodes as zeros of
orthogonal polynomials by Newton’s method or other rootfinding methods not only
require considerable care in the selection of initial approximations, but also tend to
be slower (Gautschi 1979). Also of importance is the inverse problem (Boley and
Golub 1987) — given the Gauss nodes and weights, find the corresponding Jacobi
matrix — and its solution by Lanczos-type algorithms.

4.2, 4.3. The eigenvalue techniques described for generating Gauss-Radau and
Gauss-Lobatto quadrature rules are due to Golub (1973); our derivation slightly
differs from the one in Golub (1973). '
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5. Moment-based methods

The classical approach of generating orthogonal polynomials is based on the
moments of the given measure dA:

ukzuk(d/\):/t'“d)\(t), k=0,1,2,... . (5.1)
’ R

The desired recursion coefficients can be expressed in terms of Hankel de-
terminants in these moments,

D; D;
ak(d/\) = D‘Iﬂ - 'D"E
D,':Lle e k=01,2,..., (5.2)
Dk
where Do = D_y = 1, Dy = pg, Dj = 0, D} = w1 and D, Dy, m >
2, are determinants whose first row consists of po, p1,...,H4m—1 and ug,
K1y - - -y bm—2, fm, respectively (the others having the subscripts successively

increased by 1). Likewise, the orthogonal polynomials themselves admit the
determinantal representation

Ho M1 o Hn-l Hn
1 M1 p2 o Hn Hnt1
o (t; AX) = o . (5.3)
" Un-1 Pn - Hm—2 H2n—1
1 ¢ .. t'n,——l "

The trouble with these formulae is that the coefficients oy, G, and with them
Tn, become extremely sensitive to small changes (such as rounding errors) in
the moments as k increases. In other words, the (nonlinear) map

Ko: R»SR™ pep, - (5.4)
which maps the moment vector yu = [uo, p1,- - -, uzn_l]T to the vector p =
[@o, ... 0m—1,00,-- -, ﬂn_ﬂT of recursion coeficients becomes extremely ill

conditioned. Therefore it is important to study the condition of such moment-

related maps.
A natural idea to overcome this difficulty is to use modified moments in-

stead. That is, given a system of polynomials {pk}, one uses

my, = mi(d)) = f pe(®)dA(E), k=0,1,2,..., (5.5)
R
in place of ug. One then has a new map K,
K, : R™ - R™  mw p, (5.6)
where m = [mg, my,... ,mgnml]T, which one hopes is better conditioned than
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the old map (5.4). We discuss the conditioning of these maps in Section
5.1. In Section 5.2 we develop an algorithm that implements the maps K, in
(5.4) and (5.6) when the polynomials py defining the modified moments (5.5)
satisfy a three-term recurrence relation. An example will be given in Section
5.3.

5.1. The conditioning of moment maps

The analysis of the map K, in (5.4) or (5.6) is facilitated if the map is thought
of as a composition of two maps,

K,=H,o Gna (5'7)

where Gy, : R?" — R?" maps p (respectively m) into the Gaussian quadrature
rule,

Gpn: u (resp. m) — v, v=[A1,- s An, b1, ..,tn]T, (5.8)

where A, = AG, t, = t$ (¢f. (4.1)), and Hy, : R?™ — R?" maps the Gaussian
quadrature rule into the recursion coefficients,

H, : v = p. (5.9)

The reason for this is that the map H,, as was seen at the end of Section
4.1, is well conditioned, and Gy, is easier to analyse. For a direct study of the
map K, see, however, Fischer (1996).

Just as the sensitivity of a function f: R — R at a point z can be measured
by the magnitude of the derivative f’ at z, in the sense that a small change dz
of x produces the change df(z) = f'(x) dz, we can measure the sensitivity of
the map Gp: R?™ — R2" at a given vector p (respectively m) by the magnitude
of the Fréchet deérivative at p (respectively m). For finite-dimensional maps,
this derivative is nothing but the linear map defined by the Jacobian matrix.
We thus define

cond G, = || G, ||, (5.10)
where by 8G,, we denote the Jacobian matrix of the map G, and where for
[| - || we can take any convenient matrix norm. Note that this concept of

condition is based on absolute errors; one could refine it to deal with relative
errors as well, but we shall not do so here.

5.1.1. We begin with the map G, for ordinary moments. Since the Gauss
formula (4.1) is exact for the first 2n monomials #/, j = 0,1,...,2n — 1, we
have

n
Z/\,,t{;_:/tfd,\(t) wi, j=0,1,...,2n—1,
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which can be written as
n

d(v) = p, ei(v)=)_Mt, j=0,1,...,.2n—1. (5.11)

v=1

The map G, consists in solving this (nonlinear) system for the unknown
vector 7, given the vector . The Jacobian OGp, therefore, is the inverse of
the Jacobian 8% of ®. This latter is readily computed to be

I ST | 0 0 ]
| t1 et A\ An
o= £ ... 21t e 2Antn =TD;,
|2 2l (o= DAY - (2n - DA
where T is the confluent Vandermonde matrix
[ 1 1 0 )
t ceetn 1 e 1
T=1| & ... 2t 2tn, (5.12)
|t 2l Q-1 - (2n— 1)E2?

and D) the diagonal matrix
Dy = diag(1,...,1,A1,..., ). (5.13)
Therefore,
0G, = DY'TL. (5.14)

It is now convenient to work with the uniform vector and matrix norm
-l =1l - lloor Since 37, A, = po implies A, < po, and Ayt > pgl, it
follows readily from (5.14) that

1 8Gy || > min(L, ug") | T -

Since the factor on the right involving g is unimportant, we shall henceforth
assume that pg = 1 (which amounts to a normalization of the measure d\).
To obtain a particularly simple result, we further assume that d\ is supported
on the positive real line,

supp(dA) C Ry.

It then follows from norm estimates for the inverse confluent Vandermonde
matrix (see Gautschi 1963) that

3:1(1 + tV)2

minlSVSn {(1 + tu) \ T;i‘=1 (tu - tu)2}

| 0Gn || >

u#v
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By definition (5.10) of the condition of Gy, and because the {¢,} are the zeros
of mp(+) = mp(-; dA), we can write this inequality more elegantly as

ma(=1)
minlgugn{(l + tll)[ﬂ":m(tl/)]z} .

Elegant as this result may be, it is also quite disconcerting, since orthogonal
polynomials are known to grow rapidly with the degree when the argument
is outside the support interval. In (5.15), the argument is -1, a good distance
away from R, , and squaring the polynomial does not help either! Since the
denominator in (5.15) grows only moderately with n, we must conclude that
G, becomes rapidly ill conditioned as n increases.

To illustrate (5.15), consider the (normalized) Chebyshev measure dA(t) =
-};[t(l —t)]7Y2 on [0,1], for which 7, = T, the ‘shifted’ Chebyshev poly-
nomial, except for normalization. It then follows from (5.15) by elementary
calculations that

(5.15)

cond G, >

(3+V/8)"
64n2

The lower bound happens to grow at the same exponential rate as the (Turing)
condition number of the n x n Hilbert matrix!

cond G, > (mn =T5).

5.1.2. We consider now the map Gy, : m — 7, where m € R*" is the vector of
modified moments (5.5). We assume that the polynomials py defining these
modified moments are themselves orthogonal, but relative to a measure, ds,
over which we can exercise control,

pe(-) =me(-5ds),  k=0,1,2,.... (5.16)

The hope is that by choosing ds ‘close’ to the target measure d\, there is
little chance for things to go wrong during the ‘short’ transition from the pg
to the my.

In analysing the condition of G, one arrives at a more satisfying result
if, instead of the modified moments my, one departs from the normalized
modified moments

~ myg

mg = ;7——,  k=0,1,2,...; | pkllas = \/(Pk,Pk) ds - (5-17)
| & s |
We thus consider the map
Gn: R SR™ ey, = [ig, M. .., Mon-1]T.  (5.18)

The preliminary map m +— m is a perfectly well-conditioned diagonal map,
and therefore does not distort the condition of Gy,.
Similarly, as in (5.11), the map G,, amounts to solving the nonlinear system

n
Fiyy=mm,  Fi(y)=s"Y Api(ts), 3§=0,1,...,2n—1,
v=1
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where s; = || pj || ds, and

G, = (OF)™L.
By an elementary computation,

OF = D;'PD,,

where D; = diag(so, 81, -- -, 82n-1), Dx = diag(1,...,1,A1,...,A,), and P €
R2"X2n i 3 confluent Vandermonde matrix in the polynomials {pi}, that is,

row; P = [p;(t1), ..., p;j(tn), D(t1), - - ., D (tn)], j=0,1,...,2n— 1.
(5.19)
Therefore,
8G, = D{'P'D,. (5.20)
In order to invert the matrix P in (5.19), we let h,, k, be the fundamental

Hermite interpolation polynomials of degree 2n — 1 associated with the Gaus-
sian abscissae t1, to,...,tn:

hV(tﬂ) = bup, h:/(tu) = 0;
5.21
ku(ty) =0, K (t) = bup, (5.21)

and expand them in the polynomials {px},

2n 2n
ho(t) =D awupu-1(t),  ku(t) =D buupua(t),  v=12,...,n
p=1 p=1
(5.22)
Letting
A = [ayy), B = [by,],

we can write the interpolation conditions (5.21), in conjunction with (5.19),
in the form

AP=[I,0], BP=I0,1I],
(#7-15 9]

[ A
Pl=|p |

that is,

which shows that

We are now ready to compute the norm of Gy, in (5.20). This time it
turns out to be convenient to use the Frobenius norm || - || = || - |- Since

v=12,...,n; p=12,...,2n,
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one indeed obtains

n 2n
166 1P =325 sh (a2 + 33t%) (5.23)

v=1 p=1
from (5.20). On the other hand, by (5.22),

/h2(t ds(t) = Z a,,“a,m/p#_ (t)pr—1(t)ds(t) = Z'Su 1aw,

Me=1

where the last equation follows from the orthogonality of the py. Similarly,
2n
/ ) ds(t) = 3 52,02,
R
k=1

Hence, recalling (5.10), equation (5.23) finally yields

n 1/2
cond G :{ /R ’;[hﬁ(t) ——kz(t)J ()} . (5.24)

This result clearly identifies the factors influencing the condition of Gj,.
On the one hand, we have the polynomial of degree 4n — 2,
n
anlt; ) = 3[R0+ 33 H20)] (5.25)
v=1
appearing in the integrand of (5.24), which depends only on the measure d\
(through the Gaussian nodes t,, = tG). On the other hand, there is integration
with respect to the measure ds. It is a combination of both, namely the
magnitude of g, on the support of ds, which determines the magnitude of
cond Gy, )
We note from (5.21) and (5.25) that g,(-) = gn(-; d\) is strictly positive
on R and satisfies

g’n(tV) = 17 gv,z(tlf) = Oa V= 1’ 23 L2 (526)

(By themselves, these conditions of course do not yet determine gp,. ) Ideally,
one would like g,, to remain < 1 throughout the support of ds, in which case
cond G, would be bounded by s = (Jg ds(®)) ))1/2, uniformly in n. Unfortu-
nately, this is only rarely the case. One example in which this property is
likely to hold, based on computation, is dAx(t) = [(1 — k*2)(1 — t2)]"1/2d¢

n [~1,1], where 0 < k < 1. For k = 0, it was shown in Fischer (1996)
that gn <1+ 2/7% on [—1,1]. In other cases, such as d\,(t) = t” In(1/t) on
[0,1], where o > —1, the property g,(t) < 1 holds over part of the interval,
whereas in the remaining part, g, assumes relatively large peaks between
consecutive nodes ¢, but such that the integral in (5.24) (when ds(t) = 1) is
still of acceptable magnitude.
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° 02 [ 2] 08 L) 1 ° 02 04 08 o8 ]
1 1

Fig. 1. The polynomial g,, n = 5,10, 20,40, for the Maxwell measure with ¢ =1

An example of interest in quantum physics is the Maxwell velocity distri-
bution :

d\t)=e¥dt on[0,d, 0<c<oo. (5.27)

One finds by computation that g, ‘almost’ satisfies g, < 1 on [0, ¢] when c¢ is
only moderately large, but develops larger and larger peaks, encroaching on
an ever increasing portion of the interval, as ¢ increases. This is illustrated
in Fig. 1, which depicts log g, for n = 5,10,20,40 in the case ¢ = 1, and in
Fig. 2, where the analogous information is shown for ¢ = 5. The respective
condition numbers (when ds(t) = dt) are all less than 1 in the case ¢ = 1, and
range from 3.52 x 1012 to 8.57 x 10! when ¢ = 5. Fig. 2 is also representative
for the case ¢ = 0o. Arguably, Legendre moments (ds(t) = dt) are a poor
choice in this case, but it has been observed in Gautschi (1996c) that even
the best choice, ds(t) = dA(t), gives rise to very large condition numbers if
c is large.

It has generally been our experience that cond Gr becomes unacceptably
large, even for moderately large n, when the support of d\ is unbounded, as
in the case ¢ = oo of (5.27). _

A final example of some interest in theoretical chemistry involves a meas-
ure dX of Chebyshev type supported on two separate intervals, say [—1, —¢]
and [£, 1], where 0 < € < 1. Here, all nodes ¢, congregate on the two support
intervals, at most one being located on the ‘hole’ [—£,&] (see Szegb 1975,
Theorem 3.41.2). As a consequence, g, is likely to remain relatively small *
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Fig. 2. The polynomial g,, n = 5, 10,20, 40, for the Maxwell measure with ¢ = 5

(perhaps even < 1) on the two support intervals, but may well become ex-
tremely large on the hole. To avoid a large condition number cond Gy, it is
then imperative not to choose a measure ds for the modified moments that is
supported on the whole interval [—1, 1], but one that preferably has the same
support as dA.

5.2. The modified Chebyshev algorithm

We assumed in Section 5.1.2 that the polynomials p; defining the modified
moments (5.5) are themselves orthogonal. We now assume only that they
satisfy a three-term recurrence relation

Pa(t) =0, polt) =1, 528)
Pe+1(t) = (t — ak)pe(t) — bepe-1(t),  £=0,1,2,..., '
with known coefficients ay, bg, where the bg need not necessarily be positive.
This, in particular, encompasses the case a; = by, = 0, leading to py(t) = t¥,
hence to ordinary moments (5.1).
To formulate an algorithm that implements the map K, : m + p, we
introduce ‘mixed moments’

o= [ m@p®aNO, k> L (5.29)
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and immediately observe that, by orthogonality, ok ¢ = 0 for k > £, and

/Rﬂf(t) dA(t) =/R7rk(t)tpk—1(t) dA(t) = ok, k21 (5.30)

The relation og41%k—1 = 0, therefore, in combination with the recurrence
relation (0.11) for the 7, yields

0= /m[(t — o) (t) — Brmp—1(2)]pe—1(t) AA(t) = ok k — BrOk—1,k-1,

hence
g
B=—2F k=123 . (5.31)
Ok—1,k—-1

(Recall that g = mg by convention.) Similarly, ox41% = 0 gives
0= /Rﬂ'k(t)tpk(t) dA(t) — QkOkk — BrOk—1k-

Using (5.28) in the form tp(t) = pr+1(t) + axpr(t) + brpr—1(t), we can write
this as

0 = ok k1 + (ak — Qk)Okk — BkOk—1,k;
which, together with (5.31) and o_;1 x = 0, yields

00,1
g = agp + a_—,
0,0
Okk+l  Ok—1k . (5.32)
oy = a + —=L . k=1,23,....
Okk  Ok—1k—1

With the as and s expressed by (5.32) and (5.31) in terms of the os, it
remains to compute o ¢. This can be done recursively, using the recurrence
(0.11) for the 7 and (5.28) (with k replaced by £) for the py:

Ok = /R[(t — 0—1)mk—1(t) — Be-1me—2(t)]pe(t) dA(E) -

= [ Ter(Opesa(t) + acpel®) + beper (D] AN)
—Qg—10k—1,6 — Br-10k—2¢ |
= Ok—1,0+1 — (Qk—1 — @0)0k—1,¢ — Pk-10k—2, + beok—1,4-1.
The algorithm is now complete: to compute ag, B for k=0,1,...,n—1,

one first initializes

o_1¢ =0, (=1,2,...,2n— 2,
EZO,I,...,QTL-—I, (5.33)
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Computing stencil

ja |
k!
n=1}eena. 0RO
@ o o
@ o © @ o
@G eo o e 0o 0 o !
~— %o =M
foooooooo? -~ 0=
0 2n—-1

Fig. 3. The modified Chebyshev algorithm, schematically

and then continues, for k =1,2,...,n — 1, with

Okt = Ok—1,641 — (0k—1 — @¢)Ok—1,0 — Br—10k—2.¢ + beok_1,0-1,

Ezk,k“"l,...,zn—k“'l, (534)
Ok, k+1 Ok—1,k Ok.k :
ar(d)) = af + —kHL v Be(dA) = ———
Ok,k Ok—1,k—1 Ok—1,k—1
Given the first 2n modified moments mg, my,...,mo,_1 and the first 2n — 1
coefficients ag, ai,...,a2,—2 and by, by,...,bo,_o, this generates the first n
coefficients ay, a1,...,an—1 and fo, Bi,...,0n-1 via a trapezoidal array of

auxiliary quantities o, depicted schematically (for n = 5) in Fig. 3. The
computing stencil in Fig. 3 indicates the location of the five entries in the
array that are involved in the relation (5.34). The circled entry in the stencil
is the one the algorithm computes in terms of the other four. The entries in
boxes are used to compute the ay and B;. The complexity of the algorithm
is clearly O(n?).

It is interesting to observe that in the special case of a discrete measure d\y
and ordinary moments (that is, ax = by = 0), algorithm (5.34) was already
known to Chebyshev (1859). We therefore call (5.34) the modified Chebyshev
algorithm. The modified moments required can sometimes be computed in
closed form or by a judicious application of recurrence formulae, or else can
be approximated by a suitable discretization, similarly as in Section 6.1 in
another context.

We remark that by virtue of (5.30), the algorithm (5.34) also provides the
normalization constants oy = (7k, k) da.-
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Table 1. Errors in the ags and Bis

k err ay err B

2]42x10"1 7.6x10"13
5142x107% 1.2x10°10
8 143x10¢ 38x10°°
11 | 1.3 x 109 3.2x 107!

53 An e.mmple

We illustrate the advantage of modified over classical moments in the case of
the measure

dA\o(t) = t°In(1/t)dt  on[0,1], o> -1 (5.35)

We expect this advantage to be rather noticeable here, since, as was already
observed in Section 5.1.2, the map Gp: 7 — 7 based on (normalized) Le-
gendrée moments is quite well conditioned in this case, even for large n, in
contrast to the map G,: p — <, which rapidly becomes ill conditioned as n
increases (cf. Section 5.1.1).

The classical moments for d), are simple enough,

1
o+1+k’
whereas the modified moments with respect to the Legendre polynomials on
[0,1] (that is, ax = % fork>0andbg=1,b,=(4(4—k™2) L for k> 1in
(5.28)) are more complicated, but still easy to compute:

_1yk—o 02(k—o—1)!
TN B0 PRl AR
~ 7 — +1—
k12 mik( )\") o+1 {E’ﬁ + 2 =1 (a+1+'r - a+1—-r)} r=1 Z+1+: ’
' otherwise.

pie(dAs) = k=0,1,2,..., (5.36)

(5.37)
Applying the modified Chebyshev algorithm in single precision (machine pre-
cision ~ 7 x 10715) for the case o = 0, using the ordinary moments (5.36)
(that is, ar = by = 0), one obtains the recursion coefficients ay, B with
relative errors shown in Table 1. As can be seen, the accuracy deteriorates
rapidly, there being no significance left by the time ¥ = 11. In contrast,
the use of modified moments (5.37) allows us to compute the first 100 (sic)
recursion coefficients to an accuracy of at least 12 decimal digits.
Unfortunately, such a dramatic improvement in accuracy is not always
realizable. In particular, for measures dA with unbounded support, even the
modified version of Chebyshev’s algorithm, as already mentioned, must be
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expected to become quite susceptible to error growth. It all depends on the
condition of the underlying (nonlinear) map Gy,.

Notes to Section 5

The numerical condition of the classical moment map G, : 4 — v was studied in
Gautschi (1968); the lower bound (5.15) for the condition number rephrases one of
the basic results of Gautschi (1968). For the growth of the condition number of the
Hilbert matrix, mentioned at the end of Section 5.1.1, see Todd (1954). Although
the explicit expressions (5.2) for the recursion coefficients are extremely sensitive
to rounding errors, with the use of high-precision arithmetic they can be applied to
validate the accuracy of Gaussian quadrature formulae; see Gautschi (1983) for an
example.

The idea of using modified moments to generate orthogonal polynomials was
first advanced by Sack and Donovan (1969, 1971/2), who developed an algorithm
similar to the one in (5.34). The latter was derived by Wheeler (1974) independently
of the work of Chebyshev (1859), where the same algorithm was obtained in the
case of discrete measures and classical moments. Another algorithm, based on the
Cholesky decomposition of a Gram matrix, is given in Gautschi (1970), but is not
competitive with the modified Chebyshev algorithm, since it has complexity 0(n3).
The reference Gautschi (1970), however, contains the first analysis of the condition
of the underlying moment map, using the L,-norm for vectors and matrices. The
analysis given in Section 5.1.2, based on the more convenient Frobenius norm, is
taken from Gautschi (1982a), where (in Section 3.1) one also finds the use of more
refined condition numbers based on relative errors. The example of the Maxwell
distribution (5.27) is taken from Gautschi (19910), other illustrations of the basic
formula (5.24) for the condition of the map Gy, can be found in Gautschi (1984c)
and Gautschi (1985). The properties (5.26) of the function g, in (5.25) suggest
the distinction between ‘strong’ and ‘weak’ Gaussian nodes, the former being more
likely than the latter to develop severe ill conditioning. For this, and an application
to Jacobi polynomials, see Gautschi (1986a). The example at the end of Section
5.1.2 is taken from Wheeler (1984) and Gautschi (1984a); see also Gautschi (1985,
Example 4.3) for further details. For the example in Section 5.3, ¢f. Gautschi (1994,
Example 3.2).

6. Discretization methods

These methods, as the name implies, involve a preliminary discretization of
the given measure d), that is, one approximates d\ by a discrete N-point
Dirac measure,

dA(t) ~ dAn(t) : Zwké(t —ty)dt. (6.1)
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This is often done by a suitable quadrature formula (more on this in Section
6.1):

N
[p® @) ~ Y wep(te) = [ pyarn ) (6.2
R k=1 R '

The desired recursion coefficients are then approximated by

ar(dX) ~ ai(dAn) B o |
Br(dA) = Br(dAN) } k=0,1,...;n—1. (6.3)

Assuming d) is a positive measure, and wg > 0 in (6.1), one can show that
for any fixed k,

ap(dAN) — ax(dA) .
Be(dAn) — Bk(dA) } as N — oo, (6.4)

provided the discretization process (6.2) has the property that

/Rp(t) dAn(t) — /Rp(t) dA(t) as N — o0 (6.5)

for any polynomial p. Thus, by choosing a quadrature rule in (6.2) that
is convergent for polynomials, we can obtain the coefficients ay, B, 0 <
k < n — 1, to any desired accuracy, by selecting N sufficiently large. More
precisely, one selects a sequence Ny < Ny < N3 < - -- of integers N (for a
specific choice, see Gautschi 1994, Equation (4.16)) and iterates until

:Bk( d)‘Ni+1 ) - ﬁk( d)‘Ni)
ﬁk( dANi+1)

where € is a preassigned error tolerance. The convergence criterion is based
on the relative errors in the SG-coefficients, which is possible because the §
are known to be positive. The a-coefficients are expected to converge at a
similar speed (at least in the sense of absolute errors), as their definition is
similar to that of the B (c¢f. (0.12)).

In Section 6.1 we indicate some possible ways of discretizing the measure
d\. Once the discrete measure is at hand, it remains to compute its first n
recursion coefficients, that is, the approximations on the right of (6.3). We
will discuss two methods in Sections 6.2 and 6.3.

—_

max
0<k<n—1

6.1. Discretization of the measure
Suppose the measure dA has the form '
dA(t) = w(t)dt on [a, b}, (6.6)

where [a, b] is a finite or infinite interval and w an appropriate weight function.
The first step, in general, is the decomposition of [a, b] into a finite number
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of (possibly overlapping) subintervals,

m

[a,6] = Jlas,bi]  (m>1), | (6.7)

i=1

and to rewrite integrals such as those on the left of (6.2) as
- [ptud - Z p(t)wz(t (6.8)

where w; is an appropriate weight function on [a;, b;]. For example, the weight
function w may be the sum w = w; +w; of two weight functions on [a, ] that
we wish to treat individually. In that case, one would take [a1, b1] = [az, b2] =
[a, b] and associate wy with [a1, b1] and ws with [ag, bg]. Alternatively, we may
simply want to use a composite quadrature rule to approximate the integral,
in which case (6.7) is a partition of [a,b] and w;(t) = w(t) for each i. Still
another example is a weight function w which is already supported on a union
of disjoint intervals; in this case, (6.7) would be the same union, or possibly
a refined union where some of the subintervals are further partitioned.

However (6.7) and (6.8) are constructed, the desired discretization (6.2)
is now obtained by approximating each integral on the rlght of (6.8) by an
appropriate quadrature rule,

b;

, N
pQlwi(t)dt =~ Qip,  Qip=)_ wrip(trs), (6.9)
r=1

a;

for example a Gaussian rule for the weight function w;. This yields

/ p(t)w(t)dt ~ Zw,,,p(t,,,), | (6.10)

1=1r=1

- a formula of the type (6.2) with N =32, N;.

There is enough flexibility in this approach — choosmg the subdivision
(6.7), the local weight functions w; in (6.8), and the quadrature rules in (6.9)
— to come up with an effective scheme of discretization, that is, one that not
only converges in the sense of (6.5), but converges reasonably fast. Further
variations, of course, are possible. In particular, it is straightforward to adapt
the approach to deal with measures containing, in addition to an absolutely
continuous component (6.6), a discrete point spectrum, say

dA(t) = w(t)dt + > w;b(t — 1) dt. (6.11)
J
One only has to'add 3°; w;p(7;) to (6.10). |
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Ezample 6.1. A good example of the kind of discretization indicated above is
furnished by the measure

dA(t) = tFKo(t)dt  on [0,00), u> -1, (6.12)

where Ky is the modified Bessel function.

It is important, here, that one find a discretization that does justice to the
special properties of the weight function w(t) = t*Ky(t), in particular its
behaviour for small and large t. For the factor Ky, this behaviour can be
described by

0= { BTHOR 02

where R, S are well-behaved smooth functions, and Ip is the ‘regular’ mod-
ified Bessel function. All three functions can be accurately evaluated on
their respective intervals by rational approximations (Russon and Blair 1969).
Therefore,

/ plt) dA(t) = /t“[R(t £)]dt + / 9 n(1/6) Io(£)p(t)] dt
+ / 12 S(Op(t) dt

This suggests a decomposition (6.7) with m = 3, namely [0,00) = [0,1] U
[0, 1]U[1, 00), weight functions wy (t) = t#, wa(t) = t*1n(1/t) and w3(t) = e7?,
and for @); the corresponding Gaussian quadrature rules, after the last integral
n (6.14) has been rewritten as

/1 * et 125(1)p(t)] dt = e~ fo ™ e (1 + ) Y2S(1 + £)p(1 + t)] dt.

The first and last Gauss formulae are classical — Gauss-Jacobi and Gauss—
Laguerre — and are easily generated by the method of Section 4.1. The second
is nonclassical, but can be generated by the same method, once the recursion
coefficients for the respective orthogonal polynomials have been generated by
the modified Chebyshev algorithm, as discussed in Sections 5.2 and 5.3.

(6.14)

Ezample 6.2. We call generalized Jacobi measure a measure of the form

dA(t) = w(t)(1-t)"(1+t)ﬁHIt— il te(-11), (6.15)
=2

where @ is a smooth function, m > 2, -1 < a2 <--- < ap <1, and
=06>-1; v > —1, 1=2,...,m; Ym+1 =0 > —1. (6.16)

Here, the natural decomposition is
m

[-1,1) = {J[ai, b, a1=-1, bi=aip1, amp=1,
i=1
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and the appropriate weight function w; on [a;, b;] is the Jacobi weight with
parameters y;, ¥;j4+1, transformed to the interval [a;, b;]. One then obtains a
formula similar to (6.8), except that on the right, p(t) has to be replaced by

m+1
pityet) I lt—el™,  a<t<b
=1, gt
This function is free of singularities in [a;, b;], so that its Gauss-Jacobi quad-
rature with weight function w; will converge — and reasonably fast at that,
unless one of the a; is very close to either a; or b; (and ; not an integer).

It may not always be possible to come up with natural discretizations as
in these examples. In that case, one may try to apply a standard quadrature
rule to each integral on the right of (6.8), paying no special attention to the
weight function w; and treat it as part of the integrand. Since w; may have
singularities at the endpoints of [a;, b;], it is imperative that an open quadrat-
ure formula be used; stability considerations furthermore favour Chebyshev
nodes, and convergence considerations an interpolatory formula. Taking the
same number of nodes for each @);, we are thus led to choose, on the canonical
interval [—1, 1], the NF-point Fejér rule, that is, the interpolatory quadrature
rule

1 NF .
[ f®dt~Ques,  Quef=Y wfrah), (617
- r=1

where tf' = cos((2r — 1)7/2NF) are the Chebyshev points. The weights are
expressible in trigonometric form as

< |NF/2f F
2 cos(2s6;") F F
F_ T —
w, — (]_ -2 SE 1 _Z?—T) , t, =cosf,, (6.18)

and are known to be all positive (Fejér 1933). Furthermore, the rule converges
as N¥ — oo, even in the presence of singularities, provided they occur at
the endpoints and are monotone and integrable (Gautschi 1967). The rule
(6.17) is now applied to each integral on the right of (6.8) by transforming
the interval [—1,1] to [a;, b;] via some monotone function ¢; (a linear function
if [a;, b] is finite) and letting f(t) = p(t)w;(t):

b; 1
pOwi(t)dt = [ p(@u(r)ui(8i(r)i(r) dr

ai

NF '
~ > wiwi(i(tF)) i) - p(di(tF)).

r=1

Thus, in effect, we take in (6.9) ‘
tri = ¢i(t]),  wri=wfwi(gE))E),  i=1,2...,m (6.19)
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Suitable functions ¢; are ¢;(t) = (1 +t)/(1 — t) if the interval [a;, b;] is half-
infinite, say of the form [0, 00), and similarly for intervals [a, 00) and (—o0, b],
~and ¢;(t) = t/(1 — ¢?) if [ai, bi] = (—00, ). '

6.2. Orthogonal reduction method

Assuming now that a discrete measure (6.1) has been constructed, with (pos-
itive) weights wy, and abscissae t, we denote by \/w the column vector whose
components are /wg, and by D; the diagonal matrix with the t; on the di-
agonal. Since for any function p,

N
/ p(t) dAn(t) = 3 wep(t) (6.20)
R k=1

(cf (6.2)), we may interpret (6.20) as a ‘Gauss formula’ for the measure dAy.
From (4.15) it then follows that there exists an orthogonal matrix Q1 € RN*N

such that
1 o 1 VuT [1 oT ] B
0 Qf vw Dy 0 Q1)
VBo(dAN) e1 JIn(dAN) ’ ’

where e; = [1,0,... 0T € RY is the first coordinate vector and Jy{(dAn)
the Jacobi matrix of order N for the measure dAn (cf. (4.4)). It is the latter

that we wish to obtain.
Observe that (6.21) has the form

QTAQ =T, (6.22)

where all matrices are (N '+ 1) x (N + 1), @ is orthogonal and T' symmetric
tridiagonal with positive elements on the side diagonals. It is then well known
(see, for instance, Parlett 1980, p. 113) that @ and T in (6.22) are uniquely
determined by A and the first column of Q. Since the latter in (6.21) is e;,
VT
D |’
is, of d\y, uniquely determines the desired Jy(dAy) and Bo(dAn) by the
orthogonal similarity transformation (6.21). A method that accomplishes
this transformation is Lanczos’s algorithm. There are various versions of this
algorithm, a particularly elegant one consisting of a sequence of elementary
orthogonal similarity transformations of Givens type designed to successively
push the elements bordering the diagonal matrix D; in (6.21) towards the
diagonal. It is not necessary to carry the transformation to completion; it
can be terminated once the submatrix J,(dAxy) has been produced, which is
all that is needed. Also, in spite of the square roots of the weights appearing

and the former [ \/113 we see that knowledge of w and Dy, that
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on the left of (6.21), it is not required in the resulting algorithm that all
weights be of the same (positive) sign, since only their squares enter into the
algorithm.

6.3. The Stieltjes procedure
This is based on the explicit formulae (see (0.12))

ey = IR g
(Th, Th) d ( )
Tk, T
Bo(dN) = (10, m0) ax,  Be(dA) = 2K 123 ...,

(Th—1, Tk—1) dA
(6.23)

where () = 7 (-; d)). One applies (6.23) for d\ = d\y in tandem with
the basic recurrence relation (see (0.11))

SN N

Note that all inner products in (6.23) are finite sums when d\ = d\y, so that
they are easily computed once the 7 are known. Since mg = 1, we can thus
compute oy, o from (6.23). Having obtained ayg, By, we then use (6.24) with
k = 0 to compute m; for all {¢1,...,tN} to obtain the values of m; needed
to reapply (6.23) with k = 1. This yields oy, B, which in turn can be used
in (6.24) to obtain the values of w2 needed to return to (6.23) for computing
a2, 2. In this way, alternating between (6.23) and (6.24), we can ‘bootstrap’
ourselves up to any desired order of the recursion coefficients. The procedure
is now commonly referred to as the Stieltjes procedure.

Although the recurrence relation (6.24) may develop the phenomenon of
pseudostability mentioned at the end of Section 0.2, as k approaches N, this
normally causes no problem for the Stieltjes procedure since the maximum
order n—1 desired for the recursion coefficients ay, B is usually much smaller
than the integer N eventually needed for convergence in (6.4). The onset
of pseudostability is thus avoided. On the other hand, suitable scaling of
the weights wy may be required to stay clear of overflow or underflow. No
such problems occur with the Lanczos method, which, moreover, has been
observed to be typically about twice as fast as the Stieltjes procedure. For
these reasons, one normally prefers orthogonal reduction methods over the
Stieltjes procedure.

Notes to Section:g 6

6.1. The idea of discretizing the measure to approximate the recursion coefficients,
and the use of Fejér’s quadrature rule (6.17) in this context, goes back to Gautschi
(1968). The convergence property (6.4), (6.5) is proved in Gautschi (1968, Theorem
4). The idea has been further developed along the lines of Section 6.1 in Gautschi
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(1982a) and is implemented in the computer routine mcdis of Gautschi (1994).
Example 6.1 is taken from Gautschi (1982a, Example 4.10) and is of interest in the
asymptotic approximation of oscillatory integral transforms (Wong 1982).

6.2, 6.3. A Lanczos-type algorithm of the type mentioned at the end of Section
6.2 can be found in Gragg and Harrod (1984) and is used in the routine lancz of
Gautschi (1994). The bootstrap procedure of Section 6.3 was briefly mentioned by
Stieltjes (1884) and also forms the basis of the procedures in Forsythe (1957). For
the phenomenon of pseudostability mentioned at the end of Section 6.3, see Gautschi
(1993a) and Gautschi (1996b).

7. Modification algorithms

The idea of (and need for) looking at orthogonal polynomials relative to mod-
ified measures goes back to Christoffel (1858), who multiplied the measure
d) by a polynomial u(t) = [T4=1(t — u»), where all u, are outside the sup-
port interval (the smallest interval containing supp(dA\)); he represented the
polynomial u(¢)7,(¢; ud)) in determinantal form as a linear combination of
Tn(t; dA), ..., Tnte(t; dX). This is now known as Christoffel’s theorem. More
recently, Uvarov (1959, 1969) extended Christoffel’s result to measures multi-
plied by a rational function u(t)/v(t), where v(t) = [[ji-; (¢ — vu), expressing
u(t)my(¢; (u/v) dA) again in determinantal form as a linear combination of
Tnem(t; dX), ..., Tppe(t; AN) if m < n, and of mo(t; dA), ..., Tpye(t; dN) if
m > n. We have called this (Gautschi 1982b) the generalized C’hristoﬁel
theorem.

While these theorems are mathematically elegant, they do not lend them-
selves easily to computational purposes. What is more useful is trying to
compute the recursion coefficients oy ( d)\) Bi(d\) for the modified measure
dX = (u/v)dX in terms of those for d), which we assume are known. This
need not be accomplished all at once, but can be carried out in elementary
steps: multiply or divide by one linear complex factor ¢ — z at a time, or
else, if we prefer to compute in the real domain, multiply or divide by either
a linear real factor t — z, or a quadratic real factor (t — z)? + y2. Thus,
the problem we wish to consider is the following. Given the recursion coeffi-
cients ak( d\), ﬂk( d)) for the measure dA, compute the recursion coefficients
o (dX), B d(}) for the measures dA = ud) and dA = d)\/'u, where 'u,(t) and
(t) are elementary real factors of the type t — z or (t — )% + 3%, z € R,
yeR.

We begin in Section 7.1 with the theory of quasi-definite measures and
kernel polynomials, which lies at the heart of modification algorithms for
linear and quadratic factors. The latter are discussed in Section 7.2. In
Section 7.3 we develop algorithms for linear and quadratic divisors. The
division algorithms, finally, are applied in Section 7.4 to construct the rational
Gauss quadrature formulae that were discussed in Section 3.1.
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7.1. Quasi-definite measures and kernel polynomials

It is convenient, in this subsection, to allow dA to be any real or complex-
valued measure on JR having finite moments of all orders,

s = e (dN) =/t’d/\(t), r=0,1,2,... . (7.1)
R

The measure dA is called quasi-definite if all Hankel determinants D,, in the
moments are nonzero, that is,

Ko M1 ©tt Hn-1
Dp=det | F1 H2 7" ln g n=1,23,...  (72)
b Bntl ccc fon-l

If d) is quasi-definite, there exists a unique system {7;}%2, of (monic) ortho-
gonal polynomials 7 (-) = mg(-; d)\) relative to the measure d)\, which sat-
isfy the three-term recurrence relation (0.11) with coefficients ax = ag(d\),
Br. = Br(d)) that are now complex-valued in general, but with 8 # 0. The
measure dA is called positive definite if [i p(t) dA(t) > 0 for every polyno-
mial p(t) # 0 that is nonnegative on supp(d\). Equivalently, d\ is positive
definite if all moments (7.1) are real and D,, > 0 for all n > 1.
For arbitrary z € C, and for o = ax(d\), B = Be(dN), Bo = 0, let

o =2+ g+ ex—1 } .
=0,1,2,... ;e_.1=¢q_1=0. 7.3
Bk = €x—1qk—1 ' 1=9-1 (73)

Lemma 1 Let d) be quasi-definite and mg(-) = mg(-; dA).
(a) If mu(2) # 0 for all n = 1,2,3,..., then the relations (7.3) uniquely

determine qq, eg, q1, €1, ... in this order, and
Tk+1(2)
Gk = — —F v k=0,1,2,.... 74
k(%) (74)

(b) If mg41(2) = O for some £ > 0, and 7x(2) # O for all k < £, then gy, ey are
uniquely determined by (7.3) for k < £, while ¢ = 0 and e, is undefined.

Pfoof. (a) The quantities qg, €g, q1, €1, ... are uniquely defined if and only
if gy # 0 for all k > 0. It suffices, therefore, to prove (7.4). For k = 0, this
follows from the first relation in (7.3) with k = 0:

m1(2)
7('0(2:)

Proceeding by induction, assume (7.4) true for k — 1. Then, by (7.3),

qo=a0-z=—-—(z—-—ao)= —

.-

k Te—1\2
Qk=akf-z*6k—1=ak—2———=ak—z+ﬁk—-u 3
: Qk-1 7rk(z)
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hence
1
()

where the recurrence relation (0.11) has been used in the last step.

_ T41(2)
Tk(2)

{(z — ar)me(2) — Brmk-1(2)} =

dk = —

(b) The argument in the proof of (a) establishes (7.4) for all £ < ¢, from
which the assertion follows immediately.

Consider now
dA(t) = (t — 2) dA(t), z€C.

If d\ is quasi-definite, and z satisfies the assumption of Lemma 1(a), then di
is also quasi-definite (Chihara 1978, Chapter I, Theorem 7.1), and hence gives
rise to a sequence of (monic) orthogonal polynomials #x(-;2) = mg(-; d}),
k = 0;1,2,... . These are called the kernel polynomials. They are given
explicitly in terms of the polynomials 7 (-) = mg(-; dA) by

it 2) = [wnH(t) _ Tnt(2) wn(t)]  k=0,1,2,..., (15)

t—z 7n(2)

as is readily verified.

Let éx = ax(dA), Bx = Br(dA) be the recursion coefficients for the kernel
polynomials 7y (-) = g (-; 2),

ﬁ-k+1(t) = (t - OA(k)frk(t) - Bkﬁ.k——l(t)) k= 0,1,2,..., (7 6)
#_1(t) =0,  #o(t) =1, '

where the dependence on z has been suppressed. The following theorem shows
how the coefficients &y, Br can be generated in terms of the quantities g, eg
of Lemma, 1.

Theorem 7 Let d) be quasi-definite and z € C be such that 7, (2z; dA) # 0
for all n. Let g, ex, be the quantities uniquely determined by (7.3). Then

Br = qrer-1 R a

In (7.7), Bo receives the value zero; it could be assigned any other con-
venient value such as the customary Gy = Jr dA(t). In that case, Gy =
fR(t-—Z) dA(t) = fR(t—ao-l-ao——z) dA(t) = (ap—2)Po, since t—ag = m1(t; dA)
and [, m1(t) dA(t) = 0. '

Proof of Theorem 7. By (7.5) and (7.4) we can write

() = [Tr41(t) + qrme(t)], (7.8)

—Z
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or, solved for w41, .
Te4+1(t) = (t — 2)7k(t) — qeme(t), k=0,1,2,... . (7.9)

The three-term recurrence relation for the {m}, with the coefficients ay, B
written in the form (7.3), yields

Trt1(t) = (t — 2)7x(t) — (gk + ex—1)Tk(t) — ek—1gqk—17k—1(t),

from which
me1(8) + qeme(t) 3 T () + qe-17x—1(¢)
rengs = me(t) — ex—1 ol ,
or, by (7.8),
g (t) = me(t) — ek—1fe-1(t), £k=0,1,2,.... (7.10)

Replacing k by k+1 in (7.10) and applying first (7.9), and then again (7.10),
we get

fp1(t) = mepa(t) — ekﬁ'k(f)
= (t—2)7k(t) — qrmi(t) — exfix(t)
= (¢t - 2)7k(t) — qr[Fr(t) + ex—17k—1(t)] — ex@r(t),

that is,

r41(t) = (t — 2z — g — ex) 7k (t) — qrer—17k-1(2), (7.11)
k=0,1,2,.... :

The assertion (7.7) now follows by comparing (7.11) with (7.6). O

7.2. Linear and quadratic factors

We assume from now on that dA\ is a positive measure. The support of d\
may extend to infinity at one end, when dealing with linear factors, but will
be arbitrary otherwise.

Consider first modification by a linear factor,

dA(t) = (t—z)d)\t), =€ }R\Isupp(vd/\),

where, as indicated, z is any real number outside the ‘support interval’
Tsupp(dA) of dA, that is, outside the smallest interval containing the sup-
port of dX. Then dJ is positive definite if z is to the left of this interval, and
negative definite otherwise. In either case, m,(z; d)\) # 0 for all n, since the
zeros of w, are known to lie in the support interval. Theorem 7, therefore,
applies with 2 = z and, together with the remark immediately after The-
orem 7, and (7.3), produces the following algorithm for calculating the first
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n recursion coefficients of {7} from those of {m}:

e_1 =0

QG =0 — €1 — T

. Bo ifk=0

'Bk—q’“'{ek_.l ifk>0 k=0,1,...,n—1. (7.12)
ek = Br+1/ak

G =2+ gk + €k

Note that we need (3, in addition to a, Br, k=0,1,...,n—1, to obtain the
first n recursion coefficients &g, Bk, K = 0,1,...,n— 1. Numerical experience
seems to indicate that the nonlinear recursion (7.12) is quite stable. In cases
where the coefficients & tend rapidly to zero, it is true that they can be
obtained only to full absolute accuracy, not relative accuracy. This, however,
should not impair the accuracy in the recursive computation of 7 by (7.6).

There is a similar, but more complicated, algorithm for modification by a
quadratic factor,

dA(t) = (t—z)2 +42)dAt), z€R, y>0, (7.13)

which can be obtained by two successive applications of linear (complex)
factors t — z and t — Z, where z = x + iy. A particularly elegant algorithm is
known when y = 0 in (7.13). In terms of the Jacobi matrices of d\ and dJ\,
it consists in applying one QR step with the shift z: if

Jn41(dA) — zlny1 = QR,

Q orthogonal, R upper triangular, diag R >0, (7.14)

then
Jn(dX) = (RQ + Zlnt1)nxn. (7.15)

Thus, having completed the QR step applied to the Jacobi matrix of order
"~ n+1 for the measure d\, one discards the last row and last column to obtain
the Jacobi matrix of order n for the modified measure d\. This algorithm,
too, appears to be quite stable.

7.8. Linear and quadratic divisors

Consider first division by a linear divisor,
dA(2)
-

e z € R\Lupp(dN), (7.16)

dA(t) =
where z is assumed real, outside the support interval of d\. Here again, there
exists a nonlinear algorithm of the type (7.12) (indeed, a reversal thereof),
but it is quite unstable unless  is very close to the support interval of dA.
Although such values of x are not without interest in applications, we shall
not develop the algorithm here and refer instead to Gautschi (1982b).
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For other values of z, and particularly for measures with bounded support
(¢f. the remark at the end of Section 5.3), we recommend applying the modified
Chebyshev algorithm, using the orthogonal polynomials pg(-) = mg(-; dA)
as the polynomial system defining the modified moments, that is, letting

mk=/7rk(t; dA) M, k=0,1,2,.... (7.17)
R t—x

We shall assume again that the recursion coefficients o = ax(dN), B =
Br(dA) are known. Under mild assumptions on the measure d\ (for instance,
if Isypp(dA) is a finite interval), the sequence {my} is a minimal solution of
the basic recurrence relation

Yet1 = (T — or)yk — Beye—1,  k=0,1,2,..., (7.18)

Yy-1 = —'la )
where o = ox(dA), Br = Br(dA). Its first N + 1 members can then be
computed by the following algorithm: select v > N and recur backwards by
means of

r’(/u) :Os 7"](;:)1: —“g'k—"@)' y k=l/,1/——1,...,0. (719)
Then compute
m® =-1, m®=rm® k=01, N (7.20)

The algorithm converges in the sense that
— 1 ()
mg = lim my~. (7.21)

Thus, applying (7.19) and (7.20) for v sufficiently large, we can compute my
to any desired accuracy.

A similar algorithm works for division by a quadratic divisor, say
dA(t)

m y T e R, y > 0, (722)

dA(t) =
if one notes that

1 _ ( 1 ! ) z2=zx+1
(t—z)2+y?2 2iy\t—2z t—z)’ - Y

hence
where |
fi(z) = /R T (t; dA) fi(? : (7.24)

This again is'a minimal solution of (7.18), where z is to be replaced by z,
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and therefore the same algorithm applies as in (7.19)—(7.20) with x replaced
by z.

7.4. Application to rational Gauss quadrature

We have seen in Section 3.1 that the construction of rational Gauss-type
quadrature rules requires the computation of (ordinary) Gaussian quadrature
formulae relative to a measure that involves division by a polynomial. These
can be generated by the eigenvalue techniques discussed in Section 4.1, once
the recursion coefficients of the required orthogonal polynomials have been
obtained. This in turn can be accomplished by methods discussed in Sections
7.2 and 7.3.

We will assume in the rational quadrature rule (3.5) that the divisor poly-
nomial wy, is positive on the support interval of dA.

‘The problem, therefore, is to generate the first n recursion coefficients éx =
a( dj\), Br = Br(dA), k=0,1,...,n — 1, for the modified measure

dA(?)
wm(t)
assuming the coefficients known for d\. Here, wy, is a polynomial of degree
m,

dA(t) = (7.25)

M M
wm(t) = H (1 + Cut)™, Z Sp = m, (7-26)
p=1 p=1

with ¢, distinct real or complex numbers such that wp, is positive on the

support interval of dA.
A possible solution of the problem is based on the following observation.

Suppose dAp is a discrete N-point measure, say

N
[pOdrn(e) = 3 Wip(T), (7.27)
R k=1

with coefficients W}, not necessarily all positive, and suppose further that it
provides a quadrature formula for the measure d\ having degree of exactness
2n — 1, that is, '

dA

N
/ p(t)dA(t) = S Wip(Tk),  allp€Pany, dA = —. (7.28)
R k=1 Wm

Then the first n recursion coefficients for dA are identical with those for dA N:

ak(dé\) = ak(dAN),
Br(dA) = Br(dAn),

This follows immediately from the inner product representation ‘A(0,12) of the

=0,1,...,n—1. . . (7.29)
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coefficients on the left of (7.29), since all inner products are integrals (with
respect to d;\) over polynomials of degree < 2n — 1 and are thus integrated
exactly by the formula (7.28). To generate the coefficients on the right of
(7.29), we can now apply either the Stieltjes procedure of Section 6.3 or the
Lanczos method (of Section 6.2); for the latter, see the remark at the end of
Section 6.2.

It remains to show how a formula of the type (7.28) can be constructed.
We first look at the simplest case where the polynomial wy, in (7.26) has all
sy = 1 (hence M = m) and {, = £, are all real. Expanding its reciprocal
into partial fractions,

1 1 = cy
wm(®) e (1 +&t) ; t+(1/&)°

1 4

where
m—-2

Hu-l (§V EIJ:) ’

v=12,...,m,

Cy =

we then have
A ¢y dA(t)
t) dA(¢ 7.30
JECECR ;/um%) (7.30)

Each integral on the right now involves modification of the measure d\ by
a linear divisor. The first n recursion coefficients of the modified measure
can therefore be obtained by the procedure of Section 7.3 (using the modified
Chebyshev algorithm), which then enables us to compute the respective n-
point Gauss formula -

e dAt) Dl
/ P T ave,) t+(1/¢) rzl wp(t¥),  p P, (7.31)

by the techni_ques of Section 4.1. Inserting (7.31) in (7.30) then yields

/ p(t)dh = Z Z w®p(t),  pePanoy,

v=1r=1

the desired quadrature formula (7.28), with N = mn and

_ +v)
Tw-tnir =t v=1,2,...,m

" r=12,...,n. (7.32)
W(u—-l)n+r = 'wf(‘ ),

Analogous procedures apply to other polynomials wy,, for example to those
for which the (, occur in m/2 pairs of conjugate complex numbers: ¢, =
o+ iy, Gamy2 =G, ¥ =1,2,...,m/2, where §, € R, 5, > 0, and m is even.
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An elemerntary computation then yields the partial fraction decomposition

m/2

1 ¢ +dyt
— = teR (7.33)
2 ] ]
“m® = (t+ ) + (a2a)
where
1 €V % )
CV = - Im + Re v P
oy (€3+773 v P
d, = — Imp,
ym
and
D, = ”Il'/[z (€V + i")u)2
i pel (& — 6#)2 - ("73 - ;21) +2in, (€, — 5;1),
uFv

with p; = 1if m = 2. One can proceed as before, except that the modification
of the measure d\ now involves a quadratic divisor (see (7.33)) and, if d, # 0,
in addition a linear factor. Thus, not only the methods of Section 7.3, but
also those of Section 7.2 come into play.

The procedures described here, since they rely on the modified Chebyshev
algorithm to execute the division algorithm of Section 7.3, work best if the
support of d) is a finite interval. For measures with unbounded support,
methods based on discretization (see Section 6.1) will be more effective, but
possibly also more expensive.

Notes to Section 7

7.1. A good reference for the theory of quasi-definite measures and kernel poly-
nomials is Chihara (1978, Chapter I). Lemma 1 and Theorem 7 are from Gautschi
(1982b). Kernel polynomials also play an important role in numerical linear algebra
in connection with iterative methods for solving linear algebraic systems and eigen-
value problems; for these applications, see Stiefel (1958). The proof of Theorem 7
indeed follows closely an argumentation used in Stiefel (1958), but. does not require
the assumption of a positive definite measure.

7.2. The algorithm (7.12) for modification by a linear factor is due to Galant
(1971); an extension to quadratic factors (7.13) is given in Gautschi (1982b). The
procedure (7.14), (7.15) based on QR methodology is due to Kautsky and Golub
(1983). See also Buhmann and Iserles (1992) for an alternative proof.

7.3, 7.4. The treatment of linear and quadratic divisors follows Gautschi (1981b),
where further details, in particular regarding the recursion algorithm (7.19), (7.20),
can be found. For other, algebraic methods and a plausibility argument for the
instability noted at the beginning of Section 7.3, see Galant (1992). The application
to rational Gauss quadrature is taken from Gautschi (1993b). '
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8. Orthogonal polynomials of Sobolev type

As already mentioned in Section 2.2, the computation of orthogonal polyno-
mials in the Sobolev space H, of (2.21), involving the inner product

(o), =3 / 4@ ()o@ (#) ddo (2), (8.1)
o=0’R

is complicated by the lack of symmetry of this inner product with respect to
multiplication by ¢ (see (2.26)). This means that we can no longer expect
a three-term recurrence relation to hold, or even a recurrence relation of
constant order. On the other hand, it is certainly true, as for any sequence
of monic polynomials whose degrees increase by 1 from one member to the

next, that

k .
7I'k+1(t) = tﬂ'k(t) - Z ,B;?ﬂ'k-—j(t)s k=0, 1,2,..., (82)
s
for suitable coefficients ﬂ;-“. We may thus pose the problem of computing
{ﬂf}OSjSk for £k = 0,1,...,n — 1, which will allow us to generate the first
n + 1 polynomials g, 71,..., 7, by (8.2). Moreover, the zeros of m, are
computable as eigenvalues of the n x n Hessenberg matrix
I B = =
1 B ﬁz o+ B3 2221
. o e - n.‘
Bo=| 0 L ek (53)
0 0 o0 --- g2 prl
o 0 0 --- 1 pgrt]

In Section 8.1 we briefly describe how moment information can be used
to develop a ‘modified Chebyshev algorithm’ for Sobolev orthogonal polyno-
mials, and in Section 8.2 show how Stieltjes’s idea can be adapted for the
same purpose. Special inner products (8.1) of Sobolev type sometimes lead
to simpler recurrence relations. An instance of this is described in Section
8.3.

8.1. Algorithm based on moment information
In analogy to (5.5), we define modified moments for all s + 1 measures d)\,

but for simplicity use the same system of polynomials {p;} for each,

m](ca)szpk(t)d)\a(t), k:021v2,--~ ;. ‘7:‘0’11""75' (84)
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As in Section 5.2, we assume these polynomials to satisfy a three-term recur-
rence relation

p—l(t) =0, pO(t) =1, (8 5)
pk'!-l(t) = (t - a‘k)pk(t) - bkpk—l(t)7 k= 07 17 2') R '

where the coefficients ag, by, are given real numbers. The objective is, for given
n > 1, to compute the coefficients {ﬁ;‘c}OSJ'Sk in (8.2) for k=0,1,...;n—1,
using the recursion coefficients aj, bj, 0 < j < 2n—2 in (8.5) and the modified

moments mgo), 0<j<2n-1, and mga), 0<j<2n-2 (if n > 2),
c=12,...,s. ‘

It is possible to accomplish this task with the help of an algorithm that
resembles the modified Chebyshev algorithm of Section 5.2. Like the latter,
it uses ‘mixed moments’ oy ¢ = (7, ™) H,, but now relative to the Sobolev
inner product in Hs. These, in turn, require for their computation ‘mixed
derivative moments’ ug”g,z, = (7r,(:) ,pﬁj )) Dy, 0 =1,...,8 i, < 0, relative to
the individual inner products (u,v) 4y, = fg u(t)v(t) dAs(t), o > 1. Accord-
ingly, there will be a tableau containing the mixed moments o ¢, very much
like the tableau in Fig. 3, and for each %, j and o another auxiliary tableau
containing the mixed derivative moments, which has a similar trapezoidal
‘shape, but with height n —2 instead of n —1. Each quantity in these tableaux
is computed recursively in terms of the three nearest quantities on the next
lower level, and in terms of all quantities vertically below. The initialization
of these tableaux calls for the modified moments (8.4), since gg = mﬁo) and

M((]?é?g = méd), o > 1, but the complete initialization of all the quantities p&’éi

is a rather involved process. Once the tableau for the oy, ¢ has been conipleted,
one obtains first

J90,1
0= — + ag,
00,0
and then, successively, for k =1,2,...,n —1,
k _ Okk+1 _ _Tk-1k
Po T okk +ak Ok—1,k—1’
_ k-1 ook
k  _ Thk+1 ik Ojk=1 _ Oj—1k e U4
Br—j i T Oy, T T 5 ?_:_ﬂe—; oue’
. =3 b}
j=k—1,k—2,...,1(if k > 2),
: k-1 ok
k — 90,k+1 90,k 90,k—1 __ YL,
B = o targgs + b ;ﬂe o
. =0 b

where aj, , by are the coefficients in (8.5).

The algorithm is considerably more complicated than the modified Cheby-
shev algorithm of Section 5.2 — its complexity, indeed, is O(n®) rather than
O(n?) - but this seems to reflect an inherently higher level of difficulty.

202



ORTHOGONAL POLYNOMIALS: APPLICATIONS AND COMPUTATION 109

8.2. Stieltjes-type algorithm

The procedure sketched in Section 8.1 employs only rational operations on the
data, which is one of the reasons why the resulting algorithm is so complic-
ated. Allowing also algebraic operations (that is, solving algebraic equations)
permits a simpler and more transparent (though not necessarily more effi-
cient) approach. Basically, one expresses —~ﬁk in (8.2) as the Fourier-Sobolev
coefficients of w1 — tmk(t), that is,

i =

(t7k, Th—5) i,

I me—s I,
and evaluates the inner products in both numerator and denominator by nu-
merical integration. If £ < n — 1, then all inner products involve polynomials
of degree less than 2n, and hence can be computed exactly by n-point Gaus-
sian quadrature rules relative to the measures dA,. It is in the generation
of these Gaussian rules where algebraic processes are required. The poly-
nomials intervening in (8.6), and their derivatives, are computed recursively
by (8.2) and its differentiated version, employing the coeflicients ,Bk already
computed. Thus, initially, (see (0 12))

7=0,1,...,k, (8.6)

6 = %\2 = ap(dXo),

which allows us to obtain 71 by (8.2). In turn, this allows us to compute
{ﬂ}}OSjsl by (8.6), and hence, via (8.2), to obtain m. Continuing in this
manner yields the following ‘bootstrapping’ procedure:

8.2 6 8.2) (8.6 8.6) r on— 8.2
ﬂg(o——») (8. ){,3 Yo<j<t (H)m( ) ){ﬂ 1}0<J<n—1('—>)7rn.

8.3. Special inner products

While symmetry with respect to multiplication by ¢ in general does not hold
for the inner product (8.1), a more general symmetry property may hold,
namely

(hu, v)n, = (u,hv)g,, (8.7)

where h is a polynomial of degree > 1. This, however, implies, as is shown in
Evans, Littlejohn, Marcelldn, Markett and Ronveaux (1995), that all meas-
“ures d),, o > 1, must be of Dirac type. On the other hand, there then exists
a (2m + 1)-term recurrence relation of the form

k+m ’
h(t)mi(t; Hs) = > wigmj(t; Hy), (8.8)

j=k-m

where m is the smallest degree among polynomlals h satisfying (8.7) and h
in (8.8) is a polynomial of that minimum degree. :
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If, for example,
(u, ), = /R w(t)o(t) dA(E) + u® () (c), (8.9)
where dJ is a positive measure, s an integer > 1, and ¢ € R, then clearly
h(t) = (t — c)** | (8.10)

satisfies (8.7) and is a polynomial of minimum degree m = s+ 1 in (8.8). In
this case,

ﬂ'k(,Hs) :71']9(, dA), k=0,1,...,s, (811)

as follows easily from (8.9). Moreover, there is an alternative expansion of
the polynomial on the left of (8.8), namely

k+m
hO)me(t; Hs) = D Orymi(t; dN), (8.12)

j=k-—m

where h is as in (8.10) and m = s+ 1. The coefficients in (8.8), as well as
those in (8.12), can be computed with some effort, but the resulting procedure
appears to be quite robust.

The two expansions above, together with (8.11), suggest the following two
methods for computing the Sobolev-type orthogonal polynomials belonging to
the inner product (8.9). In Method I, one computes 74541 by solving (8.8)
for 74541, noting that wg g4+s+1 = 1 (since the 7 are monic). Thus,

k+s .
Thtst1(ts Hs) = (=0 Pmp(t; Ho)— Y wigmi(tHs),  k=0,1,2,.
j=k—s—1 '
, (8.13)
where (8.11) is used on the right, when appropriate, and where wg; = 0 if
j < 0. In Method II, one computes 7y, directly from (8.12),

1 k+s+1 ‘
= '(—'—""—)’;;1— Z OkJ’R'J t d)\), (814)
j=k—s—1 i R

where again 0;; = 0 if j < 0, and this time the polynomials m;(+; dX) on
the right are generated by the basic three-term recurrence relation. Method
I, curiously enough, may develop huge errors at a certain distance from ¢,

either on one, or both, sides of ¢. Apparently, there is consistent cancellation
at work, but the inherent reasons for this are not known. Some caution in
the use of Method I is therefore indicated. Method II is more reliable, except.
in the immediate neighbourhood of ¢t = ¢ (where it is safe to use Method I).

71'Is:(t§ Hs)
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Notes to Section 8

8.1. A miore detailed description and derivation of the moment-based procedure for
generating Sobolev orthogonal polynomials can be found in Gautschi and Zhang
(1995, Section 2). Section 3 of the same reference reports on numerical experience
with this procedure and on attempts to locate the zeros of various orthogonal poly-
nomials of Sobolev type. A sensitivity analysis with respect to small perturbations
in the moments (8.4), where s = 1, is given in Zhang (1994).

8.2. For measures d), in (8.1) that consist of an absolutely continuous measure
with a discrete measure superimposed on it, the Stieltjes procedure is described
more fully, for the case s = 1, and sketched for the general case s > 1, in Gautschi
and Zhang (1995, Section 4).

8.3. Complete algorithmic details for, as well as experience with, the procedure of
generating (by Methods I and II) the Sobolev-type orthogonal polynomials associ-
ated with the special inner product (8.9) are given in Gautschi (1996a). Much of
this work is based on algebraic groundwork laid in Marcelldn and Ronveaux (1990).

205



ORTHOGONAL POLYNOMIALS: APPLICATIONS AND COMPUTATION 111

9. Software

A software package, called ORTHPOL, has been written, that implements all
the procedures discussed above and a few others; see Gautschi (1994). Here
is a brief description of the principal components of the package.

recur  generates the recursion coefficients for the classical orthogonal
polynomials (of Legendre, Chebyshev, Jacobi, Laguerre and

Hermite)

cheb implements the modified Chebyshev algorithm (see Section
5.2)

sti implements the Stieltjes procedure for discrete measures (see

Section 6.3)

lancz  implements Lanczos’s algorithm for discrete measures (see
Section 6.2) _

mcdis  implements the discretization procedure sketched in Section
6.1

mccheb implements a version of the modified Chebyshev algorithm
(not described in this article) that uses approximate values
of the modified moments obtained by a discretization process
similar to the one used in Section 6.1

chri implements the nonlinear modification algorithms of Section
7, as well as modification by a QR step (see Section 7.2)

gchri  implements the modified moment précedure for linear and
quadratic divisors (see Section 7.3)

gauss  generates Gauss quadrature formulae via eigenvalues and ei-
genvectors of the Jacobi matrix (see Section 4.1)

radau  generates Gauss—Radau formulae (see Section 4.2)

lob generates Gauss—Lobatto formulae (see Section 4.3)

Numerical experience reported in this article and elsewhere is based on the
use of one or a combination of these routines. Routines for rational Gauss
quadrature rules and Sobolev orthogonal polynomials have also been written,
but are not yet ready for publication.

Notes to Section 9

Historically, the first major effort of computing Gauss quadrature rules on elec-
tronic computers was made in the mid- and late 1950s. Davis and Rabinowitz
(1956) computed Gauss—Legendre rules with up to 48 points to an accuracy of 20—
21 decimal digits, and went up to 96-point rules in Davis and Rabinowitz (1958).
Gauss—Laguerre rules were computed by Rabinowitz and Weiss (1959), and Gauss—
Lobatto rules by Rabinowitz (1960). For a summary, as of 1981, of the major tables
of Gaussian rules and computer programs for generating them, see Gautschi (1981a,
Section 5.4). More recent software that includes also Gauss—Kronrod rules and other
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quadrature methods can be found in Piessens, de Doncker-Kapenga, Uberhuber and
Kahaner (1983); see also NAG (1991).

The software package in Gautschi (1994) is the first that includes routines for
generating Gauss-type formulae and orthogonal polynomials not only for classical
but also for essentially arbitrary measures. The package is public domain, and can
be received via e-mail by sending the following message to netlib@netlib.org:

send 726 from toms

Alternatively, one can access the package via a WWW browser, using the following
URL:

http://www.netlib.org/toms/726

The routines recur and gauss were instrumental in computations assisting de
Branges in his famous proof of the Bieberbach conjecture (Gautschi 19865).
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The concern here is with polynomials, considered previously by Marcellan and Ronveaux
and others, which are orthogonal with respect to an ordinary inner product on the real line
involving a positive measure, superimposed by a one-point (atomic) inner product involving
a derivative of fixed order. The support point of the atomic component of the inner product
can be located anywhere on the real axis. Two recursive schemes are developed which, in com-
bination, allow one to compute these orthogonal polynomials, assuming that those relative to
the nonatomic component of the inner product are available. The methods are illustrated in the
case of Hermite, Laguerre and Legendre measures and are used to explore numerically the zeros
of the respective Sobolev-type orthogonal polynomials.

Keywords: Orthogonal polynomials of Sobolev type, recurrence relations, computational
algorithm, zeros.

Subject classification: 33C45, 65D20.

1. Introduction

There is a growing literature on orthogonal polynomials of Sobolev type, i.e.,
polynomials orthogonal with respect to an inner product involving derivative
values in addition to function values. A large part of this work is concerned with
analytic and algebraic properties of these polynomials. Computational aspects
have been systematically discussed only recently in [7], where the inner product con-
sidered is a bilinear functional involving derivatives up to order s > 1 with arbitrary
positive measures associated with each. Here we discuss a rather special inner pro-
duct, already considered in [9], that involves functions with an arbitrary positive
measure, and a derivative of fixed order with a one-point atomic measure. We
combine algebraic properties known from [9] with algorithmic ideas to arrive at
computational methods that can be used to generate the resulting orthogonal poly-
nomials numerically. Ordinary orthogonal polynomials that will be needed in this
context are assumed to be computable by methods previously discussed (see, e.g.,

* Work supported in part by the National Science Foundation under grant DMS-9305430.
© J.C. Baltzer AG, Science Publishers
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[4-6]). We also comment on computational experience with our algorithms, and
use them to explore the zeros of the respective polynomials.

To keep the paper self-contained, some of the fomulae needed from [9] will be
rederived from first principles.

2. Statement of the problem

Given a positive measure d on R having finite moments of all orders and being
supported on a set of infinitely many points, we define the inner products

(f,g) = / F()g(x)dAN(x), 2.1)

1f.8l=(f.8) +f()g(c), r=1, ceR (22)

Throughout the paper, f and g are always real polynomials. Since both inner pro-
ducts are positive definite, there exist orthogonal polynomials with respect to each.
Those orthogonal with respect to (2.1) are denoted by py, the others (orthogonal
with respect to (2.2)) by g;. Both are assumed monic for each k > 0.

We have set the coefficient of the derivative term in (2.2) arbitrarily equal to 1. If
it were different, say w™ for some w > 0, then the resulting orthogonal polynomials
gy could be obtained from ours simply by changing dA to wd), which in the pro-
cedures below implies only one single change, namely replacing 3, (in (2.8)) by
wpfy. Therefore, we may as well take w = 1.

A fundamental property of the inner products (2.1), (2.2), which will be used
repeatedly, is the fact that the factor ¢,(-) = (- — ¢)™™! can be transferred from
one term of the inner product to the other without affecting the value of the
inner product (see also [3] for a deeper reason for this):

[Crfag] = [fa Crg] = (fv Crg) = (Crf’g)’ Cr(') = ( - c)r-{-l' (23)
This has two immediate consequences: If (x —c) "'g(x) is expanded in the
g-polynomials, then except for normalization, the expansion coefficients are
[(- — gk, ¢ = lar, (- — ¢)""'q;], which vanishes if j + r + 1 < k. Thus,

k+r+1 [( _ C)r+IQk, q]
(x - C)H_lqk(x) = Z wquj(x)7 Wi = 7 ! ; (24)
j=k—r—1 |||%'H|

where |||g;||* = [4;, q;]. Note that wy .., = 1, since the ¢’s are monic. In the sum-
mation of (2.4) and in similar summations below, it is always understood that coef-
ficients with negative second index are zero — in this case, w;; = 0 if j < 0.

Likewise, in the expansion of the left-hand side of (2.4) in the polynomials p;, we
have ((- — c)'+1qk,pj) = [qr, (- — c)’“pj] =0ifj+r+ 1<k, and thus

ktr+1 o) .
= Y apd, o= BB

where |]pj||2 = (p;»p;). Here also, Oy 4\, = 1.
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Both (2.4) and (2.5), once the coefficients are known, lend themselves for the
calculation of ¢;. Note, first of all, that
drx = Dk, k=0,1,...,r, (2.6)
which can be computed recursively by (2.8) below. With these as starting values,
(2.4) can then be used to compute g, 1, ¢,.2,... by
. k+r
qk+r+l(x) = (X - C)H_ qk('x) - Z wquj(x)1 k= 07 1727 SRR (27)
Jj=k—r—1
In (2.5), on the other hand, one computes the p; on the right recursively by the well-
known three-term recurrence relation

Ps+1 (x) = (x - as)ps(x) - ﬂsps—l(x)a s =0, 1>2, cees

px) =1, p(x)=0,

where the coefficients o, = a,(d)\), G, = 5,(d)\) are uniquely determined by d\ and
by convention Gy = [gdA(x). If kK <r, one conveniently uses (2.6); otherwise,
the summation in (2.5) is completed and the result divided by (x — ¢)"!. We call
the first method (based on (2.4)) Method I, and the second (based on (2.5))
Method I1.

The matrices Q = [wy;], © = [6);] of the coefficients in (2.4) and (2.5) are banded
matrices. By defining

(2.8)

Wy = Wikt O =k,  —r—1<j<r+1, (2.9)
we can store these coefficients in rectangular matrices
Q= [(ij] c ]Rn><(2r+3)7 0= {gk]] c Rnx(2r+3)’ (210)

assuming that the index k runs from 0 to n — 1. This allows us to compute g,
qi,---,qus. by Method I, and ¢, g1, - .., ¢,_1 by Method II.
We can now state the problem we wish to consider.

Problem
Given r> 1, c€ R, n > 1, and given the coefficients o, = a,(d)), B, = B,(dN),
s=0,1,...,n4+2r+ 1, in (2.8), compute the matrices €2, © of (2.10).

It turns out that the computation of  (resp. ) requires the matrix © (resp. ©),

so that both matrices will be available and we are free to use either of the two
methods above to compute the desired polynomials.

3. Computational algorithm
3.1. Computation of the wy;

From (2.4), using (2.3) and (2.5), we have

H|¢Ij|”2ij =[(- C)er]kan‘] =((-— C’)r+1

9k, q5)
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k+r+1 k+r+1
= Y Oupeg Oke(Pes q)-
t=k—r~1 k=1

We now expand g; in the polynomials p,,

J
G(x) =Y Bupex),  By=1,
=0

and use orthogonality of the p’s to obtain
k+r+1 J

g IPwg =Y Oy Bim(pepm)

l=k-r—1 m=0
k+r+1

= Z OeBiel Dol
=k—1
. 2
= Z OeBiel|pel | k—r—1<j<k+r+1,
—k—r—1

since 3,y = 0 if £ > j. Thus, separating out the term with £ = j gives

psl? | & el
Wy = O — Z OkeBjo—r5,  k—r—1<j<k+r+1.
7]t gl

To compute the §’s, note from (3.1) that
Belled > = (4),p6) = g pd] = 4, ()} (€),
hence, for £ < j, by orthogonality of the ¢’s,
BellpdP = —¢(@p(c), €< ).
We need to compute qu)(c). By (3.1), (3.3) we have

(r)
09 = 50— 00 S 2D ).
2

which, differentiated r times and evaluated at x = ¢, gives

r)c
() = ZM()

“Pe“2 .

Define
2

A=X=1, +Z ||l’e||2 . h=1,23,....

(Note that A\, = 1 for & < r.) Then, by (3.4),
4(©) =5 (c) = 4 ()N — 1),
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that is,
()
r p (C) .
g (c) = T =012, (3.6)
\i—1
Thus, from (3.3),
QPSRN0
p; (e)py’(c) .
Byp=—-L1 L L <j; Bi; = 1. (3.7)
’ )\j—lllpzllz o

Next we compute the norm of ¢; in (3.2). Since g; and p; are both monic, we have
[9),9;] = [g;, ;] hence, by the definition of the inner product, and (3.6),

(r) 2
Il|q]”|2 = (qj,pj) + q](r)(c)p](r)(c) = (pjvpj) + [p]A(j)] )
\j—

Since, by (3.5),

(N 212
p; (¢
A=A +[*(Z]7
|| )]
we can write
A=Al
lgl11? = Il oyl +’—A_IJ—HP,-H2,
i
which gives
s
g2 = =11 oyl (3.8)
A

Substituting (3.7) and (3.8) in (3.2) now yields

(r j-1
A e .
wkj:i__lngLQE bupl)(c),  k—r—-1<j<k+r+l. (39
\j )‘j”PjH t=k—r—1

Up to-this point, the algebraic development followed the one in [9]. It remains to
compute the 6;,.

3.2. Computation of the 6;

From (2.5), using (3.1), we have

=) q,p))

k k
(- C)r+125kzpe,l7;> = Bul(- = )"'pi,p))
=0 =0

—

9kj||Pj||2 :(

N

Bury ™, k—r—1<j<k+r+1, (3.10)

I
M=

o~
1l

0
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P

J

Figure 1. Region in which 'yg) ) is nonzero.

where we define
,YZ_’) = A(x — ¢)’po(x)p;(x)d A (x), p=0,1,...,r+1. (3.11)
We note that

W =lpl?  ifp+l=],

W =llpdP  ifp+i=4, (3.12)
»yg.’):o ifp+l<jorp+j<Ht.

Thus, for fixed j > 0, in the (£, p)-plane, the v’s are nonzero only in the shaded
region of figure 1. On the left slanted boundary, the s are constant equal to
||Pj”2, and on the right slanted boundary, they are equal to |pel%,
¢=j, j+1,.... From these boundary values, all remaining values can be deter-
mined recursively as follows:

N / (x = O pe(0)p,(x)dA(x)
- A (x = 0) - (x — PP (x)dAR)
- A (% — ¢)f - xpep (X)dA) — ¢ f (x — P pe)p (X)dA(R)
R

_ A (o = ) {prst (%) + agpe(x) + Bupey ()1, (X)dA(x) = e,

that is,

1
Y =) (= B p=0,1, (3.13)

This allows us to generate the desired quantities row by row, starting at the lower
tip of the shaded domain in figure 1 and, for the quantities on the vertical boundary
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(when ¢ = 0), using 7(_p 1) ;= 0in(3.13). With the 7’s so generated, we get from (3.10)

L &, .
9kj=‘—225kﬂ§j+l), k—r—1<j<k+r+1, (3.14)
Pl =
with the s as in (3.7). By the last relation in (3.12) the terms in (3.14) with
{<j—r—1land{>j+r+1 (if present) are actually zero.

3.3. Summary of the computational algorithm

As previously mentioned, we assume that the coefficients o,(d)), 8,(d)) in the
recurrence formula (2.8) for the orthogonal polynomials p; have already been com-
puted by known techniques. We need them up to s = # + 2r + 1 in order to imple-
ment (3.13) for all j < n + r. It is convenient, then, to first precompute certain basic
quantities that are needed in the formula (3.9) for wy; and in (3.14) for ;. These
are:

(i) the rth derivative values p{’(c), )., PY).(c). These are readily com-

puted by the successively differentiated recurrence relation (2.8) evaluated
at x =c.
(i) The squared norms || po||% || p1|*, . ., || Pusr| > They are immediately obtained

from 5 .
Ipill" = BoBr---B;,  j=0,1,...,n+r.

(iif) The constants A_;, Ay, A, ..., \,,,. These are straightforwardly computed
from the quantities obtained in (i) and (ii).

In terms of these precomputed quantities, one next computes the elements §kj of
the matrix © in (2.10), using (3.14), suitably rewritten, and (3.7):

- 1 PSP -
0, = g Yeryi | —r=1<j<r+1. (3.15)
g llpk+,-1|2(’“k+f M1 5 | pal PR

Here, the v’s are generated as described in section 3.2, and there is little point in
checking which of these are zero in the summation on the right, since everything
(including the zero elements) has been precomputed. F inally, the elements wy; of
the matrix 2 in (2.10) are computed by (3.9), suitably rewritten:

(r) -1
Mg 1 = N .
Wy = Oy ————— Oepiio(c),  —r—=1<j<r+1, (3.16)
’ Ak ’ )‘k+ijk+jH2Z:Zr:—1 e

being careful to start the summation with £ = —k if k < r + I,and with ¢ = —r — 1
otherwise, provided £ < j — 1. As mentioned earlier, the quantities on the left of
both (3.15) and (3.16) are zero if j < 0.

The desired polynomials can then be computed either by (Method I)

qk+r+l(x) = (x - C)r+1qk()C) - Z (‘ijqk+j(x)7 k= 0,1,2,... n—1, (317)

Jj=—r-1
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or by (Method II)
r+1
qk(x) = (X - C)_(r+1) Z e_kjpk+j(x)v k=r+ Lr+ 2,...,n— 1, (318)
Jj=—r-1

recalling that g, = p; for 0 <k <r.

4. Examples

Before we consider the numerical performance of the algorithms of section 3, we
observe, in section 4.1, some elementary symmetry properties of the polynomials g;
when the measure d\ in (2.1) and its support are symmetric with respect to the
origin. In the remaining subsections, evidence is provided for the numerical robust-
ness of the algorithms for generating the recursion matrices 2 and © of (2.10). In
addition, the two methods of section 2 for evaluating the polynomials g; are com-
pared with regard to their accuracy. Here, surprising numerical difficulties are
uncovered in the cases of the Hermite and Laguerre measure, as well as for mea-
sures supported on a finite interval. Finally, we explore by numerical computation
properties of the zeros of the respective polynomials.

All numerical results reported in sections 4.2—4.4 were obtained on a SUN
SPARC station IPX in double precision (=~ 1.1 x 1071%); quadruple precision
(=~ .96 x 107**) was used to ascertain the accuracy of the double-precision results.

4.1. Symmetric measures

We assume in this subsection that the support of dA — bounded or unbounded —
is symmetric with respect to the origin and d\(—x) = dA(x). We denote the ortho-
gonal polynomials ¢, belonging to the inner product (2.2) more precisely by
qx(*) = qx (+;c;d)) and the inner product (2.2) by [-,-](c). (There is no need to
indicate the dependence on r.)

The first symmetry property is

gi(x; —¢;dN) = (= 1)Fqe(=x;¢;d)N) (d\ symmetric). (4.1)

This is easily shown by defining g (x) := (=1)*gx(—x; c; d\) and observing that, for
k# 4,

(ks el (—¢) = A (=1)*g(—x; ¢ AN s (—x; ¢; dN)AN(x) + (=1 g (c)q) ()
= (—I)M{ A qk(t; ¢ dN)qy(t; ¢ dN)AN(1) + q;”(c)qg’)(c)}

=0,

by the orthogonality of the ¢’s. Since the §’s are monic, the assertion (4.1) then
follows by the uniqueness of the orthogonal polynomials.
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Table 1
Accuracy of the w- and #-coefficients.
¢ r err k j err k j
0.0 1 46(-15) 3 -2 31(-15) 3 -2
2 35(-15) 11 -3 27(-15) 4 -3
3 A47(-15) 53 —4 40(-15) 53 —4
4 .59(-15) 28 -5 .59(~15) 28 -5
1.0 1 .39(-15) 67 0 27(-15) 69 -2
2 A43(-15) 51 -1 32(-15) 3 -3
3 .52(-15) 32 -3 38(-15) 45 -3
4 .89(-15) 12 5 92(-15) 10 -5
5.0 1 49(-15) 8 -2 A1(-15) 12 -2
2 20(-14) 9 3 .66(-15) 15 -3
3 .56(-14) 13 4 23(-14) 15 —4
4 A11(-13) 19 5 S5(-14) 28 -5
10.0 1 .16(-14) 33 2 .69(-15) 56 -2
2 27(-14) 23 3 A5(-14) 25 -3
3 .62(-14) 49 4 25(-14) 50 —4
4 16(-13) 52 5 .66(-14) 57 -5

The practical implication of (4.1) is that in the case of symmetry we can restrict
ourselves to nonnegative parameters c.
The next property is the special case ¢ = 0 of (4.1), that is,

(=1 g (=x; 0; d\) = g (x;0;dN) (d\ symmetric). (4.2)

Thus, when ¢ = 0, then gy is even or odd depending on the parity of k, regardless of
the value of r. Since, in particular, q,(cr)(O) = 0 if either £ is even and r odd, or k is
odd and r even, it follows from (2.1), (2.2) that

qr(x) = pr(x) if k and r have different parity (c=0). (4.3)

4.2. Hermite measure

This is the case (2.1), (2.2) with dA(x) = e dx on R, which has already been
considered analytically (for ¢ = 0 and r = 1) in [9]. Here we deal with this example
from the numerical point of view (also for ¢ # 0 and r > 1).

We first determine the accuracy with which the - and f-coefficients can be
obtained by the algorithms of section 3. We do this by comparing double-precision
with quadruple-precision results. (In single precision, overflow occurred in equa-
tion (3.5) when ¢ = 10 and n > 18.) The maximum relative errors (in the double-
precision values) that we observed are listed in table 1 for n = 80 (in (2.10)), r =
1(1)4, and selected values of ¢. The columns headed “k” and “j” indicate for
which k£ and j the maximum error in Wy TEsp. G_kj is attained; here, k and j vary
over the integers 0 to n — 1 (=79) and —(r + 1) to r + 1, respectively. As can be
seen, the coefficients are obtained quite accurately, suggesting a high degree of
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robustness of the computational methods when the exponent range in machine
arithmetic is adequately large.

To our surprise, the same cannot be said about the two methods (Methods I
and II) for evaluating the polynomials g, especially not about the first. When
¢ =0 and and r = 1, both methods perform reasonably well, with the obvious
exception (because of division by x in (3.18)) of the second method in the immedi-
ate neighborhood of x = 0. Even Method I suffers a bit in accuracy near the origin,
the maximum relative error (in gz, 0 <k <n—1) being about 107 when
n =20, and about 10~'2 when n = 80. For r > 1, however, Method I develops
huge relative errors on both sides away from the origin, where, for n = 80, the
error is 100% or more in the |x|-range from about 4 to 10. When n = 20, the
error peaks at levels of about 107°—10~!! for r = 2, 3 and 4. Further examination
revealed that the recursion (3.17), in these ranges of x, is subject to persistent doses
of cancellation errors. Sufficiently far away from the origin, at about |x| = 25, the
error drops down to a more reasonable level of 10~'. In contrast, Method II
exhibits relative errors which gradually decrease on either side of the origin, becom-
ing, when n = 80, smaller than about 10712 for |x| exceeding approximately 0.3, 1.5,
1.75, 2.5 for r = 1, 2, 3, 4, respectively; when n = 20, these numbers are somewhat
smaller.

The difficulties with Method I persist for values ¢ # 0 of the parameter c,
especially on the left [right] side of x = ¢ when c is positive [negative] (cf. (4.1)
for symmetry), but also, for awhile, on the other side of ¢. The magnitude of the
errors indeed is consistently larger than for ¢ = 0,

Unless ¢ = 0 and r = 1, it is cautious, therefore, to use Method I only in a small
interval around x = c (the length of which should be chosen in dependence of ¢, r
and the maximum degree of the desired ¢;’s), and use Method II outside that inter-
val. We have done so in all computations relating to the zeros of gy.

To look for zeros of g, we scanned the real axis (in practice, the interval
[—15, 15]) for sign changes in g, taking a sufficiently small step (the length of the
interval divided by some “‘irregular” integer like 1537 to avoid hitting exactly the
origin). After a sign change has been discovered, the corresponding zero was com-
puted by Newton’s method. In this way we were usually able to determine a full set
of k real zeros, or k — 2, if there is a pair of conjugate complex zeros. Occasionally,
the interval [—15,15] had to be enlarged to accommodate an exceptionally large
zero. (This occurred, e.g., for ¢ = 5, r = 3, when ¢4 has the zero 19.36544 ..., or
for ¢ = 5, r = 4, in which case g5 vanishes at 24.96544. . ..) Also, on one occasion,
the scanning had to be refined to detect two zeros located very closely together (the
zeros 4.98794 ..., 5.01128... when ¢ =5 and r = 1). In view of the numerical
difficulties described above, the computations were done in both double and quad-
ruple precision, and the largest relative error in the trial values of g, as well as in the
zeros of g, was carefully monitored to provide confidence in the empirical results
below.

We begin with the simplest case ¢ = 0, where the g;’s are alternately equal to
(monic) Hermite polynomials (cf. (4.3)). Thus, every other of the polynomials g
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has a complete set of real distinct zeros. This does not rule out, however, that those
“inbetween” (which for r = 1 were identified in [9] as linear combinations of Hermite
and generalized Hermite polynomials) could deviate from this pattern. We found
that this does not happen when r = 1, i.e., in this case all polynomials ¢, appear to
have a complete set of real distinct zeros. This was verified numerically up to
degree n = 80 and was in fact proved in [2, proposition 4.4], not only for the Her-
mite measure but also for general symmetric measures. Nevertheless, the zeros of dk
do not, in general, interlace with those of g, ; exceptions occur as early as k = 4.
Interlacing occurs, however, between the zeros of g, and py [2, proposition 4.6].

When r = 2, it was found that the “inbetween polynomials™ g (i.c., for k even
> 4) are consistently short of 2 real zeros, and thus (by (4.2)) must have a pair of
conjugate complex zeros on the imaginary axis. This was verified numerically up
to n = 40; the complex zeros were seen to move along the imaginary axis down
toward the real axis as k increases (from k = 6 on). An analogous situation was
found to prevail for r > 2 (specifically, r = 3 and r = 4). See also theorem 8 in [1]
for more general symmetric measures.

When ¢ # 0, we found that g, (- ; ¢, d)) either has exactly & real distinct zeros, or
k — 2 and a pair of conjugate complex zeros. (For r = 1, this is true for general posi-
tive measures d); see, e.g., [12].) When ¢ =1 and ¢ =5, and for 1 < r < 4, the
occurrence of complex zeros and their values are documented in table 2 for the
range 1 <k <40. All zeros (real and complex) were computed to 25 decimal
digits, but only two digits are shown in table 2. For values of k with 1 < k < 40
that do not appear in table 2, there exists a complete set of k real distinct zeros.
Note how a larger value of ¢ pushes the complex zeros further to the right.

Table 2
Complex zeros of gi(-;¢;d)), 1 <k < 40, for dA\(x) = e dxonRand 1 <r<4,c=1l,andc=5.
c k r=1 k r=2 k r=3 k r=4
Z€eros zeros Z€eros zeros
1 5 1.49 + 35i 6 1.80 & .60i 7 2.10 + .80i 8 2.41 + 97i
10 1.42 + .25i 8 J1 £ 38i 9 .61 £ .55i 10 .50 + .80i

12 1.15 £ .25{ 11 1.66 £+ .39i 12 1.87 &+ .50i 13 2.07 £ .62i

17 1.38 £+ .144 13 1.09 + 44i 14 1.15 + .67i 15 1.19 + .88i

19 1.24 + 22i 15 J2 £ 270 16 57 £ 38i 17 A48 + 514
18 1.59 + 22 19 1.77 &+ .26i 20 1.94 £ 31i
20 1.32 + 32§

5 21 5.16 + .18i 22 5314+ 260 23 5.46 + .33; 24 5.61 £ .39
25 5.05 + .13 26 5.18+ .20 24 5.74 £ 10: 25 591 + .16i
26 5.31 + .04i 27 547+ .16 27 5.28 + .26i 28 5.37 £ .30i
29 5.08 £ .15i 30 5194+ .22i 28 5.63 £ .22i 29 5.79 £ .27i
33 5.18 + .15¢ 31 547+ .08 31 5.29 £ 27 32 5.36 + .33;
36 5.06 + .13§ 34 5314+ .23 32 5.63 + .14i 33 5.79 £ .18i
40 5.23 £ .10 37 5154+ .19 35 5.43 £ .30i 36 5.55 £ .37i

38 544 £ 07i 38 5.21 £ .23; 39 5.21 £ .30¢
40 508 +£.05 39 5.58 £ .12i 40 5.73 £ .15¢
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4.3. Laguerre measure

This is the case (2.1), (2.2) with dA(x) = e”“dx on R,. Our experience with the
algorithms of section 3 is similar to the one described in section 4.2 for the Hermite
measure. The matrices  and © (again for 1 < r < 4) are obtained to an accuracy
close to machine precision when n < 70. For n = 70, we observed overflow in the
double-precision evaluation (exponent range ~ [—308, 308]) of 6;; by (3.14).

The two methods for evaluating the polynomials g; were compared for values of
nup to n = 40. It was found that Method I always develops huge errors (even in the
case ¢ = 0,7 = 1) when x is sufficiently far to the right of ¢. This happens regardless
of whether ¢ > 0 or ¢ < 0. As before, Method II must be avoided in a neighborhood
of x = ¢ whose length depends on ¢, r and n. Method 1 is superior to Method II for
most x < ¢, and we recommend its use in this range.

We followed the same approach as in section 4.2 to explore the zeros of g;. Com-
putations in the range 1 <k <20, and for ¢ =0,-1,-5,1 <r <4, led us to
conjecture that g (-;c;d)\) for ¢ < 0 has exactly k distinct real zeros, all positive
except one, when k > r, which is negative. For r = 1, this has been proven in [8]
for ¢ =0, and in [10] for ¢ < 0, also for more general measures d\. The general
result for » > 1 has been proven in [11] (cf. theorems 4.2 and 4.5).

For ¢ > 0, we found the occurrence not only of negative zeros, but also of com-
plex zeros. A summary for ¢ = 1 and ¢ = 5 is provided in table 3. For values of
k <20 not contained in table 3, all zeros are distinct and positive. Again, the
zeros were computed to 25 decimal places, but only 2 digits are shown in table 3.
It appears, similarly as in the Hermite case, that when ¢ > 0 the polynomial
qr(-; c; d)) has either a set of k distinct real zeros (with one possibly nonpositive)
or exactly k — 2 positive zeros and a pair of conjugate complex zeros. The latter
again move to the right with increasing c.

4.4. Legendre measure

We now consider (2.1), (2.2) with d\(x) = dx on [—1,1]. Being again a sym-
metric measure, it exhibits similar numerical properties as the Hermite measure
in section 4.2. We used n = 40 for our numerical comparisons, and n = 20 for
the exploration of the zeros. When n = 40, the matrices  and ©, as before, were
obtained to an accuracy close to machine precision. Methods I and II are both
quite accurate for ¢ = 0 and r = 1, with a small interval (of length 0.1, say) excepted
for Method II. When r > 1, Method I develops significant ““bulges” of errors in the
|x|-range from approx. 0.5 to 1.5, in contrast to Method II, which remains accurate
there. Method II, therefore, should always be employed, with the exception noted
above. When ¢ > 0 (even in the case r = 1), the error buildup in Method I is intol-
erable in certain intervals located to the left of ¢. (For negative c, observe (4.1).) We
recommend its use only for x > ¢ — ¢, where ¢ is a small positive number to be
selected in dependence on ¢, r and n. For all other x-values, Method II should be
used.
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c=1,and ¢ = 5.

341

=e “dxonR, andr = 1(1)4,

c k r=1 k r=2 k r=3 k r=4
Zeros ZEros Zeros ZETos
1 6 1.86 + .30i 3 0.00 4 -.91 5 =286
7 1.29 + .06i 4 -.24 5 -1.97 6 —494
16 1.57 + .27i 5 -.03 6 -1.19 7 =323
17 1.33 + .32; 10 1.52 + .74i 7 —.61 8§ =210
18 1.12 + .18i 11 18 £ 730 8 -.24 9 -1.38
19 1+ 13§ 12 48 + .39 9 —.03 10 -.88
20 .61 + .10i 13 26+ .16 14 206 +£.77i 11 -.52
14 21+£.05 15 1.10 £ 1.04i 12 -.26
16 A8 £.76i 13 —-.08
17 26 £ .45 19 227+ .77i
18 A7+ .23 20 1.24 4+ 1.17i
19 A3 £ 125
20 A3 £ .04i
5 4 6.48 + 1.47i 6 599+ 136i 5 4.72 £+ .40i 6 11.22 4+ 2.41;
7 6.29 £+ 1.23i 9 753 +1.69 7 10.90 + .95; 9 11.73 + 1.53;
11 6.14 4+ .99; 10 421 + 97; 8 4.56 +£2.14i 10 4.04 + 2.94;
12 5.05 + .29; 13 778 + 44i 11 921 +1.21i 14 7.18 + 3.04i
16 6.00 + 817 14 581 +£1.35 12 5.00 +£2.23; 15 343 £ 1.72i
17 5.16 £ .52i 15 411+ .67i 13 310+ 300 19 8.56 £ 1.14i
19 6.69 +1.04i 16 8224+ 1.02i 20 5.24 £ 2.46i
20 493 +1.12i 17 5.34 £ 2.00i
18 3.59 £+ .79i

As far as the zeros are concerned, we have a situation similar to the one for the
Hermite and Laguerre measures. Computations for ¢=1,2,5 and 1<r<4
suggest that for ¢ > 1 there is always a complete set of real zeros, all in the interior
of [~1, 1] except for one that is larger than 1 whenever k > r. (Forc < —1,use(4.1).)

Table 4
Complex zeros of gi(-;c;d)), 1 < k < 20, for dMx) =dxon[-1,1]and 1 <r<4,c= 5.
c k r=1 k r=2 k r=3 k r=4
Zeros Zeros Zeros Zeros
0.5 5 79 + 126 6 70 + .28 7 43 + 440 8 002 +.30;
8 .68 + .10{ 9 54 + .23i 8 .94 :t@i 9 .98 £+ .10i
11 .63 + .08i 12 .50 £ .18i 10 28 + .24i 12 78 £ .20i
14 .60 + .06; 15 A8 + .14i 11 .81 £ .05; 15 66 £+ .21;
17 .58 £ .05i 18 A48 + .12i 13 30 £ .15: 18 59 £ .20i
20 57 £ .05i 14 71 £ .06i
16 32 +.10i
17 .67 £ .08i
19 354+ .07
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For r = 1, this is proved in [10], and for general r > 1 can be deduced by an affine
transformation of variables from the results in [11, §4].

When ¢ = 0,7 = 2,3, 4, we observed, like in the Hermite case, that the inbetween
polynomials have real distinct zeros in (-1, 1), except for a pair of purely imaginary
zeros moving toward the real axis as the degree increases. We suspect this remains
true for all r > 2.

The “difficult” case is —1 < ¢ < 1, ¢ # 0, when complex zeros off the imaginary
axis make their entrance. We illustrate this in table 4 for the case ¢ = 0.5.

For a detailed discussion of the location of real and complex zeros of g ( - ; ¢; d\)
in the case r = 1, we refer to [12].
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Using potential theoretic methods we study the asymptotic distribution of zeros
. and critical points of Sobolev orthogonal polynomials, i.e., polynomials orthogonal
with respect to an inner product involving derivatives. Under general assumptions
it is shown that the critical points have a canonical asymptotic limit distribution
supported on the real line. In certain cases the zeros themselves have the same
asymptotic limit distribution, while in other cases we can only ascertain that the
support of a limit distribution lies within a specified set in the complex plane. One
of our tools, which is of independent interest, is a new result on zero distributions
of asymptotically extremal polynomials. Our results are illustrated by numerical
computations for the case of two disjoint intervals. We also describe the numerical
methods that were used.  © 1997 Academic Press

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

We consider a Sobolev inner product

&> =] S(0) gt) duo() + [ £1(0) (1) du0), (L1)

where u, and x4, are compactly supported positive measures on the real line
with finite total mass. We put

Zo=supp(uo),  Zy:=supp(y,), 2:=Z,uZ|. (1.2)

If, as we assume, y, has infinite support, there exists a unique sequence of
monic polynomials 7, deg z,, = n, which is orthogonal with respect to the
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T Present address: Department of Mathematics, City University of Hong Kong, Tat Chee
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118 GAUTSCHI AND KUIJLAARS

inner product (1.1). These Sobolev orthogonal polynomials have properties
that clearly distinguish them from ordinary orthogonal polynomials, most
notably by the fact that some or many of the zeros of n, may be outside
the convex hull of X, or even off the real line; cf. [1, 9]. In recent papers
many results on zeros of special classes of Sobolev orthogonal polynomials
were obtained. We refer to the surveys [8, 10].

Asymptotic properties of Sobolev orthogonal polynomials were obtained
by Lopez, Marcellan, and Van Assche [7]. These authors considered a
general class of inner products, including inner products (1.1) with discrete
measure /. .

In the present paper, we study the asymptotic behavior of zeros and
critical points of orthogonal polynomials in a continuous Sobolev space,
i.e., when both u, and u, are nondiscrete measures. Our results will be
stated in terms of weak™ convergence of measures. We associate with a
polynomial P of exact degree n its normalized zero distribution,

1 n
WP)== Y 4., (1.3)

where z,, ..., z, are the zeros of P counted according to their multiplicities.
A sequence of polynomials {P,} °_,, deg P, =n, is said to have asymptotic

n=1°

zero distribution g if 4 is a probability measure on C and

tim [ fav(p,)= fdu (1.4)

for every continuous function f on C. That is, their normalized zero dis-
tributions converge in the weak™ sense to u.

Asymptotic zero distributions for orthogonal polynomials with respect to
an ordinary inner product

s g>=ff(t) g(1) du(r),  2:=supp(u) <R, (1.5)

have been studied by many authors. The most comprehensive account can
be found in the monograph of Stahl and Totik [13]. They introduce a
class Reg of regular measures. One of their results is that for x € Reg, the
orthogonal polynomials p, for the inner product (1.5) have regular
asymptotic zero distribution. This means that

hm v(pn) = wZa

n— o0
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ZEROS AND CRITICAL POINTS 119

where w5 is the equilibrium measure of 2; see [ 13, Theorem 3.6.1]. In case
2 =supp(u) is regular with respect to the Dirichlet problem in C\Z, the
measure 4 belongs to Reg if and only if

” n”E l/n__
Iim (———) =1 (1.6)

n— 0 ||P ||L2(#)

for every sequence of polynomials {P,}_,, deg P, <n, P, # 0. Here and
in the following we use |-||» to denote the supremum norm on X.
Regularity of a measure indicates that it is sufficiently dense on its support.
For example, it is enough that x4 has a density which is positive almost
everywhere on X. See [13, Chap. 4] for this and other criteria for
regularity of u.

Motivated by these facts, we make the following assumptions on the
measures /i, and g, in (1.1). Recall that X;=supp(y,), j=0, 1.

Assumption A. For j=0,1, the set X; is compact and regular for the
Dirichlet problem in C\X'.

Assumption B. The measures y, and u, belong to the class Reg.

Our first result concerns the asymptotic zero distribution for the
derivatives 7, of the Sobolev orthogonal polynomials.

THEOREM 1. Let pu, and u, be measures on the real line satisfying
Assumptions A and B. Let {n,} be the sequence of monic orthogonal poly-
nomials for the inner product (1.1). Then

lim v(7,)=0ws,

n— o0

where 2 = supp(u,) U supp(u,) and wy is the equilibrium measure of X.

Thus the sequence of derivatives {7} has regular asymptotic zero dis-
tribution. Note, however, that this does not imply that the zeros of =/, are
all real. In fact, we do not even know if the zeros remain uniformly
bounded. In our computations we found in all cases that the zeros of n/, are
real, see Section 2. While we have no reason to believe that this is true in
general, we feel confident about the following conjecture.

Conjecture 1. Under the same conditions as in Theorem 1, let U be an
arbitrary open set containing the convex hull of X. Then there is an n, such
that for every n>n,, all zeros of n), are in U.
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120 GAUTSCHI AND KUIJLAARS

To discuss the zeros of the Sobolev orthogonal polynomials 7, them-
selves, we need to introduce some more notation. Set

Q:=C\Z2,

and let go(z; o) be the Green function for £2 with pole at infinity; see
[12, 13]. For r>0, we denote by V, the union of those components of
{zeC: go(z; o) <r} having empty intersection with X, and we put

V.= 7.

r>0

Finally, we put
K:=0Vu(Z\V).

THEOREM 2. Let u, and u, be measures on the real line satisfying
Assumptions A and B. Let {r,} be the sequence of monic orthogonal poly-
nomials for the inner product (1.1). Let v be a weak™ limit of a subsequence
of {v(rn,)}. Then

(a) supp(v)cVuZ,
(b) the balayage of v onto K is equal to the balayage of w5 onto K.

See [13] for the notion of balayage of a measure onto a compact set.

The information on the zeros of z,, we get from Theorem 2 is less precise
than the information on the critical points from Theorem 1. In particular,
it does not follow that the full sequence {v(x,)} converges. However, in
some cases we can say more.

COROLLARY 3. Under the same conditions as in Theorem 2, let v be a
weak* limit of a subsequence of {v(n,)}. If K=2X (eg., if Z, =X,), then
v=wy. In this case the full sequence {v(rn,)} converges to wsy.

Corollary 3 follows immediately from Theorem 2. In our numerical
examples, see Sections 2.3-2.4, we found that for » up to 50, part of the
zeros of x,, are still pretty far outside K. But we conjecture that they do not
accumulate outside of ¥ and the convex hull of Z.

Conjecture 2. Under the same conditions as in Theorem 2, let U be an
arbitrary open set containing V" and the convex hull of 2. Then there is an
ny such that for every n>n,, all zeros of =, are in U.

Conjecture 2 actually follows from Conjecture 1.

The rest of this paper is organized as follows. We first present numerical
results on zeros and critical points for several special cases, where X' con-
sists of two disjoint intervals. The numerical methods we used are discussed
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in Section 6. The proofs of the theorems are in Sections 3-5. They depend
essentially on results on zero distributions of asymptotically minimal poly-
nomials obtained by Blatt, Saff, and Simkani [2] and Mhaskar and Saff
[11]. For the proof of Theorem 2 we need an extension of these results,
which will be presented as Theorem 5 in Section 3. In Section 4 we give the
proof of Theorem 1 and in Section 5 the proof of Theorem 2.

2. TWO DISJOINT INTERVALS: NUMERICAL RESULTS

In this section we present numerical calculations to illustrate our results.
The methods used are described in Section 6. .

We consider the case where 2 consists of two disjoint intervals of equal
length. We choose

2=[-1, —%]U[%,l]

With 4, the Lebesgue measure restricted to [4, 1] and A_ the Lebesgue
measure restricted to [ —1, —3], we distinguish the following four cases:

Case A: po=pu, =4, +4_;
Case B: puo=A4A,+A_,u=41_;
Case C: puog=A,.,u,=A,+4_;
Case D: puo=A,,u,=41_.

In all four cases, we know from Theorem 1 that the asymptotic zero dis-
tribution for the derivatives is equal to w,. In Cases A and B we have
2, <2,. Thus, it follows from Corollary 3 that in these two cases the
asymptotic zero distribution for the Sobolev orthogonal polynomials is
also equal to wy. This is confirmed by our calculations.

2.1. Case A: pyo=p,=Ar, +Ai_ (Table I)

In our calculations for n=1(1)25(5)50 we found complex zeros of =,
only for n=5, 7, and 9. All zeros of n/, were found to be simple, real, and
in the interval (—1, 1).

22. Case B: pyo=4A, +A_, uy=A_ (Table II)

Again, most of the zeros are real. Only for n=4 and 6 did we find com-
plex zeros of =,. The zeros of =, are all simple, real, and in (—1, 1).
(Calculations for the same n as in Case A.)

The situation is different in Cases C and D. In these cases the set K of
Theorem 2 may be described as follows. The Green function go(z; o) of
Q=C\X has one level set {z: go(z; 0)=r,} consisting of a figure eight.
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TABLE 1

Zeros of n, and 7@, n=>5, 10, in Case A

Zeros of &, Zeros of 7,
n=5 —093646854 — 020876772 —0.88534979
—0.93646854 + 0.20876772i —0.46499783
0.0 0.46499783
093646854 — 0.20876772i 0.88534979
0.93646854 + 0.20876772i
n=10 —1.00052723 —0.97497028
—0.93567713 —0.87345927
—0.80269592 —0.71474572
—0.62612019 —0.55444777
—0.50181795 0.0
0.50181795 0.55444777
0.62612019 0.71474572
0.80269592 0.87345927
0.93567713 0.97497028
1.00052723
TABLE 1I
Zeros of n, and #),, n=3, 10, in Case B
Zeros of =, Zeros of 7',
n=>5 —1.01982013 —0.91709404
—0.74396812 —0.64370369
—0.55435292 0.14139821
0.61214903 0.78137665
0.90846355
n=10 —1.00290062 —0.97911875
—0.93891943 —0.89422735
—0.84280403 —0.75923516
—0.66396367 —0.61066220
—0.55481204  —0.51231989
—0.48324766 0.16014304
0.55639877 0.62971341
0.71942191 0.80459125
0.87676555 0.93865007
0.97576614
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For symmetry reasons, this is the level set containing 0. The set K consists
of two parts. It is the union of [, 1] with that part of the figure eight that

encircles [ —1, —3].

23. Case C: po=2A4,, uy=~A, +A_ (Table III)

In our calculations for »=1(1)25(5)50 all zeros of n!, were found to be
simple, real, and in (—1, 1). All zeros of =, are real only for n=1, 2, 3, 4,
6, 8, and 10. All complex zeros have a negative real part and they are
encircling [ —1, —3]. Furthermore, we noted some peculiarities in the
behavior of the complex zeros. For odd n, the complex zeros are outside

ZEROS AND CRITICAL POINTS

TABLE III

Zeros of ©,, and 7, n=35, 10, 15, in Case C

Zeros of 7, Zeros of 7',
n=5 —1.13970225 — 0.44661459i —0.90932823
—1.13970225 + 0.44661459i —0.62403037
0.50779290 0.62478703
0.76816794 0.90887919
1.00382819
n=10 -—0.98774277 —0.97498555
—0.95967689 —0.87349586
—0.77454092 —0.71478191
—0.65462781 —0.55436421
—0.48961896 0.00056691
0.50181827 0.55445253
0.62612626 0.71475358
0.80270124 0.87346371
0.93567933 0.97497123
1.00052715
n=15 —1.20729028 —0.99008732
—1.11842498. — 0.23762201i —0.94869995
—1.11842498 + 0.23762201i —0.87812479
—0.86567461 — 0.41291713i —0.78542939
—0.86567461 + 0.41291713i —0.68199701
—0.48045299 — 0.45544118i —0.58497964
—0.48045299 + 0.45544118i —0.51762420
0.50000295 0.51762967
0.54387032 0.58499199
0.63049097 0.68200314
0.73428763 0.78542581
0.83481287 0.87811753
0.91801959 0.94869496
0.97492010 0.99008612
0.99999844
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0.6f f -

y . . ; , .

-15 -1 -0.5 0 0.5 1

FiG. 1. Plot of the zeros of x,, n=>5(5)50, in Case C.

the set K, while for even n, they are initially inside, but eventually some
cross over to the outside. It seems likely that for odd #, the zeros tend to
K from the outside but the convergence is very slow. For even n, there
might be a different limit distribution, although it is conceivable that also
for even n, the zeros accumulate on K. It is also remarkable that the zeros

0.8¢ g i

-1 \ 1 | L 1

-15 -1 -0.5 Q 05 1

Fic. 2. Plot of the zeros of z,, n=75(5)50, in Case D.
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of 7, are very close to being symmetric around 0. We have no explanations

for these phenomena.
Figure 1 depicts the zeros of z,,, n=>5(5)50, along with that part of K

that encircles [ —1, —

2.4. Case D: ,u0=/1+, ur=A_ (Table IV)

We found complex zeros of =, for all n, except n=1, 2, and 3. Again, all
the zeros of z;, are simple, real, and in (—1, 1).

In contrast to Case C, we found no zeros of z,, inside the curve K (except
for n=3). This is illustrated in Fig. 2 with the plots of the zeros of =,
n=15(5)50. Note that the zeros are pretty far from K.

TABLE 1V

Zeros of m, and 7, n=35, 10, 15, in Case D

Zeros of 7, Zeros of «',
n=5 —1.40237979 —0.91931357
—0.67193855 — 0.70835815i —0.64605904
—0.67193855 + 0.70835815i —0.18436141
0.62935932 0.78712860
0.91364079
n=10 —1.29703537 —0.98088476
—1.10126374 — 0.39294199; —0.90316848
—1.10126374 + 0.39294199; —0.77960092
—0.57893971 — 0.56595190i —0.63989830
—0.57893971 + 0.56595190i —0.53049964
0.51468739 0.55298588
0.60589851 0.68147141
0.75300437 0.83024743
0.89081502 0.94619968
0.97842844
n=15 —1.24663987 — 0.13488685; —0.99138203
—1.24663987 + 0.13488685i —0.95536746
—1.07914072 — 0.37346724i —0.89378004
—1.07914072 + 0.37346724i —0.81229432
—0.77108509 — 0.51962021i —0.71962499
—0.77108509 + 0.51962021i —0.62805945
—0.36124445 — 0.50773392i —0.55324965
—0.36124445 + 0.50773392i —0.50975247
0.51791298 0.54446702
0.58620377 0.63199538
0.68402014 0.73630329
0.78755144 0.83660513
0.87969723 0.91913536
0.94947423 0.97530045
0.99024926
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2.5. Another Choice for A, and A _

We also experimented with A, the measure |f| (2 —1) "2 (1—¢*)"12
restricted to [4, 1] and A_ the same measure restricted to [ —1, —3]. The
results, on the whole, are very similar to those for the Lebesgue measure.
The differences noted were that complex zeros of 7, occur also for n=11
and 13 in Case A, and for =28 in Case B. In Case C, all zeros of x,, are
real only for n=1, 2, 3, 4, 6, and 8.

3. AN AUXILIARY RESULT ON ASYMPTOTICALLY
MINIMAL POLYNOMIALS

A major tool in the proof of Theorem 1 is a well-known result on zero
distributions of polynomials, which we state below for the case of a set
EcR. Here and in the following, cap(E) denotes the logarithmic capacity
of E; see, e.g., [12, 13].

LemmA 4. Let EcR be compact with cap(E)>0 and let {p,} be a
sequence of monic polynomials, deg p,=n, such that

lim sup |p,, || ¥" < cap(E). (3.1)
Then
lim v(p,)=wg. ' (3.2)

Proof. See the paper of Blatt, Saff, and Simkani [2]. |

Monic polynomials satisfying (3.1) are called asymptotically minimal
polynomials, since every monic polynomial p, of degree n satisfies

Ip, Il £" > cap(E).

Hence, if (3.1) holds, we have in fact equality.

A weighted analogue of this theorem was obtained by Mhaskar and Saff
[11]. To prove Theorem 2, we will need a slightly stronger result, which
may be of independent interest. To state it, we recall the situation of [11].
Assume Ec C is a closed set. A function w: E— [0, c0) is an admissible
weight if

(a) w is upper semicontinuous;

(b) the set {ze E: w(z)> 0} has positive capacity;

(c) if E is unbounded, then |z| w(z) —» 0 as |z| - o0, z€ E.
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Associated with an admissible weight w is a unique positive unit measure
i, and a unique constant F,, such that

U*(z)—logw(z)=F,  qe. onsupp(u,),
U"(z)—logw(z) = F,, g.€.on E. (3.3)

Here, U* denotes the logarithmic potential of the measure ,

UH(z) = f log du(?),

|z —1]

and q.e. means quasi-everywhere, that is, except for a set of zero capacity.
In the following theorem we use S,, to denote the support of x,,, Pc(S,,)

denotes the polynomial convex hull of S,, D, =C\Pc(S,) denotes the

unbounded component of C\S,,, and oD, denotes the boundary of D,

(also known as the outer boundary of S,).

THEOREM 5. Let w be an admissible weight on the closed set EcC. Let
{P.} >, be a sequence of monic polynomials, deg p, = n, such that for q.e.
zedD,,

lim sup [w(z) | p,(z)|'"'] <exp(—F,,). (3..4)

Then for évery closed A<D,

lim v(p,)(A4)=0. (3.5)

Furthermore, if v is the weak® limit of a subsequence of {v(p,)}, then
supp(v*) c Pc(S,,) and the balayage of v* onto 0D, is equal to the balayage
of u,, onto 0D,,.

In [11] the same result was obtained from the stronger assumption

lim sup [|wp, | 35, <exp(—F,).

Proof. 1In terms of potentials, the relation (3.4) is

F, +log w(z) <lim inf U"*)(z),  qe.zedD,,

and in view of (3.3) this implies
Us(z) <lim inf U"*(z),  qe. zedD,. (3.6)

n— oo
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Let v, be the balayage of v(p,) onto Pc(S,,). Then
Un(z)=U"P)(z)+c,,  qe. zeP(S,,), (3.7)

with a constant ¢, given by (see [13, Appendix VII])
¢= | &0,(z3 0) d(p,)(2) >0, - (38)

Let v be the weak* limit of a subsequence of {v,}, say v, —>v as
n— o, ned, where A is a subsequence of the natural numbers. Then
supp(v) < Pc(S,,), and by the lower envelope theorem [ 13, Appendix I11]

U'(z)= liminf U™(z), ge. zeC.

n—oo,ned

Combining this with (3.7), (3.8), and (3.6), we find for q.e. zedD,,:
U”(z)— liminf U"(z)= liminf [U"?(z)+¢,]

n—>oo,ned n—>oo,ned

> liminf UY®)(z)> Ur(z). _ (3.9)
n—>oo,ned
Since U'— U** is harmonic in D, and zero at infinity, the minimuni
principle and (3.9) give that U'(z) = U**(z) for ze D,,, and therefore,

U’(z) = U*(z), qe. zedD,,.

Consequently, equality holds in every inequality in (3.9) for q.e. zedD,,.
Then it follows that liminf,.,c,=0. Since this holds for every sub-
sequence 4 = N for which {v,},., converges, we obtain

lim ¢,=0. ~ (3.10)

Since for a closed set 4 =D, there exists a constant C>0 such that
gp,(z; 00) = C for ze A, it follows from (3.8) and (3.10) that

hm V(Pn)(A) -

— O

This proves (3.5).

To prove the rest of the theorem, let v* be the weak* limit of a sub-
sequence of {v(p,)}; say 4 is a subsequence of the natural numbers such
that v(p,) — v* as n — o0, ne A. Having (3.5), we see that v* is supported
on Pc(S,,). Define

A= {ze D, :dist(z, S,)=1}.
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Let {;,, j=1, .., n, be the zeros of p, counted according to multiplicity,
and put

\Z
D= T G=4a a@=23= T =g
5j,nEA n z Cj’”éA
Then, because of (3.5),
degg,=n(1-5,), &,—0, (3.11)

and the sequence {v(q,)} ., converges to v* in the weak* sense. Since the
measures v(q,) are supported on a fixed compact set, the lower envelope
theorem can be applied. It gives

U(z)= liminf U'“)(z), qe.zeC. (3.12)

n—co,ned
Next, since r,(z)>1 for ze S,,, we have for ze S,
U (z) =(1-34,) U""(z) —J,log |r(2)| < (1=4,) U@ (z);
hence, by (3.11),.(3.12),
liminf U"®)(z)< liminf [(1—6,) U"%)(z)]

n—>oo,neAd n—oo,neAd
=U"(z), qe.zesS,.
Combining this with (3.6), we obtain
U(z) < U""(2), q.e. zedD,,.

In the same way as before, cf. (3.9), this implies equality for q.c. zedD,,.
Now the equality of the balayages of v* and u,, onto 0D, follows from the
uniqueness of balayage. This completes the proof of Theorem 5. |

4. PROOF OF THEOREM 1

We start with a lemma which will also be useful for the proof of
Theorem 2.

LEMMA 6. Let py and u, be measures satisfying Assumptions A and B.
Let 7, be the sequence of monic orthogonal polynomials with respect to (1.1).
Then we have

lim sup ||z, || 32" < cap(ZX) (4.1)

n— oo
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and

lim sup |7}, || " < cap(X). (4.2).

n-—» o0

Proof. Let |-| i denote the norm associated with the inner product (1.1),

L% = 1 022y + 11 22y
We first prove that
lim sup |z, | §* < cap(Z). - (43)

n— oo

Let T, be the monic Chebyshev polynomial of degree n for 2. That is,
1T, =< |P,| s for all monic polynomials P, of degree n. It is well known
that '

lim |T,|¥"=cap(2). (44)
From the regularity of X, (see Assumption A) it is easy to see (using
the continuity of the Green function, the Bernstein—-Walsh lemma and
Cauchy’s formula) that the Markov constants for 2, have subexponential

growth. This means that there exist constants M, with lim,_ , MY =1
such that

”P;t“Z.]sMn “Pn“Zp degpngn‘ (45)
Then, for certain constants c;, ¢,, |
1Tl 2 = 1Tl ey F 1 Tl iy S 1 Tull3 + I T,
S 1T 13+ e M NT, |13, < (e + M) 1T, 13- (4.6)
Using (4.4), (4.6), and M/ > 1, we find

lim sup || T, | 4" < cap(X).

n-— oo

Since 7, minimizes the Sobolev norm among all monic polynomials of
degree n, we have |7, ||z < ||T,| g for all n, and (4.3) follows.
Now, because u, € Reg, we have by (1.6),

lim <M"—>W =1. (4.7)

n—oo \ |7, “L2(/40)
Since |7, || 2240y < 17, || r, We get (4.1) from (4.3) and (4.7).
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Next, using the regularity of X;, we find that the Markov constants for
2, grow subexponentially. Thus,

lim sup (“ llz") <L

n— oo ”717 ”Zo

Hence, from (4.1),

lim sup 7] ¥ <lim sup |z, || 32" < cap(Z). (4.8)

n— oo n— oo

Further, we get from x4, e Reg and (1.6)

' 1/n
lim sup <_||771le]_> <1 (4.9)

n— oo ”nn ”Lz(,ul)

Since 7, | 20y < 17 |l 2, (4.3) and (4.9) give
~lim sup |7, || ¥" < cap(Z). (4.10)

hn— o0

Combining (4.8) and (4.10), we obtain (4.2). |

Remark. Actually, we have equality in (4.1) and (4.2), and we can
replace the lim sup’s by lim’s, but this will not be used in the proof. It is
straightforward to see that equality holds in (4.2); cf. the discussion after
Lemma 4. Since X, has positive capacity, it then also follows that

lim ||z, || % = cap(X).

n—> O

Using (4.8), we obtain equality in (4.1) as well.

Proof of Theorem 1. The theorem follows immediately from Lemma 4
and (4.2). |

5. PROOF OF THEOREM 2

Recall the definitions of Q,V, V,, and K from Section 1. The significance
of the set V is described in the followmg lemma.

LeMMA 7. Let zeC. Then z¢ V if and only if for every r>gq(z; ),
there is a differentiable path y: [0, 1] — C such that

(a) 7(0)e Xy,

(b) »(1)=¢z

(c) goly(t); 0)<r for all te[0,1].
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Proof. If zeV, then ze V, for some r>gy(z; c0). From the definition
of V, it follows that the connected component of {(: go({; ) <r} con-
taining z does not contain a point of 2,. Hence there is no path satisfying
(a), (b), and (c).

On the other hand, if z¢ V and r>ggo(z; o0), then z¢ V,. Thus the
connected component of {{: go({; 00) <r} does contain a point of Z.
Consequently, there is a path satisfying (a), (b), and (c). |

This allows us to estimate |7,(z)| for z outside V.

LemMMA 8. For every ze C\V,

lim sup |7,(z)| " < cap(X) es2=: ), (5.1

n— 0

Proof. Let zeC\V and r>gg(z; o0). By Lemma 7 there is a differen-
tiable path y: [0, 1] — C satisfying (a), (b), and (c) of Lemma 7. By the
Bernstein—Walsh lemma we have

IO < Nl e, LeC.

Using this and the properties of y, we find

J

Y

|7.(2)] < |7, (7(0))] +

() ‘dc‘ <Ml + L) Il = e,

where L(y) denotes the length of y. Then, by (4.1) and (4.2),

lim sup |7,(z)|'" < cap(ZX) e".

n— oo

Since r>gqo(z; 00) can be chosen arbitrarily close to go(z; o0), (5.1)
follows. |

Proof of Theorem 2. Define
w(z) :=exp( — golz; ©0)), ze K.
Let & be the balayage of ws onto K. Since X' < Pc(K), we have
U%(z)=U*(z), zek
We also have

U®?(z) + go(z; o0) = —log cap(2), zeC,
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so that
U®(z)—log w(z)= —logcap(X), zeKk.
Thus, by (3.3),
Uy, = c?), F, = —logcap(X).

Because of (5.1) we can apply Theorem 5, and Theorem 2 follows. |

6. COMPUTATIONAL METHODS

There are two general procedures for calculating Sobolev orthogonal
polynomials: the modified Chebyshev algorithm [6, Section 2] and the
Stieltjes algorithm [6, Section 4]. Both generate the coefficients £ in the
recursion v

T ()=t — Bime (1), k=0,1,2,.., 6.1)

for the respective polynomials 7,. Being interested in the polynomials up
to (and including) degree n, we need the coefficients {f}},< ;< for
k=0,1,..,n—1.

6.1. Modified Chebyshev Algorithm

This computes the desired coefficients { f5} from “modified moments”

WO = [ p0) dug(n),  0<j<2m—1,
(6.2)

WO =[p (0 du(n),  0<j<m—2 (if n>2),

where {p;} is a given set of polynomials, with p, monic of degree j.
“Ordinary moments” correspond to p;(¢) =¢/, but are numerically unsatis-
factory. A better choice are modified moments corresponding to a set { p;}
of orthogonal polynomials, p,(-)=p,(-;A), relative to some suitable
measure 4 on R. These are known to satisfy a three-term recurrence relation,

Pr+(D)=(t—ay) p(t) —bipi_ (1), k=0,1,2, ..,
po(t)=1,  p_y()=0,

(6.3)
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with coefficients a, =a,(4), b, = b,(1) depending on Ai. We need the coef-

ficients {a,}, {b;} for 0<j<2n—2.

In the context of the Sobolev orthogonal polynomials of Section 2,
a natural choice of A, and one that was found to work well, is A=A, +4_.

By the orthogonality of the p; we then have

—1/2" 1 ]
[ Tpwam+] podm=0  j=1,
—1 172

so that |

f——l/Z pi(D)dA_(1)= ——Ll/z p;(t) dA (1)

(6.4)

Since, by symmetry, p;(—t)=(—1)’ p(¢), the change of variables t= —<
J J

in (6.4) yields
1
f pi(t)di, ()=0 if jis even > 2.
1/2

Let

1

L=[ p(odi(, 0<j<2n-1,
1/2

so that ;=0 if j>2 is even. We then have, in Case A,
V§0)=v](-1)=2§j,010, j=0, 1, 2, wvey

where J; , is the Kronecker delta. Similarly, in Case B,

10, _] - O,
vj(.°)=25j,010, vil=< —1, jodd,
0, otherwise,

in Case C:

I, j=0orjodd |
(.0)= J? t] , v(1)=26 I,
K {0, otherwise, J 040

and in Case D:

O I,  j=0or odd, Y= 1,
J 0, otherwise, >0 ’
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In Sections 2.1-2.4 we have that 1, and A_ are Lebesgue measure sup-
ported on [4, 1] and [ —1, —1], respectively. Here, I, = 1. The coefficients
a;(4), b;(A) in (6.3) can be computed very accurately by known procedures
of Stieltjes or Lanczos type (cf. [3, Example 4.7, 5, Section 4.3]),
whereupon the integrals I; in (6.6) can be computed (exactly) by (6.3) and
n-point Gauss—Legendre quadrature.

In Section 2.5, A, and A_ are equal to the measure |7 (£2—%) "% x
(1—1¢*)~"2 supported on [, 1] and [ —1, — 3], respectively. Here, I, = in.
The coefficients a;(1), b;(A) are known explicitly (cf. [4, Section 5.1]):

a;=0, 0<j<2n-2,
b0=7'6, b]=%,
14372 (6.11)
1 )2 e
=16\ 1437+ , J=2,3,..,2n—2.
[

The integrals /; can no longer be computed exactly by numerical quad-
rature, but can be approximated by N-point Gauss—Chebyshev quadrature
with N sufficiently large. Indeed, if in

1

= . 2 1\—1/2 01 _ 42y—1/2
L=[ p0aE-H (1)

one makes the change of variables > = (1 + 3s)/4, one gets

1
=4[ py(h /T35 5721 —5) " ds,

or, transforming to the interval [ —1, 1],
_1 ! 1 2y —1/2 |
1,._2j_l pj<2—ﬁ-ﬂ/5+3x>(1—x )= 12 d. (6.12)
Gauss—Chebyshev quadrature applied to the integral in (6.12) converges

fast.

6.2. Stieltjes Algorithm

Here the coefficients {5} are computed as Fourier-Sobolev coefficients

peoTem ) oy g (6.13)

T el
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where appropriate quadrature rules are used to compute the inner products
in (6.13). The coefficients ﬂ}‘ and polynomials z,, intervening in (6.13) are
computed simultaneously, the polynomials recursively by (6.1) using the
coefficients ﬁ;‘ already obtained. The choice of quadrature rules is par-
ticularly simple in the case of Lebesgue measures. Indeed, for k <n—1, the
integrands in (6.13) are polynomials of degree <2n—1 so that n-point
Gauss-Legendre rules on the respective intervals [ —1, —1] and [3, 1] will
do the job. In the other example, one has to integrate numerically as
described above in connection with 7,

6.3. Zeros

The zeros of z, (including the compléx ones, if any) can be conveniently
computed as eigenvalues of the Hessenberg matrix (cf. [6, Section 1])

- B BL B - BRI BnTi
L By BT - B3 Buia
0 1 2 n—2 n—1
Bn ﬁO n—4 n—3 (614)
0 0 0 .. g gt
0 0 o ... 1 a1

To compute all real zeros of =, and =, we scanned a suitable interval
(typically, [ —1.6, 1.6]) for sign changes in =z, and =z, and used the mid-
points of the smallest intervals found on which 7, (resp. z;) changes sign
as initial approximations to Newton’s method.
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Abstract

Software (in Matlab) is developed for computing variable-precision recurrence coefficients for orthogonal poly-
nomials with respect to the weight functions 1 +sin(1/¢), 1 +cos(1/t), e~ /" on[0, 1], as well as e~ /7= on [0, o0o]
and e~/ on [—00, oo]. Numerical examples are given involving Gauss quadrature relative to these weight
functions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The availability of constructive methods and related software for orthogonal polynomials makes it pos-
sible to numerically generate such polynomials relative to weight functions of ever increasing complexity.
This is illustrated here in the case of weight functions on [0, 1], such as 1 + sin(1/¢) or 1 + cos(1/1),
that are densely oscillating near the origin, and weight functions decaying exponentially fast near the
origin, such as e~ on [0, 1], none of which is in the Szego class. We also consider the weight function

2 2 . .
e /=" on [0, co] and e~!/*"~"" on [—o0, 0o]. In all these cases, the moments of the weight function

*Tel.: +1 765494 1995; fax: +1 765494 0739.
E-mail address: wxg@cs.purdue.edu.
URL: http://www.cs.purdue.edu/people/wxg .

0377-0427/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.01.023

253



494 W. Gautschi / Journal of Computational and Applied Mathematics 184 (2005) 493—-504

are expressible in terms of special functions (sine, cosine, and exponential integrals and modified Bessel
functions), which can all be evaluated to arbitrary precision. With the moments at hand, an algorithm due
to Chebyshev can be applied to compute the recurrence coefficients for the orthogonal polynomials from
the given moments. Although there is a great deal of ill-conditioning involved in this approach, it can be
surmounted by symbolic computation and variable-precision arithmetic as supplied, e.g., by the current
release of Matlab.

A number of Matlab routines are developed for computing the recurrence coefficients of the de-
sired orthogonal polynomials to arbitrary precision, and files are produced containing the first 40 of the
coefficients to 34 decimal digits. All Matlab routines and files referenced in this paper are downloadable
individually from the web site

http://www.cs.purdue.edu/archives/2002/wxg/codes/
containing the Matlab package OPQ and the relevant collection OWF. Numerical examples involving inte-
gration of weighted integrals by Gaussian quadrature are provided illustrating the power and effectiveness
of the software.

2. Densely oscillating trigonometric weight functions
2.1. The weight function w(t) =1+ sin(1/t) on [0, 1]

Constructing orthogonal polynomials relative to this weight function is a challenging task, given the
densely oscillating behavior of w near the origin. The only approach that seems feasible is one based
on the moments of w; indeed, the Chebyshev algorithm (cf. [2, Section 2.1.7]) generates the three-term
recurrence relation for the (monic) orthogonal polynomials 7 (-) = n(-; w) from the moments

1
usz 511 +sin(1/0)]ds, k=0,1,2,.... (1)
0

In view of the well-known ill-conditioning of this approach [2, Section 2.1.4], it can only succeed if
high-precision arithmetic is used. We propose to invoke the symbolic/variable-precision capabilities of
Matlab 6, Release 12, for this purpose.

To compute the moments (1), we first consider the “core moments” ,ug = fol t* sin(1 /t)dt. By the
change of variable t — 1/t, one has

o0
,u2=/ t~® D §in ¢ de,
1

and two integrations by part will show that ug satisfies the recurrence relation

1 1 .
,u2+1=m|:k+l(cosl—u2_1)+sm1i|, k=0,1,2,.... 2)

Here,

X o3 t (o Ops t
W =/ =" —si), 4 =/ 2l dr =sin1 - Ci(1), 3)
1 t 2 1 t
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where Si and Ci are the sine and cosine integrals, respectively (cf. [1, Egs. (5.2.1 and 5.2.2)]). In terms
of the core moments ug, the actual moments g, are simply

1

0
=+ k=0,1,2,.... 4
e =y T “4)
The Chebyshev algorithm now takes the first 2n moments yx;, k=0, 1, ..., 2n—1, and from them produces
the first n recurrence coefficients ok, f;, k =0, 1, ..., n — 1, in the three-term recurrence relation

m1(8) = (t — o) (t) — Prmp—1 (1), k=0,1,...,n—1,
n_1(t) =0, m(t) =1, ©)

for the orthogonal polynomials m;. This is implemented in the Matlab routine schebyshev.m,
a symbolic version of the OPQ routine chebyshev.m. The Matlab script below uses this routine with
d-decimal-digit arithmetic to generate the first N recurrence coefficients in (5).

% S RSINO Symbolic/variable-precision recurrence coefficients
% for the weight function w(x)=1+sin(1/x) on [0,1]

%

syms mom ab
digits(d); dig=d;
mom(l)="'sin(1l)-Ci(1l)";
mom(2) ="' (Si(l)-pi/2+sin(l)+cos(l))/2";
for k=3:2*N

mom(k) =(('cos(l)’'-mom(k-2))/(k-1)+'sin(1l)")/k;
end
for k=1:2*N

mom(k) =mom(k)+1/k;
end
ab=schebyshev(dig,N,mom) ;

How much precision is needed to obtain 34 good decimal digits for the first N =40 recurrence coefficients?
Using d = 70 in the above routine, one obtains

230 = .510028114107742 . . .,
Bro = .609363829421165 . .. (—1).

Comparing this with 95-digit computation, one observes agreement to only the first 12 digits; the digits
underlined are therefore in error. As & is decreased down from 39, the results for oy, f5; gradually become
more accurate. This behavior is typical for the ill-conditioning of the underlying moment map, which
here, in the worst case, causes a loss of 70 — 12 =58 digits. To obtain 34 good digits for all results, one thus
expects to need about 92-digit computation. It is found that 95- and 100-digit computation indeed yield
results which agree to at least 37 digits. Rounded to 34 digits, the results are stored in the file absin0;a
few beginning and final entries of the file are displayed below to 16 digits. Note that the as are hovering

around % and the fs around %, the limit values that would be attained if the weight function were in the
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Szego class.

ab =

[ .5841029561609566, 1.504067061906928]

[ .4634474607770499, .7094822535096882e-1]
[ .4977629714178322, .7892077774694954e-1]
[ .5356590088623750, .5547885019105795e-1]
[ .4669144430825117, .6259489484316939%e-1]
[ .4951204560106238, .7262419731845188e-1]
[ .5109646577717308, .5919672749794708e-1]
[ .4919346767523436, .6218164541801303e-1]
[ .4973070307106440, .6494413841533854e-1]
[ .5100281141083978, .6093638294208964e-1]

Some of the early coefficients oy, ff; were checked (successfully) by a quadruple-precision Fortran
program.

Example 1.1. Compute the integral fol f()sin(1/t) dt, where f(¢) = tan((%n —o0)),6=".1.

We use

1 1 1
f F() sin(l/t)dt:f f(t)[l—i—sin(l/t)]dt—/ @) dt (6)
0 0 0

and apply to the first integral on the right Gaussian quadrature relative to the weight function w and to
the second Gauss—Legendre quadrature on [0, 1]. This is carried out in the following script:

% INTSINO Integration relative to the weight function
% w(t)=sin(1l/t)

%

fl1="%5.0f %21.13e %21.13e %21.13e\n’;

fprintf('\n")

disp(’ n n-point Gauss’)

load -ascii absin0;

ab=absin0; abl=r_jacobi01(40);

delta=.1;

for n=4:4:36
xwl =gauss(n,abl); xw=gauss(n,ab);
intl=sum(xwl(:,2).*tan((pi/2-delta).*xwl(:,1)));
ints=sum(xw(:,2).*tan((pi/2-delta).*xw(:,1)));
int=ints-intl;
fprintf(£f1l,n,int)

end
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Table 1
Results for Example 1.1

> > intsin0

n n-point Gauss

4 1.2716655036125e+00
8 1.2957389942560e+00
12 1.2961790099686e+00
16 1.2961860624657e+00
20 1.2961861691603e+00
24 1.2961861708344e+00
28 1.2961861708631e+00
32 1.2961861708636e+00
36 1.2961861708636e+00

The output of the script is shown in Table 1.

There is practically no cancellation occurring when computing the difference of the two integrals on
the right of (6).

Convergence is seen to be relatively fast (it is faster for 6 = .3 or 6 = .5), but is the limit correct?
Seeing some other quadrature scheme yielding similar, albeit less accurate, results would give us more
confidence in the limit value of Table 1. We tried the N-point Gauss—Legendre rule on [0, 1] for large
values of N, applied directly to the integral on the left of (6), and found

N N-point GL
200 1.29623...e+00

400 1.29614...e+00
600 1.29621...e+00
800 1.29617...e+00

1000 1.29619...e+00

The first four digits are the same as in Table 1 and are established rather quickly (relatively speaking).
Evidently they correspond to the part of the integral away from zero. The difficult behavior of the integrand
very close to zero causes the remaining digits to converge very hesitantly. Nevertheless, the correctness
of the limit in Table 1 seems to be beyond doubt.

2.2. The weight function w(t) =1+ cos(1/t) on [0, 1]

Analogously to Section 2.1, we define

1
Mk:/ *[1 +cos(1/0)]ds, k=0,1,2,..., @)
0
and ,ug = fol tk cos(1/1) dt, and find for ug the recurrence relation
0~ Tt ! (sinl+ 40 ) k=0,1,2 (8)
'uk+1_k+2 k+1 ,Uk71 ’ e Ak Bt B
with
0 — _Ci 0 __ 1 _E
u_y = —Ci(l), pg=-cosl+ Si(l) 5 9)
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This yields 1, as in (4) and gives rise to a routine sr_cos0 .m similar to sr_sin0.m. The first N =40
recurrence coefficients can again be obtained to 34 decimal digits using 95- resp. 100-digit arithmetic;
they are stored in the file abcos0. The first six and last four, rounded to 16 digits, are shown below.
ab =
[ .5658844678158393, .9155890494404261]
[ .4366405849780814, .1027346437337914]
[ .5796274186498604, .5270964252517353e-1]
[ .4239578421345528, .6199408887322155e-1]
[ .5354625727005339, .7671995359431511e-1]
[ .5373660897782133, .4556076502616208e-1]
.5186905674873959, .6081660814714736e-1]
.5003375738978038, .5901663246762277e-1]
.4979767366985249, .6422084071680227e-1]
.4970744762251129, .6172998651366585e-1]

Example 1.2. Compute [ f(r)sin(1/ + 1) dz.

We write

1 1 1
/ f@)sin(l/t +1)dt = / f(t)cost[l—i—sin(l/t)]dt—l—/ f(@)sint[1 4 cos(1/¢t)]dt
0 0 0

1
—/ f()(cost + sint)dt (10)
0

and use Gaussian quadrature relative to the weight functions 1 + sin(1/¢) and 1 4 cos(1/t) for the first
two integrals, and Gauss—Legendre quadrature on [0, 1] for the last. The Matlab script below implements
this for f(r) =e™"'.

% INTSINOl Integration relative to the weight function

% w(t) =sin(l/t+t)

%

f1=%5.0f %21.13e\n’;

fprintf('\n")

disp(’ n n-point Gauss’)

load -ascii absin0O; abs=absin0;

load -ascii abcos0; abc =abcos0;

abl=r_jacobi01(40);

for n=1:7
xwl =gauss(n,abl); xws=gauss(n,abs); xwc=gauss(n,abc);
intl =sum(xwl(:,2).*exp(-xwl(:,1)).*(cos(xwl(:,1))...

+sin(xwl(:,1))));

ints=sum(xws(:,2).*exp(-xws(:,1)).*cos(xws(:,1)));
intc=sum(xwc(:,2).*exp(-xwc(:,1)).*sin(xwc(:,1)));
int =ints+intc-intl;
fprintf(£f1l,n,int)

end

258



W. Gautschi / Journal of Computational and Applied Mathematics 184 (2005) 493—-504 499

Table 2
Results for Example 1.2 when f(t) =e™’

>> intsin01

n-point Gauss

1.5532688394788e-01
.5896667464309e-01
.5875741460598e-01
.5875671404065e-01
.5875671541036e-01
.5875671541391e-01
.5875671541391e-01

No U W N RS
i

The results are shown in Table 2.

Gauss—Legendre quadrature applied directly to the integral on the left of (10), with N =200: 200: 1000
points, manages to confirm only the first two digits, but enough to have confidence in the rapidly converging
sequence of approximations displayed in Table 2.

3. Rapidly decaying exponential weight functions

Replacing the trigonometric functions in Sections 2.1 and 2.2 by the exponential function yields rapidly
decaying exponential weight functions.

3.1. The weight function w(t) = exp(—1/t) on [0, 1]
Proceeding as in Section 2, we start from the moments
1
ﬂsz e Vidr, k=0,1,2,..., (1)
0

and use the Chebyshev algorithm in high precision to generate the recurrence coefficients of the desired
orthogonal polynomials 7 (-; w). By a change of variable, we have

o
by = f 7 De dr = Erga (D), (12)
1

where E,, is the exponential integral (cf. [1, Eq. (5.1.4)]), which can be computed recursively [1, Eq.
(5.1.14)], giving

1 -1
- _ , k=0,1,2,...,
Hie4-1 X 2(e M)

1o = Ea(1). (13)
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Table 3
Results for Example 3.1

> > intexp0

n-point Gauss

8.1262554100479e-02
.1255735149253e-02
.1255733983155e-02
.1255733982820e-02
.1255733982819e-02
.1255733982819e-02

==
NOoO o NS
® o W o

This is incorporated in the routine sr_exp0 .m, as shown below:

% S REXP(O Symbolic/variable-precision recurrence coefficients
% for the weight function w(x)=exp(-1/x) on [0,1]
%
syms mom ab
digits(d); dig=d;
mom(l) =vpa('Ei(2,1)’,d);
for k=2:2*N
mom(k) = (’'exp(-1)'-mom(k-1))/k;
end
ab=schebyshev(dig,N,mom) ;

For N =40, the choice d = 70 yields results correct to 9 or more decimal digits, corresponding to a loss
of as much as 61 digits. With d = 95 and d = 100, therefore, we can again secure 34 correct decimals.
The respective results are stored in the file abexp0.

Example 3.1. Compute fol In(1 + r)e~ /" dr.

The routine sr_exp0.m is used, in conjunction with the routine gauss .m, to generate Gaussian
quadrature rules for the weight function exp(—1/¢), which, applied to the integral of Example 3.1, produce
results as shown in
Table 3.

The same limit value is obtained by 102-point Gauss—Laguerre quadrature of e ~!(1 + N2 log(1 +
(1 + 16~ 1; see the routine intexp0.m.

3.2. The weight function w(t) = exp(—1/t —t) on [0, 00]

Here, the moments of w are expressible in terms of the modified Bessel functions according to [3, Eq.
(3.471.9)]

o
uk=/ e~ WD 4 = 2K 1 (2), k=0,1,2,.... (14)
0
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This can be computed recursively as follows (cf. [1, Eq. (9.6.26)]):
e =+ Dpye + iy, k=0,1,2,...,
to1 =2Ko(2), po=2K1(2), (15)
and gives rise to the routine sr_exp0inf .m:

% S REXPOINF Symbolic/variable-precision recurrence

% coefficients for the weight function
% w(x) =exp(-1/x-x) on [0,inf]
%

syms mom ab
digits(d); dig=d;
mom(1l) =vpa('2*BesselK(1l,2)’,diqg);
mom(2) =mom(1l)+vpa(’'2*BesselkK(0,2)',dig);
for k=3:2*N
mom(k) = (k-1)*mom(k-1)+mom(k-2);
end
ab =schebyshev(dig,N,mom) ;

In the case N =40, d =70, the loss of accuracy is at most 36 digits, leaving us with about 34 correct digits.
This is confirmed by running sr_exp0inf with d =75 and d = 80, the results of which agree to at least
38 digits. The file abexp0inf is provided with 34-digit values of the desired recurrence coefficients.
The beginning and end of the file, rounded to 16 decimals, are shown below:

ab =

1.814307758763789, .2797317636330449]
3.647885050815283, 1.336902874017094]
5.563608408242503, 4.576187502809998]
7.510248881089434, 9.776110045536486]
9.472385776425876, 16.95364518291704]
11.44360258233455, 26.11622048172850]
73.23900952424970, 1300.294223771922]
75.23687505008481, 1373.374066736622]
77.23481475899122, 1448.453190623454]
79.23282425676095, 1525.531620678047]

—_ r—,—,—, .

—_, —,—.—.

Example 3.2. Compute [;° Jo(t)e™!/'~" dt.

Gauss quadrature relative to the weight function w(t) = exp(—1/¢ — t) yields results as shown in
Table 4.

In contrast, Gauss—Laguerre quadrature of Jo(r)e™ /! requires N = 1000 points only to get 11-digit
accuracy. Such is the debilitating effect of the strong decay of e~!/? as ¢+ | 0. On the other hand,
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Table 4
Results for Example 3.2

> > intexp0inf

n n-point Gauss

4 1.1162402700893e-01

8 1.1153340191221e-01
12 1.1153288987809e-01
16 1.1153289176609e-01
20 1.1153289176207e-01
24 1.1153289176207e-01
writing

o0 1 o0
/ Jo(Hye V1= dr = / [Jo()e "le "/ dr +e7! / [Jo(1 4+ )e”/I+D e~ qf
0 0 0

and evaluating the first integral on the right by n-point Gauss quadrature with respect to the weight
function e~ !/* (cf. Section 3.1) and the second by n-point Gauss—Laguerre quadrature yields also
11-digit accuracy, but already with N = 40. Nevertheless, this requires two different, more slowly
convergent, quadrature routines, compared to just one in the solution given in Example 3.2. The
slowdown is actually caused by the Gauss—Laguerre quadrature of the second integral. See the
routine intexp0inf.m.

3.3. The weight function exp(—1/t> — t2) on [—o0, oc]

Similarly as in Section 3.2, one can express the moments in terms of modified Bessel functions: all
moments of odd order are zero, while those of even order are

tor =2Ki112(2), k=0,1,2,..., (16)
and can be computed recursively by
porsr = (k + Dpop + pog—n. k=0,1,2,...,

Hoo = o =2K1,2(2). (17)
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This is done in the routine sr_expminfpinf.m:

% S REXPMINFPINF Symbolic/variable-precision recurrence
% coefficients for the weight function
w(x)=exp(-1/x"2-x"2) on [-inf,inf]

o° oo

syms mom ab
digits(d); dig=d;
mom(2:2:2*N) =vpa(0,dig);
mom(1l) =vpa(’'2*BesselK(1/2,2)’',diqg);
mom(3) =3*mom(1l)/2;
for k=3:2*N
mom(2*k-1) = (k-3/2)*mom(2*k-3)+mom(2*k-5);
end
ab =schebyshev(dig,N,mom) ;

IlI-conditioning of the moment map here is considerably less severe than in the case of the weight function
exp(—1/t —t), a phenomenon similar to one observed for Laguerre vs Hermite weight functions (see [2,
Tables 2.2 and 2.3]). Comparing the results of sr_expminfpinf .m for d = 50 with those for d =55
reveals a loss of at most 17 digits as compared to 36 digits in the case of sr_exp0inf .m (cf. Section
3.2). The choices d =55 and d = 60 produce results that agree to at least 38 digits. They are stored in the
file abexpminfpinf to 34 digits and, rounded to 16 digits, are partially displayed below.

ab =

[0, .2398755439361229]
[0, 1.500000000000000]
[0, .6666666666666667]
[0, 2.583333333333333]
[0, 1.475806451612903]
[0, 3.659439450026441]

[0, 16.49963635631090]
[0, 20.31604933808658]
[0, 17.46711169129393]
[0, 21.34281282504185]

Table 5
Results for Example 3.3

> > intexpminfpinf

n n-point Gauss

2 1.5040374279876e-01
4 1.1308193957943e-01
6 1.1342796227803e-01
8 1.1342695840745e-01
10 1.1342695981592e-01
12 1.1342695981475e-01
14 1.1342695981475e-01
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Example 3.3. Compute [ e~ cos? e~/ 4y,
Table 5 illustrates the use of Gauss quadrature relative to the weight function w () =exp(—1/1> —t%) dr.

. . 2 . .
In stark contrast, 1000-point Gauss—Hermite quadrature of e =/~ !/*" cos ¢ yields only 8 correct digits;
see the routine intexpminfpinf.m.

References

[1] M. Abramowitz, I. Stegun (Eds), Handbook of mathematical functions with formulas, graphs, and mathematical tables,
National Bureau of Standards, Applied Mathematical Series 55, U.S. Government Printing Office, Washington, D.C., 1964.

[2] W. Gautschi, Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific
Computation, Oxford University Press, Oxford, 2004.

[3] LS. Gradshteyn, M. Ryzhik, Table of Integrals, Series, and Products, sixth ed., Academic Press, San Diego, CA, 2000.

264



265

16.11. [195] “Variable-precision recurrence coefficients for nonstandard
orthogonal polynomials”

2

[195] “Variable-precision recurrence coefficients for nonstandard orthogonal polynomials,
Numer. Algorithms 52, 409418 (2009).

© 2009 Springer. Reprinted with kind permission of Springer Science and Business Media.
All rights reserved.




Numer Algor (2009) 52:409-418
DOI110.1007/511075-009-9283-2

Variable-precision recurrence coefficients
for nonstandard orthogonal polynomials

Walter Gautschi

Received: 6 January 2009 / Accepted: 26 February 2009 /
Published online: 18 March 2009
© Springer Science + Business Media, LLC 2009

Abstract A symbolic/variable-precision procedure is described (and imple-
mented in Matlab) that generates an arbitrary number N of recurrence coef-
ficients for orthogonal polynomials to any given precision nofdig. The only
requirement is the availability of a variable-precision routine for computing
the first 2N moments of the underlying weight function to any precision dig >
nofdig. The procedure is applied to Freud, Bose-Einstein, and Fermi-Dirac
orthogonal polynomials.

Keywords Variable-precision recurrence coefficients - Symbolic Chebyshev
algorithm - Freud orthogonal polynomials - Bose-Einstein orthogonal
polynomials - Fermi-Dirac oerthogonal polynomials
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1 Introduction

The availability of symbolic/variable-precision software for orthogonal poly-
nomials (for software in Mathematica, see the package OrthogonalPol -
ynomials in [1]; for software in Matlab, the package SOPQ at http:/
www.cs.purdue.edu/archives/2002/wxg/codes ) makes it possible to generate
the respective recurrence coefficients to arbitrary precision also in nonstandard
cases where they are not known explicitly. The basic vehicle is the Chebyshev
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algorithm, which allows us to compute the recurrence coefficients from the
moments of the underlying weight function. Thus, all that is required is a
procedure for evaluating the moments in variable-precision arithmetic. Since,
as is well known, the problem of computing recurrence coefficients from
moments is highly unstable, it will be necessary to employ high-precision
computation to overcome the instability.

We illustrate this capability for a variety of weight functions, thereby,
in part, extending existing software and tables to an arbitrary number of
recurrence coefficients and arbitrary precision.

In Section 2 the basic algorithm is described. It uses the symbolic Matlab
program! schebyshev.m implementing the Chebyshev algorithm and re-
quires a symbolic routine momname . m that generates the necessary moments.
In the subsequent sections, the algorithm is applied to a variety of orthogonal
polynomials, including Freud polynomials, Bose-Einstein polynomials, and
Fermi-Dirac polynomials, corresponding, respectively, to weight functions
w(x) = |x|*exp(—|x|#) on R (a > —1, B > 0), w(x) =[x/ — D, wx) =
[1/(¢*+ D) onRy (r=1,2,3,...).

2 Basic algorithm

Suppose we are given a (nonnegative) weight function w on some interval
(a,b), —00 < a < b < 00, defining a set of (monic) orthogonal polynomials m,
k=0,1,2,...,where

Tr+1(X) = (X — )7 (x) — Brmg—1(x),
k=0,1,2,...,
mx) =1, 7_1(x)=0 1)

is the three-term recurrence relation satisfied by the polynomials m;. Here,
o = ap(w), Br = Br(w) are certain constants depending on the weight func-
tion w,