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Preface

Claude Brezinski and Ahmed Sameh

Walter Gautschi is a world-renowned numerical analyst whose research contribu-
tions cover a wide range of topics including numerical conditioning, special func-
tions, interpolation and approximation, orthogonal polynomials, quadrature, linear
recurrence relations, ordinary differential equations, and history of mathematics.
His contributions have had a significant impact on the field, and his papers are
widely cited. Walter has published 3 books, 34 book chapters, 160 refereed journal
papers, 7 refereed papers in conference proceedings, translated 3 books, and edited
5 conference proceedings. His papers are characterized by their clarity of exposition
and will remain excellent resources for researchers in the field. Walter has 4820 cita-
tions in Google Scholar and 174,000 citations in Google. His two books: Numerical
analysis — an introduction, published by Birkhäuser, and Orthogonal polynomials
— computation and approximation, published by Oxford University Press, have set
a high standard for graduate textbooks in their respective subjects.

Walter’s 65th birthday was celebrated by a conference held in his honor in De-
cember 1993 at Purdue University, attended by leaders in the field, such as Richard
Askey, Carl de Boor, John Butcher, Ward Cheney, Paul Erdős, Gene Golub, Bill
Gragg, Arieh Iserles, Charles Micchelli, Frank Olver, John Rice, Ted Rivlin, Ed
Saff, Frank Stenger, Richard Varga, Jet Wimp, among others. The proceedings of
this conference were published by Birkhäuser in 1994. Since then, Walter has added
significantly to his contributions to warrant this publication (also by Birkhäuser)
of his selected works together with commentaries by foremost experts in the re-
spective areas of Walter’s contributions. Volume 1 collects papers on numerical
conditioning, special functions, interpolation and approximation; Volume 2 those
on orthogonal polynomials — on the real line and on the semicircle —, and quadra-
ture — of Chebyshev, Gauss, and Kronrod type —; and Volume 3 papers on linear
recurrence relations, ordinary differential eqations, computer algorithms and soft-
ware packages, history and biography, and miscellaneous topics.
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2 Claude Brezinski and Ahmed Sameh

The papers included are chosen by Walter, and the editors wish to thank the
publishers of Walter’s papers for permission to reprint them here. The editors also
express their gratitude to the commentators for their excellent reviews and prompt
response.

Finally, we wish to thank Birkhäuser for their wonderful cooperation to produce
these volumes, thereby preserving and making easily accessible Walter’s contribu-
tion to Computational Mathematics. We also thank Professor Michela Redivo-
Zaglia of the University of Padua for lending a hand to one of the editors with
Birkhäuser’s latex style in the early phase of the work.

We present these volumes, honoring Walter and the memory of his late brother
Werner, as a tribute to Walter — an inspiring and valued colleague. We are proud
to call him a great friend.

Claude Brezinski
Ahmed Sameh

December 17, 2012



Part I

Walter Gautschi

In the article of Section 3, numbers in brackets refer to the numbered list of

works.
papers in Section 4, those in boldface type to papers included in these selected
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Biography of Walter Gautschi

Claude Brezinski and Ahmed Sameh

primary subject, with physics, physical chemistry, and actuarial mathematics as
secondary subjects. In the early 1950s he became an assistant of Professor Alexan-
der M. Ostrowski, obtaining a Ph. D. in 1953 under his supervision with a thesis
on graphical integration of ordinary differential equations. He then received a two-
year fellowship for study abroad from the Janggen-Poehn foundation in St. Gallen,
of which he spent the first year at the Istituto Nazionale per le Applicazioni del
Calcolo in Rome, founded and directed by Mauro Picone, and a second year at the
Harvard Computation Laboratory. It was at the Harvard Computation Laboratory
where he got his first hands-on experience with electronic computers, program-
ming (in machine code) on Professor Aiken’s MARK III computer. In 1956, under
a contract with the American University, he joined the staff of the Computation
Laboratory at the National Bureau of Standards in Washington, D. C. (now the
National Institute of Standards and Technology). There, his major project was the
preparation of two chapters of the Handbook of Mathematical Functions edited by
Milton Abramowitz and Irene A. Stegun. Abramowitz introduced Walter to the
work of J. C. P. Miller on backward recurrence, which became one of the early
areas of emphasis in Walter’s research. Because of employment difficulties related
to Walter’s Swiss citizenship, he had to leave the Bureau in 1959 and he joined
Alston Householder’s Mathematics Panel at the Oak Ridge National Laboratory.
Through contacts with chemists at the laboratory, he became interested in the
numerical aspects of Gaussian quadrature and orthogonal polynomials, which was
to become one of the principal areas of Walter’s research contributions. During
the four years at the Oak Ridge laboratory he was twice invited to lecture at the
Michigan University Engineering Summer Conferences then organized by Robert
C. F. Bartels.

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 1: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7034-2 2,
© Springer Science+Business Media New York 2014

Walter Gautschi was born on December 11, 1927 in Basel, Switzerland, together
with his twin brother Werner. He attended primary and secondary schools in
Basel, graduating in 1947 from the Mathematisch-Naturwissenschaftlichen Gym-
nasium. He then enrolled at the University of Basel to study mathematics as the

5



6 Claude Brezinski and Ahmed Sameh

In 1960, after the untimely death of Walter’s twin brother Werner in 1959, he
married his widow, Erika Wüst, and adopted their son Thomas, born only after
Werner’s death. The marriage brought forth three more children, Theresa, Doris,
and Caroline, born respectively in 1961, 1965, and 1969.

In 1963, Walter started his academic career, accepting a professorship jointly
at the then (1962) newly established Department of Computer Sciences and the
Department of Mathematics at Purdue University. It was to become a life-long as-
sociation, interrupted only by sabbatical years, 1970–1971 as a Fulbright scholar at
the Technical University of Munich, and 1976–1977 at the University of Wisconsin.
Walter regularly taught the beginning graduate course on Numerical Analysis, an
advanced course on the numerical solution of ordinary differential equations, and
occasionally courses on numerical linear algebra and optimization. Notes prepared
over the years on the first two of these courses, and also notes prepared for summer
courses taught repeatedly in Perugia, Italy, in the 1970s, led in 1997 to the publi-
cation of his book on Numerical Analysis by Birkhäuser Boston. A second edition
of this book appeared in 2012. Another book, that grew out of seminars held on
the constructive aspects and applications of orthogonal polynomials, was published
by Oxford University Press in 2004.

Throughout his academic career, Walter participated and lectured at numerous
national and international meetings and was a frequent visitor at other academic
institutions, notably the Polytechnics of Milan and Turin, the University of Padua,
the ETH in Zurich, and his alma mater, the University of Basel. For many years
he was also a consultant at Argonne National Laboratory.

In 2001, Walter was elected a Foreign and Corresponding Member of two Euro-
pean Academies, respectively the Bavarian Academy of Sciences in Munich and the
Turin Academy of Sciences (once the Royal Society). He was also named a SIAM
Fellow in 2012.

From 1966 to 1999, Walter was a member of the Editorial Committee of Math-
ematics of Computation and its Managing Editor from 1984 to 1995. His metic-
ulous attention to details was legendary. Other journals for which he served as
an Associate Editor are Numerische Mathematik, 1971 to the present (Honorary
Editor since 1991), the SIAM Journal on Mathematical Analysis, 1970–1973, and
Calcolo, 1975–1987. In addition, in 1981–1983, Walter served as a Special Editor
of Linear Algebra and its Applications. On the 50th anniversary of Mathematics of
Computation, Walter edited an AMS proceedings volume entitled A half-century of
computational mathematics, and he was co-editor of a number of other proceedings
volumes. He was also active as a translator, translating (jointly with R. Bartels
and C. Witzgall) the text Numerische Mathematik by J. Stoer, preparing an an-
notated translation of H. Rutishauser’s Vorlesungen über numerische Mathematik,
and (jointly with his wife Erika) an English translation of E. A. Fellmann’s Leonhard
Euler.



2. Biography of Walter Gautschi 7

Walter officially retired from Purdue University in 2000 with the title of Profes-
sor Emeritus, but both his research and lecturing activities continued unabatedly
ever since.

For more details on Walter’s life, and especially his early research activities,
see also Walter Gautschi’s “Reflections and recollections” in Approximation and
Computation — a festschrift in honor of Walter Gautschi (R. V. M. Zahar, ed.),
pp. xvii–xxxv, Birkhäuser, Boston, 1994.
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A brief summary of my scientific work and

highlights of my career

Walter Gautschi

I have worked in a number of different areas of (mostly computational) mathematics.
They are organized here in thirteen sections. For the sake of brevity, when referring
to joint papers, coauthors are not identified explicitly.

1. Numerical conditioning. The general theme here is to analyze the sensitivity
of a problem to small perturbations in the data. This has been an area of continued
interest to me, given my predilection to fundamental issues.

An example of this is the extensive work on the condition of Vandermonde and
Vandermonde-like matrices. The former [16, 19, 34, 51, 52, 62, 110] are shown to
be always ill-conditioned, exponentially so or worse, if the nodes are real. They are
usually well-conditioned if the nodes are complex. A noteworthy example [120] is
the n× n Vandermonde matrix whose nodes are the first n members of an infinite
sequence of complex numbers on the unit circle, for example the Van der Corput
sequence. The (spectral) condition number is then shown to be bounded by

√
2n.

In the case of (real) Vandermonde-like matrices whose entries are not powers of
the nodes, but orthogonal polynomials evaluated at the nodes, the matter depends
on the Christoffel numbers, or Christoffel function (evaluated at the nodes) of the
underlying measure, more precisely, on the ratio of their arithmetic and harmonic
means [83]. Another interesting problem treated very recently pertains to optimally
scaled and optimally conditioned Vandermonde and Vandermonde-like matrices
[200]. For a survey, see also [118].

Other instances of work in this area are the condition of polynomial bases [43,
66], the condition of algebraic equations [45], and most notably, the condition of
moment maps in the theory of orthogonal polynomials and related quadratures [40,
81, 98].

2. Special functions. My contributions to this subject are four-fold: numerical
evaluation, inequalities, asymptotics, and expository work.

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 1: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7034-2 3,
© Springer Science+Business Media New York 2014
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10 Walter Gautschi

In the first of these categories, the influential work [29] should be mentioned
on computational aspects of three-term recurrence relations. This centers around
the concept of minimal solution of three-term recurrence relations and related
algorithms involving continued fractions. The latter have been successfully applied
to the computation of many special functions, such as Bessel functions [23],
Legendre functions [24], Coulomb wave functions [28, 33, 35], incomplete beta and
gamma functions [22, 158], repeated integrals of the error function [13, 59, 60],
and Stieltjes transforms of orthogonal polynomials [75]. Special mention deserves
an efficient algorithm developed for computing the complex error function [36, 39]
(a Stieltjes transform of the Hermite weight function), which relies on similar ideas
and which has found widespread use in the physics and nuclear engineering com-
munities. In the paper [63], attention is drawn to a continued fraction of Perron
as a useful alternative to the more customary Gauss-type continued fraction for
evaluating ratios of modified Bessel functions of a real argument. A variety of tech-
niques, including Taylor series and continued fraction expansions, are employed in
the calculation of incomplete gamma functions [68, 69, 70]. Applying Gaussian
quadrature led to useful procedures for computing hypergeometric and confluent
hypergeometric functions [168], Bessel and Airy functions [169], modified Bessel
functions of complex orders [178], and Kontorovich–Lebedev integral transforms
[181]. High-precision nonstandard Gaussian quadrature rules are also employed to
compute certain integrals involving the Lambert W-function [199].

With regard to inequalities, the two-sided inequalities for gamma function ratios
[9], published in 1959, have been most widely noted (and now bear my name),
although they were obtained in the context of more general two-sided inequalities for
the incomplete gamma function. Of a quite different nature are the harmonic mean
inequalities for the gamma function [47, 48], obtained in the 1970s. In [72], clas-
sical inequalities of Laguerre for the largest zero of Jacobi, Laguerre, and Hermite
polynomials are sharpened. Beginning in 2007, in a series of papers [182, 190, 191,
192, 203], a number of far-reaching conjectures are set forth regarding inequali-
ties for zeros of Jacobi polynomials, all based on extensive numerical computation.
Bernstein’s inequality for Jacobi polynomials is analyzed in [193] with regard to
sharpness and extended to larger domains of the Jacobi parameters. The compu-
tational work therein also suggests a numerical value for the best constant in the
Erdélyi–Magnus–Nevai conjecture on orthonormal Jacobi polynomials.

There is one short paper on asymptotics [10] generalizing an asymptotic formula
of G. Blanch for exponential integrals.

Most important among my expository work on special functions are the two
chapters [20, 21] on the exponential integrals and the error function in the famous
handbook of Abramowitz and Stegun.

3. Interpolation and approximation. An early paper [11] deals with bivariate
linear interpolation of an analytic function in the complex plane and the respective
error committed.
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According to a classical result of Erdős and Turán, Lagrange interpolation of any
continuous function on [−1, 1] at the n zeros of an orthogonal polynomial of degree n
converges in the mean as n → ∞. Does the same conclusion hold if one inserts n+1
additional points in a well-specified manner (similar to Kronrod’s method in the
theory of quadrature)? This is explored in [132] with mixed success: the answer is

conjectured to be “yes” for Jacobi polynomials P
(α,β)
n with parameters α, β suitably

restricted, but is proved to be “no” for Chebyshev polynomials of the first, third,
and fourth kind (the answer being trivially “yes” for Chebyshev polynomials of
the second kind). For quadrature convergence in the sense of Erdős and Turán,
however, the answer is “yes” for all four Chebyshev polynomials, as is proved in
[147]. Under an additional interlacing condition on the interpolation points, we
also established necessary and sufficient conditions for quadrature convergence to
hold and conjectured them to be satisfied for Jacobi polynomials with parameters
|α| ≤ 1

2 , |β| ≤ 1
2 .

Inspired by work in physics, I became interested in approximating a function
in such a way that as many of its moments as possible are preserved. I began by
considering functions f on R+ and approximation by piecewise constant functions
with both the location and height of their jumps being freely variable [89]. The
problem was generalized in [100] to approximation on R+ by spline functions of fixed
degree and variable (positive) knots. Interestingly, under appropriate conditions the
problem has a unique solution expressible in terms of the nodes and weights of a
Gaussian quadrature formula relative to a weight function which depends on f .
Unique existence is always assured if f is completely monotonic on R+. Analogous
problems on a finite interval can also be solved [102] and involve generalized Gauss–
Radau and Gauss–Lobatto formulae. For a summary of this work and related work
by others, see [131].

Other approximation-theoretic problems considered pertain to continued frac-
tions [61, 87, 127], Padé approximation [86], Fourier analysis [41], and the summa-
tion of slowly convergent series [93, 124, 125, 175].

4. Orthogonal polynomials on the real line. The constructive theory of orthog-
onal polynomials is an area of work for which I am probably best known. (I have
been called Mr. Orthogonal Polynomials by some of my colleagues!) I was the
first to take up the problem of computationally generating orthogonal polynomials
relative to essentially arbitrary weight functions or measures. While the solution
via moments, in principle, is classically known, it is problematic computationally
because of severe ill-conditioning. The major effort, indeed, was to carefully ana-
lyze the degree of ill-conditioning and to find methods that successfully surmount
this ill-conditioning. The approach I have taken was to either replace moments by
so-called modified moments (an idea that had been floating around at the time)
and study the condition number of the relevant moment map; or else, to discretize
the underlying inner product and take the corresponding discrete orthogonal poly-
nomials to approximate the desired ones. The former approach led to two algo-
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rithms, one based on Cholesky decomposition [40], and another, more efficient one
[81, §2.4], given the name modified Chebyshev algorithm, because I could trace its
origin to an 1859 memoir of Chebyshev dealing with ordinary moments of a dis-
crete measure. The second appoach, often more effective, is entirely original with
me [31]. It led to what I called a discretized Stieltjes procedure [81, §2.2], since
Stieltjes in 1884 briefly alluded to an algorithm of this kind (without discretiza-
tion). A Fortran program implementing the method has been published in [32].
Both algorithms are extended in [145] to Sobolev orthogonal polynomials, which
are orthogonal with respect to an inner product also containing derivatives and
accompanying measures. They are applied in [153] to illustrate theoretical results
about the asymptotic distribution of zeros of Sobolev orthogonal polynomials and
their derivatives. Very special Sobolev orthogonal polynomials involving a deriva-
tive of fixed order with an associated one-point atomic measure are discussed in
[151] along with their zeros.

The algorithms thus developed, sometimes in conjunction with analytic or sym-
bolic variable-precision tools, have been used to generate (recursion coefficients
of) orthogonal polynomials with special, sometimes unusual, weight functions, for
example the reciprocal gamma function [80], weight functions of interest in theoret-
ical chemistry that are supported on two separate intervals [90], Einstein and Fermi
functions [93], Freud and half-range Hermite weight functions [195], refinable [161]
and densely oscillating, or rapidly exponentially decaying, weight functions [176],

5. Orthogonal polynomials on the semicircle. An entirely new kind of (complex)
orthogonal polynomials was introduced in 1985: polynomials orthogonal on the
semicircle [95]. The novelty here is the non-Hermitian nature of the underlying
inner product. Yet, many properties of these new polynomials, and also of the
respective zeros, resemble properties known for classical orthogonal polynomials
with positive definite or Hermitian weight functions. This was further developed in
a number of papers, [97, 104, 113] and summarized in [116].

6. Chebyshev quadrature. The majority of my papers is dedicated to problems
of quadrature. My early work in this area, suggested by a visitor (Hiroki Yanagi-
wara) from Japan, deals extensively with weighted Chebyshev and Chebyshev-type

and sub-range Jacobi weight functions [205].
Other important algorithms studied pertain to modifications of the weight func-

tion, for example multiplying it by a positive rational function [77], [179, §2.6]. A
notable special case is multiplication by the square of the respective orthogonal

mials. They are relevant, e.g., in the problem of extended interpolation mentioned
in §3. Repeated modifications by linear divisors are studied in [206] and applied
to generate special Gaussian quadrature rules for dealing with nearby poles. Some
of these algorithms can also be used to “neutralize” singularities other than poles
[207].

polynomial, which gives rise to what in [134] are called induced orthogonal polyno-
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formulae. The former are weighted quadrature rules with equal (real) coefficients,
distinct (real) nodes, and polynomial degree of exactness equal to the number of
nodes. From a celebrated result of Bernstein (relative to constant weight functions)
one can expect such quadrature rules to exist only for a finite, typically small, num-
ber of nodes. A severe case in point is exhibited in [50]. In all remaining instances
one can try to find substitute formulae by relaxing the exactness condition in one
way or another. This is the kind of problem studied by me and co-workers in the
mid-1970s [46, 50, 53, 57, 58]. A historical summary is provided in [55].

7. Kronrod and other quadratures. Gauss–Kronrod formulae give rise to intrigu-
ing problems of existence, that is, of determining if and when all nodes are real and
distinct. This has been studied, using algebraic tools, for Jacobi weight functions
in [109]. Other instances of such formulae, [111, 114], involve weight functions of
Bernstein–Szegő type, i.e., Chebyshev weights of any of the four kinds divided by a
quadratic polynomial which remains positive on [−1, 1], or weights whose orthog-
onal polynomials have a three-term recurrence relation with ultimately constant
coefficients [148]. Computing Gauss–Kronrod formulae is a topic discussed in [99,
108]. For a review up to about 1987, see [107].

A convergence result for interpolatory quadrature rules with Chebyshev nodes
(already studied by Fejér), when applied to improper integrals having monotonic
singularities at the endpoints ±1, is proved in [30]. The result is of interest in the
generation of orthogonal polynomials by the discretized Stieltjes procedure (cf. §4).

Evaluating the Hilbert transform (a Cauchy principal value integral) of the
classical Jacobi, Laguerre, and Hermite measures and of the respective orthogonal
polynomials is discussed in [103, 166]. The latter satisfy the same three-term re-
currence relation as the one for the orthogonal polynomials themselves, but exhibit
a phenomenon of pseudostability (cf. §9). A case of computing singular integrals is
studied in [105].

In [160], a new look is taken at adaptive quadrature employing, among other
devices, a 4-point Gauss–Lobatto formula and two successive Kronrod extensions
thereof. The procedure has been incorporated into one of the Matlab quadrature
routines, quadl.

A challenging integral involving an integrand that is densely oscillating near one
of the endpoints of the interval of integration, with amplitudes tending to infinity,
is evaluated in [188] by elementary means.

8. Gauss-type quadrature. The larger part of my work on numerical quadrature,
however, concerns Gauss-type quadrature rules and, apart from [31, 40, 65], be-
gan to appear around 1981 after my long historical essay [74] on Gauss-Christoffel
quadrature rules, written on the occasion of Christoffel’s 150th anniversary of birth.
The work can be divided into five parts: (i) geometric properties, (ii) explicit for-
mulae and computation, (iii) validation, (iv) error estimation for analytic functions,
and (v) polynomial/rational formulae.
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(i) In 1961, P. J. Davis and Philip Rabinowitz proved that the classical Gauss–
Jacobi formula has weights which, when suitably normalized and plotted over the
corresponding nodes, come to lie on the upper half of the unit circle, asymptotically
for large orders. In 2006, I have shown [180] that this pretty “circle theorem” is
true for a much larger class of weight functions, essentially the Szegő class, not only
for Gauss formulae, but also for Gauss–Radau, Gauss–Lobatto, and, under more
restictive conditions, even for Gauss–Kronrod formulae.

(ii) There is a large number of papers dealing with the numerical calculation not
only of Gaussian formulae (which essentially amounts to the numerical generation
of the respective orthogonal polynomials – see §4 – followed by an eigenvalue/vector
computation involving the Jacobi matrix of the orthogonal polynomials), but also
of ordinary [163, 164] and generalized [173], [194] Gauss–Radau and Gauss–Lobatto

(iii) The problem of validation, considered in [84], consists in assessing a poste-
riori the accuracy of the nodes and weights of a Gaussian quadrature formula, once
computed in one way or another. In view of the severe ill-conditioning mentioned
in §4, this is a nontrivial problem.

(iv) The remainder term of weighted Gaussian quadrature formulae over a finite
interval applied to analytic functions can be estimated by contour integration tech-
niques. This is the subject of the frequently cited work [85] and of [119]. Additional
work on this topic is done in [121, 123], where the same techniques are applied to
Gauss–Radau and Gauss–Lobatto quadratures.

(v) Quadrature formulae with polynomial degrees of exactness are of limited
use when the function to be integrated has poles, especially poles near the interval
of integration. In such cases, it is more meaningful to include among the func-
tions that are integrated exactly also rational functions having the same, or at least
the more important, poles. It turns out that such polynomial/rational n-point
quadrature formulae (that exactly integrate m rational functions, 0 < m ≤ 2n,
with prescribed poles of given multiplicities and polynomials of degree 2n−m− 1)
can be constructed in terms of classical (polynomial) Gauss formulae with mod-
ified weight functions and hence can be computed by methods described earlier.
This is discussed, and illustrated by a number of examples, in [137], and imple-
mented in a computer algorithm in [159]. Integrals over half-infinite intervals and
exact for special rational functions are considered in [128]. Polynomial/rational
versions of other quadrature rules, specifically Gauss–Kronrod, Gauss–Turán rules,
and quadrature procedures for Cauchy principal value integrals, are developed in
[162] and (favorably) compared with the polynomial counterparts. For an updated
summary that includes also estimates of the remainder term and an additional

formlae, especially of very high order, as well as Gauss–Turán formulae [154, 211]
(which involve derivative values of the function to be integrated up to some even
order). For Gauss–Radau and Gauss–Lobatto formulae with double endpoints and
Chebyshev weight functions of all four kinds, explicit formulae for the boundary
weights are derived in [126].
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example, see [167]. Applications to Fermi–Dirac and Bose–Einstein integrals and
comparisons with results in the physics literature are made in [136].

The theory and algorithms described in §§4–5 and §§7–8 and various applications
thereof, are the subject of a monograph [B3] published in 2004 by Oxford University
Press. For additional surveys, see also [65, 92, 94, 112, 115, 117, 122, 130, 140, 157].

9. Linear difference equations. As already mentioned in §2, linear homoge-
neous difference equations of order two (i.e., three-term recurrence relations) are
an important tool for computing special functions. So are inhomogeneous difference

numerical stability of initial and boundary value problems for such difference equa-
tions is discussed systematically using the concept of amplification factors. Special
attention is given to a phenomenon of “pseudostability” (stability in theory, but
instability in practice). Its adverse effects on computing are illustrated in [135]
in the case of discrete orthogonal polynomials when computed by their three-term
recurrence relation (cf. also [150, §3.4.2]).

10. Ordinary differential equations. I acquired an interest in this topic early
on, already during my doctoral thesis work. I obtained error bounds [5] for special
Runge–Kutta methods developed by Zurmühl for single differential equations of
arbitrary order, following work of Bieberbach on the classical Runge–Kutta method
for first-order differential equations. In 1961 I developed numerical methods based
on trigonometric rather than algebraic polynomials [14], anticipating methods later
called “exponentially fitted”. Only recently, they have attracted renewed interest
in the context of oscillatory second-order differential equations and also in time
integration schemes for Maxwell equations in three dimensions. An early expository
account of the theory of one-step and multistep methods is given in [15], which for
the first time includes Dahlquist’s theory of stability and convergence of linear
multistep methods. Later in 1975, in the paper [54] dedicated to Mauro Picone,
it is proposed to estimate the global error (not the local error, as is usually done)
of one-step methods by integrating numerically the variational differential equation
along with the main differential equation. For multistep methods, this is done in

certain coefficients of interest in Adams, Störmer, and Cowell multistep methods.
The last paper on differential equations [73] appeared in 1980. Within a class of
stable multistep methods it determined the method which has minimum coefficient
in the asymptotic formula for the global error.

11. Software. Much of my work on computing special functions is sup-
ported by pieces of software, initially written in Algol and Fortran and published
in separate algorithms, and later written in Matlab and placed on my home-
page. I also wrote major software packages in support of my work on orthog-
onal polynomials and quadrature: the Fortran package ORTHPOL [141] and the

equations of order one (for example, see [12, 26, 27, 37, 38, 44]). In [42, 150], the

my book [B2, §6.3.5 of the 2d edition]. Asymptotic estimates are derived in [56] for
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Matlab package OPQ [174, 179, http://www.cs.purdue.edu/ archives/2002/wxg

/codes/OPQ.html]. Some of the routines in the latter package have been rewritten
in symbolic Matlab and collected in the package SOPQ [http://www.cs.purdue.edu
/archives/2002/wxg/codes/SOPQ.html], and can therefore be run in variable-
precision arithmetic. This, incidentally, provides another approach to overcome
the ill-conditioning mentioned in §4: simply do the computation with as many dig-
its as are required to compensate for the loss of accuracy caused by ill-conditioning.

12. History and biography. Every so often, I took time out to review the history
of a subject I had been working on myself. This led to a number of special-topic
surveys, for example on computational methods in special functions [49], advances
in Chebyshev quadrature [55], questions of numerical condition related to polyno-
mials [64], Gauss-Christoffel quadrature formulae [74], Gauss-Kronrod quadrature
[107], remainder estimates for analytic functions [129], applications and computa-
tion of orthogonal polynomials [146], the incomplete gamma function since Tricomi
[155] (written on the occasion of Tricomi’s 100th anniversary of birth), and the
interplay between classical analysis and numerical linear algebra [170], a tribute to
Gene H. Golub. There are also appreciations of the work, and sometimes the life,
of individual personalities, for example Yudell L. Luke [91] (an obituary), Philip
Rabinowitz [143], Luigi Gatteschi [144, 189], Alexander M. Ostrowski [82], [196]
(published on the occasion of the 100th anniversary of the Swiss Mathematical
Society), and, above all, Leonhard Euler [187]. Two of
my articles deal specifically with Euler’s handling of slowly convergent series [183]
and with Euler’s curious attempt [186] (communicated in a 1734 letter to his friend
Daniel Bernoulli) to interpolate the common logarithm from the known values

log 10k = k, k = 0, 1, 2, 3, . . . .

13. Miscellanea. Additional work not easily subsumed under any of the cate-
gories above concerns a proof, under weaker assumptions, of a necessary condition
of Picone in the calculus of variation [7] and an extension thereof to double in-
tegrals [6], families of algebraic test equations [71], the error behavior in optimal
relaxation methods [78], monotonicity and complete monotonicity properties re-
lated to the successive remainder terms of the exponential series [79], an algorithm
for simultaneous orthogonal transformation of several positive definite matrices to
nearly diagonal form [96], summation procedures [175] for evaluating the interesting
Hardy–Littlewood function H(x) =

∑∞
k=1 sin(x/k)/k, and the analytic smoothing

of the discrete spiral of Theodorus [197].

——–ooOOoo——–

Apart from my election in 2001 to two prominent European Academies – the
prestigious Bavarian Academy of Sciences and Humanities, founded in 1759, and the

Joseph-Louis Lagrange [210], 
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Turin Academy of Sciences, once the Royal Academy, founded in 1761 by Lagrange
and others – and the designation of SIAM Fellow in 2012, there are two highlights
in my career that stand out. The first is my collaboration in 1984 with Louis
de Branges on the proof of the Bieberbach conjecture [101]. De Branges knew
that the validity of the Bieberbach conjecture for the nth coefficient hinges on the
validity of a system of n inequalities involving integrals of Jacobi polynomials (in
fact 3F2 hypergeometric functions). I was able to use my software package [141] for
orthogonal polynomials to verify computationally that these inequalities are indeed
valid for all n up to 30. More importantly, I made a now famous telephone call to
Richard Askey, which led to the incredible discovery that these inequalities are true
not only for n ≤ 30 but for all n, being a special case of results proved several years
earlier by Askey and Gasper. That finished off de Branges’s proof of the Bieberbach
conjecture. The second highlight was the Euler lecture I was invited to give as part
of the Euler 300th anniversary year before an audience of some 3,000 attendees of
the ICIAM 2007 Congress in Zürich. An expanded version of the lecture has been
published in [187], and a preliminary rendition thereof given and recorded at Purdue,,
University; the video is made available with
the ISBN of Vol. 1, 978-1-4614-7033-5, and click on EulerLect.avi

permission at springer.com (type in
).
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268 pages).

P4. (with F. Marcellán and L. Reichel) Numerical analysis 2000, Vol. 5: Quadra-
ture and orthogonal polynomials, J. Comput. Appl. Math. 127, nos. 1–2 (2001).

P5. (with G. Mastroianni and Th. M. Rassias) Approximation and computation:
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66. The condition of polynomials in power form, Math. Comp. 33, 343–352.
67. On the preceding paper “A Legendre polynomial integral” by James L. Blue,

Math. Comp. 33, 742–743.
68. A computational procedure for incomplete gamma functions, ACMTrans. Math.

Software 5, 466–481.
69. Algorithm 542 — Incomplete gamma functions, ACM Trans. Math. Software

5, 482–489.
70. Un procedimento di calcolo per le funzioni gamma incomplete, Rend. Sem. Mat.

Univ. e Politec. Torino 37, 1–9.
71. Families of algebraic test equations, Calcolo 16, 383–398.



4. Publications 25

1980

72. (with F. Costabile) Stime per difetto per gli zeri più grandi dei polinomi orto-
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2014

209. Kommentar (Interpolation des Logarithmus) zum Brief Leonhard Eulers an
Daniel Bernoulli vom 16.(27.)2.1734, in Briefwechsel Eulers mit Daniel
Bernoulli, Opera Omnia IVA/3, Birkhäuser, Basel, to appear.
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5

Numerical conditioning

Nicholas J. Higham

A theme running through Gautschi’s work is numerical conditioning. His many
papers on this topic fall broadly into two categories: those on conditioning of
Vandermonde matrices and those on conditioning of polynomials.

5.1. Conditioning of Vandermonde matrices

A Vandermonde matrix has the form

Vn = V (x1, x2, . . . , xn) =

⎡

⎢
⎢
⎢
⎣

1 1 . . . 1
x1 x2 . . . xn

...
...

...
xn−1
1 xn−1

2 . . . xn−1
n

⎤

⎥
⎥
⎥
⎦
∈ C

n×n,

where x1, . . . , xn ∈ C. It is worth noting that in Gautschi’s papers the nodes xi are
always indexed from 1, as here, whereas they tend to be indexed from 0 in papers
concerned with numerical solution of Vandermonde systems. Vandermonde matri-
ces have long been of interest in linear algebra and numerical analysis because of the
explicit formula for the determinant,

∏
1≤j<i≤n(xi − xj), the fact that the inverse

can be obtained from explicit formulae (see Traub [7, Sec. 14] for a short historical
survey), and the general ill conditioning of Vandermonde matrices, all of which
make them useful in classroom exercises and as test matrices for computational
algorithms.

In a long sequence of papers starting in 1962, Gautschi investigated the con-
ditioning of Vandermonde matrices, obtaining upper and lower bounds as well as
results on the optimal placement of the xi to minimize the condition number. The
condition number in question is the matrix condition number with respect to in-
version in the ∞-norm: for nonsingular A ∈ C

n×n, κ∞(A) = ‖A‖∞‖A−1‖∞, where
‖A‖∞ = max1≤i≤n

∑n
j=1 |aij |. The original motivation for this work came from

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 1: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7034-2 5,
© Springer Science+Business Media New York 2014

37



38 Nicholas J. Higham

experiences in computing Gaussian quadrature rules from moments of the weight
function, in which possibly ill-conditioned confluent Vandermonde matrices arise.

The Vandermonde matrix Vn is nonsingular precisely when the nodes xi are
distinct. When some of the nodes coincide the appropriate form of Vn for practical
applications such as Hermite interpolation is as follows: the xi are ordered so that
equal points are contiguous and if xi is repeated k times then Vn has columns
comprising [1, x, x2, . . . , xn−1] and its first k − 1 derivatives, all evaluated at xi.
Gautschi’s papers focus on the cases k = 1 and k = 2.

In [GA16], Gautschi obtains the upper bound

‖V −1
n ‖∞ ≤ max

i

∏

j �=i

1 + |xj |
|xi − xj | , (5.1)

and shows that there is equality when xj = |xj |eiθ for all j with a fixed θ, so in
particular when xj ≥ 0 for all j. A bound for the confluent case is also given, and a
slightly sharper bound was obtained the following year in [GA19]. The third paper
[GA62] in this “On inverses . . . ” series appeared in 1978 and gives the lower bound

‖V −1
n ‖∞ ≥ max

i

∏

j �=i

max(1, |xj |)
|xi − xj | , (5.2)

which differs from the upper bound in (5.1) by at most a factor 2n−1. A prac-
tical application of these early results is in [GA34], where they are applied to a
Vandermonde system arising in numerical inversion of the Laplace transform.

In [GA51], Gautschi specializes to the case where the nodes are located sym-
metrically with respect to the origin. In particular, he shows that while for nodes
equispaced on [0, 1],

κ∞(Vn) ∼ 1

π
e−

π
4 e

n
4 (π+2 log 2) ≈ 1

π
e−

π
4 (3.1)n,

for the Chebyshev points xi = cos(2i−1
2n π) the rate of growth is much slower:

κ∞(Vn) ∼ 33/4

4
(1 +

√
2)n.

A natural question is how to choose the nodes to minimize the condition num-
ber. This is considered in [GA52], where some characterizations of the optimal
nodes are obtained and optimal configurations either symmetric about the origin
or nonnegative are computed explicitly for small n.

The 1988 paper [GA110] returns to lower bounds, showing that for nonnegative
nodes, κ∞(Vn) > 2n−1 for n ≥ 2, while for real nodes symmetric about the origin,
κ∞(Vn) > 2n/2 for n > 2. Even larger lower bounds for the 2-norm condition
number were subsequently obtained by Beckermann [1]:
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κ2(Vn) ≥
(
2

n

)1/2

(1+
√
2)n−2, κ2(Vn) ≥ 1

2n1/2
[(1+

√
2)2(n−1)+(1+

√
2)−2(n−1)],

for arbitrary nodes and nonnegative nodes, respectively.
These exponential lower bounds are alarming, but they do not necessarily rule

out the use of Vandermonde matrices in practice. One of the reasons is that there
exist specialized algorithms for solving Vandermonde-systems whose accuracy is
not dependent on the condition number κ, and which in some cases can be proved
to be highly accurate. The first such algorithm is an O(n2) operation algorithm for
solving Vnx = b of Björck and Pereyra [3], whose error analysis was given by Higham
[5]. There is now a long list of generalizations of this algorithm in various directions,
of which we mention just Demmel and Koev [4] and Bella et al. [2]; various other
algorithms up to 2002 are described or cited in the chapter “Vandermonde systems”
in [6].

Another important observation is that the exponential lower bounds are for real
nodes. For complex nodes, Vn can be much better conditioned. Indeed Vn is n1/2

times a unitary matrix when the xi are the roots of unity. Moreover, it is shown
in [GA120] that when the nodes are e2πicj , with the cj from the Van der Corput
sequence, then κ2(Vn) < (2n)1/2.

The matrix Vn corresponds to a monomial basis for the space of polynomials of
degree up to n− 1. Other bases can be chosen—in particular, ones built from poly-
nomials that satisfy a three-term recurrence (and in particular, orthogonal poly-
nomials). The latter Vandermonde-like matrices can be much better conditioned
than Vandermonde matrices, as shown in [GA83].

Gautschi gives an excellent summary of his work on Vandermonde matrices up
to 1990 in [GA118]. In his most recent contribution on Vandermonde matrices
[GA200], he refines his earlier results and computations.
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Special functions

Javier Segura

The collection of papers by Walter Gautschi dealing with special functions has, of
course, connections with other sections in these volumes. First, we have to mention
the article [GA29], which is included in Section 21, Vol. 3, dedicated to difference
equations, where the conditioning of three-term recurrence relations is analyzed
and methods of computation using recurrence relations are developed; for a more
recent review, see [GA150]. Recurrence relations are basic tools for computing
special functions, particularly functions of hypergeometric type. In [GA29], also
the relation between the existence of a minimal solution for the recurrence and the
convergence of the associated continued fraction is discussed. Reference [GA29] is
a pioneering and influential paper in the field of special functions, and it is a highly
cited paper (316 citations as of now).

Before one starts using recurrence relations for computing special functions, the
main question to be examined is the asymptotic conditioning of the recurrence.
This is one of the subjects developed in [GA29] for three-term recurrence relations.
However, as Gautschi points out in [GA61], transitory effects may take place in some
recurrences which cause the associated continued fraction to seemingly converge,
but to a wrong value. This behavior was revisited recently in [6], where additional
examples of such transitory behavior were found. An important conclusion to be
drawn is that the study of asymptotic conditioning of the recurrence is not sufficient
to ensure a stable use of recurrences, and that one should also pay attention to
possible transitory effects.

Gautschi has developed a number of algorithms for the computation of special
functions by Gaussian quadrature; these algorithms benefit from his pioneering
work on the computation of Gauss quadratures (see, for instance, [GAB3] and
Section 15.1, Vol. 2). For additional computer algorithms, see Section 23, Vol. 3.  
These algorithms have had a great influence on software developers for special
functions.
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In addition to the articles dealing with methods of computation, Gautschi pub-
lished a number of papers dealing with inequalities for special functions and their
zeros. The best-known, and most cited, of all is [GA9], containing the famous
Gautschi’s inequality among other interesting results.

Below we summarize the contributions contained in the papers of this section.
Apart from [GA61], which, as already mentioned, is a paper dealing with the con-
ditioning of some recurrence relations, we are dividing the contributions in two
categories: computation of special functions, and inequalities for special functions
and their zeros.

6.1. Computation of special functions

The methods for computing special functions are varied. Basic methods include
the use of series (convergent or asymptotic), recurrence relations, and continued
fractions. For computing a function efficiently, one usually needs to combine several
of these methods. Gautschi’s contributions have a wide scope, but probably the
best-known are those regarding the computation of incomplete gamma functions
and related functions (exponential integrals, error function). In these papers, all of
the above-mentioned methods find applications.

Numerical quadratures have not been widely used for computing special func-
tions, even though this is also an interesting possibility. An advantage of numerical
quadrature is that, when a suitable integral representation is at hand, quadrature
may provide methods with a large range of validity or even, in some cases, may be
the standalone method. Gautschi’s main interest in this area is the application of
Gaussian quadrature.

6.1.1. Exponential integrals, incomplete gamma functions, and the error function

In this subsection we consider six contributions dealing with the computation of
incomplete gamma functions and related functions.

In the first, [GA10], Gautschi considers an expansion for the exponential integral

∫ +∞

1

e−xtt−ndt

valid for large positive n and arbitrary x > 0, complete with error bounds. The
expansion generalizes the four-term expansion derived by G. Blanch in [4].

In [GA13], methods for computing the repeated integrals of the error function,

inerfc(x) =
2√
π

∫ +∞

x

(t− x)n

n!
e−t2dt,
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are considered. These are particular cases of parabolic cylinder functions (solutions
of y′′(x)− (x2/4 + a)y(x) = 0) up to a trivial change of variables, and they satisfy
a three-term recurrence relation

yn+1 + an yn + bn yn−1 = 0.

It is shown that the functions are a minimal solution of the recurrence, which
means that limn→+∞ inerfc(x)/yn(x) = 0 for any other linearly independent so-
lution yn(x). The function can therefore be computed by a backward application
of the recurrence (Miller’s method). The paper analyzes in detail the convergence
of the method and, by bounding the error, values of n are given with which to start
the backward recurrence. This is a first instance of techniques developed in more
detail, and with a larger scope, in the later paper [GA29].

A method for computing the complex error function w(z) = exp(−z2)erfc(−iz)
is developed in [GA39] (see also the accompanying software [GA36]). This function,
also called Faddeeva or Voigt function, is important in many physical applications.
It is not surprising that this article received a high number of citations (155 at

point of view, it is interesting to observe that, contrary to what is common in
the evaluation of special functions (and particularly for complex variables), a single
numerical scheme can be used to compute the function for all values of the variable.
A central role is played by a Laplace continued fraction, convergent for complex
(nonreal) z, which is equivalent to Gauss–Hermite quadrature for

i

π

∫ +∞

−∞

e−t2

z − t
dt

this time), many of them coming from papers in physics. From a mathematical

and which provides asymptotic approximations as z → ∞ (also on the real line).
This is combined with the use of Taylor series, which can be computed recursively.
The resulting procedure is such that, as |z| becomes large, it turns into the com-
putation of the Laplace continued fraction.

Reference [GA68] (see also [GA69] for an algorithm) describes methods for com-
puting the incomplete gamma functions

P (a, x) =
1

Γ(a)

∫ x

0

t−ae−tdt, Q(a, x) =
1

Γ(a)

∫ +∞

x

t−ae−tdt,

for moderate real values of a and x. These functions are important in many applica-
tions, particularly in statistics; they are related (see, e.g., [12, Ch. 8]) to the central
accumulated χ2 distributions by P (χ2|ν) = P (ν/2, χ2/2), Q(χ2|ν) = Q(ν/2, χ2/2).
The method of computation combines the use of Taylor series with a continued
fraction for Q(a, x) together with the use of recursion. As mentioned in [GA68],
the range of computation can be enlarged by using the asymptotic approximations
of Temme [17]. The methods in [GA68] continue to be benchmark methods for

(x) (x)
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computing incomplete gamma functions, as can be seen, for instance, from [7].
Incidentally, the commentator at this moment is working (in collaboration with
A. Gil and N. M. Temme) on numerical methods for the computation and inversion
of central and noncentral χ2 distributions, and for the central case, Gautschi’s ideas
are as useful today as they were 34 years ago. By some mistake, this reference is
not included in the ISI database. However, a search in Google Scholar reveals 56
citations for [GA68] and 28 citations for the companion paper [GA69].

Finally, we have the review paper [GA155], which not only reviews methods
of computation for incomplete gamma functions, but also discusses applications,
asymptotics, inequalities, and more. This review paper is an important source of
information for these functions and, according to Google Scholar, has been cited 66
times.

6.1.2. Computing special functions by Gaussian quadrature

Gautschi has developed a variety of methods for computing special functions based
on Gaussian quadrature, both classical (like Gauss–Jacobi or Gauss–Laguerre) and
nonclassical.

In [GA168], Gautschi considers the computation of Gauss and confluent hy-
pergeometric functions using Gauss–Jacobi quadrature. In the confluent case, the
starting point is the integral representation, valid for b > a > 0 and z real or
complex,

M(a, b, z) =
Γ(b)

Γ(a)Γ(b − a)

∫ 1

0

ezt(1− t)b−a−1ta−1dt.

For this parameter range (b > a > 0), we thus have an integral with a Jacobi weight
(1− t)b−a−1ta−1, and Gauss–Jacobi quadrature appears to be a natural method of
evaluation. The paper analyzes the respective error and compares the estimated
number of nodes required for a given accuracy with the number experimentally ob-
served. In the Gauss hypergeometric case, similar ideas apply for the computation
of 2F1(a, b; c; z) when c > b > 0. This gives methods of evaluation valid for wide
ranges of the parameters, subject to the restrictions imposed in the respective in-
tegral representations. Without doubt, these methods should be considered when
constructing numerical algorithms for hypergeometric functions and are a viable
alternative to methods based on Taylor series and connection formulas (see, for
instance, [10, Sections 2.3.1–2.3.3]).

In [GA169], Gautschi considers the computation of Gauss quadrature rules with
nonstandard weights, namely Kν(x) (modified Bessel function) and Ai(x) (Airy
function). For this purpose, the coefficients of the recurrence relation for the associ-
ated orthogonal polynomials are numerically evaluated using the Stieltjes–Gautschi

as weight functions). For this, one first needs a numerical method for comput-
ing the Bessel and Airy functions and then an alternative quadrature to evaluate

procedure (cf. Section 11.2.2,Vol. 2), which in turn requires the evaluation of a number
of integrals of the same type (that is, with modified Bessel functions or Airy functions
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the integrals in question. Starting with the latter, the approximation consists in
dividing the interval of integration in three subintervals where different Gaussian
quadratures are used (for instance, a combination of Gauss–Jacobi, Gauss–Legendre
and Gauss–Laguerre for the case of the modified Bessel weight). With regard to
methods of computing the modified Bessel function and the Airy function, integral
representations are used which are suitable for Gauss–Laguerre quadrature. For
instance,

Ai(x) =
1√
π

ζ−1/6e−ζ

(48)1/6Γ(56 )

∫ ∞

0

(

2 +
t

ζ

)−1/6

t−1/6e−tdt, ζ =
2

3
x

3
2 ,

can be dealt with using Gauss–Laguerre quadrature with parameter α = −1/6. For
modified Bessel functions Kν(x) similar representations are available (the Airy case
is related to the Bessel case with ν = 1/3). These methods of computation can
be extended to the complex plane. In particular, for the Airy function they can
be used for | arg(z)| < 2π/3, with a modification when arg(z) → ±2π/3 to avoid
a singularity close to the real axis; with this modification, the method was used in
the algorithm [9] for intermediate values of |z|.

The references [GA178, GA199] contain two more examples of applying classical
and nonclassical Gaussian quadrature rules to the computation of special functions.
In the former, methods for the computation of modified Bessel functions of complex
orders, Kα+iβ(x), are discussed; a nonclassical Gaussian quadrature with a double
exponential weight is chosen, which is suggested by the integral representations used
for computing these functions. In the latter, the computation of some integrals of
the Lambert W-functions are considered, which are computed by a combination of
Gauss–Legendre quadrature and a nonclassical Gaussian quadrature with weight
function xα−1[ln(1/x)]α−β+1 on [0, 1/e].

6.2. Inequalities

Gautschi’s work also addresses questions involving inequalities and bounds for spe-
cial functions and their zeros: inequalities for orthogonal polynomials and their
zeros, and inequalities for gamma functions.

6.2.1. Orthogonal polynomials and their zeros

In [GA72] a method is developed for finding lower bounds for the largest zeros of
orthogonal polynomials.

The idea is nice and simple and relies on two facts. The first is that r1 > r2 >
. . . > rn > 0 and uk =

∑n
i=1 cir

k
i with ci positive, letting σk = uk+1/uk, imply

σk < σk+1 < r1 and limk→∞ σk = r1. The second comes from applying the error
formula for Gaussian quadrature.
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If ci, i = 1, . . . , n, are the weights of an n-point Gaussian quadrature on the
interval [a, b] (b > a > 0) with nonnegative integrable weight w(x), ri the zeros
of the associated orthogonal polynomial of degree n, and denoting the moments

by mk =
∫ b

a xkw(x)dx, one has m2n−1 = u2n−1 because Gaussian quadrature has
degree of exactness 2n−1 while, by a well-known expression for the error of Gaussian
quadrature,

m2n = u2n +

∫ b

a

pn(x)
2w(x)dx,

with pn(x) the monic orthogonal polynomial with zeros ri, i = 1, ..., n.
Combining these facts yields

r1 >
u2n

u2n−1
=

1

m2n−1

[

m2n −
∫ b

a

pn(x)
2w(x)dx

]

.

For classical orthogonal polynomials, computing these quantities is a simple matter,
and the paper shows that the idea is effective inasmuch as the bounds so obtained
improve those that follow from Laguerre’s theorem [16, p. 119].

Recent work of Gautschi deals with inequalities satisfied by the zeros of orthogo-
nal polynomials ([GA182, GA190, GA191, GA192, GA203]). These papers combine
analysis with experimental approaches in order to suggest new conjectured inequal-
ities. The paper [GA193] also has an experimental flavor, where Gautschi investi-

gates the sharpness of Bernstein’s inequality for Jacobi polynomials P
(α,β)
n (cos θ)

[5], valid for |α| ≤ 1/2 and |β| ≤ 1/2; it also investigates the validity of the in-
equality in larger domains (α ≥ −1/2, β ≥ −1/2) concluding that it remains valid
but with a somewhat larger constant. The results also lend support to the Erdélyi-
Magnus-Nevai conjecture,

max
x∈[−1,1]

(1 − x)α+1/2(1 + x)β+1/2P̂ (α,β)
n (x) = O(max[1, (α2 + β2)1/4]),

where P̂
(α,β)
n (x) is the normalized Jacobi polynomial, and suggest the best constant

implied in the O-term.

6.2.2. Gamma functions

Gautschi proved a number of inequalities for gamma and related functions.
In the paper [GA9], two-sided inequalities for incomplete gamma functions are

established. Related inequalities for the gamma function are named after Gautschi.
These inequalities have received a great deal of attention in the mathematical com-
munity. Again, for some reason, the reference is not included in the ISI database,
but, according to Google Scholar, the paper has been cited 109 times. A good
number of papers exist improving or extending in some way Gautschi’s inequality,
which in its best-known form can be written as
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x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s, x > 0, 0 < s < 1.

It is not possible to cite all papers dealing with improvements or extension of these
attractive inequalities, but, just to mention a few of them, we cite [13, 15, 14, 3,
2, 8].

The papers [GA47, GA48] deal with harmonic mean inequalities for gamma
functions, for example the interesting inequality

2

1/Γ(x) + 1/Γ(1/x)
≥ 1, x > 0.

This type of inequalities also has attracted considerable attention; see for instance
[1, 11].
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[16] Gábor Szegő. Orthogonal polynomials. American Mathematical Society, Providence,
R.I., fourth edition, 1975. American Mathematical Society, Colloquium Publications,
Vol. XXIII, xiii+432 pp.

[17] N. M. Temme. On the computation of the incomplete gamma functions for large
values of the parameters. In Algorithms for approximation (Shrivenham, 1985),
479–489, Inst. Math. Appl. Conf. Ser. New Ser., 10, Oxford Univ. Press, New York,
1987.



7

Interpolation and approximation

Miodrag M. Spalević

In the papers collected here, Walter Gautschi makes vital contributions to the the-
ory of interpolation and approximation. He considers attenuation factors in prac-
tical Fourier analysis, Padé approximants associated with Hamburger series, the
convergence behavior of continued fractions with real elements, moment-preserving
spline approximations, and the convergence of extended Lagrange interpolation.
Further, he uses numerical computations to examine the validity of mathemati-
cal conjectures regarding zeros of Jacobi polynomials and weighted Newton–Cotes
quadrature formulae.

7.1. Attenuation factors in practical Fourier analysis

Gautschi has written one contribution on this topic, the wonderful paper [GA41].
It is of great value in computational science and engineering, showing how the
Fourier coefficients of a variety of interpolants and approximants to periodic data
can be computed as economically as the Fast Fourier Transform; in other words,
as economically as computing the Fourier coefficients of trigonometric interpolants.
Regretfully, too few mathematicians, scientists and engineers have taken note of
this work. The current Google Scholar citation count of 52 is respectable, but still
modest. In this regard, the paper ranks only in the 27th position among Gautschi’s
articles.

Assume N real values fμ (μ = 0, 1, . . . , N−1) are given. These can be extended
periodically by setting fμ+�N := fμ (∀� ∈ Z), and can be viewed as function values
at the equispaced points xμ := 2πμ/N of a 2π-periodic function f defined on R.
If N = 2s + 1 is odd, the discrete Fourier transform (DFT) yields the N Fourier
coefficients,

ĉn :=
1

N

N−1∑

μ=0

fμe
−inxμ (−s ≤ n ≤ s)
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of a unique trigonometric interpolant of degree s. Similarly, if N = 2s is even,
one obtains the coefficients of a suitably normalized unique interpolant of degree s.
Moreover, if N is a power of 2, or, more generally, if N has only a few different small
prime factors, the DFT can be implemented efficiently with the Fast Fourier Trans-
form (FFT). Yet, the trigonometric interpolant is not always a useful approximant
of the data because of the Gibbs phenomenon. A periodic spline interpolant, or
some other approximant ϕ, may be preferable. These will typically have an infinite
number of Fourier coefficients cn that tend to 0 as |n| → ∞, while ĉn is N -periodic
if evaluated for all n. For a broken-line interpolant it was pointed out already in
1898 by Oumoff, and for spline interpolants in 1928 by Eagle, that

cn = τnĉn (∀n) (7.1)

with factors τn that depend only on the family of interpolants and not on the data.
They are called attenuation factors. Also, of course, |τn| → 0 as |n| → ∞.

In the paper [GA41], Gautschi develops a general theory of attenuation factors
and some of their generalizations. The fundamental theorem states that, under
mild conditions, Eqn. (7.1) holds if and only if the operator P : {fμ} �→ ϕ is linear
and translation invariant. A further basic result characterizes the structure of τn for
families of interpolating functions. Numerous examples of suitable families and their
attenuation factors are treated in detail, as are some more general cases in which
Eqn. (7.1) must be modified. Further, as usual, Gautschi includes an informative
historical account. Altogether, this is a highly interesting, most comprehensive,
and eminently applicable paper.

Applications include the solution of boundary integral equations like those for
numerical conformal mappings [8, 17] and of periodic Fredholm integral equa-
tions [3].

Regarding extensions of the theory, we mention Locher’s detailed treatment
[13] of attenuation factors for families of interpolants generated by translates of a
single function, and Gutknecht’s extension [9] of the attenuation factor theory to
the multivariate case, including the treatment of box splines, which were of current
interest. Further work on the multivariate case is due to ter Morsche [21] and Steidl
[19].

7.2. Padé approximants associated with Hamburger series

Gautschi’s paper on this topic is [GA86]. A Hamburger series is a formal power
series in which the coefficients are moments of a bounded nondecreasing function λ
defined on the real axis and having infinitely many points of increase; in particular,
it is called a Stieltjes series if λ is supported on the nonnegative real axis. It is
well known that the Padé approximants associated with a Stieltjes or Hamburger
series are closely related to orthogonal polynomials relative to the measure dλ or
the measures dλj(t) = tjdλ(t). The latter are positive definite for a Stieltjes series
and also for a Hamburger series if j is even. It is this connection with orthogonal
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polynomials that is utilized in order to study the following three aspects of Padé
approximants associated with Hamburger series:

(i) Conditions under which all entries of the Padé table are normal, i.e., each
entry appears only once in the table.

(ii) In the case dλ(t) = w(t)dt, where w(t) is a nonnegative weight function
on a symmetric interval [−a, a], a > 0, continuous on the open interval (−a, a) and
such that all moments μk exist with μ0 > 0, there is an in-depth analysis of the Padé
approximants f [n− 1, n] down the first subdiagonal of the Padé table. Specifically,
it is shown that their power series expansion coefficients — Gauss quadrature sums
equal to, or approximating, the moments μk of dλ — satisfy certain monotonicity
properties under appropriate assumptions on w, properties that are known to be
true unrestrictedly in the case of Stieltjes series.

(iii) Several methods for computing the Padé approximants, exploiting their
connection with Gaussian quadrature. With the main concern being numerical
stability, methods based on moments are avoided. Instead, assuming the recursion
coefficients of the underlying orthogonal polynomials are known, one can generate
not only the moments, but, more importantly, also the nodes and weights of the
respective Gauss–Christoffel quadrature schemes. The same data, moreover, can be
used to generate the recursion coefficients of t2jdλ(t), which are needed to compute
the Padé approximants f [n − 1 + 2j, n]. Three different methods are discussed to
accomplish this: a numerical implementation of Christoffel’s theorem, the modified
Chebyshev algorithm (cf. Section 11.2.1, Vol. 2), and the QR algorithm.

Interestingly, the results obtained in (ii) have an important application regarding
the sign of the remainder term Rn(t

k) of Gaussian quadratures. This in turn can
be used to obtain error bounds for Gauss quadrature of analytic functions, either
by contour integration on circular contours in the complex plane, or by Hilbert
space methods. The former was applied by Gautschi and others (cf. [GA129] and
Section 15.3, Vol. 2), while the latter initially by Akrivis and others, and later by
Notaris (cf. [16]).

7.3. Convergence behavior of continued fractions with real elements

When a sequence (e.g. the partial sums of a series or the convergents of a continued
fraction), or an iterative method converges, one is most often interested in their
asymptotic behavior. While this aspect is quite important, it does not give a clue as
to when to stop the sequence or the iterative method. In the paper [GA87], Walter
Gautschi discusses transient convergence rates of continued fractions whose conver-
gence is guaranteed by Worpitzky’s theorem. He wrote: “Properties of monotone
behavior [of this rate] significantly add to the understanding of the quality of con-
vergence”. A series is said to be equivalent to a continued fraction if its partial sums
are equal to the convergents of the continued fraction. The transient convergence

7.3. Convergence behavior of continued fractions with real elements
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rates of a continued fraction can be derived from the successive terms of the equiv-
alent series. Hence, results relating the behavior of the partial numerators of the
continued fraction to its transient convergence rates are obtained. Gautschi also
suggests a stopping criterion and illustrates its use by a numerical example.

7.4. Moment-preserving spline approximation

The moments of a function often have some very important physical meaning which
should be preserved when one tries to approximate the function.

In [GA89] Gautschi discusses numerically stable methods for computing ap-
proximations to spherically symmetric distributions in R

d, hence to functions of
one variable, the radial distance r ∈ R+, with d being a parameter. An approach
popular among physicists is to approximate the function by discrete functions,
either linear combinations of Dirac delta functions or Heaviside step functions.
For the Maxwell velocity distribution, Laframboise and Stauffer [12] and Calder,
Laframboise and Stauffer [5] construct such approximations which are optimal in
the sense of matching as many initial moments as possible. The resulting equations
are solved in [12] by Prony’s method and in [5] by a reduction to an eigenvalue prob-
lem involving Hankel matrices. Both methods are classical, but they are prone to
severe ill-conditioning. This is corrected in [GA89] by applying a method based on
Gaussian quadrature. For example, in the case of approximation by step functions,
the moment-matching problem leads to a system of equations which determines
a certain Gauss–Christoffel quadrature formula relative to a nonnegative measure
depending on f and d. This Gauss formula can be constructed by numerically stable
procedures (cf. Section 15.1, Vol. 2). In order to demonstrate the proposed methods,
Gautschi generates numerical data required for approximating the distributions of
Maxwell, Bose–Einstein, and Fermi–Dirac.

Subsequently, Gautschi (jointly with Milovanović) in [GA100] extends that work
to approximation by splines of arbitrary degree m with n (variable) knots. The
spline to be constructed is to match the first 2n moments of f . Under suitable
assumptions on f , they show that the problem has a unique solution if and only if
a certain n-point Gaussian quadrature formula exists corresponding to a (possibly
nondefinite) moment functional or measure depending on f , d, and m. Existence
and uniqueness is assured if f is completely monotonic on [0,∞).

Pointwise convergence of the given approximation process depends on a con-
vergence property of the Gauss–Christoffel formula, since the error of the spline
approximation can be expressed in terms of the remainder term of the respective
Gauss–Christoffel formula applied to a certain function depending on d and m.
Examples are given, including distributions from statistical mechanics.

Continuing the work in [GA89, GA100], Gautschi (jointly with Frontini and
Milovanović) in [GA102]) discusses the analogous approximation problem on a finite
interval, standardized to be the interval [0, 1]. In this case, the interpretation of
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the independent variable as a radial distance is no longer meaningful, and the
functions f = f(t) are now simply functions of a real variable t on the interval [0, 1].
Additional constraints on the derivatives of the approximation at an endpoint of
[0, 1] may also be imposed. It is shown that, if the approximations exist, they can
be represented in terms of the nodes and weights of generalized Gauss–Lobatto
and Gauss–Radau formulae corresponding to appropriate moment functionals or
measures. Pointwise convergence as n → ∞, with fixed m > 0, is proved for
functions f that are completely monotonic on [0, 1] and is illustrated by numerical
examples.

This work of Walter Gautschi inspired other researchers to investigate the pos-
sibility of similarly approximating a function f by spline functions of degree m
and defects di; this turns out to be related to quadrature formulae with multi-
ple knots (see [1, 7, 11, 15, 18]). An alternative approach to moment-preserving
approximations can be found in [4].

7.5. Convergence of extended Lagrange interpolation

The problem suggested in [GA132, GA147], reminiscent of Kronrod’s problem in
numerical integration (cf. Section 14.1, Vol. 2), is to study convergence as n→ ∞ of
polynomials interpolating a continuous function at the zeros of an nth-degree or-
thogonal polynomial and at n+1 additional points suitably interspaced. This is an
interesting follow-up to the convergence theory of Erdős and Turán (involving only
the n zeros of the orthogonal polynomial), but is still wide open for more definitive
answers.

7.6. Experimental mathematics involving orthogonal polynomials

Numerical computation is an important tool for investigating mathematical ideas
and examining the validity of mathematical conjectures. This is explored in [GA202]
in the context of Jacobi polynomials and quadrature formulae.

7.6.1. Jacobi polynomials

There is a well-known result regarding the convergence of the zeros of the nth-

degree Jacobi polynomial P
(α,β)
n , α > −1, β > −1, to the corresponding zeros of

the Bessel function Jα as n → ∞ (cf. [20, Theorem 8.1.2]). Domains in the (α, β)-
plane are investigated in which convergence is monotone, which can be expressed

by an inequality between the zeros of P
(α,β)
n and P

(α,β)
n+1 . This work is initially

undertaken for the largest zero, and then extended to all zeros with a subsequent
investigation of a modified inequality.
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The well-known inequality of Bernstein for Legendre polynomials (cf. [2]) was

generalized by Chow, Gatteschi and Wong to Jacobi polynomials P
(α,β)
n in the

domain |α| ≤ 1/2, |β| ≤ 1/2 (cf. [6]). Defining the sharpness of this inequality in a
suitable manner, the degree of sharpness is examined both in the original domain of
validity of the inequality and also, for a suitably modified inequality, in the larger
domains −1/2 < α < s, −1/2 < β < s where s > 1/2.

7.6.2. Quadrature formulae

It is customary to call an interpolatory quadrature formula positive if all its weights
are positive. This positivity property is examined in the following cases:

(a) The (2n−1)-point weighted Newton–Cotes formulae for the weight function
w(t) = (1 − t)α+1/2(1 + t)β+1/2, α > −1, β > −1, on [−1, 1], with the nodes

being the zeros of the Jacobi polynomials P
(α,β)
n and P

(α+1,β+1)
n−1 . Positivity of

these formulae is known when α = β = −1/2 and was conjectured by Milovanović
to hold for arbitrary α > −1, β > −1 (cf. [14, Section 5.1.2]). Gautschi tested this
conjecture numerically for many choices of α, β, n, and confirmed it in all cases.

(b) The generalized Gauss–Radau and Gauss–Lobatto formulae, which are
quadrature formulae of Gauss type in which one or both boundary points have
arbitrary multiplicity r ≥ 2 (those with r = 1 being the usual Gauss–Radau and
Gauss–Lobatto formulae). The positivity property in this case, conjectured by
Gautschi [GA173, §§2.2,3.2], has subsequently been proved by Joulak and Becker-
mann (cf. [10]) even for the most general Gauss–Radau and Gauss–Lobatto formulae
having not necessarily equal multiplicities at the boundary points.

7.7. Exotic weight functions

In [GA181], Gautschi considers the problem of computing integral transforms
whose kernels are modified Bessel functions of complex order. Their integrands
exhibit super-exponential decay at infinity, or dense oscillation at zero. Both types
of behavior are captured in appropriate weight functions, the former in w(t) =
exp (−et), 0 ≤ t < ∞, and the latter in w(t) = 1 + sin (β ln (1/t) + γ), 0 < t ≤ 1.
In order to develop relevant quadrature formulae, one has to generate the respective
orthogonal polynomials, which is accomplished via the Stieltjes–Gautschi procedure
(cf. Section 11.2.2 ) and the classical Chebyshev algorithm in symbolic
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[11] M. A. Kovačević and G. V. Milovanović. Spline approximation and generalized Turán
quadratures. Portugal. Math., 53(3):355–366, 1996.

[12] J. G. Laframboise and A. D. Stauffer. Optimum discrete approximation of the
Maxwell distribution. AIAA Journal, 7(3):520–523, 1969.

[13] F. Locher. Interpolation on uniform meshes by the translates of one function and
related attenuation factors. Math. Comp., 37(156):403–416, 1981.

[14] Giuseppe Mastroianni and Gradimir V. Milovanović. Interpolation processes. Basic
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On inverses of Vandermonde 
and confluent Vandermonde matrices 

By 

WALTER GAUTSCHI * 

1. Introduction 

A Vandermonde matrix of order n is a matrix of the form 

(1.1) (n > 1), 

where x. are real or complex numbers. By a confluence of the l-th column into 
the k-th column we mean the following limit operation: Replace in the l-th 
column xx by x .. + sand subtract from it the k-th column; divide this new l-th 
column by £ and then let s -+0. 

If the resulting matrix is denoted by l.f.t,H we have 

1 1 0 1 1 

xl xl-1. 1 XHl x,. 
(1.2) l.f.t,kl = x: xL1 2xk 2 x2 

Xz+t " 

n-1 xl n-l 
Xz-t (n 1) x;:- 2 n-1 

XJ+l 

In other words, l.f.t,kl is the same matrix as V.. except for the l-th column, which 
is the derivative of the k-th column. 

A matrix that is obtained from (1.1) by one or more confluences of columns 
is called a confluent Vandermonde matrix. The following, for example, is a 
confluent Vandermonde matrix of order 2n, obtained by confluences Df the 
columns n+ 1 into 1, n+ 2 into 2, ... , 2n into n: 

u," ~( ~' 
1 0 

L.) (1.3) 
x,. 1 

2n-1 2n-1 (2n - 1) x:"-2 (2n Xr x,. ... 

*Oak Ridge National Laboratory, operated by Union Carbide Corporation for 
the U.S. Atomic Energy Commission, Oak Ridge, Tennessee. 

Numer. Math. Bd. 4 9 
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The purpose of this paper is to estimate the norm of inverses of V andermonde 
and confluent Vandermonde matrices. Such estimates are expected to be useful 
in various questions of numerical analysis. In the construction of Gauss-type 
quadrature formulas, for example, norm estimates of the inverse of the matrix 
{1.3} may be used to assess the errors in the zeros and weight factors from those 
in the moments. 

It will be convenient to adopt the following matrix norm, 

(1.4) A= (a,,u). 

The use of this particular norm is no real restriction since for any other norm 
!IAI!1 , one has mJIAII~ JIAIJ1 <MjjAJI with positive constants m, M depending only 
on n, and not on A (see [3], Satz IV). 

2. Preliminaries 
We denote by a,. the m-th elementary symmetric function in the n variables 

(1 m n), a0 =1. 

Lemma. We have 
fl, 

(2.1) 1+ Ja1! + Ja2! + ··· !an! II (1 Jx,.l), 
v=l 

where equality holds if and only if all x, are located on the same ray through the 
origin, that is, if and only if 

(2.2) (v = 1, 2, ... , n). 

,. 
Proof. Let p(x)= II (x-x~). Then 

n 

P(x) = L 
tn=O 

In particular, 
n 

(2.3) P(- 1) = (- 1),. .l:am. 
m=O 

On the other hand, by definition, 
n 

(2.4) P (- 1) = (- 1 t II ( 1 x,) . 
v=l 

We distinguish three cases. 

Case I. All x,zo. Then all a,.>o, and from (2.3) and (2.4) we find 

n n n n 

.l: Ja,.J .l: a,.= (-1tP(- 1) 
m=O m=O 

II (1+ x,) =II (1+ Jx,l). 
v=l v=l 

This proves (2.1) with equality sign. 
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n n n 

L ja..,j = l.:am(IXrJ, ... , )x,.l) = [J (t+ Jx,!) 
m=O m=O v=l 

by the result of Case L 
Case III. There is at least one pair of variables, say {x1 , x2), such that 

x1 x2 0, arg x1 :Farg x2 • Then 

ja1 j = lx1 x2 

< jx1! !x2l 
that is, 

Since also 
la,(xl, ... , x,.)l am(lx1 !, ... , jx,.j) (m> 1), 

we find, using again the result of Case I, 

n n 

L Jam(xl, ... , x,.)j < 2.:am()x1 j, ... , jx,.j) 
m=O m=O 

This proves (2.1) with strict inequality, and the lemma is completely proved. 

Later we also use the notation a~ to denote the m-th elementary symmetric 
function in the n -1 variables x. with X;. missing, 

By the symmetry of a, we have for A<p, 

(2.5) 
a~(x1 , ... , xA-l• x,+1, ... , x.u_1,t, x.u+I• ... , x,.) 

= a;:.(x1, ... , x,_1, t, x.<+l• ... , x.u-t• x.u_,..v ... , x,.). 

3. Inverse of Vandermonde matrix 
We prove now 
Theorem 1. Let x, 9= xP for r 9= p,. Then, with the matrix norm defined in ( 1.4), 

we have 

().1) 

If the xp satisfy (2.2), then (3.1) is actually an equality. 

Proof. Let v,.-1 = (v.a.u)· It is well known (see [2, p. 306], or [1]) that 

(J.2) 

Therefore, 
" . i.. 

n ~ i rr,._,.l 
L I v.<.,.! = nl-'f.-xAI (A. 1, 2, ... ' n). 
p=l v=Fil 

Theorem 1 now follows immediately from the lemma in section 2. 
9* 
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\Ve note that the last statement in Theorem 1 cannot be reversed, that is, 
if (3 .1) holds with equality sign then it does not necessarily follow that all xv 
lie on the same ray through the origin. This is shown by the example n=3, 
.x1 =8, x2 =2, x 3 =-1, forwhich 

Va = ( ~ : - ~) , V3-
1 = (- ~;!~ -- ~j~~ _ ~;~~) . 

64 4 1 16/27 -10/27 1/27 

Here, IIVa-1 11 max (4/54, 16/18, 1) = 1, and the bound on the right of (3.1) equals 
max(1/9, 1, 1)=1, so that (3.1) is in fact an equality, even though x1 x3 <0. 

4. Inverses of confluent Vandermonde matrices 
In this section we establish norm estimates for the inverses of the confluent 

matrices U..,kl• U2n defined in (1.2} and (1.3), respectively. At the same time 
explicit expressions are derived for the elements of un~ll· 

Theorem2. Let xv x~< for v:F,u (v,,u=1,2, ... ,l-1,l+1, ... ,n), and let 

f ~~~~:~~ (J. k, l) 

a.t=lmaxl1 jxkj,1 (1 
(4.1) 

(). = k). 

Thtm, with the matrix norm defined in (1.4), we have 

(4.2) 

Proof. Assume for the sake of definiteness that k< l. Let us introduce the 
"perturbed" Vandermonde matrix 

Vn,kl(e) = Vn (x1 , ... , Xt-I• Xk + e, XI+ I• ... , Xn), 

and the auxiliary matrix 

1 ... 0 0 ... 0 

0 ... 1 - e-1 ... 0 k-th row 

(4.3) Ekz(e) = 

0 ... 0 e-1 0 l-th row 

0 ... 0 ... 0 1 

k-th l-th 
column column 

Then it is not difficult to see, that by definition of confh.ience, 

U., kl =lim Vn,kl (e) Ekz (e). 
' e-+0 
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From this we get 

{4.4) 

provided that the limit on the right-hand side exists. 

Inverting (4.3) we have 

E;;~ (e)= 

1 ... 0 . .. 0 0 

0 ... 1 . .. 1 0 

0 ... 0 . .. e 0 

0 ... 0 ... 0 ... 1 

k-th l-th 
column column 

Therefore, if V,~~ 1 (e)=[v_."(e)], we find 

v11 (e) 

k-th row 

l-th row 

Since Vn,kl is a Vandermonde matrix, the elements of its inverse are given 
by (J.2), that is 

(4. 5) 

It is understood here, that x1, wherever it occurs, is to be replaced by xk+e. 
If A. =F k, l the expression in (4.5) has a well defined limit, as e -;..O, namely 

(4.6) (), =F k, l). 

If A.=k, we have, using (2.5), with J..=k, p=l, t=xk+e, 

(4.7) 

If, finally, A.= l then 

(4.8) 

i)"-l a!-IJ(x1, ... , Xt-1> ,Yk+s, ~l+l_'_:~;ol_ 
e II (x,- xk) 
•*k,l 

(-t)tt-l a~-,u(x1 , .. . , Xk-1> xk+e. xk+l• ... , Xn) 

s II (x.-xk) 
•*k,l 

1)t' a~_l'(x1 , . ..• Xk-1> Xk, xk+l> . .. , Xn) 

II (x,.-xk-s) 
•*k,l 
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The sum of the two expressions in (4.7) and (4.8) is seen to have the form 
( -1)1'-1 e-1 [a (x+ e) :n-1 (x)- a(x):n-1 (x+ e)] where a, :n stand for the numerator 
and denominator functions, both considered as functions of x= x,.. Since 

d 
a(x+e) a(x) dx [a(x) .n(x)] 
.n(x)-- n(x+e) =e .n2(x) o(c:) (e--?-0) 

we obtain 

(4.9) 

Let us carry out the differentiation in the numerator. We first observe that 

(} I _ l,k 
-"- an-p - an-~t-1 
uXk 

(p, 1, 2, ... , n), 0, 

where cl;,." denotes the m-th elementary symmetric function in the n 
x. with both x1 and xk missing. Next we note that 

Therefore, we obtain from (4.9) 

2 variables 

- - (-1)1"-l { l,k l ~ 
(4.10) !~ [vkp (e) Vtl'(e)]- -n (x~-Xk) an-p-1- a,. __ l' LJ _X_v ___ X_k 

v=lok,l v=jok,l 

Finally, from (4.8) we see that 

(4.11) 

The relations (4.6), (4.10) and (4.11) now show not only that the limiting 
matrix in (4.4), and thus lln~~ 1 , exists, but they also give explicit expressions for 
the elements u;.

1
, of lln~~z· From these, and from the lemma in section 2 we 

conclude 

(A.* k, l), 

which is equivalent to (4.1), (4.2). Theorem 2 is proved. 

The argument in the proof of Theorem 2 can be applied repeatedly to deal 
with matrices that are derived from a Vandermonde matrix by more than one 
confluence of columns. One so obtains, for example, the following 
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Theorem 3. Let x. x11 for 11=f:,u (v,,u 1, 2, ... , n), and let 

(4.12) bA max [ 1 + lx;.j, 1 + 2( 1 + lx .. l) ~1 lx.~x.tl]· 
•*). 

Then, with the matrix norm defined in {1.4), we have 

(4.13) max bA.(fi ~+~~~ )
2 

v=l I v A I 
"*" 
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Numerische Mathematik 5, 425-430 (1963) 

On inverses of V andermonde and confluent 
Vandermonde matrices. II 

By 

VVALTER GAUTSCHI* 

1. Introduction 
In a previous paper of the same title [ 1], we were concerned with estimating 

the maximum row sum norm of inverses of Vandermonde and confluent Vander
monde matrices. In particular, we considered the matrix 

1 1 ... 1 0 0 ... 0 

Xt X 2 ... Xn ... 1 

u2n X~ X~ 2 ... Xn 2X1 2x2 ... 2x, 

xin-l x~n-l ... x!n-l (2n -1) xi"-2 (2n- 1) xi"-2 ••• (2n 1) x;"-2 

of interest in the construction of Gaussian quadrature formulas and Hermite 
interpolation, and obtained an upper bound for II U2-;,

1 il by a process of repeated 
confluences. In the present paper we wish to present an alternative derivation 
of a similar, slightly sharper bound, and state conditions under which this bound 
is attained. We shall prove, in fact, the following 

Theorem. Let x1 , x2 , ••• , x,. be mutually distinct real or complex numbers. 
With IH denoting the maximum row sum norm, we have 

(1.1) IIU2ntll max b;. fl (-1 + lx_d_)2, 
t;;;;.<::;>n P=l jx;.-x ... j 

p=j=). 

where b;. is the larger of the two quantities 

{1.2) W1=1 lx..ti• b~2l=11 2X;.L1f(x;;. x,),+2j2:1/(x;. x,.),. 
p=j=). 11=!=.1. 

If all x, are located on the same ray through the origin, i.e., if 

(1.3) (v=1, 2, ... , n), 

and if in addition 

(1.4) 

then ( 1.1) holds with equality sign. 

Remark. As will be apparent from the proof of the theorem, condition (1.4) 
can be weakened inasmuch as it need only hold for those values A.' of ). which 

*Oak Ridge National Laboratory, operated by Union Carbide Corporation for 
the U.S.Atomic Energy Commission, Oak Ridge, Tennessee. Now at Purdue Uni
versity, Lafayette, Indiana. 
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426 WALTER GAUTSCHI: 

furnish the maximum on the right in ( 1.1), and for which b~~~ > b~l. The set 
of such values )..' may be empty. 

The second expression in (1.2) may be simplified, but enlarged, if one observes 
that 

b~2l-::;;, 1 + 2(1 + lx,.l)j2: 1/(x,. -x~)j S1 +2(1 + lx-tl) 2: 1/lx.t-x.l. 
v=!= l v=!= A 

Replacing bill in (1.2) by the last member of these inequalities, one is led back 
to our previous result in [1]. Also, in the case of (1.3) and (1.4), we may write 

b~2l = 11 + 2(1 + lx.tl) 2: 1/(lx.tl-lx,l)j. 
•>¥'A 

In the following section 2 we state two preliminary results, which will be 
used in the proof of the theorem, given in section 3· Our proof is sufficiently 
constructive to suggest a simple algorithm for the calculation of the elements 
of U2-;,

1
• This is discussed in section 4, where also an ALGOL procedure for com

puting U2-;.
1 is presented. 

2. Two lemmas 
We denote by am the m-th elementary symmetric function in the n variables 

~. Xa, • •• , Xn• 

(1 m n), 

and define am=O if m>n. We set 

" Pn (x) = JI (x- x,). 
~=1 

Lemma 1. Let -r,.=t:p(x1 , x2 , ••• , x,.) be defined by 

(2.1) 

Then 

(2.2) 

lin 

P! (x) = L (- 1 )~' TP x2n-p. 
p=O 

In n 

2: I -r,.l s ll ( 1 + lx,l)~. 
p=O "=1 

and equality holds if and only if all x., satisfy (1.3). 
Proof. Clearly, 

TP = O'oap + 0'1 ap-1 + · · · + cr,.cro · 

We distinguish three cases. 

Case I. All x,>o. Then all -r,.>o, and 

In In n n 

O'o = 1, 

2: I -r,.j = 2: Tl' = P!( -1) = n (1 + x,} 2 =II (1 lx.l)1
, 

1'=0 p=O •=1 v=l 

which proves equality in {2.2). 

Case II. All x, satisfy (1.3). Then t:,.(x1 , ... , xn)=i~''~'t:P(Ix1 1, ... , !x,.l), and 
In 2n n 

2: I t:,.l = 2: t:,. (lx1l· ...• lxnl) = ll ( 1 lx,l)2 

~<=0 p=O r=l 

by the result of Case I. 
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Vandermonde and confluent Vandermonde matrices. II 427 

Case III. Any other set of x, not covered by Case I or Case II. Then there 
exists at least one pair of variables, say {x1, x2), such that jx1+x2j <!x1j +Jx21. 
Consequently, 

I i!{x1 , ... , x,.)l 2jx1 + x2 + · · · + x,.l < 2(jx1l + jx2 1 + · .. + jx,.l) 

= it (I Xtl' .•. ' I x,. I) . 
Since also 

(,u > 1), 

we conclude, using again the result of Case I, 
2n 2n n 

L; I i~'{xt, ... , x,.)l < L; i~< {lxtl• ... , Jx,.l) = 11 ( 1 ]x,l)2
• 

p=O p=O v=l 

This establishes {2.2) with strict inequality, and completes the proof of Lemma 1. 

Lemma 2. Let 

(2.}) 

Then 

2n+l 
(s-tx)p!(x) L c~'x2n-p+t. 

p=O 

{2.4) 

If all x,. satisfy ( 1. 3), and if 

(2.5) s Jsj eix, t=Jtj e''P, x=cp+'lf (mod2n), 

then (2.4) holds with equality sign. 

Proof. Define 
(2.6) 

From (2.1) we obtain 
2n+l 

(s tx)p!(x) = L; (-1)1'-
1
{sip-l 

so that 1'=0 

(2.7) 

Consequently, 
2n+l 2n+l 

L lc"'J = L Jsrw-t +t-r~<J 
Jt=O p=O 

and by Lemma 1, and (2.6), 
2n+l 

L; jc,.j (Is] 
p=O 

If (1.}) and (2.5) hold, then 

2n+l 2n+l 

Jsl L: !-rp-1l +It! L: 1-r~,l· 
p=O p=O 

c
11 

= (- 1 )11 -
1 ei<'I'+P'I') {I sj Tp-t (Jxlj, ... , I x,.l) +I tj TP (Jxlj, .. ·, Jxn I)} 

(,u=0,1, ... ,2n 1), 
and so 2n+l n 

L: I c pI = (I s I + I t I) II ( 1 + I x,.J )2, 
p=O v=l 

again by Lemma 1, and (2.6). Lemma 2 is proved. 
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428 WALTER GAUTSCHI: 

3. Proof of the theorem 
Let ~ (x) and Q;. (x) denote the fundamental Hermite interpolation poly

nomials, relative to the nodes x1 , x2 , ... , Xn, so that 

(3.1) ~(x,.) O,..a, P;(x,.) 0, Q .. .{x,.)=O, Q~(x,.)=o,.,~ (P,A=1,2, ... ,n) 

where O,;t is the Kronecker delta. As is well-known, we have 

(3.2) 

where l.a (x) are the fundamental Lagrange interpolation polynomials, 

(3.3) 

Let 
l!n l!n 

(3.4) ~ (x) = .L: a,~P x~'-1, Q;. (x) = .L: b,~P. x~'- 1 . 
p.~ p=l 

Consider now the linear system of equations whose matrix is U2 n, 

ul u2 •.. + Un = vl 

X1U1 + X2U2 + .. '+ XnUn + Un+l + Un+2 + ... + U2n V2 

(3.5) . . . . . . . . . . . . . . . . . . . 

x~n-lul + x:n-lu2 + ... + x!n-lu, + 
+ (2n -1) [x~n-l!Un+l + X~n-l!Un+2 + .. · + x:n-l!U2n] = V2n· 

If the p-th equation is multiplied by a,~,., for p = 1, 2, ... , 2n, and the resulting 
equations are added, one obtains in view of (3.1), (3.4) 

(3.6) 
l!n 

u~. = .L: a~.,, vP. 
p.=l 

{1 A n). 

Similarly, multiplying by b;.p.• and adding, one obtains 

(3.7) 
2n 

Un+A = .L: bAp VI' 
p=l 

{1 J.<n). 

Thus, {3.6) and (3.7) solve (3.5), so that 

(3.8) _ 1 (A) 
Ulln = B ' 

where A is the n x2n-matrix of the coefficients a;.~'' and B the n X2n-matrix 
of t.P,e coefficients b A~-' in {3 .4). 

From (3.2) and (3.3} it is seen that ~ is an expression of the form (2.3), 
with n replaced by n - 1, and 

(J.g) S= 1+2x;.lA(x;.l_ 
ll(:r;.-:r,.)2 ' 

"*" Hence, by Lemma 2, 

(3.10) 
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Similarly, QA(x) is an expression of the form {2.3), with 

(3.11) S= X;. t= 
JI(xl-x,) 2 ' [f(x).-xp) 2 ' 

v=i:A "'*,; 
and Pn-l as in (3.9). Thus again, by Lemma 2, 

(3 .12) (1 lx.:tl} II (_!±hl)2
• 

v=jd !x).-Xvl 
Observing that 

t; (x.:t) = L ~1-, 
"'*.:t X).-Xv 

the assertions (1.1), (1.2) now follow immediately from (3.8}, (3.10), and (3.12). 
Assuming now (1.3) and (1.4) to be true, we have for the quantities s and t 

in (3.9), 

where the signs are both plus, or both minus. Similarly for s and t in (3.11), 
where 

In either case, the conditions (2.5) of Lemma 2 are satisfied, and so with (2.4), 
also (3.10) and (3.12), hold with equality sign. The theorem is thus completely 
proved. 

4. Computation of U2-;,_
1 

Formula (3.8) may serve as a basis for calculating the elements of U2~1 • In 
view of (3.2), (3.4), and (2.7), the only nontrivial computation required is that 
of the coefficients 1: 1-' defined in {2.1). These can be obtained recursively as follows. 

Denote, more precisely than before, 1:" = 1:1,, n, so that 

Since 

2m 

P2 (x) = '' {-1)''7: x2•-l• m ~ ~m . 
11=0 

P~+t(x) = (x2 -2xm+IX x~+l)p~(x), 

we obtain by equating the coefficients of equal powers of x on the left and right, 

{p = 0, 1, ... , 2m+ 2). 

We assume here, that 7:0, 0 =1, and T.u,m=O whenever ,u<O or p>2m. The 
quantities r,.,n• p=O, 1, ... , 2n, may thus be obtained by applying (4.1) in turn 
with m = 0, 1, ... , n - 1. With this in mind, the ALGOL procedure below is 
readily understood. 

procedure Uinverse (n, x, v); value n; integer n; array x, v; 
comment Given x.= x [v ], v = 1, 2, ... , n, this procedure generates v;.~< v [A., p], 

A., p = 1, 2, ... , 2n, where v.:t~< are the elements of U2 .. -;/. It is assumed 
that n 1, and that the x., are mutually distinct real numbers; 

begin integer lambda, nu, mu, m; real sum, product, d, s, t, sgn; 
array xO[O:n -1], tau[ -1 :2 xn -1], taut [1 :2 xn- 2]; 
for lambda : = 1 step 1 until n do 
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begin 
for nu: =1 step 1 until n-1 do xO [ nu]: =x [if nu <lambda 

then nu else nu 1] ; 
for mu : = -1 step 1 until 2 x n - 1 do tau [ mu J: 0; 
tau[O] :=1; 
form: =0 step 1 until n- 2 do 
begin 

end; 

for mu : 1 step 1 until 2 x m + 2 do 
tau1[mu]:=tau[mu] 2xxo[m 1] 

X tau [ mu - 1 J + x 0 [ m + 1] f 2 X tau [ mu - 2 J ; 
formu:=1 step 1 until2 xm-!-2 dotau[mu]:=tau1[mu] 

sum : = 0; product : = 1 ; 
fornu: = 1 step 1 until n -1 do 
begin 

end; 

d : x [lambda J - x 0 [ nu] ; 
sum :=sum 1/d; 
product : = d x product 

product : product i 2; 
s : = ( 1 2 x x [lambda J x sum)fproduct; t: = 2 X sumfproduct; 
sgn: 1; 
for mu: = 1 step 1 unti12 xn do 
begin 

end; 

v[lambda,mu]:=sgnx(sxtau[2xn mu 1] 
+t xtau[2 xn -mu]); 

sgn := -sgn 

s : = - x [lambda ]/Product; t : = - 1jproduct; 
for mu : = 1 step 1 until2 X n do 
begin 

end 

v[n-!-lambda, mu] :=sgn x(sxtau[2 xn-mu -1] 
+ t xtau[2 xn -mu]); 

sgn :=-sgn 

end 
end Uinverse 

Reference 
[1] GAUTSCHI, W.: On inverses of Vandennonde and confluent Vandermonde matrices. 

Numer. Math. 4, 1t 7-123 (1962). 

Computer Sciences Center 
Purdue University 

West Lafayette, Indiana 

(Received August 12, 1963) 

74



 
 
8.3. [43] “The Condition of Orthogonal Polynomials” 
 
 
 
[43] “The Condition of Orthogonal Polynomials,”  Math. Comp. 26, 923–924 (1972). 
 

 
 

© 1972 American Mathematical Society (AMS). Reprinted with permission. All rights 
reserved. 

75

75



MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 120, OCTOBER 1972 

The Condition of Orthogonal Polynomials 

By Walter Gautschi 

Abstract. An estimate is given for the condition number of the coordinate map associat
ing to each polynomial its coefficients with respect to a system of orthogonal polynomials. 

Let w(x) ~ 0 be a weight function on the finite interval [a, b], and {plx)} ;_0 

the associated orthogonal polynomials. We consider the linear parametrization 
map M,.: R"--+ P,._ 1 which associates to each (real) vector uT = [u0 , u~> · · · , u,._t] E 
R" the (real) polynomial p(x) = I:~:~ ukpk(x) E P,.+ The object of this note is to 
estimate the condition 

cond.., M,. = IIM,.II.., IIM;;-1 11"' 
of the map M,., the infinity norms in R" being defined by llull.., = maxo:sk:s .. - 1 lukl, 
and in P .. -1 by IIPII"' = maxa;Sz:ib lp(x)l. Letting 

P.o = ib w(x) dx, 

we show in fact that 

k = 0, 1, 2, ... ' 

(1) ( )
1/2 n-1 

cond.., M,. ~ max P.ho max L IPk(x)!. 
O:!k:in-1 k a:!x:!b k•O 

For Chebyshev polynomials pk(x) = Tix) on [ -1, 1], e.g., this gives 

(pk = T"), 

while for Legendre polynomialsp"(x) = Pk(x) on [-1, 1] one gets 

cond.., M,. ~ n(2n - 1 )112 

In order to prove (1), we first observe that, for any u E R", 

IIM,.ull ... = III: U~cP~c(x)ll ~ !lull ... max I: IP~c(x)j, 
k=O "' a:!x:!b k=O 

so that 

n-1 

(2) II M,.ll ... ;a max L IPk(x)l. 

On the other hand, if M;;- 1p = u, then, by orthogonality, 

Received December 27, 1971. 
AMS 1970 subject classifications. Primary 33A65; Secondary 65G05. 
Key words and phrases. Orthogonal polynomials, parametrization, conditioning, Chebyshev 

polynomials, Legendre polynomials. 
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924 WALTER GAUTSCHI 

1 fb 
uk = h" a p(x)pk(x)w(x) dx, k = 0, l, · · · , n - 1. 

Therefore, using the Schwarz inequality, 

lu"l ;;;;;; :" ~b lp(x)l (w(x))112 ·lp"(x)l (w(x))112 dx 

l (fb fb )1/2 
;;;;;; hk " P2(x)w(x) dx a PZ(x)w(x) dx 

l ( fb )1/2 
;;;;;; hk IIPII~ a w(x) dx·hk = IIPII..,~o/hd12 • 

It follows that, for all p E P n-h 

IIM;;- 1PII..,;;;;;; IIPII.., max ~o/h"i12 , 
O;>k:;n-1 

so that 

(3) II M;;- 1 1!.., ;;;;;; max ~o/ hS12 • 
O::;k:;n-1 

Combining (2) and (3) gives the desired result (1). 
In terms of the orthonormal polynomials 1rix) = h;, 112P~<(x), we may write (1) 

in the form 

n-1 

(l ') cond.., M,. ;;;;;; max (JJ.o/h")112 max L h!12 l1r"(x)j. 
O:ik::in-1 a;liz;:>b k~O 

If we let h = minosk::>n-t h," we see that the bound in (1') is larger than or equal to 
n-1 n-1 

~o/ h)112 max L h112 l1r"(x)j = p,~1? max L l1r"(x)l, 
G:iZ::ib k=O G;iz;:ib k-0 

so that, among all possible normalizations, the one with h0 = h1 = 
the best bound in (I). 

= h,.-1 gives 

Acknowledgment. The author is indebted to the referee for the observation 
made in the last sentence of this note. 
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Purdue University 
Lafayette, Indiana 47907 
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On the Condition of Algebraic Equations* 

Walter Gautschi ** 
Received March 12, 1973 

Summary. Given an algebraic equation, in which the polynomial in question is ex
pressed in terms of any set of basis polynomials, we study the sensitivity of the roots 
with respect to small perturbations in the coefficients of the equation. The degree of 
sensitivity of each root is measured by an appropriate condition number. We analyze 
this condition number first in the case where the basis polynomials are the powers, and 
then, in less detail, in the case where the basis is a set of orthogonal polynomials. Several 
examples are treated, allowing for a comparative study. 

1. Introduction 

Our object in this paper is to study the sensitivity of the roots of an algebraic 
equation with respect to small perturbations in the equation. We shall consistently 
consider relative perturbations (i.e., small percentage changes), both in the equation 
and in its roots. The former are measured in terms of relative changes in the 
nonzero coefficients. We assume thereby that the polynomial in question is repre
sented linearly in terms of a system of basis polynomials. We shall concentrate on 
two particular bases: the successive powers, and orthogonal polynomials. One of 
our motivations for this work in fact was a desire to learn more about the influence 
of parametrization upon the condition of the roots. From a series of papers by 
Specht [5] it is known that different parametrizations of the polynomial in 
question lead to different kinds of information concerning the location of its zeros, 
in particular, concerning regions which contain all of the zeros. Thus, for equations 
in power form the regions obtained are circles about the origin, while for equations 
in orthogonal polynomial form the regions are infinite strips along the real axis. It 
is to be expected, and in fact will be confirmed, that the condition of the roots, too, 
may depend drastically on the particular parametrization adopted. 

In Section 2 we define, and comment on, an appropriate condition number for 
the roots of an algebraic equation. Section 3 takes up equations in power form. We 
obtain relatively simple bounds on the condition number of a particular root in 
terms of all the roots of the equation. The bounds are sharp for configurations of 
roots in which all are lying on a semiray through the origin or symmetrically on 
either side of a straight line through the origin. The results are applied in Section 4 
to a number of examples, some of which were considered previously by Wilkinson 
[6]. It is possible, in these examples, to obtain precise asymptotic information 
(for large degrees n) concerning the condition of the roots. In Section 5 we turn our 
attention to equations written in terms of orthogonal polynomials. Precise results 

* Work performed in part at the U.S.A.F. Aerospace Research Laboratories under con
tract F33615-7t-C-t463 with Technology Incorporated. 
** Department of Computer Sciences, Purdue University, Lafayette, Indiana. 
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406 W. Gautschi 

are now much harder to come by. We content ourselves, essentially, with deriving 
an upper bound for the condition number, which is often quite realistic, but occa
sionally (particularly in the case of complex roots) can be off by many orders of 
magnitude. To gain further insights into the matter we felt it desirable to compute 
the condition number by "brute force". Procedures for accomplishing this for any 
combination of roots and orthogonal polynomials are described in Section 6. 
Results of these computation, when applied to the examples of Section 4, are dis
cussed in Section 7. 

2. Condition Number for Algebraic Equations 

Let f(x) be a polynomial of exact degree n in whose zeros we are interested. 
Given a system of polynomials {P,.} such that 

degree (p,.) =r, r=O, 1, 2, ... , (2.1) 

there is a unique representation of f in the form 
n 

f(x) 2.: a,p,(x). 

We shall assume that the leading coefficient is unity, 

an=1. 

(2.2) 

(2.3) 

This can always be achieved by a suitable scaling of f, which does not affect its 
zeros. We also write 

f(x) =f(a, x), 

where a denotes the (real or complex) coefficient vector 

Let now i be a simple (real or complex) zero off, corresponding to the coeffi
cient vector a =ll, 

0 " of 0 0 

f(a,!) 0, 7)i (a,!)=!=O. (2.4) 

The equation 
f(a, x) =0, (2. 5) 

by the implicit function theorem, can then be solved in a certain neighbourhood 
U(/l} of ll, giving rise to a unique smooth solution 

x=~(a), aEU(a), (2.6) 
for which 

(2.7) 

Definition 2.1. The k-th condition number ck, k = 0, 1, ... , n -1, of the (simple) 
" root ~ of (2.4) is defined by 

lim 
0 

a.~:-at 

111=~ for l+k 

(2.8) 

where '(a} is the root of (2.5} satisfying (2.7) andllk 0. Ifak 0 we define ck=O. 
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Condition of Algebraic Equations 407 

0 

Definition 2.1 is meaningful only for a non vanishing root, ~ =f: 0. Moreover, 
ck =0 in the case ak =0 is the correct limit value of c,. as a,.-).o [cf. (2.11) below]. 

The k-th condition number c,. measures the amount of error magnification due 
to a perturbation of one coefficient, a,.. It is desirable to introduce a single condition 
number indicating the extent of error magnification as all (nonvanishing) coeffi
cients are perturbed. This can conveniently be done by means of the condition 
vector 

(2.9) 

and an appropriate vector norm 11·11· 
" 0 

Definition 2.2. The condition number x (~) of the root~ is defined by 

0 

x(~) llcl!, (2.10) 

where cis the condition vector (2.9). 
0 0 

We write x00 (~) =lie lloo. x1 (~) =lie lk. etc., for special choices of the vector norm. 
Since x00 we give preference to the L1-norm 11·1~· 

Observing from Definition 2.1 that 

c,.=l~~-r:t] 01· k=0,1, ... ,n-1, 
~ ua,. a-a 

(2.11) 

and computing the partial derivative in (2.11) by differentiating the identity 

I (a, Ha)) =0, aE U(a), 

partially with respect to ak, one obtains the following known result [6, p. 38ff.]. 

n-l 
0 1 ~,0 "! Theorem 2.1. x1 (~) = o o L...J a,.tJ. (~) . 

l;f'(;)j k=O 

Corollary. If Pn(x) =l;/Pn (x) = ~ + ... , and correspondingly f(x) =l;,1f(x) = 
x»+ ... ,then 

(2.12) 

n-1 0 0 o 
Proof. Since L akp,.(~) +Pn{~) =/(~) =0, we obtain from Theorem 2.1 

k=O 

o 1 ~n~l o (")I I Pn(~) I "~ (~) l!f'(i~- f=/"Pk ~ = -ef'(l) , 

which is equivalent to (2.12). 
We note the following properties of the condition number, which are easily 

established: 

(i) x1 (§) does not depend on the particular way the polynomials {P,} are normal
ized. 

(ii) The scaling an= 1 adopted in {2.2) doesnotsubstantiallyinfluence;hecondition 

of the zeros of f. In fact, if f* (a*, x) is another scaling of f, and xt (~) the corre-
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sponding condition number, defined analogously to (2.8} and (2.10), then 

0 0 

{iii) If~ =PO is a multiple zero off, then XJ. (~) = oo. 

The result of Theorem 2.1 may be interpreted in terms of two other condition 

numbers relating to the evaluation off(x) at x =1. We have indeed 

where prime indicates summation over nonvanishing ak. The relation describes 
the influence of relative perturbations in the coefficients ak upon the value of f at 

x =E. Since f(a, E) =0, we must settle for the absolute error in f. An appropriate 
condition number for this type of sensitivity is given by 

Similarly, we may introduce the condition number 

0 

describing the sensitivity of the value of f at ~ with respect to relative perturbation 
0 

of~. Then 
0 

( ~) - ~f. ooeff ( ~) 
XJ.~- 0. 

~1. arg(;} 

3. Equations in Power Form 

We now take p,(x) =x', and thus consider 

~ 

f(x} = L a,x', a,. =1. 
r-o 

From Theorem 2.1 we get 

where ~ is a simple zero of f. 

(3.1) 

{3.2) 

It is easily seen from (3.2) that XJ. (~} is invariant with respect to scaling of the 
independent variable. In other words, if a new variable x* is introduced by 
means of x =wx*, where w ::j= 0 is arbitrary complex, carrying f(x) into f* (x*) = 

ru _,. f (w x*), then the condition number ~: (~*) for the zero ~* of the transformed 
polynomial f* is the same as the condition number ~1 (¢) for '=ru'*· Note, how
ever, that the condition number is not invariant with respect to translation. 

Denoting the zeros of f by E1, E1, ••• , E,. we now wish to express the condition 
number of the (simple} root E11 in terms of all the roots. Clearly 

ak = { -1)"-kan-~&(E1• Et> .•• , E,.), k =0, 1, ... , n-1, 
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where a1 (~1 • ~2, ••• , ~ .. )denote the elementary symmetric functions in the variables 
~v ~2 •••• , ~n· Therefore, by (3.2), 

n 

~(~~')=-le-t·-~~(E~)I- L ja,(¢1.~2• ... ,~nH ~~PI"-z. (J.J} 
p p 1=1 

In order to further estimate this number we need the following auxiliary result. 

Lemma. Let~> 0, and let a, (~1, ~2, ••• , ~,.), r = 0, 1, ... , n, denote the elementary 
symmetric functions in n variables, where a0 1. Then 

n 

L:; I a, (~v ~2• •••• '") I~,._, (3.4) 
r=ll 

where equality holds if and only if all ~ .. are located on the same ray emanating from 
h . . . t: lz: I it; t eongzn,~.e.,\0,.= !>v e ,v=1,2, ... ,n. 

Proof. We have shown previously [3] that 

n 

L:; I a,(xv x2, ... , x,.)l (j.S} 
r=O 

with equality holding precisely when x.. I x,.j ei;, all v. Letting x,. =~~~~.and observ
ing that a, (x11 x2, ... , Xn) =~-r a,(~1, ~2, ••• , ~n), we get from (3.5) 

n 

L l a, (~1• ¢2, .. · • ~n) I~-· 
r=O 

which, upon multiplying through by ¢", establishes the lemma. 

Theorem 3.1. For the condition number ?t1 (¢'11) in (3-3) we have 

(J.6) 

where equality holds if and only if¢ .. = I¢,.] eit;, all v. 

Proof. Using (3.4) with~ =IE~' I' we get 

n n 

L I al(¢'1, ¢2, · .. • ~n) j]E,.]"-I ~ IJ (j E,.] +I Evj) -I ¢pj
11 

l-1 •-1 
2!E,.I II (j¢1'1 +IE,!)-1~,.1" 

"*'~' 

=I¢ pI" { 2 Q ( 1 +I :: D 1} . 
Since 

the result (3.6) follows at once from (3.J). Equality in (3.6) holds precisely when 
equality holds in (3.4). Theorem 3.1 is proved. 
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n 1+1_s,_l 
2 II ~~~ 

11=1 11 _ _s,_ 1 
"*'"' ~ ... 

Corollary 1. "'(E,..) 

Corollary 2. Let n be even, and suppose that the zeros off are pairwise symmetric 
with respect to the origin, say, 

Then 

n 
It = 1' 2, ... ' 2 . 

n 
It = 1' 2, ... ' 2 . 

{3.7) 

(3.8) 

Equality holds in the second relation of (3 .8) if and only if~~ =I~ ,.1 2 ei•, v = 1, 2, ... , 
nf2. 

Proof. Letting 
n/2 n/2 

/(x) =II (x2-;;) = ~ a,.x2
,., an12 = 1, 

~=1 r=O 

we have 

1, 2, ... , nf2. 

Applying Theorem 3.1 (with n replaced by n/2 and the rs replaced by their 
squares} to the last summation, we get the inequality in (3.8), including the condi
tion for equality. The first equality in (3.8) is obvious. 

The in variance of "' with respect to scaling is reflected in the bounds of Theo
rem 3.1 and its corollaries. Interestingly enough, the bound in Corollary 1 is also 
invariant with respect to reciprocation. 

We also remark that while~ ... is assumed to be a simple zero off in Theorem J.1 
and its corollaries, some of the other zeros ev may well be multiple. 

4. Examples 

For specific configurations of zeros the results of the previous section permit 
us to work out the condition numbers of these zeros in closed form and to analyze 
their asymptotic behavior for large degrees, n. We begin with a well-known ex
ample due to Wilkinson [6, p. 41 ff.]. 

Example 4.1. ~11 =v, v=1, 2, ... , n. 

Theorem 3.1, in this case, gives 

(p. +n) 1- pn,u! 
"'(~,.) = ,a!ll(n-,a) 1 , p, =1, 2, ... , n. (4.1) 

Which of the roots is worst, which is best conditioned ? We examine this question 
asymptotically, for large n, by letting 

p,=-rn, O<-r 1, n__,.oo, 
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We find from (4.1) that 

(4.2) 

By Stirling's formula, 

((-c~~?~J! ,_ v 1 ~T {(~·:1 r -c~1 nr, n~co. 
Since 

the minued in the numerator and denominator of (4.2) dominates the subtrahend 
for large n. Consequently, 

(4.3) 

If 1-1:~ 1:~, i.e., 1:0 1/fi, we see that, asymptotically, the condition number 
x1 (~~-') increases for p <r0n and decreases for p> r0n, assuming a maximum at 
p r 0n. For x1 (~...,) one finds 

1 ( 1 - y2 )! [ 1 
Xt (~ .. n) ,.._, 2 n ( 1- -1:) n T2~ -1 T(~)"]n 

7: .l!. ' n~co. 

which, at the maximum, r = r 0, becomes 

n~oo, 

(4.4) 

1-T0 
5.8284 .... 

The smallest condition occurs at p 1, and we find from (4.1) directly that 

(4.5) 

Table 4.1 shows, for various values of n, the integer p at which x1 (~1..) attains 
its maximum, the asymptotic estimate p -nfV2, the value 1 of the maximum 
condition number, and, in the last column, its asymptotic estimate1 from (4.4). 

In the next example we determine how the condition of the roots is affected 
by a shift of the origin to the center of gravity of the roots. 

Table 4.1. Maximum condition numbers for Example 4.1 

n "' nJV2 "t (4.4) 

5 4 3. 5355 5.8733 (2) 7-3097 (2) 

10 7 7.0711 2.3244 (6) 2.4582 (6) 
20 14 14.142 5.3952 (13) 5.5604 (13) 
40 28 28.284 5.5698 (28) 5.6899 (28) 
80 57 56.57 1.1806 (59) 1.1916 (59) 

1 The integers in parentheses indicate powers of 10 by which the preceding numbers are 
to be multiplied. 
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Example 4.2. ~P = ± p., p. = 1, 2, ... , tt/2, n even. 
From Corollary 2 of Theorem 3.1 we now obtain 

n/2 
II (v2 + 1'2) - tt" 
v-1 n "'= 1, 2, ... ' 2 

Since 

n/2 n/2 r (; + 1 + i It) 2 

!J (v2 +p.2) = !J [(v +ip.) (v-ip.)] = F(1 +itt) 

n 
p.=1, 2, ... , 2. 

We again determine the value of p. which maximizes ;~e1 (~p}. We set 

n 
p.=r 2 , O<r<1, 

and consider 

where 

Using Stirling's formula, we obtain after some calculation, 

!r(~ +1+-r~ i)r~,.....V1+r2nn[;e V1+r:~e-.:tan-•rnr. 

(r ~rlr(1 +r ~ iw --rnn [; e-nf
2nr n~ oo. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

We now show that the expression in the first line of (4.9) dominates the one in 
the second, asymptotically as n~ oo, i.e., 

1 V1 + ... 2 e-T tan-•r> T e-Tn/2 0 < 1 
2e ~ 2 ' T • (4.10) 

or, equivalently, 

for O<r 1. 

Since g{1) = V2 exp (: -1) =1.1410 ... > 1, it suffices to show that g' (r) <0 on 
O<T 1. But, 

1r.-r-1 n T--rtan-•r-1 { (n ) } 
g'(t')=n.;t'T e""i r 2 -tan-1 r 1, 
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and for the function in curled brackets, say h(T), we find 

h(O) =-1 <O, h(1) = :n -1 <O, 

n n 1 :n 1 > - - = --- >O 
2 2 4 2 onO<T 1, 

so that h(T)<O on O<T 1, hence also g'(T) <0. 

Similarly to (4.9), one finds that 

jr(; + 1 + (T ~- + 1) i)t,..,., V1 +Til nne-ztan-•r [de V1 +Til e-rtan-•rnj". 

( T~- + 1 rlr( 1 + ( T ~ + 1) iH~ --•nne~ -n [ ~ e-rn/2n]". n-+ oo, 

(4.11) 

where again, by ( 4.10), the top expression is the asymptotically larger. Consequent
ly, both in the numerator and denominator of (4.8), the second terms can be neg
lected. It follows that 

(4.12) 

From (4.7}, using again the second relations in (4.9), (4.11), we thus obtain 

n-+ oo. (4.13) 

One readily verifies that the function on the right decreases monotonically 
from e" to 0, as -r increases from 0 to 1. There exists, therefore, a unique value 
T =To on the interval (0, 1) such that 

1 - T n-2 tan-1 T -1 
1 e - ' - T 

(4.14) 

and we see that "'(~~') increases for p <To} and decreases for p >To-~. In fact, 
To= 0.73409 .... 

Since 

[(1 T) ~]! [(1-T) ~)!,_nnV1=-r2L1e V1-T1 (-~_;f'
2

nr n-+oo, 
we obtain from (4.6), using once more (4.9) and (4.10), 
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The rate of growth of the maximum condition number is thus seen to be sub
stantially smaller than in Example 4.1. Numerical values, arranged similarly as in 
Table 4.1, are shown in Table 4.2. 

Table 4.2. Maximum condition numbers for Example 4.2 

n p, t:0nf2 "l(~.ul {4.15) 

10 4 3-6705 2.7842 (1) 3.2799 ( 1) 
20 7 7.3410 6.2788 (3) 6.7902 (3) 
40 15 14.682 5-7290 (8) 5.8204 (8) 
80 29 29.364 8.3726 (18) 8.5534 (18) 

The smallest condition number occurs at p. = 1, and from ( 4.6) one finds by 
Stirling's formula that 

sinh :n 
x1 (~1} ....... -:n-- =3.6760 ... , n-'?oo. (4.16} 

We next consider an example of a well-conditioned equation. 

Example 4.3. (Wilkinson [6, p. 44ff.].) ~" 2-", v 1, 2, ... , n. 
From Corollary 1 of Theorem 3.1 we obtain after a short computation 

.u-l 1 2-v n-JJ. 1 2-A 

n=Jl II · 
.U v=l 1 - 2-V A=l 1 -

One readily verifies that nJJ. is symmetric on 1 p. n, 

nn+l-.u = nl" f£ = 11 2, ... ' n, 

and strictly increasing on the left half of this interval, 

n.u+l > nJJ. for p < n/2. 

The maximum of n.u is therefore assumed at p. [n+21], 

- 1 - 2-n/2 ( n/2 _! + 2-;.)2 ( n/2 1 + 2-;.)2 
n.u nn/'t.- 1 + JI 1-2-A < fi 1-2-A 

A=l A=l 

(

(n-1)/2 1 + 2-A)'t. 
n(n+l)/2 = II 1- 2-A 

A=l 
00 

(n odd). 

(n even), 

(4.17) 

One computes II [(1 +2-"}/(1-2-")J =8.2559 ... , and therefore finds that 
v=l 

x1 (~,u) 137, p.=1,2, ... ,n. (4.18) 

The condition is thus bounded by a relatively small number, uniformly in n. The 
minimum occurs at p. 1, where 

n-1 1 2-A 
>tt <~1) ~ 2 II 

1 
_ ,_,16.s11 .... 

A.=l 

As observed earlier, the bound in (4.17) is invariant under reciprocation. 
Hence, our analysis of Example 4. 3 applies equally well to the case where ~, = 2", 
v=1, 2, ... , n. 
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The two examples which follow involve predominantly complex roots. 

Example 4.4. (Roots of unity.} ~v = e2 niv/n, v = 1, 2, ... , n. 

Here, I ( x) = x"~-1, and from (3 .2} we get immediately 

1 "1 (~p) = n , ft = 1, 2, ... , n. 

415 

(4.19) 

Thus, all roots have the same (small) condition number 1/n. It is an open question 

whether the root configuration of Example 4.4 is indeed optimal in some reasonable 
sense. 

We note that inequality (3.6) does rather poorly on this example. It states, in 
fact, that 

2 . zn-l 1 211 - 1 

"1 (~ p) :::;: -lf j1.=t;ini(v::_M)fn 1 = }I 1 ehi,ufn _ e2 ni•!nf' 

•*.u "*"' 
As the product in the denominator is simply If'(,;:~") I = n, we get 

211 -1 

n 

a bound which is too large by a factor of 2n- 1. 

xll xn 
Example 4.5. en('} =0 where en(x) =1 +x+ -21 + ··· + · . n 

We now have /(x) =n! en(x), and 3.2 gives 

The magnitude of x1 (¢') is seen to be related to the amount of cancellation which 

occurs when en-t {~) is evaluated. A somewhat simpler expression is obtained by 

noting that en-l (¢') -~fn!. Thus, 

n! 
xl(e) = l~ln+l en-I(j~j). (4.20) 

From (2.12) we obtain the lower bound 

1 

TH· (4.21) 

Given t the expression in (4.20) is readily evaluated by recursion. 

If n is even, all zeros of en are complex; if n is odd, all but one are complex. 

Numerical values and graphs for these zeros can be found in [4], [1]. We used the 

values published in [ 4] to compute Xt ('p) for each zero ,;:P of e,., n 5 (5) 20. The 

results are shown in Table 4. 3. The roots are listed in the order of decreasing moduli, 

and only those in the upper half-plane are shown. (The others are complex conju

gates of those shown and have the same condition numbers.) It is seen that the 

condition worsens as one proceeds to roots with smaller moduli 
It is also found that the upper bound ().6) for the condition number gradually 

weakens as n is increased. The bound overestimates the true value by a factor of 

2-3, when n = 5, and by a factor of 200-400, when n = 20. The lower bound (4.21} 

is even worse. 
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Table 4.3. Condition numbers for Example 4.5 

5 1 0.2398 + 3.1283i 2.2951 15 6 4.3272 + 3.0028i 7.2239 (2) 
2 -1.6495 + 1.6939i 6.6384 7 -4.8670 + 1.5176i 1.0279 (3) 
3 -2.1806 9.1840 8 5.0439 1.1553 (3) 

10 1 3.3749 + ).6260i 2.3077 20 1 10.8046 + 9.2292i 2.0619 
2 o.o662+4.9677i 1.1111 (1) 2 5.7624 +9.7555i 1.4532 (1} 
3 - f.87t7+3.7702i 3.2860 (1) 3 2.3673 + 9.4134i 7-4512 (1) 
4 -3.0155 + 2.3352i 6.5822 (1) 4 -0.1684 + 8.6388i 2.9584 (2) 
5 -3-5539 + 0.7894i 9.2502 (1) 5 -2.1255 + 7.6041 i 9-3326 (2) 

15 1 6.9748 + 7.5746i 2.1851 6 - 3.6406 + 6.3987 i 2.3799 (3) 
2 2.7050 + 7-5509i 1.3325 (1) 7 -4.7903 + s.o773i 4.9676 (3) 
3 -0.0586+6.8056i 5-5484 (1} 8 -5.6210 + 3.6771 i 8.5646 (3) 
4 -2.0103 + S-7H7i 1.7042 (2) 9 -6.1611 +2.2255i 1.2274 (4) 
5 -3.3949+4.4177i 3.9842 (2) 10 -6.4273 +0.7450i 1.4679 (4) 

5. Equations in Orthogonal Polynomial Form 

We assume now that {Pk} is a system of polynomials orthogonal on (a, b) with 
respect to the nonnegative weight function w, 

b {0 
[ p,{x)p,(x)w(x)dx = k, 

if r=t=s, 
if r=s, 

We represent the polynomial fin the form 

.. 

r, s =0, 1, 2, .... 

f(x) 2.: akpk(x), a.. 1. 
k=O 

(5.1) 

(5.2} 

Given a simple zero~ off (normally located in the interval (a, b)), its condition 
is measured by 

(5.3) 

Theorem 5.1. The condition number x1 (~) in ( 5. 3) is invariant with respect to 
different normalizations of the orthogonal polynomials {Pk} of (5.1). If {nk} denotes 
the system of orthonormal polynomials then 

( 

b )* c~l ln~;(e)j•)* 
~(~) Vn f f(x)w(x)dx k=j~f'(,;)j . (5.4) 

Proof. The statement concerning normalization is a consequence of the remark 
(i) following Theorem 2.1. Thus, assuming pk n~; in (5.2), (5.3), we have by ortho
gonality 

(5.5) 
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Condition of Algebraic Equations 417 

and therefore, applying Schwarz's inequality twice, first for sums, and then for 
integrals, 

:~:laknk(,)j < c~:l/t(x)nk(x)w(x)dxn* c~:lnk(~)j2r 

c~: j f2 (x)w(x)dx j n~(x)w(x)dx)' c~: 1 nk(~) 12
)' 

( n j f2 (x)w(x)dx r c~: 1 nk(~) 12)*. 
The inequality (5.4) now follows from (5.3). Theorem 5.1 is proved. 

An alternative form for the sum in the numerator of (5.4) is given by 
n-1 

L Ink(~) ]2 = k~-1 
{ n~(~) ~-1 (~)- n~-1 (~) nn (~)}, (5.6) 

k=O n 

where k,. is the leading coefficient of n,. For many weight functions (on a finite 
interval [a, b]) one has [2, pp. 104-105] 

n-1 

l: lnk(~)lz=o(y'n), ~E(a, b), n-+oo. (5.7) 
k=O 

The estimate (5.4) given in Theorem 5.1 may be rather conservative. A first 
idea of the extent of overestimation can be gained by considering the special poly
nomialf(x) = n,.(x), which has ak =Ofor k =0, 1, ... , n-1, and therefore}!:de) =0 
for every zero~. From (5.4), {5.6) we get instead 

(5.8) 

This can be quite large. For example, if n" ( x) = v~- Tn ( x) is the Chebyshev poly-

nomial, and~ =cos Bit one of its zeros, then (5.8) gives 

1 I 2~-'-1 
xl (~It)< -vi I tan Oil ' olt = ~2n- n. 

This is small for ()"'near 0 or n, but may be quite large for 0~' near n/2. Further 
observations on the quality of the estimate (5.4) are made in Section 7. 

6. Computation of the Condition Number 

We now indicate how the condition number {5.J), as well as its bound in (5.4), 
may be computed, given the set of zeros {;;11}~-1 off and the system of orthogonal 
polynomials. By Theorem 5.1 we may assume these polynomials to be normalized. 
Then 

n n 

f(x) k,. IT (x-~,) = l: aknk(x), an=1, 
11=l k=O 

where k,. is the leading coeffcient of nn{x). We let 

- n 
f(x) =II (x-~,.). 

v=l 
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By (5.3) and (5.5), we then have 

1 n-1 fb _ 
"'1 (~1')=-1 t -,-L f(x)n"(x)w(x)dx In"{~~')!' p=1,2, ... ,n. 

~f.'f (.;1')1 k~O a 

We first note that 

I ~I'J' ('p) I =I '/A .fl (~p- ~v) I· 
v.Pp 

Next, we expand fin power form, 

where the coefficients are obtained by the following recursive scheme, 

a_1,m 0, a,.,, 1 (m 0, 1, ... , n), 

O'z,m =O'l-l,m-1 _,ma't,m-1 (l = 0, 1, ... 'nt-1 ), 1n = 1' 2, ... , n. 

\Ve then obtain 
b _ n b 

I f(x)nk(x)w(x)dx= 2: O'zn I xlnk(x)w(x)dx, 
a l=k ' a 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

where orthogonality was used to restrict the summation to l k. The constants 

b 

ftk,l =I x1nk(x)w(x)dx 
a 

can in turn be computed resursively. From the three-term recurrence relation for 
orthonormal polynomials, 

f3Jt+ 1 nk+l(x) =(x-oc")nk{x)-f3knk_1 (x), k=O, 1, 2, ... , n_1 (x) 0, (6.5) 

we find indeed that 

PHlftk+l, l =ftk, 1+1-0Ckftk.l-Pkftk-1, I• (6.6) 

which permits us to generate the desired quantities ftk, 1, 0 k n 1, k 
recursively from the starting values 

Here, p 1 is the l-th moment of weight function w(x). In summary, then, 

where Gz,n is obtained from (6.4), ftk,l from (6.6), (6.7), and nk(~p) from (6.5). 

Similarly, we can evaluate the upper bound in (5.4), 

(6.7) 

(6.8) 

(6.9} 
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where, by (6.3), defining a1,, =0 for l>n, 

b _ b an ( " ) I f2 (x)w(x)dx =I v~o 1~ a1,,a,_ 1,, x"w(x)dx 

!In v 

= L f-tv L Gz,,a.,-l,n· 
v-o l-0 

7. Examples 

419 

(6.10) 

The formulas of Section 6 were used to calculate condition numbers for all 
examples considered in Section 4, and for a number of parametrizations involving 
classical orthogonal polynomials. The calculations were performed on the CDC 6500 
computer in double precision arithmetic. Because of severe cancellation problems 
in some of the examples computed, we had to limit ourselves to degrees n ::::;;; 20. 

Among the orthogonal polynomials which were tried are the Legendre poly
nomials, the Chebyshev polynomials of the first and second kind, the Laguerre 
polynomials, and the Hermite polynomials. We refer to them briefly by the sym
bols P[a, b], T[a, b], U[a, b], L[O, oo], H[- oo, oo], respectively, where the 
brackets enclose the respective intervals of orthogonality. 

As is seen from ( 6.1), there are largely three factors influencing the magnitude 
of the condition number u1 (~). They are 

b~ 

(1) the magnitude of the Fourier coefficients a11 = f f(x) ::rr;11 (x)w(x)dx 
4 

(2) the magnitude of the orthogonal polynomials ::rr;11 (~) evaluated at the zero ~ -(3) the magnitude of ~ f' ( ~). 
In the numerical examples below, we shall indicate their orders of magnitude 
(for n = 20) in curled brackets. Thus, 

{ -10, 0, -9/-13} 

at the bottom of Table 7.1 shall mean that 

max la11 [ -=..w-10, max In(~ )j • 10°=1 
O~k~n-1 O~k~n-1 k 11 

n-1 

.L I a~~ II nk (~"l I 10-9
, 

k=O 

where t-t is the index of the worst conditioned root Ew In this way we can learn 
what factors are most responsible for the widely differing magnitudes of condition 
numbers that will be encountered. 

Example 7.1. ~.=vfn, v=1, 2, ... , n. 
We have scaled the roots of Example 4.1 so as to retain them within the inter

val [0, 1]. For polynomials in power form, such a scaling does not affect the condi
tion of the roots. 

It appears natural to choose for P~c polynomials orthogonal on the interval [0, 1 ]. 
In so doing, we find that the Chebyshev polynomials of the second kind perform 
best (in the sense of making max u1 (E14) smallest), followed by the Legendre poly-

" 
28 Numer. Math., Bd. 2! 
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Table 7.1. Maximum condition numbers for Example 7.1 with hE U [0, 1] 

n U[0,1] 

5 1.85 
10 2.64 (1) 
15 6.35 (2) 
20 1.40 (4) 

{-10,0, -9/-13} 

nomials and the Chebyshev polynomials of the first kind. In Table 7.1 we list 
maximum condition numbers in the most favorable case of Chebyshev polynomials 
of the second kind. The maximum of x1 (~~.) is invariably assumed for ft near n/2. 

Comparison with Table 4.1 shows a significant improvement in the condition 
of the roots. For n =20, e.g., we now have a maximum condition of 1.4X 104, as 
compared to 5.40 X 1013 before. Nevertheless, the condition still grows unboundedly 
with n. We can see this from the Corollary to Theorem 2.1, where now 

Pn(x) =4-nUn(2x-1), 
and 

f ~)' (~p) I =n-nftl (n-~-t)!. 
Thus, 

X (~) ~ J P'!.(ql') I= (!!:.)n j Un(2~J<-1)j . 
1 I' - qp./'(~1') 4 ,ul (n- ,u) I 

Assuming n even, and specializing I" toft n/2, so that 2~/J -1 0, we obtain 

m;-x Xt (~p) ~ :h:t (~n/2) (: r (n/~) !2 -- n
1
n ( ~ r. n~ oo. (7.1) 

It is instructive to examine the effect on the condition of choosing other inter
vals of orthogonality, both intervals containing [0, 1] in their interior as well as 
intervals being contained in [0, 1 ]. A summary of results in this direction is shown 
in Table 7.2. It is seen that the condition grows catastrophically, even faster than in 
Example 4.1. The poor showing of the Laguerre polynomials is particularly worth 
noting. The rapid deterioration of the condition must be attributed in the first 
three cases to relatively large Fourier coefficients, and in the last case to large values 
of l nk (~,.)I· As a matter of fact, in the last case, only the roots located in (j., 1] are 
badly conditioned; those in (0, rJ are relatively well-conditioned. 

Table 7.2. Maximum condition numbers for Example 7.1 in the case of unnatural intervals of 
orthogonality 

n U[-1,1] L[O, oo] H[-oo, oo) P[O, }] 

5 8.81 (2) 1.94 (5} 4.33 (3) 5.35 (1) 
10 9.62 (6) 7.94 (14) 2.36 (9) 1.27 (4) 
15 1.82 (11) 3.22 (25) 6.04 (15) 3.59 (6) 
20 3.82 (15) 5.69 (36) 3.80 (22) 1.12 (9) 

{2, 0, 2/ -13} {23, 0, 23/-13} {9. 0, 9/-13} { 9. 12, - 3/-12} 
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Computation of the upper bound (5.4) for ud~P), by means of (6.9), (6.10) re
vealed agreement with ut (~") to within one order of magnitude, in all cases except 
P[O, j-]. The lower bound {2.12), in contrast, is quite weak, beingtoosmall byas 
many as four orders of magnitude, for the interval of orthogonality [0, 1], and nine 
orders of magnitude for the interval 1, 1 ]. 

n 
Example 7.2. ~" = 2pfn, p =1, 2, ... , 

2
, n even. 

The results in this case, on the whole, are very similar to the results in Exam
ple 7.1, except that condition numbers are uniformly lower. A few, corresponding to 
the natural interval of orthogonality 1, 1], and to Chebyshev polynomials of the 
second kind (which again are "best"L are shown in Table 7.). As n-+ oo, the maxi-

Table 7.3. Maximum condition numbers for Example 7.2 with pke U [ -1, 1] 

n U[-1, 1) 

10 1.18 
20 3.25 (2) 

{-5.0, -5/-7} 

mum condition number again tends to infinity, at least as fast as indicated in (7.1). 
Unnatural choices of the interval of orthogonality, like [0, 1], [0, oo], or =, oo], 
give rise to comparatively much larger condition numbers, the Laguerre polyno
mials once again standing out as the worst offenders. 

Example 7.3. ~v = 2-(v-ll, v = 1, 2, ... , n. 

In Example 4. 3, these roots are seen to be uniformly well-conditioned for equa
tions in power form. Rather strikingly, it is found that they are extremely ill
conditioned under any orthogonal polynomial form of the equation, even choosing 
as interval of orthogonality the natural interval [0, 1], and as orthogonal polyno
mials pk (x) the most favorable ones, the Chebyshev polynomials of the first kind. 
Table 7.4 gives some idea of the grimness of the situation. The factor most re-

Table 7.4. Maximum condition numbers for Example 7.3 with pkeT[o, 1] 

n T[o, 1) 

5 5.03 (1) 
10 1.44(12) 
15 1.19 (30) 
20 3.58 (55) 

{- 3, 0, - 3/- 58} 

sponsible for it is revealed in the schedule at the bottom of the table: extremely 
small values of the derivative of i at some of the roots! As a matter of fact, one 

28* 
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readily finds for the smallest root that 

n-1 
- 1 II o.2ss19 

!~,../'(~,..)! = 2n(n 1)/1 (1-2-.1.).- 2n(n-l)/2 • n-;..oo, 
.i.=•l 

which indeed becomes small very rapidly. The Fourier coefficients off, although 
reasonably small, are incapable of counteracting this kind Gf decay. In the power 
case, on the other hand, the small denominator I ~.J' (~,..) I is neutralized by an equally 
small numerator, 

n-1 n-1 

""Ia t:k,_ ~~1~·······--ll (1 +2-A) 2-n(n-1),___2]842_ n-;..oo LJ k!>"n - 2(n+l) (n-2)/1 - 2(n+l) (n-2)/2 • · 
k=O A=l 

We also note that the upper bound of Theorem 5.1 is found in all cases to over
estimate the condition number by no more than one order of magnitude. The lower 
bound (2.12), as before, is considerably weaker. 

Example 7.3a. ~ .. = 2"-1, v = 1, 2, ... , n. 
This example does not essentially differ from Example 7.3 if the equation is 

represented in power form (cf. Example 4.3). Using orthogonal polynomials, how
ever, a substantial difference emerges. It seems natural, now, to resort to Laguerre 
polynomials, although other choices of orthogonal polynomials turn out to be al
most equally good. We list some results for Laguerre and Chebyshev polynomials in 
Table 7.5. The conditions are comparable to those observed in Example 4.3. 

Table 7.5. Maximum condition numbers for Example 7.3a with PkEL[o, co] and PkE U[o, 1] 

n L [0, oo] U[o, 1] 

5 2.24 2.50 (1) 
10 3.20 (1) 9.51 (1) 
15 9.65 (1) 1.27 (2) 
20 1.26 (2) 1.34 (2) 

{56, 63. 89/87} {56, 74, 78/76} 

Example 7.4. (Roots of unity.) E, =e2n'i'll/n, v = 1, 2, ... , n. 
Using the orthogonality interval 1, 1 ], Chebyshev polynomials of the second 

kind give the smallest condition numbers. A close second are the Legendre poly
nomials, followed by Chebyshev polynomials of the first kind. Some condition 
numbers are shown in Table ;.6. As one would expect, the condition is worst furthest 
away from the interval 1, 1], i.e., for EP near i. The condition worsens some-

Table 7.6. Maximum condition numbers for Example 7.4 with pkE U 1, 1] 

n U[-1, 1] 

5 0.549 
10 1.62 
15 7.50 
20 34.4 
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what if one chooses [0, 1] as interval of orthogonality, and is particularly bad for 
Laguerre and Hermite polynomials. 

A feature worthy of note is the relatively poor performance of the upper bound 
in Theorem 5.1 on this example. The bound overestimates the condition by as 
many as five orders of magnitude, when [ -1, 1] is used as interval of orthogonality, 
and by up to nine orders of magnitude, if the interval is [0, 1]. 

~2 ~n 
Example 7.5. e,.(~v) =0 where e,.(x) =1 +x+ 21 + ··· + n! · 

Interestingly enough, all orthogonal polynomials, with the exception of the 
Laguerre polynomials, do about equally well on this example, the choice 1, 1] 
of the orthogonality interval faring slightly better than the choice [0, 1]. The results 
shown in Table 7.7, compared with those in Table 4.3, also show rather remarkably 

Table 7.7. Maximum condition numbers for Example 7.5 with PkE U [ -1, 1] 

n U[-1,1] 

5 9.28 
10 9.30 (1) 
15 1.16(3) 
20 1.47 (4) 

that the condition of the roots is practically the same, no matter whether the equa
tion is written in power form or in terms of orthogonal polynomials. 

Another interesting feature in this example is the exceptionally poor quality 
of the upper bound in Theorem 5.1. For n 20, e.g., the bound is too large 
by over 20 orders of magnitude! The breakdown can be traced to Schwarz's in-

n-1 

equality, as applied to 1: [ ak II Jt"k (~) [. The Fourier coefficients a, happen to de-
k=O 

crease at a rapid geometric rate, while the I nk (~)I increase, equally rapidly. This 
is a very unfavorable situation for Schwarz's inequality, as is exemplified by ak = 

n-1 
w-k, bk = 10k, in which case Schwarz's inequality gives n = L akbk wn-1. The 

k=O 
lower bound (2.12), this time, is substantially better, but still off by as many as 
five orders of magnitude. 

It is difficult, of course, to draw general conclusions from a small sample of 
examples, particularly from examples as varied as those presented above. Never
thelesss, some general trends are discernible. If the roots of the equation are pre
dominantly real, and not accumulating near a finite point (as they do, e.g., in 
Example 7.3), then their condition seems indeed enhanced if the equation is rep
resented in terms of orthogonal polynomials, provided the interval of orthogonality 
matches the interval spanned by the real roots as closely as possible. If the roots, on 
the other hand, are predominantly complex, then the choice of basis polynomials 
seems less critical. If the use of orthogonal polynomials is indicated, then Chebyshev 
polynomials of the second kind appear to be as good a choice as any, quite in 
contrast to Laguerre polynomials, or Hermite polynomials, which should be avoided. 
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Norm Estimates for Inverses of Vandermonde Matrices 
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Summary. Formulas, or close two-sided estimates, are given for the norm of the 
inverse of a Vandermonde matrix when the constituent parameters are arranged in 
certain symmetric configurations in the complex plane. The effect of scaling the 
parameters is also investigated. Asymptotic estimates of the respectiye condition 
numbers are derived in special cases. 

1. Introduction 

In an earlier paper [2] we obtained norm inequalities for the inverse v,;-1 of a 
Vandermonde matrix V(x1, x2, ••• , xn)ettnxn, which become equalities if the 
complex parameters x .. are all placed on a ray emanating from the origin. We 
now obtain equalities for 11-v,-1 11 also in the case of parameters located sym
metrically with respect to the origin on a straight line through the origin. For 
parameters which occur in conjugate complex pairs we give close upper and 
lower bounds for 11-v,;-1 11· We further examine how scaling of the parameters 
affects the magnitude of 11-v,;-1 11· Finally, as an application, we derive asymptotic 
estimates (for large 1t) for the condition number of Vandermonde matrices for 
special configurations of the parameters. 

2. Preliminaries 

We denote by am the m-th elementary symmetric function in n complex 
variables, 

am =am (xv x2, ... , xn) .L; x,., x, .... x,.,. {1 m n), a0 = 1. 

Lemma 2.1. We have 

n n 

L \am (x1, X2, · .. , xn)l JI (1 !x,.j), 
m=O v=l 

where equality holds if and only if x., !x,! ei~, v 1, 2, ... , n. 

A proof of Lemma 2.1 is given in [2]. 

Lemma 2.2. Let Psn (x) = n~=1 (x2
- x") and 

2n+l 

(s +tx)P2,(x) = L cpx2n-p+I. 
p=O 

23 Numer. Math., Bd. 23 

(2.1) 

(2.2) 
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Then 
2n+l n 

L lc"l <(lsi +ltj) ll (1 +jx,.l), 
p=O ~=1 

where equality holds if and only if x, =lx .. ! i•, v 1, 2, ... , n. 

Proof. Since 
n 

P2n(x) = L ( 1)~'u"(x., x2, ••• , xn) x2n-llt•, 
,..-o 

we find for the coefficients c~' in {2.2), 

c211 =(-1)~'tu,. c2"+I=(-1)"suw p 0,1, ... ,n. 

Consequently, using Lemma 2.1, 

2n+l n n 

L fc"l =(lsi +It!) L lum(xl, X2, • .. , xn)l (lsi lti)[J (1 +jx,l). 
p=O m=O .,_1 

with equality as stated. 

Lemma 2.3. Given 2n real or complex numbers x1, x2 , ••• , x2n such that 

xn+v = x,, 'P = 1' 2, ...• n, 

and for aU v either Rex .. >o, or Rex .. <o, let P2n(x) = ll!'!1 (x -x,.) and 

Then 

2n+l 
(s +tx)P2n(x) L c,.x2n-p+l. 

p=O 

n 2n+1 n 

(2.)} 

{2.4) 

(2.5) 

!ls!-!tlllll1 ± x,f 2 s L fc"l s (lsi +ltf)l7!1 ± x,.l 2
, (2.6) 

v=l p=O v=l 

where the plus sign holds if all Re x, 0, and the minus sign if all Re x., < 0. 

Proof. We first observe that in 

we have 

In fact, 

2n 
P2n(x) = L ( -1)Pu11 (Xv X2, ... , x2n)x2"-P 

p=O 

u,. 0 if all Rex,. 0, ( -1)Pu
11 

0 if all Rex, o. 

n n 

P2n(x) = ll [(x -x,) (x -x,.)] = 11 [x2 - {2 Rex,) x +lx,I 2J, 
v=l v=l 

(2.7) 

and multiplying out the product on the right yields coefficients which alternate 
in sign, if all Re x,. ::2::0, and are nonnegative, if all Re x, < 0. Consequently, 

if all Rex .. >o, 
(2.8) 

if all Re x,. 0. 
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For the coefficients c
11 

in (2.5) we have 

c,.=( -1)11 (t0'~< -SO'P_1), p, =0, 1, ... , 2n+1, 

where 0'_1 =0'2n+l 0. Therefore, 

2n+l 2n+l 2n 

L lett I= L ItO',. -sO',,-tl (Is! +It!) 2: 10',.1, 
p=O p=O 

from which (2.6) follows by virtue of (2.8). 

3. Inversion of the Vandennonde Matrix 

We denote the Vandermonde matrix of order n by 

f 
1 1. .. 1 l xl x2 ... Xn 

~ = V(xl, x2, ...• Xn) = .....................• 

11-l 11-l n-1 xl x2 • .. Xn 

p=O 

339 

(3.1} 

where xv x2, ••• , xn are distinct complex numbers and n > 1. Its inverse can be 
obtained by solving the system of linear algebraic equations 

n-l + Il-l + + n-1 x1 u1 x2 u2 • •• Xn Un =Vn-

Introducing the elementary Lagrange interpolation polynomials 

which satisfy 

lv(xp) = {~ if 'P =p, 
if 'P 9= p,, 

(3.2) 

it is evident that by multiplying the p,-th Eq. (3.2) by a,.wft=1, 2, ... , n, and 
adding, we get 

n 

tt,. = 2: a,. ~tv w v = 1, 2, ... , n. 
p=l 

Consequently, 

23* 

4. Nonn Inequalities for V;1 

We consider throughout the oo-norm of ~-1, 

(3.4) 
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Theorem 4.1. IIV-1 (x1 , x2, ••• , x,.)!l.,> is a symmetric function in the variables 
Xv x2, ••• , Xn-

Proof. Interchanging two variables amounts to interchanging two columns 
of V,., which in tum has the effect of interchanging two rows of V,.-1• The value 
of IIV,. -llloo remains the same. 

Theorem 4.2. Let ro 9= 0 be arbitrary complex, and 

V,.(ro) =W(roXJ., rox2, ... , wxn)· 

Then IIV,.-1 (ro}jj00 depe11.ds only on lrol and is strictly decreasing as a function of lroj. 

Proof. Let V,. = V,. (1), V,. -l =[a .. ,.]. Since 

V,. (ro) =D{ro) V,., D (ro) =diag {1, ro, ... , wn-1), 

we have v,.-1 (ro) = v,.-1D-1 (ro), i.e., 

v,.-1 (ro) = [ (1);.!:.1 ]. v, p = 1, 2, ... , n. 

It is clear, therefore, that the norm of ~-1 (w) depends only on jro j. Furthermore, 
if jro1 j < jro2 j, we have 

where strict inequality holds because of 

a,.,.= [[ (x,.,- xtJ)-1 =J=O. 
''*"• 

This proves Theorem 4.2. 

In [2] we have shown that 

I, V.:-111 < [Jn 1 +I x,.l 
n oo = 1IJ1:f,. I X -X I ' ,.-1 .. ,. (4.1) 

"*" 
where equality holds if (but not only if) all x, are on the same ray through the 
origin, 

xj#=lx,j ei.P, v=1, 2, ... , n. (4.2) 

In view of Theorem 4.2 we may assume 4J =0 in (4.2), i.e., x, ::?::0, v = 1, 2, ... , n, 
in which case the equality in ( 4.1) can be given the alternative form 

IIV..-111~ = IPn( -i)j ( 0) {41') 
n~ - min{(1+x,)jp~(x,)!} x, ' . 

l::ii,::iin 
where 

" p,.(x) = [[ (x -x,.). (4.)) 
p=l 

We now wish to obtain a result analogous to (4.1') when the points x, are 
located symmetrically with respect to the origin on a straight line through the 
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origin. In view of Theorem 4.2 we may assume the straight line to coincide with 
the real axis. 

Theorem 4.3. Let x,. be distinct real numbers such that 

x,+xn+t-.. =0, :v=1, 2, ... ,n. (4.4) 

If v.-. = V(x1, x2, ••• , X11), we then have 

if n is even, 

(4.5) 
if n is odd, 

where v and p vary over all integers for which x, >o and x,. 0, respectively, and 
where e11 = j- when x., > 0, and e, = 1 when x., = 0. Alternatively, 

IIJZ-111 = IPn<ill 
11 00 

m:n { : !:: IP~(x,.)l} ' 
(4.5') 

where p11 (x) is the polynomial in (4.J), and the minimum is taken over all nonnegative 
abscissas. 

Proof. For the sake of definiteness we assume 

x,>O for v=1, 2, ... , [n/2], X(n+l)/2 =0 if n is odd. (4.6) 

Let first n be even. The Lagrange polynomials (3. 3) then are 

n 
11=1, 2, ...• 2. 

It sufficesin (3.4) to evaluate the sums 2:;=1la,,.! for 1 ;::;;;.,.,::;;,n/2, the others (for 
v>n/2) having the same values. An application of {3.3), (3.4) and Lemma2.2, 
in which n is to be replaced by (n/2) -1, and sand t by 

1 
S = n/2 

1 
t=--n""'/2--

2 II (x:-x~) 2X., IJ (x:- x;) 
p=l p=l 

"'""" "'""" 
then gives the first result in (4.5). The second, for n odd, is obtained similarly, 
noting that 

(n-1)/2 xt _ x' 
l(n+l)/2 (x) = n (- xll) . 

p=l p 

n-1 v=1, 2, ... ,-
2
-, 

The alternative form (4.5') follows readily from (4.5) by observing that 
n/2 

Pn (x) =II (x2 - x!} if n is even, 
p=l 
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and 
(n-1)/2 

Pn(x) =X [[ (x2 -x!) if n is odd. 
p=l 

Corollary. If n is even and x, are symmetric points as in (4.4), then (4.1) holds 
with strict inequality. 

Proof. The bound in (4.1), again assuming (4.6), is 

1 { 1 n/2 (1 +xl')i} 
2 ~~~!12 (i + x) !llx!- x~J ' 

p,Pv 

which is larger than the top expression in (4.5) because of {1 +x.u)ll>1 +x!. 
We next consider norm estimates for -v,-.-1 in the case of pairwise conjugate 

complex abscissas all located in the same half plane. 

Theorem 4.4. Let x,. be distinct complex numbers such that 

X11+1_,.=x,. for v=1, 2, ... , n and X(n+l)/a=O if n is odtl, (4.7) 

and such that for all v either Re xtt 0 or Rex,. 0. If 1i;. = V(xl> x2, ••• , x11), we 
then have for n even, 

(4.8) 

and for n odd, 

max e 1-x 
{ 

(n+l)/2 

t~ .. £,,.+1){2 .. 1 I .. 11 Jl 
p,Pv 

(4.9) 

where plus signs hold if Rex,. ~o. minus signs if Rex,. 0, and where in (4.9) 

B(n+l)/2 =1, for 1 sv s (n -1)/2. (4.10) 

Alternatively, 

IP,.(~1)l <~-v,.-t!I<X)< 1Pn(+
2
t)l , (4.11) 

min{ 11 ±x.,l /P' (x H} - - min { 11 ±x,.l jp' (x )j} 
" 11-lx,.ll ,. " ,. 1+jx,f " " 

where Pn(x) is the polynomial in (4.3), and the minimum is taken over all v with 
1 <v n/2 when n is even, and over all v with 1 <v (n +1)/2 when n is odd. 

We omit the proof of Theorem 4.4, since it is analogous to the proof of Theo
rem 4.3. Lemma 2.3 now plays the role of Lemma 2.2. 
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5. Scaling of the Abscissas 
Let 

~(w) = V(wx1, wx2, ••• , wxn), co> 0. 

How does the norm of V,.-1 (w) compare with the norm of v,.-1 (1)? We shall 
answer this question first for positive abscissas x,., and then for symmetric real 
abscissas. 

Theorem 5.1. Let x,. be distinct positive numbers. Then for w > 0, 

w Pn (- :) !IV .. -1 {w) lloo P .. (- ! 
-w+1 Pn -1 <liV;1 (1)11"' <(w i) (5.t) 

where Pn(x) is the polynomial in (4.3). 

Proof. From (4.1') we obtain 

IIV.-1 (ru) II~~ ~~· (-~)I 
1~~n {(a;+ xv) IP~(xF)I} 

Pn(--1-) IP .. (-1)1 

where 

~1 +t 
w 

gm(t) = ~· 0 t< 00. 

The theorem follows by observing (4.1') and 

1 w+t 
w+1 <gm(t)<-w-· os;;;t< oo. 

Theorem 5.2. Let n be even and x,. be distinct real numbers suck that 

x.+xn+t-v=O for 1'=1, 2, ... , n. 
Then, for w > 0, 

2(fz-1)w Pn(!) UV;1 (w)lloo w+t Pn( !) 
w+t P,.(i) < liV,;-1 (t)lloo < 2(fz 1) p,.(i) • (5·

2) 

where P .. (x} is the polynomial in (4.)). 

Proof. From (4.5') we obtain 

where now 

P" (~) i P .. (i)j 
IIV,.-l(w)!loo = p (i) • . { t +x11 j J} ' 

11 m;n g"'(x.,) 1 +x: p~(x,.) 

1 t 

~1 +t 
w 

o<t< oo. 
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We need to show that 

2 
w+1 <Cw(t)< -1) w' 

We first note the identities 

0 S:t< 00, 

' t (1) 1 
Cru (t) w Cttru t ' Cw (t) = g11ru (wtf · 

If 0 t 1, the lower bound in (5.3) follows from 

(5.}) 

(5.4) 

since (1 +y1)/(1 +Y) fory>Oassumestheminimum value2(V2 -1) aty =V2 -1. 
If t> 1, we use the first identity in (5.4) to obtain again 

(t) > t 2 <V2 - 1 ) = -~-0''2 :-.Jl . 
g(J) w 1 w+ 1 

+1 m 

Combining the left inequality in (5.3) just established with the second identity 
in (5.4) gives the right inequality, and thus proves (5.3). 

6. Examples 

Norm estimates for v;.-1 imply estimates for the condition number of v;.. 
These in turn are of interest, e.g., in the study of the condition of polynomial 
interpolation [3]. In the examples which follow we derive asymptotic estimates 
for the condition number, assuming typical configurations of interpolation points. 

E l 61 ( .di . ts) 2(v -1) W xamp e . eqw stant porn . x, = 1 - n _ 
1 

, v = 1, 2, ... , n. e 

assume first n even. From (4.5) we find after some computation that 

11
11:"-111 - CXn 

n 00 - min n' 
l:ii•:iin/2 • 

where 

Since ~.is increasing, 

min 1V,=~1 =[(n-1)2 1J(n2 -1)!2, 
1 ::i•::in/2 

and since IF(1 +iy) 12 =!iyF(~y)lll =~yfsinh(~y) for any real y, we obtain 

nv.:-tll = 8 sinh{n:(n-1)) r(n+i(n-1)) 2 

II n lloo n ) ( n - 1 ) ( n n - 1 ) 4"[{n-t)2+1] 2-1 !2 sinh n-2- r 2+i-2- (6.1e) 

(n even). 
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For n odd, we find similarly, 

(6.1o) 

Since 
(6.2) 

using Stirling's formula for the ganuna function, and straightforward, but 
tedious, manipulations, we find from (6.1) that 

(6.3) 

Some nun1erical values1 are listed in Table 1. 

Table 1. Condition of polynomial interpolation at equidistant points on [- 1, 1} 

n condoo vn (6.3) 

5 s.oooo (1) 4.1668 (1) 
10 1.3625 (4) 1.1963 {4) 
20 1.0535 (9) 9.8614 (8) 
40 6.9269 (18) 6.7007 (18) 
so 3.1456 (38) 3.0937 (38} 

2v-1 
Example 6.2 (Chebyshev points). x., =cos 0.,, 0., = 

2
n :rc, v = 1, 2, ... , n. 

The abscissas x .. are the zeros of the Chebyshev polynomial of the first kind, 
Tn (x). Hence, by (4.5'). since I r: (x,.) I =nfsin 0,., we find that 

ll v.: -111 - I :r,. (i) I 
n 00 - n · min f ( 0 ) ' .. . (6.4) 

where 
1 +cos2 0 

f(O) = (t+cosfifsin o' 0 < 0 n/2. 

An elementary calculation shows that /(fJ) has a unique minimum on [0, n/2], 
which is assumed at f) = 00 , where 

cos 00 =2 -yj, 

Since the angles 0,. = 0,. n are equidistributed on the arc 0 :::;; () :nj2, there exists 
a sequence of integers''Jin with O<Pn<n such that O,,.,n~00 as n~oo. From 

min f (0.,, n) :5: f (0,,., n) 
II 

1 The integers in parentheses indicate powers of 10 by which the preceding numbers 
are to be multiplied. 
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it then follows that 

Consequently, by (6.4), 
-1 33/i . 

II~ !leo,_, 2 n !Tn(t)!, n-'?oo. 

On the other hand [ 4, p. 194], 

I Tn(i) I"-' j-(1 + y2t, n _,. oo, 

so that, in view of (6.2), 
33/i 

cond00 ~ -.- -
4
- ( 1 + y2)", n _,. oo. (6.5) 

Some numerical values are listed in Table 2. 

Table 2. Condition of polynomial interpolation at Chebyshev points 

n cond"' V,. (6.5) 

5 4.1000 (1) 4.6737 (1) 
10 3. 7495 (3) 3.8330 (3) 
20 2.5727 (7) 2.5781 (7} 
40 1.1663 (15) 1.1663 (15) 
80 2.3859 (30) 2.3869 (30) 

Example 6.3. x, = 1 e-iw,ll, v = 1, 2, ... , n (even), h > 0, 

0 <rox <w2 < · · · <w,.12, w,+n/2 = -w., for v =1, 2, ... , nf2. 

The interpolation problem corresponding to these complex abscissas arises 
in the construction of trigonometric multistep methods for ordinary differential 
equations with almost periodic solutions [ 1]. 

A short calculation, based on (4.11), gives the upper bound 

(6.6) 

< . {1+8sin
2

(tw.,k) . ( k) ~[ . 1 ( + )k · 11 lk]}' mm . (t h) ·2sm w, 11 4sm- w, w,. sm- w.,-wl' 
l::O•'fi,n/t 1 + 2 sm w, p=l 2 2 

p:j:ll 

and a similar lower bound in which 1 +2 sin (j-w,h) in the denominator of (6.6) 
is replaced by 1 -2 sin (iw.,h). For n fixed, and h _,.0, we find 

IV.-'IIoo ~ { ' If } 
2h"-l min w 1 w11 - w1 I 

1 'fi,JJ::Orl/1 , p-1 " I' 

(h--'?0). (6.7) 

p=l=• 

The estimate (6.7) can also be obtained by using the approximations x"-=- iw"h, 
rotating the abscissas through an angle of n/2, and then applying Theorem 4.) 
with the simplifying approximation (1 +w,h)ll (1 +w!h1).!..1. 

p=l=t' 
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Example 6.4 (Roots of unity). x,=e2 ni .. fn, v=1, 2, ... , n. 

Although none of the previous estimates apply, we can obtain the inverse of 
the Vandermonde matrix directly by observing that the Lagrange interpolation 
polynomials are 

l .(x) = n1 ~ ( ~ )p-1, • £...J ~ v = 1, 2, ... , n. 
p=l , " 

Consequently, by (3.3), (3.4), 

II'V,/ 1 ~00 =1, cond00 V,. =n. 

Actually, the roots of unity are an optimal point configuration with regard 
to the spectral condition of Vandermonde matrices [3]. In fact, since V,.H V,. = n · I,., 
we have cond2l~ 1. 
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Summary. We derive lower bounds for the norm of the inverse Vandermonde 
matrix and the norm of certain inverse confluent Vandermonde matrices. 
They supplement upper bounds which were obtained in previous papers. 

Subject Classifications. AMS(MOS): 15Al2, 65F35; CR: 5.14. 

1. Introduction 

Norm estimates for the inverse of a Vandermonde matrix, or the inverse of 
confluent Vandermonde matrices, have been the subject of several previous 
papers [1, 2, 4]. The emphasis there was on upper bounds in the case of general 
complex nodes, or identities when the nodes are positive [1, 2] or real and 
symmetric with respect to the origin [4]. We now wish to supplement these 
results by providing lower bounds in the case of arbitrary complex nodes. We 
obtain these bounds by applying to appropriate polynomials Jensen's formula in 
the theory of analytic functions. 

2. Jensen's Formula for Polynomials 

Given a polynomial 

(2.1) 

with complex coefficients a1t> let ( 1, ( 2 , ... , (,denote its zeros ordered such that 

i'tl ~ ,,21 ~ ... ~ i',l ~ 1 <"r+ tl~ 1Cr+21 ~ '" ~Knl· 

Jensen's formula, applied to (2.1) on the unit circle, then gives [6] 

* Sponsored in part by the United States Army under Contract No. DAAG29-75-C-0024 and the 
National Science Foundation under grant MCS 76-00842A01 
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Ia~~ (,+ 1 (,+ 2 ••• (nl =exp (2~ Tln lp(eu1)1 dO), 

hence, letting M = max lp(ei6)1, 
0~8~2n 

, 
lan,r+l '•+2 ... ,,I~M~ L la1,1. 

p=O 

Thus, 

" " L la"l~lanl TI max(l, levi). 
p=O v= 1 

W. Gautschi 

(2.2) 

(2.3) 

Equality in (2.3) holds if and only if a0 =a1 =· .. =a11 _ 1 =0, i.e., p(z)=a,z". 

Indeed, if p{z) =a, z", then (2.3) (with equality) is trivial. Conversely, if we have 
equality in (2.3), we must have equality in (2.2), hence, by Jensen's formula, 
lp(ei8)l=M for 0~0~2n. Since 

n n 

lp(eiBW= L akli,ei<k-1)8= L cleiJ.o 
k,l=<O J.=-n 

is a trigonometric polynomial, with coefficients 

<X) 

cJ. = L ak iik-l• c_J. =f;. 
k= -oo 

{the convention af.I=O if JL<O or JL>n is used here}, it can be constant equal to 
M 2 only if C11 = C11 _ 1 = · · · = c 1 = 0 and c0 = M 2• The first condition, c, = 0, implies 
a" ii0 = 0, hence a0 = 0 (since a" =F 0). The second condition, a11 ii 1 +a"_ 1 ii0 = 0, 
then gives a 1 =0, and continuing in this manner, we find recursively a0 =a1 = ... 
=a~~-1 =0. 

3. Inverse Vandermonde Matrix 

We denot~ the V andermonde matrix of order n by 

(3.1) 

where zT = [zH z2, ... , Z11] is a vector of n complex numbers, called "nodes". If 
the nodes are mutually distinct, then V11 (z) has an inverse, which we denote by 

~-1{z)= [u;.J~. Jl,., t· (3.2) 

We are interested in the 100-norm of (3.2), 

II 

~~~- 1 (z)II<X)= max L lu).ILI· 
1 ~l~ll It"" 1 
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Theorem 3.1. If z1, z2 , ••• , z" are mutually distinct complex numbers, and n>l, 
then 

IIV,.-t(z)lloo> max 0 max(1, lzvD. (3.3) 
t;:a.t;:an v=l lz .. -z,l 

v*.l. 

Proof We recall [4] that the elements u;. 11 in (3.2) are the coefficients of the 
fundamental Lagrange interpolation polynomials associated with the nodes zv, 

(3.4) 

Applying (2.3) and the remark following (2.3) to the polynomial of degree n -1 
in (3.4), we find 

I lu.tpl > ( 0 I ~,. 1) il max (1, lzvl). 
p= 1 v*.l. Z.l. "'v v*l 

(3.5) 

If A.0 is the index A. for which the right-hand expression in (3.5) attains its 
" maximum, then that maximum is less than L lu .. 011 l, hence less or equal than 

n p=l 

max L Ju .. ,J This establishes (3.3) and proves Theorem 3.1. 
l~l~n p=l 

The lower bound in (3.3) supplements the upper (attainable) bound in [1], 
which is of the same form as (3.3) except that the 100-norrn of the 2-vectors [1, z,] 
in the numerator factors is replaced by the 11 -norm. 

4. Inverse Confluent Vandermonde Matrices 

The technique used in the proof of Theorem 3.1 can be adapted to confluent 
Vandermonde matrices. We illustrate this with the particular matrix 

U2,(z)= 

1 1 1 0 0 0 
Zt Zz z" 1 1 1 
z2 

1 z~ z2 
n 2z1 2z2 2z" 

2n-1 
Zt 

2n-1 z2 2n-1 z, (2n-l)z~"- 2 (2n-1)z~n-z (2n-l)z;n-z 

(4.1) 

considered previously in [1], [2]. 

Theorem 4.1. If z 1, z 2 , ••. , z, are mutually distinct complex numbers, and n > 1, 
then 

1 n" (max (1, lz,.1))2 (4 2) 
IIU2~ (z)lloo> /~~~nb\=t !z.a-zvl ' . 

v*l 
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where b;. is the larger of the two quantities 

b~1 l=max(1, lz;.l), 

b).21=max (21 L 1/(z;. -zv)l, 11 +2z;. L 1/(z4 -z")l). 
v*). v*). 

Proof. We have [2] 

-1 [v] Uzn = W ' V=[v..t,.J, 

where 
2n 

li (z) [1- 21~ (z ;.)(z- z J] = L v;.ll zll- 1 

2n 
w=t l;;i;A.;;i;n, 

l~(z)(z-z;t)= L w;.~'z11 - 1 

~t=l 

W. Gautschi 

(4.3) 

(4.4) 

and l;.(z) denotes the fundamental Lagrange interpolation polynomial in (3.4). 
Applying (2.3) to the polynomials in (4.4), and taking note of the remark 
following (2.3), one finds 

~ lv,lpl>b~2) n (max(1, lzv1))2. 
11=1 vH lz.l-zvl 

I lwA!tl >b~l) n (max(l, izvD)2. 
,.= 1 "*;. lz" -zvl 

where b~1 >, b~2 > are as defined in (4.3). Denoting the products TI on the right by 

( 
211 z"n*A ) 

n;., and observing that IIU2,/IIoo=max max L lv;.,.l,max L lw;,.,.i, an argu-
" ~t=l .l ~t=l 

ment similar to the one after (3.5) will show that b~1 > n" <II Ui'/ II 00 , 

b~2>n;. <II u;/ II oo for all A= 1, 2, ... , n, hence max(b~1l, b~2 )) n..t <II U2-/ II oo for all 
A= 1, 2, ... , n. This proves Theorem 4.1. 

The lower bound in (4.2) supplements the (attainable) upper bound in [2], 
which is of the same form as (4.2) except that the 100-norm of the 2-vectors [1, zv] 
in the numerator factors, and the lro-norms defining b~0 and b~21, are all replaced 
by the respective lcnorms. In the case of positive nodes zv another (usually 
sharper) lower bound can be found in [3, Theorem 2.1]. 

5. Examples 

Example 5.1 (roots of unity). Zv=e2 ni(v-lJ/n, v=l, 2, ... , n. In view of 

A= 1, 2, ... , n, 
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Table 1. Norm estimates for Example 5.2 

II v,-'11 ~ uu;.'ll.., 
N n lower true upper lower true upper 

5 3 7.24( -1) 1.89 2.89 1.57 1.79(1) 4.19(1) 
10 6 1.17 1.47(1) 3.75(1) 8.29 2.36(3) 1.56(4) 
15 8 4.25 2.03(2) 5.45(2) 1.46(2) 6.18(5) 4.48(6) 
20 11 1.17(1) 2.76(3) 1.20(4) 1.52(3) 1.59(8) 3.03(9) 

Table 2. Norm estimates for Example 5.3 

IIV,-'11.., II u;.'!L, 

n lower true upper lower true upper 

5 1.12 2.08 3.93 4.76 2.21(1) 7.90(1) 
10 2.44 5.22 1.45(1) 4.45(1) 2.52(2) 1.96(3) 
15 7.45 1.69(1) 5.71(1) 6.08(2) 3.69(3) 4.22(4) 
20 2.27(1) 5.36(1) 2.02(2) 7.54(3) 4.79(4) 6.84(5) 

Table 3. Norm estimates for Example 5.4 

nv.-'lloo !IUzn'lloo 
N n lower true upper lower true upper 

5 3 1.62 2.74 3.13 6.69 2.51 (1) 3.29(1) 
10 5 5.71 1.09(1) 1.27(1) 1.38(2) 6.15(2) 8.35(2) 
15 8 3.07(1) 6.82(1) 8.63(1) 5.71(3) 3.24(4) 5.19(4) 
20 10 1.60(2) 3.60(2). 4.49(2) 1.88(5) 1.07(6) 1.66(6) 

we obtain from (3.4), and from (4.4) after a little computation, 

1 1 uu2-;. (z)lloo=2--. 
n 

II v,.-t (z)ll oo = 1, (5.1) 

The lower bounds in (3.3) and (4.2) both evaluate to 1/n, while the upper bounds 
in [1], [2] are 2"- 1/n and (2n-1)4"- 1/n2, respectively. 

Example 5.2 (roots of unity on half-circle). zv=e2 ni(v-t)/N, v=1, 2, ... , n, where n 
=[N/2)+1. 

The true norms of v,.- 1 and U2-;, 1, as well as the lower bounds of Theorems 
3.1 and 4.1 and the upper bounds in [1], [2] are shown in Table 1 for N 
=5(5)201• It is interesting to note how deletion of the roots of unity on a half
circle results in substantially larger values of II V,.- 1 11 00 and II U2-;.1 IL.,. 

The integers in parentheses indicate exponents of 10 
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z2 z" 
Example 5.3. e,(z,)=O, v=l, 2, ... , n, where e,(z)=l +z+-21 +···+-1 . Using the 

. n. 
zeros of e,, tabulated in [5], we obtain the results in Table 2. 

[N+l] Example 5.4. eN(zv)=O, Imzvf;O, v=1,2, ... , n, where n= - 2- . 

Similarly as in Example 5.2, deletion of the zeros in the lower half-plane has 
the effect of increasing the norms of v,- 1 and U2-;, 1 (see Table 3). 
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. QUESTIONS OF NUMERICAL 
CONDITION RELATED TO 
POL YNOMIALSt 

Walter Gautschi* 

l. INTRODUCTION 

Polynomials (in one variable) permeate much of classical numeri
cal analysis, either in the role of approximators, or as gauge 
functions for a variety of numerical methods, or in the role of 
characteristic polynomials of one kind or another. It seems ap
propriate, therefore, to study some of their basic properties as they 
relate to computation. In the following we wish to consider one 
particular aspect of polynomials, namely, the extent to which they, 
or quantities related to them, are sensitive to small perturbations. 
In other words, we are interested in the numerical condition of 
polynomials. We shall examine from this angle three particular 

t Revised and in part reprinted (with permission of the publisher) from Recent 
Advances in Numerical AfUllysis (C. de Boor and G. H. Golub, eds.), pp. 45-72, 
Academic Press, New York, 1978. 

*Supported in part by the National Science Foundation under Grant MCS 
7927l58AOL 
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problem areas: (1) The representation of polynomials (polynomial 
bases); (2) Algebraic equations; (3) The problem of orthogonaliza
tion. Before embarking on these topics, however, we must briefly 
consider ways of measuring the condition of problems. We do this 
in the framework of maps from one normed space into another, for 
which we define appropriate condition numbers. 

2. THE CONDITION OF MAPS 

2.1. Nonlinear maps. Let X, Y be normed linear spaces, and 
let y = f(x) define a map M: !!!J c X-+ Y, with !!!J an open domain. 
Let x E !!!J be fixed, and y = f(x ), and assume that neither x nor j 
is the zero element in the respective space. The sensitivity of the 
map M at x, with respect to small relative changes in x, will be 
measured by the (asymptotic) condition number (see Rice {271) 

cond( M; x) = lim sup ( II/( x +h)-!( x) II j 11~11}, 
8--ouh1J=6 IIJ(x)ll llxll 

(2.1) 

provided the limit exists. The number in (2.1) measures the maxi
mum amount by which a relative perturbation of x (given by 
~/llxll) is magnified under the map M, in the limit of infinitesimal 
perturbations. Maps with large condition numbers are called ill
conditioned. 

If M has a Frechet derivative [a j I ax ]0 at x, then 

. uxull[ aj1 II cond( M; X)= II.YII ax 0 (.Y=J(x)). (2.2) 

In the important case of finite-dimensional spaces, X= R n, Y = R m, 

the Frechet derivative, as is well known, is the linear map defined 
by the Jacobian matrix of f. We may then use in (2.2) any family of 
vettor norms and subordinate family of matrix norms (see Stewart 
[31], p. 177). 
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For composite maps K oM, the chain rule for Frechet derivatives 
(see Ortega & Rheinboldt [25), p. 62) can be used to show that 

cond( K oM; x) ~ cond( K; y )cond( M; x ). (2.3) 

(f the composite map is known to be HI-conditioned, the inequality 
(2.3) permits us to infer the ill-conditioning of (at least) one of the 
component maps. 

2.2. Linear maps. [f M: y = f(x) is a linear (bounded) map, 
then 

II I (X + h ) - I (X ) II II I ( h ) II sup = sup 
1Jhll ... 8 llhll flhJ1=8 Jlhtl 

is independent of .X and o and equal to the norm of M. Equation 
(2.1) then reduces to · 

( •) llxll cond M; x = II.YIIIIMII (M linear, y = Mx ). (2.4) 

If in addition M is invertible, we can ask for the supremum of (2.4) 
as .X varies in X (or, equivaletttly, y varies in MX), and we find, 
since x = M- 1p, that _ 

sup cond( M; x) = IIM- 11J II Mil. (2.5) 
XE }( 

The number on the right, usually referred to as the condition 
· number of M, will be denoted by 

. (2.6) 

We have, alternatively, 

sup (II Mxllfllxll) 
cond M = ..::x.;.;:.e'-'-'x=--..... · ,...----

inf (IIMxll/llxU) · 
xEX · 

(2.7) 
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Condition numbers such as those proposed cannot be expected to 
do more than convey general guidelines as to the susceptibility of 
the respective maps to small changes in the elements of their 
domains. By their very definition they reflect "worst case" situa
tions and therefore are inherently conservative measures. 

3. THE CONDITION Of POLYNOMIAL BASES 

Let Pn _1 denote the class of (real) polynomials of degree ~ n -1, 
and let p 1, p 2, .•• , Pn be a basis in P11 _ 1. For any p E 1?11 _ 1, we 
denote by u1, u2, ... , un the coefficients of p with respect to this 
basis, 

n 

p(x) = .E ukpk(x ). (3.1) 
k = l 

We wish to determine how strongly the values of p on some given 
finite interval [a, b] react to small perturbations in the coefficients 
uk and, vice versa, how the coefficients of p are affected by small 
changes in p. 

The question may be formalized as one concerning the condition 
of the linear map Mn: R n -+ Pn _1[ a, b), which associates to each 
vector ur = [u1, u2 , ... , U 11 IE Rn the polynomial p in (3.1), re
stricted to [a, b), 

n 

( Mnu )(x) = L ukpk(x ), 
k = l 

a ~x ~b. (3.2) 

We are thus interested in the condition number of Mn, see (2.6), 

cond Mn = 11Mn- 11111Mnll, (3.3) 
in particular, how fast it grows as n--+ oo, and how this growth 
depends on the particular interval chosen. 

For definiteness, we consider only uniform norms, i.e., Uull = 

max1 ~k~nlukl in Rn, and IIPII = maxa~x~blp(x)l in Pn_ 1[a,b), 
although there are circumstances in which other norms may be 
preferable (see, e.g., Geurts [19), Gautschi [16), Sections 3.1, 3.2). 

We shall use the notation uP to denote the coefficient vector 
of p, 

-M-t up- n p, (3.4) 
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3.1. Power basis. For the power basis 

k = 1,2, ... , n, (3.5) 

it is natural to assume an interval (a, bl that contains the origin. We 
shall do so in the following, but other intervals could also be 
treated (in fact more easily). For definiteness, we assume further 
that [a, b J is centered to the right of the origin, i.e., 0 ~ Ia I ~ b. It 
then follows immediately that 

n n 

UM,II = sup max L ukxk- 1 L bk- 1, 
llull..; l a ~ x ,;; b k = l k = l 

hence 

(3.6) 

(It is understood, here and below, that the value of the function on 
the right equals n if b = L) 

For the inverse map M,- 1 we have 

Therefore, in terms of the linear functionals A k : p n- l [a' b I -+ R 
defined by A.kp = p<k-L)(O)/(k -1)!, 

II M; 111 = max IIA.kll· 
L~k~n 

(3.7) 

Our problem thus reduces to determining the norm of A.k. This is 
related to the problem of best uniform approximation of binomials 
/, r(x) = (1-ITI)x" + TXn- 1, where -l ~ T ~ 1, by polynomials g 
of degree ~ n- 2, which, in turn, gives rise to the Zolotarev 
polynomials 
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where 

The extremal for the functional Ak, indeed, is a Zolotarev poly
nomial (of degree n - 1, since we are working with P n _ 1 [a, b ]), that 
is, for 2 ~ k ~ n, 

IIAdl= sup IAkpi=IAkzn-l rlforsomeTE(-1,1) (3.8) 
IIPII = l 

(see, e.g., Schonhage [30), Satz 6. ll). Unfortunately, if the interval 
(a, b l is arbitrary, the value of the parameter T in (3.8) is not easily 
expressible, and may be different for different values of k. The 
exact determination of IIMn- 111 in (3.7) indeed is cumbersome (see 
Yoronovskaja [33), Ch. III and the appendix by V. A. Gusev). 
Upper bounds for II Mn- 111 are obtained in Gautschi ((14), Theorem 
4.1). 

for the power basis (3.5), the most natural interval,. however, is 
an interval symmetric about the origin, { - w, w ], w > 0. In this case, 
the Zolotarev polynomials reduce to Chebyshev polynomials of the 
first kind (Schonhage [30), p. 167). Making use of this, it then 
follows readily from (3.6) and (3. 7) that 

(3.9) 

where Tm denotes the Chebyshev polynomial of degree m, and 
Urm(xfw) the coefficient vector of Tm(xjw ); see (3.4). 

Using asymptotic estimates of llur,.(x/w)ll as m ~ oo, Gautschi 
· ((14], Eq. (2.2)), it can be deduced from (3.9) that 

1+/1 + w 2 
----,w<l, 

w 

asn~oo. (3.10) 
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TABLE 3.1 

(cond M,)ll" 

n w =.l w=.2 w =l o:.>=5 w=LO 

5 9.767 5.743 2.091 3.789 6.444 
lO 13.977 7.579 2.377 4.616 8.027 
20 16.719 8.706 2.437 5.210 9.252 
40 18.286 9.330 2.447 5.588 10.023 

00 20.050 l0.099 2.414 6.099 ll.050 

The condition of M, on [- w,wj. 

The 'condition of Mn on {- w, w I thus grows exponentially with n, 
the asymptotic growth rate being smallest (equal to 1 + fi) when 
w = 1. Some numerical values are shown in Table 3.1. t 

Similar results hold for intervals (0, w ), w > 0, in which case 
(Gautschi [14JJ 

asn-+oo. 

(3.11) 

Again, the minimum growth rate ( = (1 + fi) 2 ) occurs when w = 1. 
It is interesting to note that exponential growth of the condition 

is also observed for piecewise polynomial functions if represented 

tThe information in Table 3.1 might suggest that the asymptotic growth rate is 
approached monotonically. The reader, however, will have noticed that the limit rate 
in the case w = 1 is smaller than the seemingly increasing approach rates! [o reality, 
the approach is indeed monorone, if w < l, but changes from increasing to decreas
ing, if w = l. and from decreasing to increasing, if w > L The changeover occurs 
near n = 35, if w = 1 (hence is not visible in Table 3.1), and near (ejl11)w, if w » l. 
The Iauer would begin to be visible in Table 3.1 if (ejl11)w ~ lO, i.e., w =§: 23. The 
reason for this behavior can be found in the more precise relations cond M, -
(y 2nl12p" if w =1, and cond M,.- (y 2jn) 112p", if w *1, where pis the limit rate 
and y = y( w) can be explicitly computed; Gautschi [l4j. 
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in terms of normalized B-splines. In fact, for splines of degree 
k -I, the condition of the B-spline basis is known to lie between 
(l-l/k)2k-J/2 and 2k·9k; see de Boor [2], Lyche [23]. Empirical 
evidence seems to suggest that the conditon is indeed 0(2k); 
de Boor [3). 

3.2. Bases of orthogonal polynomials. We now consider the 
case of an orthogonal basis, i.e., 

k = 1,2, ... , n, (3.12) 

where w0 , w1, ..• , w11 _ 1 are the first n of a sequence of polynomials 
orthogonal on the (finite) interval [a, bl with respect to a nonnega
tive measure da(x). We consider the condition of this basis on the 
interval of orthogonality, [a, b). Since the coefficients uk in (3.1) of 
any polynomial p E P11 _ 1 are now representable as Fourier coeffi
cients of p, it is easy to estimate the condition of Mn with the aid of 
Schwarz' inequality. One finds (Gautschi [12]) 

(3.13) 

where 

k =0, 1, .... 

(3.14) 

The first maximum in (3.13) is a bound for UMn- 111, the second an 
obvious bound for II Mnll· It should be noted that neither cond Mn 
nor the bou~d in (3.13) is invariant under different normalizations 
of the orthogonal polynomials { 'ITk_t), and the bound indeed is 
minimized in the case of an orthonormal system. 
, It follows from (3.13) that the condition of an orthogonal basis, 

typically, exhibits only polynomial growth in n. For Chebyshev 
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polynomials 1r, = T,. on [ -1,1], for example, one finds 

( 1T, = T,.), 

while for Legendre polynomials 1r, = P, on [ -1, 1), 

cond Mn ~ n(2n -l)L/2 . ( w, = P,). 

The improvement over the power basis is substantial. 

3.3. Lagrangian bases. All bases { p k } considered previously 
have the property that deg Pk = k -1, k = l, 2, 3, .... We now con
sider an example of a basis in which each p k is a polynomial of ·. 
degree n -1, namely the familiar Lagrange polynomials 

k =1,2, ... , n, 

corresponding to a set of distinct nodes s 1, s 2 , ... , s n in [a, b ]. 
Lagrange's interpolation formula 

n 

p(x)= L p(sk)lk(x) 
k =l 

shows immediately that uk = p(sd in (3.1).. By standard arguments 
in approximation theory, one finds II Mnll = Ln, II M; 111 = 1, wliere 

n 

L" = max L It k ( x) I 
Q.(i..t ... bk=l 

is the Lebesgue constant for the nodes S 11 • Consequently (see also 
de Boor [5), p. 19), 

(3.15) 

By a result of Faber and Bernstein, Natanson ([24), p. 24), one has 

lnn 
L >--, 8{11 
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for arbitrary (distinct) nodes s.,, while for Chebyshev nodes, on the 
other hand, 

2 
L - -lnn 

n 11 ' 

(see, e.g., Rivlin [28], p. 18). The basis consisting of the Lagrange 
polynomials {I k } for Chebyshev nodes, therefore, is optimally 
conditioned among all Lagrangian bases, and indeed among all 
polynomial bases (de Boor [4)), in the sense of attaining the optimal 
growth rate O(Ln n ). 

4. THE CONDITION Of ALGEBRAIC EQUATlONS 

We now tum our attention to roots of algebraic equations and 
their sensitivity to small changes in the coefficients. (We assume 
that the equation is expressed linearly in terms of basis poly
nomials.) An interesting, though largely unexplored, aspect of this 
question is the manner in which this sensitivity depends on the 
choice of polynomial basis. By far best understood is the case of 
equations expressed in the usual power form. 

In order to give a formal statement of the problem, we assume, 
first of all, that the basis polynomials p k have deg p k = k '- l, 
k = 1, 2, ... , so that an algebraic equation of exact degree n can be 
written in normalized form 

p(x) = 0, 
n 

p(x)=pn+l(x)+ L UkPk(x), 
k=l 

(4.1) 

with leading coefficient 1. (To enhance clarity, we sometimes write 
p(u; x) instead of p(x), where u = (u1, u2,. .. , un]T.) 

In general, one might be interested in just one, or in several, or 
collectively in all the roots of the equation, and again, there may be 
one single coefficient, or several, or all of them that· are subject to 
perturbation. We treat all these cases in one, by considering q 
(simple) roots E = {l1, ~2 , ••• , ~qlr, 1 ~ q ~ n, of (4.1), corresponding 
to u = u, and by introducing a multi-index k = ( k 1, k 2, ••• , k P ), 
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1 ~ k 1 < k 2 < · · · < kP ~ n, to indicate which of the coefficients in 
u are to undergo changes. We write kc for the multi-index comple
.mentary to k, and dynote by u E IR n the vector whose k th compo
nent is uk, if k E V, and uk, if k E k~There will be a neighborhood 
§=N(u")cRP such that the equation (4.1) with u=u, u"E§, 
continues to have q simple zer~s E = (~1 , ~2 , ••• , ~qJT and E-+ E as 
u-+ u. We assume that neither E. nor u .. , is the zero vector in the 
space C q and R P, respectively. (Clearly, E =I= 0 if q > 1, since each lj 
is simple.) Our interest, then, is in the condition of the map 
Mk.q: § c R P-+ Cq defined by 

where p(u; /j( uk)) = 0 on §, for each j = 1, 2, ... , q, and f( u")-+ E 
as uk- uk. 

lt is now a straightforward matter to use (2.2) to calculate the 
condition number of the map Mk.; at uk. lf we denote by 

Pk,(~t) Pk,(~2) Pk1 (~q) 

vk,q{E) = Pk2a1) PkJ~2) Pkl((l) .. ECpXq 
. . . . . . . . .. . . .. . . ~ . . .. . . . . .. .. . 

Pk,( ~tJ Pk,(~z) Pk,(~q) 

the "generalized Vandermonde matrix", and by D(u; E) the diago-
nal matrix ;. 

9 

D(u; ~) = diag[ p'(u; ~J, p'(u; ~2 ), ... , p'(u; ~q)] ECqxq 

(where the prime in p'(u; x) indicates differentiation with respect to 
x ), we find that 

(4.2) 

Specifically, if k = (1, 2, ... , n) and q = n, which is the extreme 
case of all roots being considered simultaneously and all coeffi
cients undergoing changes, and if we choose the /1-vector norm and 
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subordinate matrix norm, we get 

n 

I: 1uk1 
cond1(Mk,n; u) = k:t 

E l~jl 
j=l 

( 4.2a) 

where p'{lj) = p'(u; ~j>· This provides the most overall description 
of the condition of the algebraic equation (4.1), assuming all roots 
are simple. The other extreme is p = q = 1, in which case we write 
k = k, ~ 1 = ~. and we find 

k=1,2, ... ,n. (4.2b) 

Each condition number in (4.2b) measures the sensitivity of the 
root ~ to perturbations in one single (non vanishing) coefficient, uk, 
and provides the most detailed description of the condition of the 
root ~- Note, in (4.2b), that only~ is assumed to be simple; some or 
all of the other roots may well be multiple: 

A compromise between (4.2a) and (4.2b) for characterizing the 
condition of a single root, ~. is cond ~ = EZ = 1 cond( Mk,l; u ), that is 
(we drop superscripts from now on), 

In the following, we adopt (4.3) as the condition number of the root 
~ of (4.1). (Alternatively, we could use (4.2) with q =1 and k = 
(1,2, ... ,n).) 

4.l. Equations in power form. Here, Pk(x) = xk-l, and (4.3) 
assumes the form 

(4.4) 

130



152 Walter Gautschi 

The condition number (4.4) is easily seen to be invariant under 
scaling of the independent variable by an arbitrary complex num
ber. Denoting the zeros of p(x) by ~ 1 , ~ 2 , ••• , ~n' additional insight 
may be provided by estimating the condition of one of these, ~"' in 
terms of all of them. A result in this vein is the inequality (Gautschi 
[131) 

2 Ii ( l + ~II ]- l 
II= l . ~J' 
II* p. . 

cond ~JL ~ -------

0 1- ~" 
" == L ~JL 
"*P. 

(4.5) 

in which equality holds precisely when all zeros ~~~ are located on· a 
half-ray through the origin. A similar inequality, resp. equality, 
holds if the zeros are pairwise symmetric with respect to the origin. 
Note that the bound in (4.5), like the condition number itself, is 
invariant with respect to scaling. 

We illustrate (4.5) by several examples, beginning with the well
known example due to Wilkinson of a severely ill-conditioned 
equation. 

EXAMPLE 4.1 (Wilkinson [38), p. 4lf0; ~~~ = P, P = 1,2, ... , n. 

This is a root configuration for which (4.5) holds with ettuality 
sign. There follows, by a simple computation, 

d t (p.+n)!-p.np.! con ~ = ...:...:.-_~__:_-'---
" l.t! 2(n-p.H ' 

p.=l,2, ... ,n. 

An asymptotic analysis for large n will show (Gautschi (13)) that 
the worst conditioned root is the one near nffi =.1011. .. n. (For 
n = 20, the case considered by Wilkinson, the distinction goes to 
~14 = 14.) Its condition number grows ex;ponentially, 

1 (fi+l).n max cond ~P. - . . , 
l~~t~n 1T(2-{i)n fi -1 

n-.oo. (4.6) 
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The best conditioned root is ~ 1 = 1, with a condition number that 
grows very slowly, 

n -oo. (4.7) 

It is instructive to observe what happens if one of the coefficients 

"* m 
n -n (X- P) = Xn + UnXn-1 + ... + Ul' 

v=l 

say the coefficient uko• k 0 = [(n + 3)/2], is continuously perturbed, 

uk (t)=(l+t}uk, 
0 0 

all other coefficients being held constant. The resulting motion of 
the rootst is shown in Figure 4.1 for n = 10, e = 8 X 10- 7, and in 
Figure 4.2 for the ten "most active" roots in the case n = 20, 
e= 7x10- 14(!). Initially, of course, the zeros are all confined to 
move along the real axis. Not before long, however, a number of 
them will collide, each time branching off into pairs of conjugate 
complex: roots. When n = 10, there are three collisions within 0 .(: t 
.(: E, occurring at t1 = 1.02567 X 10-7, t 2 = 1.53420 X 10- 7, and t 3 = 
7.21568xl0- 7, and one further collision (not shown in Figure 4.1) 
at t 4 = 1.17328 X 10-4• These are the only collisions in 0 .(: t ~ I, as 
far as we could determine. For n = 20, there are five collisions 
within 0 ~ t ~ e, at approximately t1 = 4.0 X lo-ts, t 2 = 5.4x 10 -•s, 
t 3 =8.9Xl0- 15, t4 =2.75Xl0- 14, t 5 =6.25Xl0- 14, and several 
more later on (e.g., at t6 = l.Ol x 10-12, t1 = 1.67 x 10- 12 ). 

The behavior in Figures 4.1 and 4.2 may be viewed as an 
elementary example of a bifurcation phenomenon (catastrophe 
theory, if you will), the special feature here being the almost 
infinitesimal time scale on which the phenomenon takes place. 

t The graphs were obtained by numerical integration of the differential equations 
satisfied by ~.(t), v = 1,2, ... , n. The exact instances of collision were determined by 
finding the !-zeros or the resultant of p and p'. The graphs after each collision 
represent the absolute values of the conjugate complex roots produced by the 
collision. 
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z•fiiO• 

10~-----------------------

9 r---......._ _______ _ 
.~ 

1'"" r---------------------6v 

3+-------------------------
2+-------------------------

FIG. 4.l. Root paths for Example 4.1, n = 10. 

•or---------
9~---------------

-.- ~~~~--~~--
1•10" .. 7•10"" t 

flG. 4.2. Root paths for Example4J, n = 20. 
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EXAMPLE 4.2 (Wilkinson [38), p. 44ff): t. = 2-", P =1,2, ... , n. 

The roots ~~~ accumulate rapidly near the origin, which at first 
might suggest that they become more and more ill-conditioned. In 
reality, however, they are all quite well-conditioned. This can be 
seen from the inequality 

1+ t 
~I' 

cond ~,. < 2 [1 ---
:;~ 1- ~, 

~p 

n 

(4.8) 

which follows at once from ( 4.5 ), and which in the case at hand 
yields 

00 (1+2-")2 
cond ~,. < 2 }}1 l- 2 _, = 136.32 .... (4.9) 

The condition is thus bounded by a relatively small number (as 
condition numbers go), uniformly in n. 

Since the bound in ( 4.8) is invariant with respect to reciprocation, 
the same result holds for the roots t = 2", v = 1, 2, ... , n. 

EXAMPLE 4.3 (Roots of unity): ~~~ = e 2fTivfn, v = 1,2, ... , n. 

Since p(x) = xn -1, Equation (4.4) gives at once 

1 
cond~ =-

" n , 
p.=l,2, ... ,n. (4.10) 

AU roots are equally well-conditioned, the condition in fact getting 
better with increasing degree! The example, of course, is quite 
trivial, and (4.10) is just another way of saying that (1 + e)lfn -1-
ejnase--.0. 
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4.2. Equations expressed in tenns of orthogonal polynomials. 
We now assume that the equation is written in the form 

n 

p(x) =0, p(x)=.,Ax)+ L Uk'1Tk_ 1(x), (4.11) 
k=l 

where { .,, } is a set of orthogonal polynomials. It is to be noted that 
the normalization in (4.11) is such that p(x) and '1Tn(x) have the 
same leading coefficient, if expressed in powers of x. The condition 
number of any (simple) root g of (4.11) is 

(4.12) 

It is easily seen that cond ~ does not depend on the particular 
way the orthogonal polynomials .,, are normalized. Note, however, 
again, that changing the normalization of .,n also changes p, 
according to the normalization of the equation adopted in (4.11). 

An easy lower bound can be had by noting that 

n n 

L luk1Tk-L(~)I~ L Uk1Tk-1(~) =lwn{E)j. 
k=l k=l 

Thus, 

(4.13) 

For an tipper bound we could apply Schwarz' inequality to the sum 
in (4.12), but the result is not particularly revealing. It appears 
difficult, indeed, to extract from (4.12) much detailed information 
concerning the qualitative behavior of the condition of~. We may 
note, however, that there are three factors which influence its 
magnitude: (i) the magnitude of the Fourier coefficients. uk of p; 
(ii) the magnitude of the orthogonal polynomials wk evaluated at 
the root t (iii) the magnitude of ~p'a). Since orthogonal poly
nomials grow rapidly outside their interval of orthogonality, it 
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seems imperative, in view of (i) and (ii), that the interval of 
orthogonality be selected so as to contain ~. if ~ is real. 

It is quite possible that equations that are ill-conditioned in 
power form become well-conditioned when expanded in ortho
gonal polynomials, and vice versa. We can see this already by 
reexamining the examples discussed previously. We begin with 
Wilkinson's example, whose roots we now scale to be enclosed in 
the interval (0, 1). As we have noted earlier, such a scaling does not 
affect the condition of the roots, if the equation is in power form. 

EXAMPLE 4.1': t_ =II jn, v = 1,2, ... , n. 

The condition number (4.12) can be computed for various (classi
cal) polynomials ( vr} orthogonal on (0, 1 ). It turns out that the 
Chebyshev polynomials of the second kind perform best (in the 
sense of making max,...cond ~,... smallest). Some numerical results are 
shown in the second column of Table 4.1. They are contrasted in 

. the third column with the analogous condition numbers for the 
equation in power form (see Example 4.1). The improvement is 
clearly significant. We remark, nevertheless, that the condition still 
grows exponentially with n (though at a moderate rate), as can be 
deduced from the inequality ( 4.13); if n is even, e.g., one finds 

(n/4)" 1 · n 
max cond ~P. ~ ( ) 2 - - ( e /2) , 

11 n/2 ! vn 
n-+ oo. 

TABLE4.l 

maxcond~,. 
p. 

n Example 4.l' Example4.1 

5 .. 1.85 5.87Xl02 

10 2.64x101 2.32xto6 

15 6.35 X202 l.05x1010 

20 1.40Xl04 5.40Xl013 

The condition of the roots in Examples 4.1' and 
4.1. 
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EXAMPLE4.2': t,=2·2-", v=l,2, ... ,n. 

All orthogonal (on [0, 1)) polynomials { wr} tried on this example 
led to condition numbers that grow extremely rapidly with n. For 
the "best" of these, the Chebyshev polynomials of the first kind, 
the results are shown in the second column of Table 4.2. The third 
column again contains the condition numbers of the same roots for 
the equation in power form. The contrast is striking! 

It is not difficult to identify the culprit in Example 4.2': it is the 
derivative of p at ~"' which becomes extremely small as " ap
proaches n. Indeed, if p is normalized to have leading coefficient 
one, p(x) = xn + ···,one finds for"= n that 

l l: '( t > I .28879 
s, P ~n - 2n(n -l)/2 ' n -oo. 

The Fourier coefficients uk in (4.12), although reasonably small (of 
order 10-3 ), are no match for this kind of decay! In the case of the 
power basis, the small denominator l~nP'an>l in (4.4) is neutralized 
by an equally small numerator, 

~ tk- 1 2.3842 . 
1-J jukSn 1- 2(n+l)(n-2)/2' 

k = l 
n -oo. 

EXAMPLE 4.3': ~~~ = e 2";" /n, J1 = 1, 2, ... , n. 

TABLE4.2 

maxcond~" ,. 
n Example 4.2' Example4.2 

5 5.03Xl01 4.91Xl01 

10 l.44Xl012 1.13 xl0 2 

15 l.l9Xl0 30 l.32xl0 2 

20 3.58xl0 55 l.36Xl0 2 

The condition of the roots in Examples 4.2' and 
4.2 .. 
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The roots of unity, extremely well-conditioned in the power basis 
(Example 4.3), continue to be quite well-conditioned in orthogonal 
bases, provided the interval of orthogonality is reasonably chosen. 
The most natural choice is [ -1, 1), and all (classical) polynomials 
orthogonal on this interval do quite well, yielding condition num
bers ranging from about .5 for n = 5 to about 35 for n = 20. 

Just to show how an unreasonable choice of orthogonality inter
val may turn even the roots of unity into poorly conditioned roots, 
consider the case of Laguerre polynomials (orthogonal on (0, oo )). 
Here, 

(4.14) 

as can be derived from an integral formula for Laguerre polynomi
als (see Buchholz [7), p. 120, Eq. (4/J)). Therefore, from (4.12), one 
gets 

Some numerical values are shown in Table 4.3; they speak for 
themselves! 

TABLE4.3 

n maxcond~" ,_ 

5 3.17Xl0 3 

10 5.45 X 109 

20 9.7lX10 24 

40 L92Xl061 

The condition of the roots of 
unity in the Laguerre poly
nomial basis. 
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-1.0 0 1.0 
fiG. 4.3. Root paths for Example 4J', n = lO. 

The case n = 10 is further illustrated in Figure 4.3, which shows 
the motion of the roots ~11 induced by a multiplication of the single 
coefficient 

[ n + 11 ro= -2- , 

in (4.14) by 1 + t and variation of t from 0 to 10-8. 

5. GENERATION OF ORTHOGONAL POLYNOMlALS. 

Generating orthogonal polynomials is fairly straightforward once 
the three-term recurrence relation, which they are known to satisfy, 
is explicitly available. Such is the case for all classical orthogonal 
polynomials. We are interested here in the more difficult task of 
generating the recurrence relation in cases where it is not explicitly 
known. A related problem is the construction of the Gaussian 
quadrature formulae; we use this connection to discuss the condi
tion of the problem. 
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5.1. Statement of the problem. Let the desired (monic) poly
nomials ( wr} be orthogonal with respect to a nonnegative measure 
da(x) on the real lineR, where a(x) has at least n + l points of 
increase. We assume that the first 2n moments of da exist, 

k = 0, 1,2, . .. ,2n -1. (5.1) 

It is well known that the orthogonal polynomials w, then exist for 
r = 0, 1, ... , n, and satisfy a recurrence relation of the form 

(5.2) 

k=O,l,2, ... ,n-l, 

with real ak and f3k > 0. (/30 is arbitrary, but is conveniently 
defined as /30 =fa da(x).) Associated with (5.2) is the symmetric 
tridiagonal matrix of order n, 

0 

{if; 
J= n (5.3} 

/f1n-1 
0 /f1n-1 an-l 

called Jacobi matrix, whose r th leading principal submatrix has the 
characteristic polynomial '11'1 , r = 1,2, ... , n. Let ~1 , ~2 , ••• , ~n be the 
zeros of wn, hence the eigenvalues of Jn (they are all real and 
simple, as is well known). Let vi= [ v1i, v2i, ... , vnjlr be the nor
malized eigenvector of Jn belonging to the eigenvalue ~i' 

Then (Wilf [37), Ch. 2, Exercise 9, Golub & Welsch [20)) 

n 

lt(x)da(x)= L >-.if(~j)+Rn(f), 
R j=l 

(5.4) 
j=1,2, ... ,n, 
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is the Gaussian quadrature formula associated with the measure da, 
i.e., Rn(f) = 0 for each/ E P2n-t· 

There are classical procedures for generating the Jacobi matrix 
Jn, hence the Gaussian quadrature formula (5.4), from the given 
moments ILk in (5.1). Unfortunately, as will be seen in the next 
subsection, the underlying map is likely to be severely ill-condi
tioned. The moments ILk• indeed, are a poor way of "codifying" the 
measure da. An alternative way is through modified moments, 

k=0,1,2, ... ,2n -1, (5.5) 

where { Pr} is a suitably selected set of polynomials (see Sack & 
Donovan [29.]). We shall assume that the Pr• like the 11r, satisfy a 
recurrence relation of the type 

{ 
p -l ( x) = 0, p0 ( x) =I, · 

Pk+L(x) = (x- ak)Pk(x)-bkPk--L(x), (5.6) 

k = 0, l, 2., ... , 2n -2, 

but now with coefficients ak, bk that are known. For example, { Pr} 
may consist of a set of known (classical) orthogonal polynomials. lf 
aU ak,bk are zero, then Pk(x)=xk, k=O,l,2, ... , and the mod~ 
ified moments reduce to ordinary moments, mk = ILk• k_,= 0, 1, 2, .... 

The problem we wish to consider is the following: Ocyen the 
modified moments mk in (5.5), determine the Jacobi matrix (5.3). 
In particular, this will also determine the orthogonal polynomi:~Js 
{ wr} :=o• by virtue of (5.2), and the associated Gaussian quadrature 
formula, by virtue of (5.4). 

The map in question thus is Kn: R 2" - R 2n which associates to 
the first 2n modified moments mr the 2n recursion coefficients 
ak, ,Bk, k = 0, 1, ... , n -1, for the respective orthogonal polynomi
als: 

(5.7) 
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(Recall that /30 = fR do(x) = m0 .) For the purpose of analyzing the 
condition of the map K,. it is convenient to think of K" as the 
.composition of two maps, 

(5.8) 

where G11 : R 2" ~ R 2 " takes us from the modified moments mr to 
the Gaussian quadrature rule, ' 

(5.9) 

and H11 : R 2 " ~ R 2 " from the Gaussian quadrature rule to the 
recursion cOefficients, 

H,: 'Y ~ p. 

The map H" is usually (but not always) quite well-conditioned, as 
can be inferred from the discussion in Gautschi [16), Section 3.1. 
Here we look only at the map G" which is by far the more critical 
one. We first demonstrate the ill-conditioned character of this map 
when m = p. are ordinary moments (5.1), and then see what can be 
gained from taking m to be modified moments with respect to a 
system of (classical) orthogonal polynomials. 

5.2 Condition of the map G,. in the case of ordinary moments. 
Here m = p., or ak =btl<= 0 in (5.6). For definiteness we assume 
do(x) supported on the interval (0, 1] and normalized such that 
p.0 = l. The Jacobian matrix of the map G" in (5.9) is easily seen to 
be the invers~ of a confluent Vandermonde matrix in the nodes ~1 , 

multiplied (from: the left) by the inverse of the diagonal matrix 
diag(l, ... , 1, A1, •.. , >-. 11 ). Using two-sided estimates of the (uniform) 
norm of inverses of confluent Vandermonde matrices, it is possible 
to prove (Gautschi [10}) that 

(5.10) 

where 1T11 is the (desired) orthogonal polynomial of degree n with 
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respect to the measure do. Since the point -1 is well outside the 
interval of orthogonality [0, 1), it is evident from (5.10) that the 
condition of Gn grows at least exponentially with n. An idea as to 
the numerical value of the growth rate can be had by considering 
the (representative) example 11n = T,*, the "shifted" Chebyshev 
polynomial ofthe first kind. In this case, (5.10) yields 

(J + .;8)2n 
cond (G · "·) > ~-...!:..--

oo n• r 64n2 (5.11) 

The lower bound in (5.11) happens to grow at the same exponential 
rate as the (Turing-) condition number of then X n-f{ilbert matrix! 

5.3 Condition of the map G,. in the_ case of modified moments. 
We assume now that the vector m consists of modified moments 

where { Pk} is a system of (monic) polynomials orthogonal with 
respect to some measure ds ( x ), 

.•. 
' 

The support of ds normally coincides with that of da, btit Reed not 
do so necessarily. The analysis of the condition of the map Gn: m 
-+ y in (5.9) is somewhat simplified if, instead of Gn, one considers 
the map 

(5.12) 

where m is the vector of normalized modified moments, 

m- - d-112m k- k k• 

k =0,1, ... ,2n -1. (5.13) 

143



QUESTIONS Of NUMERICAL CONDITION RELATED TO POLYNOMIALS l65 

The additional diagonal map, Dn: m ___. ih, of course, is quite harm
less as far as the numerical condition is concerned, but makes the 
modified moments independent of the normalization of the poly
nomials Pk· 

The condition of Gn can be estimated rather realistically in terms 
of the fundamental Hermite interpolation polynomials associated 
with the Gaussian nodes ~ 1, ... , ~n. These are the polynomials of 
degree 2n - l, 

·h;(x) = !l{x}[l-2l;(t)(x- ()), 

k;(x) = l}(x)(x -~;), 

satisfying 

h;(~j) =6ij• 

ki( ~j) = 0, 

h;(~j) =0, 

k;(~j) =6,j, 

i = 1,2, ... , n, (5.14) 

i, j = l, 2, ... , n . ( 5 .15) 

Here, 6;i is the Kronecker symbol and /1 in (5.14) are the funda
mental Lagrange interpolation polynomials. Using the Euclidean 
norm 1!-lh, one can show (Gautschi (16), Section 3.3) that 

l/2 

cond2(G.; m).; 1/1~1\1; {L,~, ( hf{x)+ ~;kJ(x)) d<(x)} . 

(5.16) 

It is interesting to note the interplay between the two measures 
do and ds in this formula. Both the integrand and the vector y 
depend solely on the target measure do. lntegration, on the other 
hand, is with respect to the given measure ds, while the vector m 
depends on both measures. To evaluate the integral in (5.16), once 
~i and 'A.j are known, one can use the 2n-point Gaussian quadra
ture rule associated with ds, which produces the integral exactly (up 
to rounding errors). Since ds is usually one of the classical mea
sures, the Gauss formula in question is readily available. 

# The critical quantity in (5.16) is the square root of the integral, 
which in fact represents the Frobenius norm of the Frechet deriva-
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tive of Gn; see Gautschi [16), Section 3.3. This quantity in turn 
depends critically on the behavior of the function 

g.(x) ~ ,t, ( hf(x )+ :~ kJ(x)). (5.17) 

This is a nonnegative polynomial of degree 4n - 2 satisfying, in 
particular, 

j=l,2, ... ,n. (5.18) 

It is useful to classify the nodes ~i into weak nodes and strong 
nodes according as g~'ai> < 0 or g~'(~i) > 0. Near a weak node, the 
function gn is less than l and is likely (but not necessarily so; see 
Example 5.1) to remain below 1 between consecutive weak nodes. 
In contrast, Kn is larger than 1 near a strong node and must peak 
(possibly at very large values) on either side of it. We expect the 
map 011 to be well-conditioned if· the majority of the nodes are 
weak, and the strong nodes, if any, accumulate closely. This is often 
the case when the support of da is a finite interval (see Examples 
5.2 and 5.3). On the other hand, if there are nodes (strong or weak 
ones) which are separated by relatively large gaps, then there is a 
potential danger of Kn shooting up to considerable heights on the 
gaps, giving rise to ill-conditioning.· This kind of predicament is 
likely to occur if the support of da is an infinite interval or if it 
consists of separate intervals. In the former case, the;_,gaps arise 
because of the relatively wide spacing of the absolutely largetonodes 
~i' whereas in the latter case the gaps are the holes between the 
separate support intervals. Note that this all depends solely on the 
measure da. There are other factors depending on the measure ds 
which may also significantly influence the magnitude of condG11 ; 

see, in particular, Examples 5.4 and 5.5. 
A simple computation based on (5.14) and (5.17) shows that 

~ g~'< ~j) = 2/j'( ~j)-6[ ,1( ~j)r + Aj 2 

= 2 I I · 1 (5.19) 
k+jl+j;/+k (~j-~k)(~j-~1) 
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The node ~j is therefore strong or weak depending on whether the 
quantity on the right of (5.19) is positive or negative. Unfor
tunately, little is known concerning this matter, and a detailed 
analysis would seem to provide an interesting and rewarding area 
of research. 

It is known, however, that all Chebyshev nodes ~j = cos {}P 

{}. = (2j -1)'1T/(2n ), j = 1, 2, ... , n (corresponding to the Chebyshev 
} I 

measure da(x) = (1- x 2)- I dx on [ -1, lJ) are indeed weak; 
Gautschi [18}. For measures da that behave similarly to the 
Chebyshev measure, one should expect, therefore, that most, if not 
all, nodes ~j are weak and hence that the map Gn is quite well-con
ditioned; see Example 5.2. 

5.4. An algorithm. A number of algorithms are known for 
carrying out the map Kn in (5.7) from the modified moments mj to 
the recursion coefficients ak, fJk. We describe a particularly simple 
one due, in the form given below, to Wheeler [34), t and in a 
different form, to· Sack & Donovan [29]. The algorithm actually 
goes back to Chebyshev [8] who proposed it in the special case of 
ordinary moments (ak = bk = 0) and discrete measures du. 

We introduce the "mixed moments" 

a kl = 1 'IT k (X) p 1 (X) d (J (X), 
R 

k,l~-1. (5.20) 

and note that by orthogonality, ak1 = 0 fork> I, and 

i 111 (X) d a (X) = 11T k (X ) Xp k _ L (X) d a (X) = (J kk , k ~ 1. 
R R 

The relation ak+ 1 k-L = 0, therefore, together with (5.2), yields 
immediately akk- fJkak-L,k- 1 =0, hence 

Pk= akk , k=1,2,3,.... (5.21) 
(Jk-I,k-l 

(Recall that f10 is set equal to m0.) Similarly, ak+l,k = 0 gives 

f 

111k( x )xpk(x) du(x )- akakk- fJkak_ 1 k = 0, 
R • 

t Equation (3.4) in Wheeler [341 is misprinted; ak> bk should read a1 and b" 
respectively. 
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and using (5.6) in the form 

(5.22) 

yields ak.k+I +(ak- adakk- {Jkak-t,k =0, hence, together with 
(5.21), 

(JOl 
ao =ao + -, 

aoo 
(J (J 

a k-l.k + k.k+l 
ak = k-

(Jk-l.k-1 (Jkk 

The o 's in turn satisfy the recursion 

(5.23) 
k = 1,2,3, .... 

(5.24) 

as follows from (5.2) and (5.22) (where k is replaced by /). To 
construct orthogonal polynomials 11r of degrees r ~ n, we thus have 
the following algorithm. 

Initialization: 

o-L,/=0, /=1,2, ... ,2n-2, 
tJ0 ,1 =m1, 1=0,1, ... ,2n-1, 

ml 
ao=ao+-, 

mo 

Continuation: For k = 1, 2, ... , n - 1 (5.25) 
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The algorithm requires as input (mJ}7,:01 and (ak,bk}i':-02; it 
furnishes ( ak, f3k }k:~, hence the orthogonal polynomials ( 11r }~=o• 
and also, incidentally, the normalizing factors akk = fR1Tt(x).da(x), 
k::;; n -1. The number of multiplications and divisions required is 
3n 2 - n -1, the number of additions, 4n 2 - 3n; the algorithm thus 
involves O(n 2 ) operations altogether. 

The success of the algorithm (5.25), of course, depends on the 
ability to compute all required modified moments m1 accurately 
and reliably. Most frequently, these moments are obtained from 
recurrence relations, judiciously employed, as for example in the 
case of Chebyshev or Gegenbauer moments (Piessens & Branders 
[26), Branders [6), Luke [22}, Lewanowicz [21]). Sometimes they can 
be computed directly in terms of special functions, or in integer 
form ( Gautschi [ 11 ], Examples (ii), (iii), Wheeler & Blumstein (36), 
Blue [l), Gautschi (15], Gatteschi [9]). Still another possibility is to 
use a suitable discretization process (Gautschi [16), Section 2.5). 

5.5 Examples. We begin with a measure of discrete type, 
already considered by Chebyshev [8). 

EXAMPLE 5.1: da(x)=(ljN)l:.f::l~(x-kjN)., where~(·) is the 
Dirac delta function. 

The associated N orthogonal polynomials 110 , 111, ••• , 11 N _ 1 are 
explicitly known. There is no need, therefore, to carry out maps 
such as Gn in (5.9). Nevertheless, we briefly consider the condition 
of this map in order to explain an interesting phenomenon observed 
previously in Gautschi [16], Example 4.1, namely the gradual 
worsening of the condition of Gn as n approaches N. The underly
ing moments are those corresponding to the shifted (monic) 
Legendre polynomials Pk(x) = (k!2/(2k)!)Pk(2x -1), 0 ~ x ~ 1. 

Computation reveals that all_ zeros ~j of 1111 , n::;; N, are weak 
nodes. Yet the condition of Gn deteriorates significantly as n 
approaches N; see Table 5.1. The reason for this can be found in 
the following peculiar behavior of the function gn(x) of (5.17). In 
the central zone of the interval [O,l), gn wiggles ~apidly, always 
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remammg ~ 1. In both end zones, however, gn becomes ~ 1 and 
exhibits spikes of increasing magnitudes as one moves toward the 
endpoints. On the last interval [t,, 1], soon after g~' becomes 
positive, Kn increases rapidly to a global maximum at x = l. The 
behavior is illustrated in Table 5.1, where we show the approximate 
magnitude of the largest spike attained on [~n-t• ~nl (and of a 
similar spike on [~1 .~2 )), as well as max 0 ~x~tgn(x)=gn(l). The 
neighboring spikes to the left of [ ~n _ 1, ~nl (or to the right of 
[~1 • ~2 1) are typically several orders of magnitude smaller. When n 
is relatively small, there may be no spikes at all, which is indicated 
in Table 5.1 by a dash. Also shown are the values of the estimate 
(5.16) of the condition of Gn. It can be seen that the main 
contribution to condGn comes from the two spikes of Kn on [~1 , ~ 2 1 
and (~n-t• ~nJ and from the final upward surge of gn on l~n' 1). The 

· formation of these spikes and their increasing magnitudes as n 
.approaches N is undoubtedly ca~ed by the fact that the nodes ~j 
approach more and more a uniform distribution; they are exactly 
uniformly distributed when n = N. It is well known that interpola
tion polynomials (and those of Hermite are no exception!) are 
prone to violent oscillations in such cases. 

EXAMPLE 5.2: da(x)=((l-k2x 2 )(1-x2 )J- 112 dx 
on [ -1, 1), 0 < k < 1. 

This example also has been considered previously jn Gautschi 
[16], Example 4.4, where the use of Chebyshev moments ~~ found 
to work extremely well. Here we point out that aU nodes ~j of the 

TABLE 5.1 

N n maxg, g,(l) oondG,. N If maxg, g.,(l) condG,. 
{t,_,, {,) {~,.-l,{nJ 

10 5 - 4Xl02 2.5 X 10° 40 15 L4Xl0° 5Xl0 5 2.0X 101 

10 8Xl03 3 X lOll 6.3 X 104 25 9Xl06 3 X lOIS l.3Xl06 
20 5 - 3xl01 7.9xl0- 1 35 3xl0 22 4Xl0 32 5.0xl014 

10 - 1 xto 5 L.9 Xl01 80 lO - sxtot 4.9xto-• 
lS 6X l0 3 3 X 1011 J.ox to• 20 l.2X l0° 2xl0s 6.5 xl0° 
20 3 Xl0 14 4 X 10 23 3.3 x 1010 30 2X 10 3 1 X lOll 3.9Xl0 1 

40 5 - 7 xt0° 6.5x w- 1 40 1 x l010 2 X 1019 4.8Xl07 

LO - 6xl01 LOX 10° so 2X 10 20 3 X 10 30 L7xl0° 

The behavior of gn(x) in Example 5.1 and the condition of Gn 
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n-point Gauss formula for da appear to be weak nodes. This was 
verified numerically for various values of k 2 as close to 1 as 
k 1 =.99, and for values of n as large as n =80. In all cases 
computed, moreover, the function gn was found never to exceed 1 
on ( -1, 1]. No wonder, therefore, that the map Gn is extremely 
well-conditioned! 

EXAMPLE 5.3: do(x) = x«tn(l/x) dx on [0,1), a> -1. 

Here, the modified moments with respect to the shifted Legendre 
polynomials Pk(x) = (k!2/(2k)!)Pk(2x -1) can be obtained ex
plicitly. For example, if a is not an integer, then 

(2/)! 1 { l I ( l 1 )} 
~m,= a+l a+l + k~l a+l+k- a+l-k 

n a+l-k 
X k=l a+l+k' 

I= 0, 1, 2, .... (5.26) 

(Similar formulas hold for integral a; see Blue [1} for a= 0, 
Gautschi [15) for a> 0, and Gatteschi [9J for still more general 
cases.) The appropriate recursion coefficients for { p, } are 

1 
ak=2, k=0,1,2, ... , 

bk= 1 ' k=l,2,3, ... . 
4(4- k- 2 ) 

(5.27) 

With the quantities in (5.26) and (5.27) as input, algorithm (5.25) 
now easily furnishes the recursion coefficients ak, {Jk, 0 ~ k ~ n -1, 
for the orthogonal polynomials with respect to do(x) = 
x« ln(l/ x) dx. For a= - t, and n = 2, 4, 8, ... , 80, and single-preci
sion computation on the CDC 6500 computer (approx:. 14 decimal 
digit accuracy), the mean square errors en(a,,B) = Q:k:Me2(ak)+ 
e2(/lk)J)112, where e(ak), e(Jlk) are the relative errors in the coeffi
cients ak, ,Bk, are shown in the left half of Table 5.2. The right half 
displays the analogous results for the power moments p.1 = (a + l + 
1)-2, and ak = bk = 0, all k. In the first case, all coefficients are 
obtained close to machine precision; attesting not only to the 
extr~mely well-conditioned nature of the problem, but also to the 
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TABU: 5.2 · 

Legendre moments power moments 

tl e,.(a,fJ) e,.(o:,fJ) 

2 9.22 x w- 14 9.92X 10-lS 

4 2.42x to- 13 3.25 X 10 -ll 

8 6.53 x w-u 6.29 x to- 7 

12 L09xl0- 12 1.67 x w- 1 

20 1.29 x w-u 
40 L98 x Lo-u 
80 5.03 x w-u 

Relative errors in the recursion coefficients o:"" fJ k for 
Example 5.3. 

stability of algorithm (5.25). In the second case, all accuracy is lost 
by the· time n reaches 12, which confirms the severely ill-condi
tioned character of the prob~em of generating orthogonal poly
nomials from ordinary moments. 

The underlying condition numbers, specifically the condition of 
the map Hn as computed in Gautschi (16}, Equation (3.8)f and the 
estimates of condGn in (5.16) and of condGn in (5.10), are dis
played in Table 5.3. Recall that Table 5.2 illustrates the accuracy of 
the map Kn = Hn o Gn; see (5.7). The algorithm (5.25) based on 
Legendre moments performs somewhat better than the condition 
numbers of Hn and Gn in Table 5.3 would suggest. For power 
moments, the rapid loss of accuracy evidenced in Tabie 5.2 corre
lates very well (at least for n ~ 12) with the rapid grdwth of the 
condition number of Gn in Table 5.3. 

n 

2 
4 
8 

12 
20 
40 
80 

Legendre moments power moments 
cond H,. condG,. ~ condG,.;;::,: 

2.31 5.58 5.42 
5.31 1.89 X L0 1 4.27XL0 1 

L52 X to 1 6.55 X l0 1 L69Xl09 

2.43 X to1 1.29 X 101 l.06X 1015 

4.56 X 101 2.79X l0 2 7.25x10 26 

L09xl0 2 7.03 X to 2 7.92Xl0 56 

2.54x l0 2 1.66 X l0 3 3.55 X 10ll1 

TABLE 5.3 
Theconditionofthemaps H,,G,. and G11 forExample5.3 
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The gradual (but slow) increase of cond (;n can be ascribed to a 
phenomenon similar to the one observed in Example 5.1, except 
that this time not all nodes ~i are weak, but only about the first 
two-thirds of them (when ordered increasingly). All remaining 
nodes are strong, giving rise to the development of spikes and final 
upward surges as in Example 5.1. The severity of these spikes, 
though, is much less here than shown in Table 5.1. The maximum 
peak is of the order of magnitude l x 10,7 X 10 2, 2 X 104,5 X 105 for 
n == 10, 20, 40, 80, respectively, and the corresponding global maxima 
gil) have orders of magnitude 2 X 104,1 X l06,4x 107 and 1 X 109. 

EXAMPLE 5.4: The half-range Hermite measure da(x) = e-x2 dx 
on [0, oo). 

Tills example illustrates the potential ill-conditioning of the map 
Gn in the case of measures supported on an infinite interval. 
Modified Hermite and Laguerre moments can be readily computed 
from the explicit power representations of the (monic) Hermite and 
Laguerre polynomials. One finds: 

k=O 
' 

" I( " 

= t L: c -1r n i n (i +H. k=2K+l, 
r=O i=r+l i=K-r+l 

0, k = 2rc, 

(5.28) 

and 

k k k!r( r + l) 
mk==(-l)kk!100e-x2Lk(x)dx= (-l) E (-1)' 2 . 

0 · 2 r=O (k-r)!r!2 

'~' (5.29) 

~s expected, the algorithm (5.25), in both cases, loses accuracy 
~ather quickly, but perhaps unexpectedly, the loss is about twice as 
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n 

2 
4 
6 
8 

10 

Walter Gautschi 

TABU 5.4 

Hermite moments Laguerre moments 
condG, £,(a./J) condG, €,.(a.P} 

1.29 x w• 4.06x w- 14 1.21x to1 1.63 X lO-u 
2.11 X 103 J.2sx w-u L35Xl06 1.05X L0- 8 

S.66Xl0s 7.75 X 10 -lO l.30X LOll l.l9xL0- 3 

1.86 X 109 J.J9x w-6 3.12X L016 4.42X 101 

6.76 Xl010 4.28xl0-3 1.42X 1022 -

The condition of G,. in Example 5.4 for modified moments based on 
Hermite and Laguerre polynomials and mean square errors in the 

coefficients ak.Pk• k = 0,1, ... , n- L 

large for Laguerre moments than for Hermite moments. An ex
planation is provided by the respective estimates (5.16) of condG11 

shown in Table 5.4 together with the mean square (relative) error 
£ 11(«,/J) of the ak, f.Jk.t 

The initial nodes ~ i are again weak, as in the previous examples. 
AU remaining nodes are strong and produce the now familiar 
peaking and surge phenomenon on [0, oo). On [- oo,O), gn takes off 
to oo. Even though the Hermite measure ds(x) == e-x1 dx has its 
support on {- oo, oo J and, therefore, also contributes to cond Gn 
through the values ofg11(x) for x < 0, the damping power of e-x2 

is much stronger for large 1x1 ~han the damping power of . e-x for 
large x > 0, which is the reason \\t;y the condition of {in turns out 
to be significantly sm~ller for Hermite moments than foe Jiaguerre 
moments. 

EXAMPLE 5.5: 

. {.!. fx- tl d ( 1) · (1 ) · · l 2 X, X E Od U 3 ,1 , 
da(x)= fT {x(l-x}(t-x){t-x)} 1 

. 0 elsewhere. · ( 5.30) 

tne values of cond G, in the case of Hermite moments, as given in Gautschi [16). 
Table 4.8. are in error; being coftsistently somewhat ·too large. The error is due to an 
incorrectcomputationof llmll.2 using m0 insteadof mo'""'"-lf4m0 • 
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This measure arises in the study of the diatomic linear chain 
(Wheeler [35)) and corresponds to the mass ratio mjM = 1/2, 
where m and M are the masses of the two kinds of particles 
altematin,g along the chain. 

Wheeler [35) applies algorithm (5.25) to generate the associated 
orthogonal polynomials, using two choices of modified moments: 
Chebyshev moments, with . ds( x) = w -l{ x(l - x)) -l/2 dx on (0, l ], 
on the one hand, and modified moments with 

ds(x) = 

{ "lx ~81121 { x(l- x)(x- ~ )( x-; )('. x E (0, t)u{t,l), 

0 . elsewhere, (5.31) 

on the other. He observes exponentially increasing instability (as n 
increases) in the fust case, and perfect stability in the second. An 
explanation of this can be given on the basis of (5.16). 

All zeros ~i of the orthogonal polynomial1Tn associated with do, 
except possibly one, are known to congregate on the two support 
intervals [0, 1/3] and [2/3, 1) (Szego [32), Theorem 3.41.2 and the 
sentence following it). In fact, by symmetry, the "hole" [1/3,2/3) 
contains exactly one zero at x = 1/2, if n is odd, and none, if n is 
even. It was determined numerically that all zeros on the two 
support intervals are weak, and the one at x = 1/2 (if n is odd) is 
strong. The function gn is wiggling on both support intervals, 
remaining ~ 1 there, and shoots up to a large sirigle peak on the 
hole if n is even, and to a twin peak if n is odd. The peak values for 
n = 5, 10,20,40 are approximately 1.4,6.5 X 102,2.4X 108,1.1 x 1020, 

, respectively. In the case of Chebyshev moments, the integral 
.Jlgn(x) ds(x) becomes large with increasing n, since the measure 
ds(x) is supported on the entire interval [0, 1], including the hole 
{1/3,2/3) where gn is large. The condition of (;n therefore gradu
ally deteriorates; the condition numbers for n = 5, 10, 20, 40, in fact, 
fare 7.3Xl0- 1,4.1,1.5Xl03,6.2Xl08, respectively. In contrast, the 
meas~re ds(x) in (5.31) is zero on the hole and thus gives rise to an 
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integral Jolgn(x)ds(x) which is bounded uniformiy in n. Accord
ingly, the condition numbers remain quite small, namely 
1.18, 1.07, 1.07, 1.07, respectively, for n = 5, 10, 20, 40. 

The orthogonal polynomials relative to the measure da in (5.30) 
have since been obtained explicitly (Gautschi [17)). Example 5.5, 
nevertheless, continues to be of interest, as it shows the importance 
of matching the supports of the two measures do and ds m cases 
where do is supported on separate intervals. 
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The Condition of Polynomials in Power Form* 

By Walter Gautschi 

Abstract. A study is made of the numerical condition of the coordinate map Mn which 
associates to each polynomial of degree .;; n - 1 on the compact interval (a, b) the n-vec
tor of its coefficients with respect to the power basis. It is shown that the condition 
number 11Mnii .. IIM;;1n .. increases at an exponential rate if the interval (a, b) is symmet
ric or on one side of the origin, the rate of growth being at least equal to I + .jl. In 
the more difficult case of an asymmetric interval around the origin we obtain upper 
bounds for the condition number which also grow exponentially. 

I. Introduction. Let Mn: Rn --+ Pn-l be the linear map associating to each vec
tor uT = (u1, u2, ... , unJ ERn the polynomial 

n 
p(x) = L u~k~1 E pn-1' 

k=l 
n;;a. 2. 

For any p E Pn_1 we shall write up= M;;1p, where M;;1 is the inverse map of Mn. 
We define the condition of the map Mn, relative to the compact interval {a, b), by 

(LI) 

where the norms are !lull .. = max1.;;k.;;n !ukl (in Rn) and IIPII .. = maxa.;;x.;;b lp(x)l 
(in Pn_1 [a, b)). We are interested in the growth rate of cond .. Mn as n--+ 00, and 
how this growth depends on the particular interval [a, b] chosen. 

The answer is relatively straightforward for symmetric intervals [-w, w] and for 
intervals (a, b) with 0 ~a< b, in which cases the condition number in (1.1) can be 
expressed explicitly in terms of uT (or uT ), where T m denotes the Chebyshev 

n-1 n-2 
polynomial of degree m on the appropriate interval {Theorems 3.1, 3.2). It will follow, 
in particular, that on {-w, w) and [0, w], w > 0, the condition groWs exponentially 
with n, and that the minimum growth occurs precisely when w = I, in which case 
con d .. Mn grows like (I + Vf)n on [-I, 1] and like (1 + Vf)2n on (0, 1]. This 
ought to be contrasted with the linear growth .J2 n for the condition on {-1, I J of 
polynomials represented in terms of Chebyshev polynomials [1). 

For asymmetric intervals [a, b) with, say, a < 0 < b, lal < b, the problem ap
pears to be considerably more complex, and we are no longer able to ascertain the ex
act growth rate of (1.1). Instead, we obtain two upper bounds for cond .. Mn, one 
being asymptotically sharp in the extreme case lal = b, the other in the extreme case 
a= 0 {Theorem 4.1}. 

Received December I, 1977; revised April 17, 1978. 
AMS (MOS) subject classifications (1970). Primary 41AIO; Secondary 65099, 65G05. 
Key words and phrases. Parametrization of polynomials, power basis, numerical condition. 
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344 WALTER GAUTSCHI 

2. Preliminaries on the Coefficients of Chebyshev Polynomials. In the following 

we need estimates for the largest coefficients in Tn(x/w) andT;(x/w), where Tn is the 

Chebyshev polynomial of the first kind and Tn* the .. shifted" Chebyshev polynomial 

r:(x) = TnC2x- I). 
It is well known that 

(2.1) 

where 

c = -Ikn(n-k-1)! (2)n-2k 
k ( ) 2 k!(n - 2k)! w ' 0.;;; k < [n/2]. 

For fixed t, with 0 < t < J.i, we put k = tn, and let n- 00• Using Stirling's formula, 

we fmd 

lc I- n-'h 1 (2)"eng(t) n- oo 

tn 2Viif v't(l - t) (I - 2t) W ' ' 

where 

g(t) = (I - t) In (1 - t) - t In t- (I - 2t) In (1 - 2t) - 2t In(2/w), 0 < t < *· 
From g(O) = 0, g(J.i) =-In (2/w), g'(t) =In [(I - 2t)2w 2/4t(I - t)], it is seen that 

g(t) has a unique maximum on (0, J.i], assumed at 

t ~ 'o ~ t (I -~) · 
Since 

we thus find for the maximum coefficient of Tn(x/w) the asymptotic approximation 

. 1 (I+w2)3f4n_y.(l+~)n 
(2.2) llurn(x/w)ll .. - y'2i w w ' n - oo. 

For w = 1, this gives 

(2.2') 

which agrees with a result attributed to an (anonymous) referee in J. R. Rice {3, p. 304]. 

Since r:(x2 ) = T2n(x), the analogous result for r:(x/w) is readily obtained from 

(2.2) by replacing n by 2n and w by ..jW, 

(2.3) lfu II - _I_ (1 + w)3/4 -1'1 (2 + w + 2v'f+W)" 
r:(xfw) .. 2v; Vw n w , n- oo. 

For w = l, this gives 
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THE CONDITION OF POLYNOMIALS IN POWER FORM 345 

(2.3') 

In Table 2.1 we compare the true values of llur n<xfw)ll .. with their asymptotic approxi
mations in (2.2) for selected values of n and w. 

w n=5 n = 10 n = 20 n=40 

true (2.2) true (2.2) true (2.2) true (2.2) 

10 5.00(-1) 9.36(-1) 1.00 1.09 2.00 2.09 1.06(1) 1.09(1) 

5 1.00 1.11 2.00 2.12 1.06(1) 1.09(1) 4.02(2) 4.11(2) 

2.00(1) 2.46(1) 1.28{3) 1.43(3) 6.55(6) 6.79(6) 2.12(14) 2.17(14) 

.2 5.00(4) 9.65(4) 5.00(9) 7.17(9) 5.00(19) 5.59(19) 5.00(39) 4.82(39) 

.I 1.60(6) 5.82(6) 5.12(12) 1.33(13) 5.24(25) 9.91(25) 5.50(51) 7.72(51) 

TABLE 2.1. The quality of the asymptotic formula (2.2) 

We also note that 

(2.4) lluTn(xfw)lloo ;;;a. lluTn-t<xJw)ll .. , n = I, 2, 3, ... , w ~I, 

where equality holds only for n = 1, w = 1. This follows easily from the three-term 
recurrence relation for Chebyshev polynomials and from the alternating character of the 
coefficients ck in (2.1). The inequality in (2.4) holds for all w "'2, if n is restricted to 
n ;;;a. 2, and it indeed holds for any ftxed w, if n is sufficiently large, as is seen from 
(2.2). 

3. The Condition of Mn for Symmetric Intervals and for Intervals on One Side of 
the Origin. We shall always assume (without loss of generality) that our basic interval 
(a, b) is centered to the right of the origin, so that 0 ~ lal ~b. The Chebyshev poly
nomial T m, adjusted to the interval {a, b), will be denoted by T m (a, b], 

( 2x-a -b) Tm[a,b](x)=Tm b-a , a ..;;x..;; b. 

Relative to any such interval (a, b), the norm of the map Mn is easily seen to be 

b 'I= 1, 
(3.1) 

b = 1. 

More delicate is the determination of IIM;1 11 ... as this amounts to ftnding the norms of 
the linear functionals A.k: p ~ p{k-t)(O)/(k- I)!, p E Pn_1 {a, b), k = 1, 2, ... , n. 
Indeed, 

(3.2) 

While it is known {5, Satz 6.11 J that, for 2 ..;; k < n, the extremal in P n-1 {a, b l for 
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the functional ~k is a Zolotarev polynomial of degree n - 1, it appears difficult, in the 

case of a general interval [a, b], to pinpoint the parameter involved in the Zolotarev 

polynomial, and there may correspond different Zolotarev polynomials to different val· 

ues of k. For these reasons the case of an arbitrary interval will be dealt with by other 

(less sophisticated and cruder) methods in Section 4. 

For symmetric intervals [- w, w], w > 0, on the other hand, the appropriate 

Zolotarev polynomials are known to be the Chebyshev polynomials Tn _1 or Tn _2 ; in

deed, ll~kll .. = IT~~~J)[-w, w](O) + T~~21)[-w, w)(O)If(k- 1)!, k = 1, 2, ... , n, 

n;;;. 2 (5, p. 1671, and therefore, 

max ~~~kl! .. =l!uT (-ww)+T (-ww)lloo· 
t<:k<n n-1 ' n-2 • 

Since Tn [-w, w](x) = T,(x/w), and T m is an even or odd polynomial, depending on 

the parity of m, we thus have, in view of (3.1), (3.2): 

THEOREM 3.1. The condition number (1.1) on [-w, w} is given by 

(3.3) 

where ( w" - 1 )/( w - 1) (here and in the sequel) is to be interpreted as having the value 

nifw=l. 

It follows from (2.2) that for w > l, w = 1, 0 < w < 1, the condition of Mn for 

large n grows, respectively, like (I+ JI + w2)", {I+ .../2)", [{I+ .Jt + w2)/w]" 

(disregarding a factor n± y, and constant factors), so that the growth is smallest, asymp-

totically, when w = l. Selected numerical values of cond Mn are shown in Table 3.1. 

w n=5 n = 10 n = 20 n = 40 

10 1.11(4) J.Il(9) 2.11(19) 1.10(40) 

5 7.81(2) 4.39(6) 2.17(14) 7.74(29) 

4.00(1) 5.76(3) 5.45(7) 3.51(I5) 

.2 6.25(3) 6.25(8) 6.25(18) 6.25(38) 

.I 8.89(4) 2.84(11) 2.91(24) 3.05(50) 

TABLE 3.1. The condition of M, on {-w, w] 

Another special case which can be disposed of similarly is the case of an interval 

[a, b] with 0 ~a< b. Here (see, e.g., (4, p. 93]) ll~kll .. = ITJ~It) [a, b](O)l/(k-1)!, 

and we can state 

by 

(3.4) 

THEOREM 3.2. The condition number (l.l) on [a, b), where 0 ~a< b, is given 

We note that the expression on the right of (3.4), even for an arbitrary interval 

[a, b), is always a lower bound for cond.., Mn, since 
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(3.5) 

To illustrate Theorem 3.2, we consider the interval (0, w), w > 0. Here, 
T11 _ 1 (0, w](x) = T11*_1(x/w), and depending on whether w > 1, w = 1, or 0 < w< 1, 
Eq. (2.3) shows that the condition grows, respectively, like (2 + w + 2v'f+"W)", 
(3 + 2..;2)" and [(2 + w + 2.Jf+(:;")/w] 11 , thus again slowest, asymptotically, when 
w = 1. Selected numerical values are shown in Table 3.2. 

w 

10 

5 

.2 

.1 

n=5 

3.56(4) 

5.00(3) 

1.28(3) 

1.00(5) 

1.42{6) 

n = 10 

4.93(10) 

8.91{8) 

1.12(7) 

3.20(11) 

1.46(14) 

n = 20 n = 40 

1.80(23) 3.27(48) 

3.67(19) 8.47(40) 

7.34(14) 2.16(30) 

6.23(24) 3.02(51) 

1.53{30) 3.27{62) 

TABLE 3.2. The condition of M11 on (0, w] 

4. The Condition of M11 on an Arbitrary Interval. We now wish to make some 
progress towards the more difficult problem of estimating cond .. M11 for an arbitrary 
right-centered interval [a, b], 0 ...;;; lal ...;;; b. We content ourselves with establishing .upper 
bounds for cond .. M11 • (A trivial, but not very useful, lower bound can be had from 
{3.1} and (3.5).) 

Our main tool is the following simple observation. 
LEMMA 4.1. Let sT = [s 1, s2 , ••• , s11 ] be any vector of n distinct nodes in 

[a, b) and V11(s) the co"esponding Vandermonde matrix 

(a...;;; su...;;; b, v = I, 2, ... , n). 

Then 

{4.2) 

Proof. Let 
n 

p(x)= L utxk-1, a:E;;x:E;;b, 
k =l 

be an arbitrary polynomial of degree :E;;n- I. From 
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n 
L s~-tuk = p(sv), v=l,2, ... ,n, 
k=l 

or, equivalently, 

VJ'(s)u = 11', uT = [u1 , u2, ... , un), 11'T = (p(s1 ), p(s2), ••• , p(sn)], 

one gets immediately 

llull .. .;;; llull 1 .;;; II(V;1(s)] Tll 1 1171'11 1 .;;; n11V;'{s)ll .. ll71'11 .. .;;; niiV;1(s)II .. IIPII ... 

hence (4.2). 0 

It is tempting to optimize the bound in (4.2) by minimizing nv;1(s)ll .. over all 

admissible node vectors s. Unfortunately, the corresponding optimal nodes are not 

known explicitly. We expect, however, the Chebyshev points on {a, b) to provide a 

reasonably good alternative. In order to carry out the necessary computations, we need 

the following properties of Vandermonde matrices. 

LEMMA 4.2 (SHIFT PROPERTY). Lett= (t1 , t2 , ..• , tn) T and t -11 = 

[t1 - 11. t 2 - 11 •... , tn - 11] r. Then 

(4.3) 

where Dn = diag(l, 11. 112, ... , 11n-t) and Pn is the initial (n x n)-segment of the Pas

cal triangle, that is 

f1 /12 113 

0 <DI1 (~)112 

(4.4) D;tPnDn = 0 0 <:>11 

0 0 0 

(nX n) 

Proof. It is well known (see, e.g., (2]) that v;'(t) = (uKA], where 

The elements u~" of v;1(t- fl), therefore, are the coefficients of the polynomial 

x+/1-t n n P ( -1) n v = " u (x + 11)p-1 = " u " p x"--111p-;\ 
t - t ~ KP £.. KP £.. A - 1 

V*K K II p=t p=l ;\.=1 

= ~ x"--1 ~ u (p-l),p-A 
£.. £.. KP A- I ,.. • 

;\=I p=;\ 

that is, 

, - ~ (p - l) p-11. 
UKA - £.. UKP A- l f1 . 

p=;\ 

This, written in matrix form, is precisely (4.3). 0 
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In the following two lemmas, 

2v -I 
cos 8", 8" = """2;;--'~~'• v = I, 2, ... , n, 

denote the Chebyshev points on [-1, I). 
LEMMA 4.3. lftu = T cos 8", v =I, 2, ... , n, T > 0, then 

(4.5) nliV,;-1(t)ll .. "' 4(:;;~ 1) (r + I) jrn( ~)I (i = y'=i). 

Proof. From (2, Theorem 5.2) ** one has 

nuv-•(t)ll ..; (r + 1)n I Tii/r)lllv-t(.! ~~~ 
n .. 2(Vl -1) Til) n T 'l .. • 

and from (2, Example 6.2) 

nllv;t (~?II.. "' 3~4 ITil)l. 

LEMMA 4.4. If tv= r(I +cos 8,), v =I, 2, ... , n, T > 0, then 

(4.6) nllv;1(t)ll "' ~ rn(_!_ + 1). 
00 1 + 2T T 

Proof. From [2, Eq. (4.1 ')] one obtains 

(4.7) 
nil v,;-t(t)lf .. ~ ___ T..;.;n,...,.(1_/r_+_I) __ -: 

min p!r + l +cos 8" l' 
l<u<n ~ sin 8, i 

having used IT,.'(cos 8,)1 = n/sin 811• An elementary calculation will show that 

/(8) = 1/T + ~ + COS 8 
SID 8 

has a unique minimum on 0 < 8 < 1r at 8 = 80, where cos 80 = -r/(T + 1). Thus 

min /(8) ~ 1/r + I - r/(r + 1) .! .Ji+2T, 
0<8 <w ..j1 - rlf(r + 1)2 T 

from which (4.6) follows by virtue of (4.7). 0 
Now the Chebyshev points on [a, b] are given by 

a+b b-a b-a (4.8) s, = - 2- + - 2 - cos 8, =a+ - 2- (1 +cos 8"), v =I, 2, ... , n. 

349 

Each of these two representations suggests an application of the shift property in Lem
ma 4.2, the first with t, = T cos 8,, p. =-(a+ b)/2, the second with 111 = r(1 +cos O.J, 
p. = -a, where T = (b - a)/2 in both. Observing also that 

••Theorem 5.2 in (2) is stated for n even; the same theorem, however, also holds' if n is odd. 
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and using Lemmas 4.3 and 4.4 to estimate uv;1(t)ll ... we can easily estimate uv;1(s)ll .. 

for the nodes in (4.8), hence IIM,;-1 11.., by Lemma 4.1, and finally cond.., Mn, using (3.1). 

The result is stated as 
THEOREM 4.1. The condition number (1.1) on [a, b], where 0 .s.;; lal .s.;; b, satis· 

fies the inequality 

(4.9) cond M ~ 33/4 2 + b -a bn -1 (t + b +2 a)n lrn (b2-ia)l• 
"" n 4(Yf- 1) 2 + b +a b- 1 

as well as the inequality 

{4.10) cond .. Mn .s.;; 20 + 1!1:~;1 + b _a ~n _-/ (1 + lal)nrn(b ~a + ~ . 
Theorem 4.1 holds for arbitrary intervals [a, b], subject to lal .s.;; b, but is of in

terest only in the case a .s.;; 0 < b of an interval containing the origin. It will be useful 

to characterize such an interval by its .. degree of asymmetry" 

a= (b + a)/(b -a), 0 .s.;; a .s.;; I, 

and its half-width 
1' = (b - a)/2, 

in terms of which b =(I + a)T, a = -(I - a)T. 

We ftrst examine the extreme cases a = 0 (perfect symmetry) and a = I (perfect 

asymmetry), typified by the intervals [-w, w] and (0, w], w > 0. In the first case, 

by virtue of 

2 jrn(£)1=~~ +J~+wlr+e -~r ~c +~r. n--+oo 

we fmd that the bound in ( 4.9) has the correct exponential growth rate as n --+ 00, 

which can be obtained from (3.3) and (2.2), while the bound in (4.10) grows at alar

ger exponential rate. (We say here that a sequence {en} has exponential growth rate"' 

if lcn+t/cnl- 'Y as n--+ 00.) The reverse is true in the second case, as can be seen 

from 

2Tn (~ + t) = e + w + ;v'f+Wr +e + w -;v'f+Wr 
-(2+w+~~r. n--+oo 

' 

and comparison with (3.4), (2.3). We, therefore, expect (4.9) to be sharper than (4.10) 

if the interval [a, b) is mote nearly symmetric (i.e., a small), and (4.10) better than 

(4.9) for more asymmetric intervals (a close to 1). That this is indeed the case can be 

seen by forming the ratio p of the exponential growth rates in (4.9) and (4.10), and ex

pressing the result in terms of a and 1', 

1 +aT 
P = 1 + (I - a)T A(T), 

' 
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THE CONDITION OF POLYNOMIALS IN POWER FORM 351 

One verifies that A(1) < 1 for all r, with X(O) = X(oo) = 1, so that p < 1 certainly if 
1 + QT < 1 + (1 - Q)r, i.e., Q < ~- Thus, (4.9) is asymptotically sharper than (4.10) 
whenever Q < ~- The condition on Q is best possible for r - 00, but too stringent for 
specific finite values of 1. If 1 = I, e.g., one fmds (4.9) better than (4.10) whenever Q < 
.8216 ... , and as r- 0, (4.9) is always better. 

We illustrate Theorem 4.1 in Figure 4.1, where we plot the exponential growth 
rates of the bounds in ( 4.9) and (4.1 0) for intervals of fiXed half-width r = 1, and asym· 
metries a varying from 0 to 1. (The growth rates are (1 + a)2(1 + ..[f) and 
(I + a)(2 - Q)(2 + y'J), respectively.) The true asymptotic growth rate presumably interpo· 
lates somehow between the boundary values 1 +..{I and 2(2 + y'f) (cf. the dashed 
line in Figure 4.1). 
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FIGURE 4.1. The asymptotic growth rates of the bounds 
in (4.9) and (4.10) for a= -I +a:, b = 1 + Q, 0 or;;;; a: or;;;; l. 
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ABSTRACT 

The condition number (relative to the Frobenius norm) of the n X n matrix 
Pn = [P;- 1(x i)] ~ j= 1 is investigated, where p,( ·) = p,( ·; dA.) are orthogonal polynomi
als with respect to some weight distribution d A., and xi are pairwise distinct real 
numbers. If the nodes xi are the zeros of Pn, the condition number is either expressed, 
or estimated from below and above, in terms of the Christoffel numbers for dA., 
depending on whether the p, are normalized or not. For arbitrary real xi and 
normalized p, a lower bound of the condition number is obtained in terms of the 
Christoffel function evaluated at the nodes. Numerical results are given for minimizing 
the condition number as a function of the nodes for selected classical distributions dA.. 

1. INTRODUCTION 

Let p,( t) = Pit; d A), r = 0, 1, 2, ... , denote a sequence of orthogonal 
polynomials relative to some positive measure dA( t) on the real line. If in the 
Vandermonde matrix the successive powers 1, t, t 2 , ... are replaced by the 
successive orthogonal polynomials p0( t ), p 1( t ), p2( t ), ... , there results the 
matrix 

pn = [:;~;:.i .... ;:.i;:! ..... :: .. ::i.:~i .. ] ' 
Pn-l(xl) Pn-1(x2) · · · Pn-l(xn) 

(1.1) 
*Work supported in part by the National Science Foundation under grant MCS-7927158. 
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which is nonsingular for pairwise distinct nodes xi, x2 , •. • ,xn. We shall 
assume here that all nodes are real. Our interest is in the condition of Pn. We 
find it convenient to consider the condition number 

(1.2) 

with respect to the Frobenius norm IIAIIF = [tr(ATA)]ll2 , or the closely 
related Turing condition number condr(Pn)= n-Icondp(Pn). 

In Section 2 we discuss the case of orthonormal polynomials {p,(·;dA.)} 
and nodes at the zeros ~~n) of Pn· Unnormalized polynomials are considered in 
Section 3, and arbitrary real nodes in Section 4. In Section 5 we comment on 
the problem of minimizing the condition number in (1.2). 

2. ORTHONORMAL POLYNOMIALS-NODES AT ZEROS OF Pn 

THEOREM 2.1. Let p,( · ; d A), r = 0, 1, 2, ... , be the orthonormal poly
nomials with respect to the (positive) measure dA., and x, = ~~n>, v = 1, 2, ... , n, 
the zeros of Pn( ·; dA.). Let furthermore A11 =A.<;>, v = 1,2, ... , n, denote the 
Christoffel numbers for d A.. Then 

(2.1) 

REMARK. If mA(A), mH(A) denote, respectively, the arithmetic and the 
harmonic mean of the (positive) numbers AI, A2 , ••• ,An, the result (2.1) may 
be restated in terms of the Turing condition number as 

(2.1') 

Letting dA. vary, for any fixed positive integer n, over all positive measures 
which admit orthogonal polynomials of degree ~ n, it follows that condr(Pn), 
hence also cond p( Pn ), attains its minimum precisely when A I = A 2 = · · · = An. 
By a classical result [2] this is the case if and only if {Pr( ·; dA. )} are the 
Chebyshev polynomials of the first kind. 
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TABLE 1 
TilE CONDITION OF pn FOR SOME CLASSICAL ORTIIOGONAL POLYNOMIALS 

Chebyshev 
n Legendre 2nd kind Laguerre Hermite 

5 5.362(0) 5.916(0) 2.076(2) 1.373(1) 
10 1.155(1) 1.483(1) 1.005(6) 6.832(2) 
20 2.494(1) 3.924(1) 7.770(13) 3.989(6) 
40 5.367(1) 1.071(2) 1.924(30) 3.699(14) 
80 1.148(2) 2.976(2) 6.607(63) 1.095(31) 

Proof of Theorem 2.1. Let P = Pn and A = diag( A 1, .•• , An). From the 
discrete orthogonality property of orthonormal polynomials, 

if r=s} 
if r=~=s ' 

r,s=0,1, ... ,n-1, 

it follows that P A 112 = Q is an orthogonal matrix. Therefore, 

so that 

IIPII~ = tr(PTP) = tr(A - 1 ), 

IIP- 1 11~ = tr( QAQT) = tr(A). • 
The proof reveals that 1/A, are the squares of the singular values o, of P, 

from which (2.1) follows also on account of 

(2.2) 

The numerical behavior of the condition number in (2.1) is illustrated in 
Table 1 for some classical orthogonal polynomials. (The numbers in parenthe
ses indicate decimal exponents.) 

3. UNNORMALIZED POLYNOMIALS 

For unnormalized orthogonal polynomials there seems to be no result 
comparable in simplicity to (2.1). However, we can prove 
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2 ~ 
THEOREM 3.1. Let d, =fiR p,_ 1(t; dA.)dA.(t), r = 1,2, ... , and An= 

max d r /mind r, where the maximum and minimum are taken over r = 
1,2, ... , n. Then, in the notation of Theorem 2.1, if x" = ~~n>, v = 1, 2, ... , n, 

(3.1) 

Proof. Letting P = Pn and D = diag( d 1, d 2, ... , d n ), we now find that 
v- 112PA112 = Q is orthogonal. Therefore, 

With 

tr( prp) = tr{ A -112QTDQA -1/2)' 

tr( ( p-1) T p-1) = tr( v-1/2QAQrv-l/2). 

where e" is the vth coordinate vector, we thus have 

n n 

( ) 2 " r" " s" condFP = LJ x- LJ d'· 
v=l "v=l " 

(3.2) 

(3.3) 

Since 11Qe"ll 2 = 11Qre"ll2 = 1, the quantities r", s" in (3.2) are Rayleigh quotients 
of D and A, respectively; hence, in particular, 

mindr ~ r" ~ maxdr. (3.4) 
r r 

Furthermore 

n 

L s" = tr{ QAQT) = tr(A). 
v=l 

Therefore, (3.1) follows from (3.3) by replacing r" and d" by the bounds in 
~~ . 
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4. ARBITRARY REAL NODES 

We now consider arbitrary real nodes x,, but assume normalized orthogo
nal polynomials vi· ; d X). We recall the definition of the Christoffel function 
(see, e.g. [ 1 ]): 

Xn(x0 ) = min 1 p2(t) dX(t ), 
pEPn-1 R 
p(x0 ) = l 

or, equivalently, 

n-1 

[An(x)] -l = L pf(x), 
k=O 

(4.1) 

xER. (4.2) 

THEOREM 4.1. Let x1, x2 , ••• ,xn be pairwise distinct real numbers and 
{Pr( ·; dX )} the orthonormal polynomials with respect to the (positive) mea
sure dA. Then 

{4.3) 

Proof Let 

v = 1,2, ... ,n, 

be the fundamental Lagrange interpolation polynomials for the nodes 
x1, x 2 , ••• ,xn, and let 

Then, as is easily seen, 

n 

l,( t) = L a,p.Pp.- 1( t ). 
p.=l 
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Consequently, 

n 1 L z;(t)dA(t)= 1 L L:a,l'pl'_1(t)L:a,l(pl(_l(t)dA(t) 
R11=l R 11 p. K 

and therefore 

n 

IIPn- 1 11~= 1 L: z;(t)dA.(t). 
R,=l 

(4.4) 

Since l, E Pn_ 1 and l,{x 11 )= 1, it follows from (4.1) that 

n 

IIPn- 1 11~ ~ L An(x,). (4.5) 
11=l 

On the other hand, using ( 4.2), 

The assertion ( 4.3) now follows immediately from ( 4.5), ( 4.6). • 

We remark that (4.3) holds with equality if X 11 = ~~n>, v = 1,2, ... ,n, as 
follows from Theorem 2.1 and the fact that An(~~n>) =A<:>, v = 1,2, ... , n. We 
also remark that Theorem 4.1 remains valid, with essentially the same proof, if 
the nodes are complex and An ( · ) is defined as in ( 4.1 ), with p2( t) replaced by 
lp(t)j2. 

5. MINIMIZING THE CONDITION NUMBER 

An interesting problem is to determine the optimally conditioned matrix 
Pn for any fixed measure d A, i.e. to find the nodes x 1, x 2 , ..• , x n which 
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minimize the condition number cond F( Pn) over all pairwise distinct real 
nodes. We report here on attempts to solve this problem numerically. 

Recall from (2.2) that 

where m i a 2 ), m H( a 2 ) are, respectively, the arithmetic and the harmonic 
mean of the squares of the singular values a" of Pn. It follows that cond p( Pn) 
~ n, so that the smallest possible condition number (attained for the 
Chebyshev measure and Chebyshev nodes; cf. Remark to Theorem 2.1) is 
equal to .n. 

Assuming normalized polynomials Pr( ·; dA), the condition number 
cond p( Pn ), or rather its square, can be written explicitly as the product of the 
two expressions in (4.4) and (4.6). Both expressions, including their gradients, 
can be computed fairly easily, the integral in (4.4) and similar integrals 
involved in the gradient being evaluated (exactly) by the n-point Gauss
Christoffel quadrature rule associated with the measure dA.. Using this 
computation in conjunction with a minimization algorithm, for which we 
selected the procedures in [3], we were able to obtain the results shown in 
Tables 2 and 3. Although only local extrema can be found in this manner, the 
closeness of the minimum to the absolute minimum n in some of the examples 
suggests that the results are indeed optimal to within the precision given. 

In Table 2 we show the "optimal" nodes and the minimum condition 
number for Legendre polynomials ( d A( t) = dt on [ - 1, 1 ]). Table 3 displays 
only the optimal condition number (without nodes) for some of the other 

n 

2 
5 

10 

TABLE2 
OPTIMALLY CONDITIONED MATRIX pn FOR LEGENDRE POLYNOMIALS 

±.5773502692 
±.8780893894 
±.5336883454 

.0 
± .9610897501 
±.8560330091 
±.6772857139 
± .4346101969 
± .1497603704 

2.0 
5.229550605 

11.01832471 

n 

20 ±.9885188046 
±.9585058326 
±.9083037137 
±.8372548421 
±.7462848447 
±.6372598211 
±.5126743680 
±.3755003472 
±.2290741509 
±.0769922707 

23.46822182 
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TABLE3 
OPTIMAL CONDITION OF pn FOR SOME CLASSICAL 

ORTHOGONAL POLYNOMIALS 

Chebyshev 
n 2nd kind Laguerre Hermite 

2 2.0 2.0 2.0 
5 5.544624008 2.106683223(1) 8.393706126 

10 1.295377448(1) 1.340933671(3) 8.275431133(1) 
20 3.240814863(1) < 6.4040073(6) 7.476911820(3) 

classical polynomials. In the case n = 20 of Laguerre polynomials the minimi
zation algorithm could not be made to converge within a reasonable amount 
of time. Interestingly, some of the nodes in the Laguerre case turn out to be 
negative. 

For n = 2 it can be shown by direct computation that the optimal 
condition always equals condp(P2)= 2, and that the optimal nodes are the 
zeros ~ 1, ~ 2 of p2( • ; d A}, provided the measure d A is "symmetric" in the sense 
f R t dA( t) = f R t 3 dA( t) = 0. In the Laguerre case, the optimal nodes are 
x1 = 0, x2 = 2. 
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Summary. We derive lower bounds for the co-condition number of then x n
Vandermonde matrix V,.(x) in the cases where the node vector xT = 
[x1, x 2, ... , xnJ has positive elements or real elements located symmetrically 
with respect to the origin. The bounds obtained grow exponentially in n, 
with 0(2n) and 0(2nl2), respectively. We also compute the optimal spectral 
condition numbers of V,.(x) for the two node configurations (including the 
optimal nodes) and compare them with the bounds obtained. 

Subject Classifications: AMS (MOS): 15A12, 49D15, 65F35; CR: 01.3, 01.6. 

1.1. Introduction 

The condition of Vandermonde matrices 

1 1 1 

V,.(x) = 
Xt Xz 

n-1 
Xl 

n-1 
Xz 

where the nodes xv are real or complex numbers, and the related question 
of estimating the norm of [Vn(x)] - 1 have been studied in [2-5]. In [ 4] we 
considered the problem of minimizing the condition number 

(1.2) 

where p= co, over all positive node vectors xER~, or all real symmetric node 
vectors xER't, xv + xn+ 1 _v =0 (v = 1, 2, ... , n). We managed to obtain certain 
necessary conditions for optimality, computed optimal node configurations for 

* Dedicated to the memory of James H. Wilkinson 
** Supported, in part, by the National Science Foundation under grant CCR-8704404 
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n = 2 and n = 3 in the case of positive nodes, and for 2 ~ n ~ 6 in the case of 
symmetric nodes, but did not address the question of how fast 

K,,p=infK,,p(x) (1.3) 
X 

grows with n (when p = oo ). While the exact growth rate is still unknown, we 
now derive lower bounds for K,, oo which show that the growth of K,, oo is expo
nential, namely at least 0(2") and 0(2"12) in the two respective cases. We also 
compute K,, 2 for 2~n 10 in the former, and for 2~n~ 16 in the latter case, 
and depict the optimal nodes graphically. 

We first recall from [4] some key formulas that will be needed. In the case 
of nonnegative nodes 

we have 

where 
" 

g,(x)= L x~-1' 
p.=1 

v=l, 2, ... , n. 

For real symmetric nodes 

x.+x,+t-v=O, v=1,2, ... , n, 

xl >x2 > ... >xin/21>0 

(note that x<n+ t)/2 =0 if n is odd), we have 

K, 00 (X) max{!!..,fn(x)}· max J,.(x), 
' 2 11i:v1i:[(n+l)/2] ' 

where 
[n/2] 

fn(x)= L x:- 1
, 

p. 1 

v= 1, 2, ... , n/2 (neven), 

(n- l)/2 ( 1 ) 
!n,(n+ 1)/2(x) 2 n 1 +2 ' 

.u=l XI' 

(n odd). 

(1.4) 

(1.5) 

(1.6) 

(1. 7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 
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Empty products in (1.11), (1.12), when n=2 or n=3, are understood to have 
the value 1. 

2. Positive Nodes 

Although the following Theorem 2.1 will subsequently be sharpened, we state 
and prove it here because of its simplicity and elementary proof. 

Theorem 2.1. Let K 11 , oo be the infimum in (1.3) (for p = oo) taken over all nonnegative 
nodes (1.4). Then, for n f'; 2, 

2n-1 
Kn. oo > · (2.1) 

Proof The optimal point is known to be finite (cf. the remarks preceding Theo
rem 3.1 of [ 4]). Letting 

Ec= {xE1R": e=x1 >x2 > ... >Xn f';O}, 

it suffices therefore to show that 

K 11,oc(x)>2"-1, all XEEc, all e>O. (2.2) 

At the heart of the proof is the elementary observation that 

inf 1 + u = 1 + _!_ 
O~v<u~C U-V e' (2.3) 

where the infimum is attained for u=e, v=O. 
Assume first e>L Since, by (1.6), g11(x)f';C"- 1 for xEEc, we have from 

(1.5), (1. 7) 
n-1 1 

K (x) Z en- 1 g (x) = en- 1 n + n., oo - n,n 
JL=1 Xp-Xn 

>en-1. r"n-1 1+ >e" 1 "n-1 . f l+u _ m _. m 
- Ec JL=l XJL-X11 - w=l o~v<u~c u-v 

e~~- 1 
( 1 + ~r-

1 

where (2.3) has been used to evaluate the last infimum. Similarly, if e;;,; 1, 

if nf';2. 0 

We now improve upon Theorem 2.1 by establishing the following 

Theorem 2.2. Let K 11 , 00 be as in Theorem 2.1, Then, for n f'; 2, 

{ ( 
1)-1/(n-l)}n-1 

K 11 , 00 f';(n-1) 1+ 1-- . 
n 

(2.4) 
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In particular, 

(2.5) 

Proof By Theorems 5.2 and 5.3 of [4], if x=a is a minimum point of K 11 , 00 (x), 
then 

n- 1 

an=O, g"(a)= I a~- 1 =n, (2.6} 
p.~1 

and, by (1.5), 

In particular, therefore, 

(2.7) 

To get a lower bound, we minimize the product in (2.7) subject to the constraint 
in (2.6) (thereby changing the meaning of the variables a11). Using Lagrange 
multipliers, we obtain the necessary conditions 

+A.(n l)a~- 2 =0, v=l,2, ... ,n-1, 

or, equivalently, 

This implies a 1 = a2 = ... = a11 _ 1 =a, hence, by (2.6), 

(n-l)a"- 1=n, a=(t-~rl/(n-
1

). 

Substituting in (2.7) gives 

(
1 +a)n-1 

K,.,w(x)~n -a- , 

which is (2.4). The corollary (2.5) is an immediate consequence of (2.4). D 

Expanding the lower bound in (2.4) in powers of n- 1
, we can also write 

> 2"-1(1 1 -1 1 -2 1 -3 19 -4 ) Kn,oo=n· --,:n --gn +TOn +mn + ... , n~2. (2.4') 

The five terms shown provide an accuracy of about 2 correct significant decimal 
digits when n = 2, and 7 correct digits when n = 16. 
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3. Symmetric Nodes 

Since the infimum of Kn, 00 (x) over all xe1Rn is attained at a symmetric node 
configuration, if it is unique (see [4, Thm. 3.1]), the study of symmetric nodes 
is particularly appropriate. We have, in this case, results analogous to those 
in Theorems 2.1 and 2.2. Since the proofs are similar, we try to be brief. 

Theorem 3.1. Let Kn, oo be the infimum in (1.3) (for p= oo) taken over all nodes 
satisfying ( 1.8). Then, for n ~ 2, 

If n > 2, then (3.1) holds with strict inequality. 

Proof. We now let 

and consider first the case n even. If C > 1, then by (1.9Hl.ll), 

and thus, by (2.3), 

Likewise, for C ~ 1, if n ~ 4, 

For n=2 one has K2, 00 (X)~2 (see [4, Eq. (4.1)]). 
Consider now n(~3) odd. Then, for C> l, by (1.9), (1.10), and (1.12), 

and, for C ~ 1, 

(3.1) 

182



246 W. Gautschi and G. Inglese 

Theorem 3.2. Let Kn, <XJ be as in Theorem 3.1. Then, for n;?; 4, 

In particular, 

{ ( 
2) 2/(n-l)}(n- 2)/2 

(n-2) 1+ 1-- , 
n 

(n-3) 1+ 1-- , { ( 
3)- 2/(n- l)}(n- 3)/2 

n 

n even, 
nodd. 

Proof. By [ 4, Thm. 3.3], if x =a is a minimum point, then 

where 

and 

Kn, <XJ (x);?;!!.. max f,. 11 (a), 
2 l~v~[(n+l)/2] ' 

[n/2] 
'\' n-1 
L., aP 

II 1 

n 

2 

We assume first n(~4) even. Then, by (3.4), 

n even, 

nodd. 

n n( l )(n/2)-1 l+a2 n (n/2)-1 1+ 
K11,ro(x);?;-

2
fn,n;2(a)=

2 
1+- n 2 ~ >-

2
·2· n 

an/2 11=1 af.J,-all/2 f.J,=l 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

We have used here an12 ~ 1, which must certainly hold if (3.5) is to be true. 
We now minimize the last product in (3.6), subject to 

(n/2)-1 n 
'\' n-1 n-1 
L. all =-2 -an/2 . 
~t=l 

(3.7) 

(We may assume here that an12 >0 is fixed.) Using Lagrange multipliers, we 
get 

or, equivalently, 

which implies a 1 = a 2 = ... = a<nf2> 1 =a:. By (3. 7), 

n 
v=1,2, ... ,

2 
1, 

n 
v=l,2, ... , 2-1, 
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hence 

( 

2)-1/(n-1} 
ex< 1-- . 

n 
Therefore, by (3.6), 

{ ( 

2)-2/(n-l)}(n-2)/2 
1+ 1--

(

1+ex2)(n-2}/2 n 
K >n· -- >n · -----------

n,CX) !X2 (n n 2)(n-2)/(11-1) , 

which, by increasing the denominator to n/(n- 2), yields the first inequality 
in (3.2). 

Assuming now n(~5) odd, we have 

( )>!!_·!. ( _!!_ 1 +a<, 1)/2 <n-1n>l2-1 1+a; 
Kn,CXJ X = 2 n,(n-1)/2 a)- 2 2 a2 2 

a(n-1){2 p.= 1 J!. a(n- 1)/2 

n (n-1)/2-1 1+a; 
>-·2· n ~2~. 

2 p;=l a~' 

(3.8) 

We are led to the same problem as before, namely to minimize the last product 
in (3.8) subject to 

(n 1)2-1 
"\' n-1 
L... a~' 

n n-l 

2 -a(n 1)/2· 

We find a 1 =a2 = ... =a1,_ 3 >12 =r:L, with 

( 

3)-1/(11-l) 
ex< 1-- , 

n 
hence, by (3.8), 

{ ( 
3)- 2/(n- l)}(n- 3)/2 

1+ 1--

(
1 +CL2)(n-3)/2 n 

K (x)>n· -- >n·----------
n, 

00 

ll2 (-n-)(n- 3)/(n 1) 

n-3 

>(n- 3){ 1 +( l-~) -2/(n~lJn-3)/2. O 

For n = 2 and n= 3, we have trivially K 2, CX) = 2, K3, CX) = 5 ([4, Eqs. (4.1), (4.2)]). 
We can write (3.2), in expanded form, as 

n (even)~4, (3_2,) 
n (odd)~5. 

The accuracy provided by the five terms shown is about 3 correct significant 
decimal digits, when n=4, and increases to 6 correct digits for n 15. 
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4. Numerical Results 

In order to assess the quality of the bounds obtained, it would be desirable 
to compute the optimum condition number Kn, oo numerically. This would require 
the solution of nonlinearly constrained optimization problems [4, Eqs. (3.13), 
(5.10)] or nonlinear programming problems [4, Eqs. (3.15), (5.12)]. Since, at this 
time, there seems to be no easy access to reliable software in this area, we 
decided to minimize the spectral condition number, 

K (x) = cond V. (x) = o-dV,.(x)) 
n,2 2 n un(V,.(x)), (4.1) 

where o-,=o-v(J~), u1 >u2 > ... >o-11 , are the singular values of V,.. This requires 
only unconstrained optimization and singular value decomposition, for which 
there exists standard software. Having found K 11 , 2 = inf Kn. 2 (x), we can use the 
inequality 

1 
(4.2) 

to get a lower bound for K11 , w Indeed, if K11 , 00 =cond 00 V,.(a) and K11 , 2 

cond2 V,.(b), then, since IIAII 2 ~Vn11AIIoo (see, e.g., [6, Eq.(2.2~14)]), we get 
K11, 2 =cond2 V,.{b)<cond2 V,.(a)~n cond 00 V,.(a)=nKn, 00 • In the case of nonnega
tive nodes, we make the usual substitution 

where a", b" are lower and upper bounds for x", in order to reduce the problem 
to an unconstrained problem in the variables tv. In our case, av=O, and we 
took for b,. variously b"=2, 2.5, and 3. Using the IMSL routine ZXMIN (cf. 
[7, pp. ZXMIN 1-4]) for minimization (with initial approximations tv= vnf 
(2 n + 2), v = 1, 2, ... , n), and the EISPACK routine SVD (cf. [1, p. 265]) for 
singular value decomposition, to compute K.,, 2 , we obtained for the lower bound 
in (4.2) the results in the second column of Table 1. (The computation was 
done in single precision on the CDC 6500. Integers in parentheses denote deci
mal exponents.) The routine ZXMIN, for n beyond 10, was unable to produce 
reliable answers. In the third column of Table 1 we show the lower bounds 

Table 1. Lower bounds for Kn,oo in (4.2) and Theorem 2.2 for n=2(1)10 

n (4.2) Theorem 2.2 n (4.2) Theorem 2.2 

6 3.715 (2) 1.754 (2) 
2 1.207 3.000 7 1.812 (3) 4.150 (2) 
3 4.250 9.899 8 9.062 (3) 9.582 (2) 
4 1.764 (1) 2.781 (l) 9 4.621 (4) 2.173 (3) 
5 7.892 (1) 7.167 (1) 10 2.393 (5) 4.858 (3) 
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computed from Theorem 2.2, Eq. (2.4). It can be seen that the bound from Theo
rem 2.2 is competitive with the one from (4.2) for about n ~ 5, but then gradually 
weakens. Both bounds should be compared for n = 2 and n = 3 with the values 
K2, 00 = 3, K 3, oo = 12.708 computed in [4, Sect. 5]. 

The optimal nodes, as computed for the spectral norm, were found to have 
Xn = 0. The positive nodes are depicted in Fig. 1, where the largest, second-largest, 
etc. are connected by straight lines for visual effect. 

In the case of symmetric nodes, we used the same routines as above, with 
the Chebyshev nodes on [ -1, 1] as initial approximations. The results are shown 
in the second column of Table 2. We compare them in the third column with 
the lower bounds computed from Theorem 3.2, Eq. (3.2). In this case it was 
possible to go as far as n= 16. Again, the bound in (3.2) is competitive with 
the one from (4.2) for about n~ 10, but then slowly deteriorates. Note also 
from [ 4, Sect. 4] that K 2 , oo = 2, K 3, 00 = 5, K 4, oo = 11.776, K 5, oo = 21.456, and 
K6, 00 =51.330. 

The nonnegative optimal nodes in the symmetric case are shown graphically 
in Fig. 2. 

Table 2. Lower bounds for Kn,co in (4.2) and Theorem 3.2 for n=2(1)16 

n (4.2) Theorem 3.2 n (4.2) Theorem 3.2 

9 4.644 (1) 5.610 (1) 
2 0.500 10 9.607 (1) 1.415 (2) 
3 1.049 11 2.119 (2) 1.457 (2) 
4 1.465 5.175 12 4.522 (2) 3.479 (2) 
5 2.904 5.162 13 1.012 (3) 3.574 (2) 
6 5.216 1.894 (1) 14 2.204 (3) 8.250 (2) 
7 1.092 {1) 1.945 (1) 15 4.986 (3) 8.457 (2) 
8 2.149 (1) 5.444 (1) 16 1.102 (4) 1.908 (3) 
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Interestingly, the same results were obtained if the initial approximations 
were chosen to be nonsymmetric, for example the Chebyshev points on [0, 1]. 
(Since the routine takes considerably longer to converge in this case, we verified 
this only for 2 ~ n ~ 10.) This seems to indicate that the optimally conditioned 
Vandermonde matrix (in the spectral norm) indeed has symmetric nodes. 
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How (Un)stable Are Vandermonde Systems? 

Walter Gautschi Professor, Department of Computer Sciences, 
Purdue University, West Lafayette, Indiana 

ABSTRACT. Results on the condition number of Vandermonde type matrices obtained 
during the last 25 years are reviewed. Equal emphasis is given to real and complex nodes. 
Recent work dealing with nodes placed sequentially on circular and elliptic contours in the com
plex plane receives special attention. 

I. INTRODUCTION 

Many problems in applied and numerical analysis eventually boil down to solving large 
systems of linear algebraic equations. Since the matrices and right-hand sides of such 
systems are typically the result of (sometimes extensive) computations, they are subject 
to an unavoidable level of noise caused by the rounding errors committed during their 
generation. It is then a matter of practical concern trying to estimate the effect of such 
uncertainties upon the solution of the system. 

A common answer - and one which we shall adopt in the sequel - concerning any 
nonsingular system 

Ax = b, det A :t 0, (1.1) 

is to compute (or estimate) the condition number 

cond A= IIA II · I lA -Ill (1.2) 

of the system, where I 1- I I denotes a suitable matrix norm. Norms, for matrices 

Work supported, in part, by the National Science Foundation under grant CCR-8704404. 

189



194 Gautschi 

A= [aiJ], that will be used here are the oo- norm, 

I lA II~= max _Lia;il, (1.3) 
I j 

the Euclidean (or spectral) norm, 

(1.4) 

where pO denotes spectral radius, and the Frobenius norm, 

II A I IF= ~M~ =-vI) a;1 1
2 (1.5) 

l,j 

If E:x = I I ox l I I I I x l I is the relative error in the solution x of (1.1 ), caused by relative 
errors eA= lloAII/liAII, eb= llobll/llbll in the system, then the condition 
number in (1.2) indicates how much larger E:x is compared to £A and eb, that is, roughly 
speaking, 

(1.6) 

It always seemed important to us that the conditioning of matrices be investigated 
for many special classes of matrices. In this spirit, we began, 25 years ago, to take up 
the class of Vandermonde matrices. The original motivation came from unpleasant 
experiences with the computation of Gauss type quadrature rules from the moments of 
the underlying weight function. The sensitivity of the problem then indeed depends on 
the condition of certain (confluent) Vandermonde matrices with real nodes. Since then, 
we have intermittently looked at the conditioning of such matrices, considering not only 
real, but also complex nodes, and have enlarged the class of matrices by including 
Vandermonde-like matrices involving polynomial systems other than the system of 
powers. Here we present a brief survey of results obtained over the years, including 
also some original material (in Sections IV, V and VI). 

To establish terminology and notation, we call a Vandermonde matrix a matrix of 
the form 

n-l 
Zt 

Z; E ([, n > l, (1.7) 

where z; are pairwise distinct real or complex numbers called the nodes. More gen
erally, a Vandermonde-like matrix, with nodes z;, is a matrix of the form 
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PI (zl) 
v = I 

Po(zl) 

n Pn-:(z,) 
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(1.8) 

where {pd is a system of linearly independent polynomials. often with Pk E Pk. the 
class of polynomials of degree k. Such matrices (or their transposed) are encountered, 
for example, when one deals with polynomial interpolation or with interpolatory 
approximation of linear functionals (see, e.g., (l ]). the form (1.7) or (1.8) occurring 
depending on the choice of basis elements in polynomial spaces. Vandermonde systems 
with matrix ( 1.7) are also an important ingredient in Remes · algorithm for constructing 
best uniform polynomial approximations. 

A brief outline of the paper is as follows. Sections II-IV are devoted to ordinary 
Vandermonde matrices Vn, (1.7). We begin in Section II with some basic inequalities 
for I I v;;- 1 I I w These are then applied in Section III to obtain estimates for the condi
tion number cond~ Vn for certain real node configurations. The bottom line here is that 
Vn is ill-conditioned when all nodes are real. Indeed, the condition number, in many 
cases (and perhaps always), grows exponentially with the order n of the matrix. The 
scenario changes drastically if one allows complex nodes. The roots of unity, for exam
ple, give rise to perfectly conditioned Vandermonde matrices. Other sequences of nodes 
on the unit circle are studied in Section IV. Some. like the Vander Corput sequence, 
perform nearly as well, and do so in a linear sequential, rather than triangular, fashion. 
Others. like "quasi-cyclic" sequences, do much worse. The remaining two sections 
discuss Vandermonde-like matrices with the polynomials Pk in (1.8) chosen to be 
orthogonal polynomials. In Section V we consider special real, as well as arbitrary 
complex nodes, in Section VI nodes placed sequentially on elliptic contours in the com
plex plane, and a Chebyshev system of polynomials Pk· 

II. A BASIC £NEQUALITY FOR INVERSES OF VANDERMONDE MATRICES 

The inversion of a linear system with the Vandermonde matrix (1.7) as coefficient 
matrix can be easily described in terms of the elementary Lagrange interpolation poly
nomials 

A= 1,2, ... , n, 

associated with the nodes z 1, z 2 , .•. , zn. Indeed, if we expand t1.. in powers of z, 

n 

e~..(z) = L Uf..fJ-Zf!-l, 

f!=l 

(2.1) 

(2.2) 
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the inversion is accomplished by multiplying the 11th equation by u"-1-1' 11= 1,2, ... , n, 
and adding up the results. In view of e~,.(zv) = bt..v (the Kronecker delta), this will 
express the A.th unknown linearly in terms of the right-hand members of the system. 
Hence, 

Combining (2.1) and (2.2) yields 

V;l = (u"-1-1]1 st..s n · 

IS~-tSn 

n 

UJ..l +uuz + ·· · +u~..nz"- 1 =1tt.. f1 (z -z!-1), 
!1=1 

!!"'"-
where 

Therefore, we have the alternative representation 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where o~ denotes the mth elementary symmetric function in the n-1 variables z11 with 
z 1 removed. 

Theorem 2.1. For arbitrary Zv E <C, with Zv -:1- z11 ifv -:1-j.l, there holds 

where V, is the matrix in (1.7). The upper bound is attained if zl-l = lzl!lei8 , 
J1. = 1, 2, . . . , n,for some faed e E R. 

Proof (Sketch). The upper bound in (2.7), and the statement about equality, fol
low from (2.6) and from a simple fact (see the Lemma in (7, p.ll8]) about elementary 

n 
symmetric functions Om = <Jm (x 1, ... , x,) in n variables, name! y that L I crm I ~ 

m=O n 
f1 (1 + l xv I), with equality precisely if all xv lie on the same ray through the origin. 

v=l 

For the lower bound we use the fact that 

n n 

L I a 11 1 ~ I a, I f1 max (1, I ~v I) 
!1=0 v=l 

(2.8) 

holds for any polynomial p (z) = a0 +a 1 z + · · · + a,z", a, ;t: 0, having the zeros ~ 1 , 

192



How (Un)stable are Vandermonde Systems? 197 

~2 ••.. , ~n• with equality if and only if p(z) = anzn. This is a simple consequence of 
Jensen's formula (see [lO, §2]). Applying (2.8) to the polynomial (of degree n-l) in 
(2.4) then easily yields the lower bound in (2.7); see again [lO] for details. D 

III. REAL NODES 

An important case in which equality holds for the upper bound in (2.7) is when all 
nodes are nonnegative, z v = x v ~ 0. Then, letting 

n 

Pn(z) = n (z- Xv) 
V=l 

denote the node polynomial. we can write (2.7) in the form 

lp,.(-1)1 
I IV;;- 1 11~ = --------

min{(1 + Xv) lp~(xv) I} 
v 

(3.1) 

(3.2) 

The techniques used in the first part of the proof of Theorem 2.1 can be adapted (cf. [8, 
Theorem 4.3]) to also deal with the case of real nodes located symmetrically with 
respect to the origin: Xv E R with Xv + Xn+l-v = 0 for v = 1,2, ... , n. In place of 
(3.2), one obtains 

min 
x, <: 0 

(Xv+Xn+l--v=O, XvE R). (3.3) 

Since for given nodes xv the norm I I Vn I I~ is easily calculated, the results (3.2), (3.3) 
allow us to evaluate the condition number cond~ Vn exactly in the respective cases. For 
example, if lxv I ::; 1 for all v, then 

(3.4) 

We illustrate (3.2)-(3.4) with a number of examples, ordered in decreasing sever
ity of ill-conditioning. 

Example 3.1. Harmonic nodes Xv = l/v, v = 1,2, ... , n. 

Here, an easy calculation gives lpn(-1) I = n+l. and letting Ov = 
(1 + Xv) I p~(xv) 1, one finds 
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s;. = (v + l)!(n - v)! , 
Vv v = 1,2, ... , n. 

vnn! 

There follows 

• s;. s: n+l 
mm Vv sun = -- . 

v nn 

(Actually, this holds wilh strict inequality, for n > 2, as can be shown by a more 
detailed analysis). Consequently, by (3.4) and (3.2), 

(3.5) 

Note that the condition number in (3.5) grows more rapidly than n!, which is far worse 
than the condition of lhe notorious Hilbert matrix, which grows "only" exponentially! 

_ _ v-1 
Example 3.2. EqUidistant nodes on [0,1]: xv = --, v = 1,2, ... , n. 

n-1 
Defining 0v as in the previous example, an elementary computation gives 

1 
(-1) 

1 
= (2n - 2)! Ov (n+v-2)(v-l)!(n-v)! 

Pn (n-l)!(n-lt-1 ' = (n-lt 

Putting v = Kn, 0 < K < l, and studying 81C/1 for n ----+ oo, reveals that, asymptotically, 
010t is a minimum when K = T' and (:)+ n -1t en (2e)-n as n ----+ =. Combining this in 

Eq. (3.2) with the asymptotic expression for lpn(-1)1, obtained by Stirling's formula, 
and noting that I I Vn I I~ = n, yields 

cond V - ..J2 · 8 n 
~ n 41t , n -4 co_ (3.6) 

We are now down to exponential growth, but expect that the rate of growth can 
still be reduced by placing the nodes symmetrically with respect to the origin. This is 
confirmed in the next example. 

Example 3.3. Equidistant nodes on [-1,1], Xv = 1-
2
(v-l), v = 1,2, ... , n. 
n-1 

Here we use (3.3). An asymptotic analysis similar to the one in the previous 
example, but more involved, shows that [8, Example 6.1] 

l -..!.n; n(..!.n:+..!.in2) 
cond~ V n - - e 4 e 4 2 

, n ----+ =. (3.7) 
1t 

Note that the exponential growth rate is now exp ( t 1t + T ln 2) = 3.1017 . . . , 
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compared to 8 in the asymmetric case of Example 3.2. 
Can we do better if we take the Chebyshev nodes in (-1,1)? 

Example 3.4. Chebyshev nodes xv = cos((2v- l)n:/2n), v = 1,2, ... , n. 
Applying (3.3), one can prove [8, Example 6.2] that 

199 

(3.8) 

Here the growth rate l + {f = 2.4142 ... is indeed smaller than for equally spaced 
symmetric nodes, but not by a whole lot. 

Seeing the condition of Vn continually improving through the series of examples 
above, one cannot help wondering whether there is an optimal set of real nodes 
xT = fx 1 ,x2 , ... , Xnl (say, with x 1 > x 2 > · · · > xn), and if so, what they are and 
what optimal growth rate of cond~ Vn they produce as n ~ oo. As far as the existence 
of the optimum is concerned, the answer is easily seen to be affirmative (cf. [9]). We 
even conjecture (but have no proof as yet) that the optimal nodes are unique, subject to 
the above ordering. If this were true, it would follow [9, Theorem 3.1] that the optimal 
node configuration is symmetric with respect to the origin. Seen in this light, the recent 
result [14, Theorem 3.1] 

cond~Vn > Y 12 (n > 2, Xv symmetric) (3.9) 

is of interest, since it shows that, accepting the above conjecture, the condition of Van
dermonde matrices grows exponentially for any set of real nodes. Nevertheless, the 
growth rate indicated in (3.9) is not believed to be sharp, and the search for the optimal 
growth rate remains an interesting open problem. There is a result analogous to (3.9) 
for arbitrary positive nodes, namely [ 14, Theorem 2.1] 

cond~ Vn > 2n-l (n > 1, Xv 2 0). (3.10) 

Both bounds in (3.9) and (3.10) can be slightly sharpened (cf. Theorems 3.2 and 2.2, 
respectively, in [14]). 

IV. COMPLEX NODES 

The fact that real nodes lead to ill-conditioned Vandermonde matrices is not surprising 
if one considers that powers constitute, as is well known, a poor basis for polynomial 
approximation on the real line; see, e.g., the discussion of near linear dependence in [3, 
pp. 119-120], or of the conditioning of the power basis in [11). In contrast, replacing 
the powers by Chebyshev polynomials, and considering the corresponding 
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Vandermonde-like matrices (1.8), can lead to perfectly conditioned matrices if one 
chooses the (real) nodes appropriately; cf. Section V below. 

Now it so happens that the powers are indeed "Chebyshev polynomials" on any 
disc in the complex plane centered at the origin, in the sense of deviating least from 
zero (in the uniform norm on the disc, or on the circumference of the disc) among all 
monic polynomials of the same degree. Therefore, one expects better conditioning of 
ordinary Vandermonde matrices if one allows the nodes zv to be complex. 

If we measure the condition in the Euclidean norm (1.4), and consider for simpli
city the unit disc, then the nth roots of unity indeed minimize cond2 Vn; in fact, 

cond2 Vn = I if Zv = z~n) = ei(v-l)21t/n' v = 1,2, ... ' fl. (4.1) 

This is an easy consequence of the orthogonality of trigonometric functions. The roots 
of unity, therefore, would seem to be an ideal choice for work on the unit disc, if it 
weren't for the fact that they form a triangular array of nodes, i.e., for each n, as indi
cated in (4.1), there are n distinct nodes z5n) which change as n is increased by 1. In 
applications to interpolation and quadrature, this would require that the function to be 
interpolated, or integrated, be obtained on a two-dimensional set of points. It is an 
interesting question to ask how well one can do with a linear array of nodes on the unit 
circle. 

One naive answer to this is to first note that the set of kth roots of unity, for k 
even, contains as subset the (k/2)th roots of unity. We may therefore generate a linear 
sequence of nodes by adjoining to the 2k-I th roots of unity every other 2kth root of 
unity, going around the circle in the positive direction, and doing this for 
k = 1,2,3, .... More precisely, if 

(4.2) 

for some k ~ 1, then 

Zj = 1, Zv = e2lti(2(v-2H}-1)/2'_ (4.3) 

We call this sequence, for lack of a better word, the quasi-cyclic sequence on the circle. 
(Such sequences have been used by Eiennann, Niethammer and Varga [4, p. 522] in the 
context of semiiterative methods for systems of linear algebraic equations.) With this 
choice of nodes, whenever n is a power of 2, the corresponding V andermonde matrix Vn 
is perfectly conditioned, but otherwise, there is a chance, especially for large n, that the 
condition may deteriorate significantly. The bounds in Theorem 2.1, unfortunately, are 
too far apart to give much useful inf01mation. We therefore computed the condition 
number for Vn numerically, using, as seems natural on the circle, the Euclidean matrix 
norm (1.4). The results for cond2 Vn are depicted on a logarithmic scale in Figure 4.1 
for 3::; n ::; 64. As expected, the condition number shoots up to considerable heights 
between two successive (large) powers of 2. 
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FIG. 4.1 The condition ofVandermonde matrices (1.7)/or 
n=3(1)64 with nodes taken from the quasi-cyclic sequence (4.3). 
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FIG. 4.2 The condition ofVandermonde matrices (1.7)/or 
n=3(1)64 with nodes taken from the Vander Corput sequence (4.6). 
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How, then, can we avoid these large peaks? More specifically, for an integer n 
satisfying 2k-l < n < 2k, in which order should we adjoin the set of 2k-l th roots of 
unity by alternate 2kth roots of unity such that max cond2 Vn is minimized? We 

2'-1 < n < 2• 

don't know the solution to this problem, but a good candidate for an optimal (or nearly 
optimal) node sequence is obtained as follows. 

For any integer v ~ 0, written in binary form 

V=Lcpi, VjE{0,1}, 
j=O 

define the fraction c v E [0, 1) by 

= 
- ~ 2-j-1 

Cv- Li Vj . 
j=O 

(4.4) 

(4.5) 

The sequence { c v} ;=O is known as the Van der Corput sequence. We then take as 
nodes 

2rricv--1 
Zv = e , V = 1,2,3, .... (4.6) 

(Such nodes were used to good advantage by Fischer and Reichel [5, p. 228] in connec
tion with the Richardson iteration method; see also Fischer and Reichel [6], Reichel and 
Opfer [17].) It is easily seen that for n = 2k-l the set {zv: v = 1,2, ... , n} consists of 
all the nth roots of unity, just like in the quasi-cyclic case. For values of n between 
2k-l and 2k, however, the nodes (4.6) are picked in a zigzag manner from the 2kth roots 
of unity, rather than cyclically around the circle as in (4.3). This achieves a more 
evenly distributed set of nodes, and one can hope that the condition number cond2 Vn 
remains correspondingly smaller. This is indeed confirmed by a computation for 
3 :s;; n :s;; 64, the results of which are summarized in Figure 4.2. (A similar picture, 
extended through n = 148, has previously been published by Reichel and Opfer 
[17].) Further computations [15] reveal a rather astonishing pattern for the eigen
values and eigenspaces of the matrix Vn v:f - a Hermitian Toeplitz matrix - which 
served as an inspiration for the work in [2]. There, it is proved, in particular, that all 
eigenvalues of Vn V;! are powers of 2, the largest, Arnax, always being equal to 
Arnax = 2k, and the smallest, Arnin = i, where e = 0 if n is odd, and 0 < e $ k otherwise. 
There follows 

(4.7) 

with equality on the left holding for every odd n. The various "levels" exhibited in 
Figure 4.2 thus have heights 2k12

, k = 2,3,4, . . . . Comparison of Figures 4.2 and 4.1 
clearly illustrates the significant improvement achieved by the Vander Corput sequence 
over the quasi-cyclic sequence. Similar phenomena on ellipses (and also on intervals) 
will be discussed in Section VL 
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V. VANDERMONDE-LIKE MATRICES INVOLVING ORTHOGONAL POLYNO
MIALS 

As obseiVed at the beginning of Section IV, the choice of orthogonal polynomials as 
bases in problems of approximation on the real line leads to Vandermonde-like matrices 
(1.8) which can be expected to have better condition than ordinary Vandermonde 
matrices. It is the purpose of this section to study the condition of such matrices in the 
case where 

Pk(z) = Pk(z; da), k = 0, 1,2, ... , (5.1) 

are orthonormal polynomials with respect to some (positive) measure da on the real 
line, 

r = s, 
r :F s. (5.2) 

In most applications, the nodes zv are real and contained in the support of da, 

Zv = Xv E R, Xv E supp da. (5.3) 

A choice that appears particularly natural is that of the zeros of p,( ·; da), 

Xv = x~n), p,(xv; da) = 0, V = 1,2, ... , n. (5.4) 

In this case the condition condpV" of V, (in the Frobenius norm (1.5)) can be expressed 
very simply in terms of Christoffel numbers Yv = y~"l(da) belonging to the measure da, 
i.e., in terms of the weights in the Gauss-Christoffel qt>~adrature formula 

{ f(x)da(x) = I_ y~")f(x~")) + R,(f), R,(Pz,-d = 0 (5.5) 
V=! 

(As is well known, y~") > 0 for v = 1,2, ... , n.) Indeed, we have 

Theorem 5.1. The condition of V, in (1.8), where Pk are the orthonormal polyno
mials (5.1), (5.2) and the nodes Xv given by (5.4), equals 

[ l
'/z 

n n 1 
condp V, = L Yv L - , 

v=l V=l Yv 
(5.6) 

where Yv = y~")(da) are the Christoffel numbers of da, and the norm used in (5.6) is 
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the Frobenius norm 11·1 lp in (1.5). 

The proof rests on the fact that lly~n) are the squares of the singular values of Vn, 
which in tum is a consequence of the discrete orthogonality property of orthogonal 
polynomials (cf. [12]). Note also that condpVn 2: n for any set of positive numbers Yv· 

Our first example is the analogue of the example involving the roots of unity, in 
the sense that it achieves optimality. 

Example 5.1. The Chebyshev measure dcr(x) = (l-x2)-'lzdx on [-1, 1]. 

Here, the Christoffel numbers y~n) are all equal to TC/n. Indeed, the Chebyshev 
measure is the only measure for which this is true for all n. (There are other measures, 
however, for which equality of Christoffel numbers holds for selected values of n; see, 
e.g., [13, §6], [16]). It then follows from (5.6) that condpVn = n, i.e., Vn is optimally 
conditioned. 

Nevertheless, optimality is achieved at a price: a triangular array of nodes (just 
like earlier with roots of unity). We will show in Section VI how one can find a linear 
array of nodes that also produces well-conditioned matrices Vn, (1.8). 

Not much worse than the Chebyshev measure are those of Legendre and Che
byshev of the second kind. 

Example 5.2. dcr(x) = dx and dcr(x) = (l-x2 )'/2dx on [-1, 1]. 

Here one computes from (5.6) the following condition numbers for selected values 
of n: 

TABLE 1 The condition ofVandermonde-like matrices 
for Legendre and 2nd-kind Chebyshev polynomials 

(Numbers in parentheses indicate decimal exponents.) 

n Legendre 

5 5.362(0) 
10 Ll55(1) 
20 2.494(1) 
40 5.367(1) 
80 1.148(2) 

Chebyshev 2nd kind 

5.916(0) 
1.483(1) 
3.924(1) 
1.071(2) 
2.976(2) 

In stark contrast, Laguerre and Hermite polynomials give rise to extremely ill
conditioned matrices Vn, for example, condpV 40 = 1.924(30) and 3.699(14) in the two 
respective cases. This is due to the presence of very small Christoffel numbers. 

If z v are arbitrary complex nodes, one can prove a result similar to, but weaker 
than, (5.6); it involves the Christoffel function, rather than Christoffel numbers. We 
recall that the Christoffel function (for some measure dcr) is defined by 

Yn(z 0 ;do)= min { lp(x)l 2dcr(x), z0 E<f, 
p E IP._, 
p(z 0 ) = 1 

(5.7) 
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where the minimum is over all complex: polynomials of degree s; n-1 taking on the 
value I at z0 . Alternatively, 

n-1 

[Yn(z;da)r 1 = L lpk(z;da)l 2 

k={) 

In place of (5.6) we then have [12] 

(5.7') 

(5.8) 

To prove (5.8), and at the same time give a version of (5.8) involving equality, 
one must first of all invert the matrix Vn in (1.8). This can be done similarly as in Sec
tion II for powers by expanding the fundamental Lagrange polynomial (2.1) not in 
powers, as in (2.2), but in the orthogonal polynomials Pk(z) = Pk(z ;da), 

n 
lv(z) = L, av11p 11_, (z), V = 1,2, ... , n. 

!i=l 

Then as before, one finds 

Now 

V - 1 --A A [ ] n , = avli . 

{._ L llv(x)l 2da(x) =-'_ L, L, av11P 11-1(x) L, av/,.PA.-1(x)da(x) 
v=l v 11 A. 

= L L av11i:lvA. .{ P 11-1 (x)p~,._, (x)da(x) 
v Jl.A 

on account of the orthononnality of the Pk· Consequently, 

On the other hand, 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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which, on account of (5.7'), gives 

(5.13) 

The assertion (5.8) now follows by multiplying the two expressions in (5.ll) and (5.13) 
and observing that 

by (5.7), sincetv E P,._l and lv(Zv) = 1. 

We note, however, that the product of (5.11) and (5.12) is exactly equal to 
condpV,., and can easily be computed, at least for conventional measures dcr, the first 
factor by Gaussian quadrature and the other by recurrence. 

Analogous results can be derived, in essentially the same way, for orthogonal 
polynomials {pk( · ;dcr)} that are not normalized (for example, for monic polynomials). 
Letting 

d} = { p}(x ;d(J)d(J(x), k = 0, 1,2, ... , (5.14) 

and denoting D = diag(d0 ,d1 , ... , dn_1 ), the appropriate matrix norm to be used is 
then 

(5.15) 

(which clearly satisfies all the axioms of a matrix norm, including submultiplicativity, 
I lAB IIF,D $ IIA IIF,D liB IIF,D ). In place of(5.11), one obtains 

(5.16) 

and (5.12) must be modified to read 

(5.17) 

The condition condF,D Vn is then again computable as the product of (5.16) and (5.17), 
and can be estimated from below by 

202



How (Un)stable are Vandermonde Systems? 207 

(5.18) 

For onhononnal polynomials, we have D = l, and the results (5.16)-(5.18) reduce to 
(5.11), (5.12) and (5.8). 

VI. V ANDERMONDE-LIKE MATRICES INVOLVING CHEBYSHEV POL YNO
MIALS ON ELLIPSES 

We have noted in Section IV that the powers are "Chebyshev polynomials" (i.e., monic 
polynomials of minimum unifonn nonn) on the disc. It is similarly known that the 
(monic) polynomials 

po(z) = 1, k = 1,2, ... (0 < p :s; 1), (6.1) 

where Tk denotes the Chebyshev polynomial of the first kind, are the "Chebyshev poly
nomials" on the ellipse CP with boundary given by 

(6.2) 

if 0 < p < I, and on the interval [-2,2] (the limit of (6.2) as p ~ 1), when p = I; cf. 
[17]. (The ellipse Cp is scaled so as to have capacity 1.) This suggests the study of 
Vandennonde-like matrices (1.8) with polynomials Pk given by (6.1) and nodes located 
on the elliptic contour (6.2), either in quasi-cyclic order, or in the order detennined by 
the Vander Corput sequence. Thus, in the fonner case, with v given as in (4.2), and 
assuming 0 < p < I, 

and in the latter case, 

2rricv-t -2rricv-l 
Zv = e + pe , (6.4) 

where { c v} :;:0 is the Vander Corput sequence (4.4), (4.5). In the limit case p=l, these 
fonnulae have to be slightly modified, since we do not want to run back and forth 
through the imerval [-2,2]. We then assume, in the quasi-cyclic case, 

1 + zk-l < v :s; 2k + 1 ( k ;:::: l), (6.5) 
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32 
(a) 

32 
(c) 

LOe06 
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l.OeOO 

64 4 8 16 
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l.Oe05 

LOeOO 

64 4 8 16 

FIG. 6.1 The condition of Vandermonde-like matrices (1.8) for 
n=3(1)64 involving "Chebyshev polynomials" on the ellipse eP and 

nodes taken from the quasi-cyclic sequence (6.3) resp. (6.3 1). 
(a) p = .25 (b) p = .5 (c) p = .75 (d) p = 1. 

and define 

/ 

32 
(b) 

32 
(d) 

Gautschi 

64 

64 

z1 =-2,' z2 =2, zv=2cos7t(2(v-2k-t)-3)12k, V=3,4,... (6.3 1) 

in the case of the Van der Corput sequence. we let 

z 1 =-2, Zv+l =2cos(1tcv_1), V= 1,2,3, .... 

204



How (Un)stable are Vandermonde Systems? 

lO 

16 
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(a) 

64 4 8 16 32 
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320 
32 
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16 
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4 8 16 32 64 4 8 16 32 
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FIG. 6.2 The condition ofVandermonde-like matrices (1.8)/or 
n=3(1)64 involving "Chebyshev polynomials" on the ellipse C:p and 
nodes taken from the Vander Corput sequence (6.4) resp. (6.41). 

(a) p = .25 (b) p = .5 (c) p = .75 (d) p = 1. 

(d) 
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64 

64 

We computed cond2 Vn for 3::; n::; 64 in the case of ellipses eP with p = 
.25(.25).75 (for the case p=O, see Section IV), and for the segment (-2,2] (i.e., the case 
p=l). The results are shown graphically, on a logarithmic scale, in Figure 6.1 for nodes 
given by (6.3) [resp. (6.3 1)], and in Figure 6.2, on a linear scale, for the nodes (6.4) 
[resp. (6.41)]. As can be seen, Van der Corput sequences again perform significantly 
better than quasi-cyclic sequences. The condition, in fact, is known to grow at most 
polynomially inn, if 0 s p < I, and at most like n°{logn) if p = 1; cf. [17, Section 3]. 
In the case of quasi-cyclic sequences, when 0 < p < 1, it is interesting to observe two 
large peaks between successive powers of 2, in contrast to the cases p=O and p=l, 
which exhibit only one (a surprisingly large one when p=l). 
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Summary. We study Vandermonde matrices whose nodes are given by a Vander 
Corput sequence on the unit circle. Our primary interest is in the singular values 
of these matrices and the respective (spectral) condition numbers. Detailed 
information about multiplicities and eigenvectors, however, is also obtained. 
Two applications are given to the theory of polynomials. 

Subject Classifications: AMS(MOS): 15A12, 15A18; CR: G1.3. 

1 Introduction 

Vandermonde matrices have a reputation of being ill-conditioned. This reputation 
is well deserved for Vandermonde matrices whose nodes are all real, in which case 
the condition number is expected to grow exponentially with the order of the matrix. 
(Exponential growth of the oo-condition number has recently been proved [2] in the 
case of positive nodes, as well as for nodes located symmetrically with respect to the 
origin. The same is likely to hold for arbitrary real nodes, since the nodes of 
optimally conditioned Vandermonde matrices are conjectured to have the above 
symmetry property.) The situation changes drastically, however, if one allows 
complex nodes. For example, taking the nth roots of unity as nodes in an (n x n)
Vandermonde matrix yields optimal (spectral) condition number 1 for each n [1, 

* Research of A. C. supported by the Fundacion Andes, Chile, and by the German Academic 
Exchange Service (DAAD), Federal Republic of Germany 
** Research ofW.G. supported, in part, by the National Science Foundation, USA, (Grant 
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(FONDECYT), Chile, (Grant237f89), by the Universidad Tecnica F. Santa MarBa, ValparaBso, 
Chile, (Grant 89.12.06), and by the German Academic Exchange Service (DAAD), Federal 
Republic of Germany 
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Example 6.4]. On the other hand, the roots of unity form a triangular array of 
points, which in applications- for example, polynomial interpolation or quadra
ture- may be inconvenient inasmuch as it requires that the function to be inter
polated, resp. integrated, be evaluated on a two-dimensional array of points. Re
stricting oneself to linear sequences of points, and placing them all on the unit circle, 
gives rise to the following interesting question: To what extent is the well-condition
ing of the respective Vandermonde matrices maintained? Intuitively, one expects 
well-conditioning if each segment of the sequence is as equally distributed on the 
circle as possible. A well-known sequence having such a property is the Vander 
Corput sequence; see e. g. [3, p. 127]. Our objective, then, is to study Vandermonde 
matrices whose nodes are the initial points of a Vander Corput sequence on the unit 
circle. The strikingly regular pattern of the singular values of such matrices, as 
exemplified by Fig. 4.1.1 in [4], has greatly stimulated our interest in this problem. 

Given the integer v ~ 0 in its binary representation 

define the fraction 

00 

v=l: v12i, viE{0,1}, 
j=O 

00 

Cv= L vj2-j-l. 

j=O 

The sequence { C11 } :'=o is called Van der Cor put sequence. For n EN define then x n 
Vandermonde matrix 

1 

We are interested in the (spectral) condition number of Vn, 

[~ax(Sn)Jl/Z cond Vn= A.m;n(Sn) , 

where Amax(Sn) and ).m1n(Sn) denote the largest and smallest eigenvalue of the matrix 

Sn= VnV:!. 

In fact, our main result, Theorem 1, does much more: it describes completely all 
eigenvalues of Sn, and in the proof we even find explicitly all eigenspaces. The 
matrices Sn have a very interesting structure and may be worth further study. They 
turn out to be (Hermitian) Toeplitz matrices, namely 

Sn = Toep (s&n>, ... , s~n~ 1), 
where 

n-1 

(1.1) s~n)= L e-21tipc.,' p.=O, 1, .... 
v=O 

To simplify the statement of Theorem 1, we introduce the following alternating 
binary representation of natural numbers n: let 

(1.2) 
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Then there exist a minimal integer l(n)~O and integers 

k=n0 >n1 > ... >n1(n)~O, 

all uniquely determined, such that 
l(n) 

(1.3) n = L ( -1 )i2"J . 
j=O 

579 

Theorem l. Let n E JN have the alternating binary representation (1.3). Then the 
eigenvalues of S,. are 

2"J, j=O, ... ,l(n), 

and the eigenvalue 2"1 has the multiplicity 

12"J- 2(n mod 2"i)j. 

It is readily seen that the sum of the given multiplicities is indeed n. This follows 
even easier from the following obviously equivalent but less explicit corollary. 

Corollary 2. Let nElN satisfy (1.2). Ifn=2k, then S, has the only eigenvalue 2k. 
If n < 2\ set n' = 2k-n. Then the following holds: 

i) All eigenvalues of S, are ~2k. 
ii) 2k is eigenvalue of multiplicity n-n' of S,.. 

iii) All eigenvalues of S,. are also eigenvalues of S,, with the same multiplicities. 

Another immediate consequence of Theorem 1 is 

Corollary 3. For each n E IN we have cond V, < ~· 

We are proving Theorem 1 not directly for S, but for a similar real Toeplitz 
matrix T,., using an explicit inductive construction of all eigenspaces. The vectors of 
a basis of these eigenspaces are given through the coefficients of certain poly
nomials with integer coefficients which come from an interesting unconventional 
three-term recurrence relation. These polynomials (of even degree) may deserve 
some independent interest because of the property described in Theorem 4, which is 
a consequence of our proof of Theorem 1. They are given as follows: let e1(z)= 1, 
e3 (z)=1 +z+z2

, and for k,/ElN, /odd, let 

(1.4) () {
(1 2")e1(z)(1+z2")+z1e2k_ 1(z), 1~1<2k-l, 

ez" +l z _2" 1 k 1 " e1(z)(1+z- )+ze2"_ 1(z), 2- <1<2. 

Theorem 4. The polynomials e, (of degree n 1 ), n odd, have all their zeros on lzl = 1. 

Finaliy, we mention another application of the results in Theorem 1 to the 
theory of polynomials. 

Theorem 5. Let P be a polynomial of degree m, m even. Then we have 

max If P(e- 2"1ciz)-P(O)I~m max !P(z)j. 
lzl~l j=O lzl~l 

This estimate is sharp for P::const. 
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2 A Generating Function for the s~•) 

We start with some elementary observations concerning the sequence cv. 

Lemma 2.1. The cv satisfy 

(2.1) 

and 
{2" - 0 2" - 1 1} - {2 .. 0 < . < 2" - 1 1 } Cv, V- , ... , - - J. =i= - ' 

{2" -2k-l 2"-1} {2"+1·0<"<2"- 1 -1} Cv,V- , ... , } . =1= · 

We omit the simple details of the proof. For k,leN, 0~1<2", let 

(2.2) 
2k-1 

p2k,t(z):= n (1-e-21tiCjz), 
j=2k-l 

with the convention P2",o = 1. 

Lemma 2.2. Let k, I be as above and set 

(2.3) 

Then 

(2.4) 

k-1 

I= L di2i, die{O, 1}. 
j=O 

k-1 

p2k,l(e1<ic2k-r 'z)= n (1+djz2J). 
j=O 

Proof We first prove the following recursion: 

(2.5) P () P ( -2ni(l-dk-t}2-")(1+d _2k-1) 
2~<,t z = 2~<-l,t-d"- 12" 1 ze k-1 z- · 

If dk-l =0, we use the index transformationj-+2"- 1 +jin (2.2), and (2.1), to derive 
(2.5). If dk _1 = 1, then 

P2".l(z)= I1 (1-e-2"ic;z) I1 (1-e-2nicJz) 
j=2"-l j=2k-1 

2"-1 

=P2"-t,1_ 2k-t(z) f1 (1-e-lnic1z). 
j=2k-1 

To identify the second factor, we use the last formula of Lemma 2.1, and obtain 

2"-1 21<-t ( -2ni 
i=U-~ (1-e-2niciz) }J. 1-e 

=1-(ein2-kz)2"-1 

21<-1 
= 1 +dk_1 z . 

Repeated application of (2.5) yields 
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Hence, with 

we get 

the assertion. 0 

P,,,,(wz)~ 'fi (l+d,(/" J, ~=~· z)") 

k-1 

= n (1 +~ei1r:(l-dj)z2i), 
j=O 

581 

In the sequel we shall use the following notation: iff, g are analytic functions in 
z = 0, we shall write 

" f"' g 
if f-g has ann-fold zero in z=O. 

Lemma 2.3. Let neN satisfy n~2k, keN. If 

then 

(2.6) 

Proof We set 

so that 

and 

(2.7) 

k-l 

2k-n= L di2i, d1e{0,1}, 
j=O 

F~(z) 

n k-1 

'""" L log (1 +d1z2i). 
j=O 

-e-2"i(cj-Cn-l) 

1 -e-2"i(ci-cn- t)z 

2k-1 

zF~(z)-2k+n= L -1 

j=n 

Now using the second part of Lemma 2.1, we see that 

and thus 

This shows that 

(2.8) 

zk n-1 

zF~(z)+n "' L 1 

j=O 1-

n-1 n-1 

F~(z) "' L s)"le1ti}cn-t zi-1' 
j=l 

and by integration, using Lemma 2.1, we arrive at (2.6). 0 
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We define the following sequences: 

,..(_n) =s<.">e2nijc.,_ 1 J. 0 1 n 1 
"J J ' = ' , ... , ' 

and note from (2.6) that a)"> E 7l for all j, n. It is obvious that the matrices S,. and 

s: : = Toep (ah">, ... , a~"~ 1) 

are diagonally similar, and have the same eigenvalues with the same multiplicities 
(later we shall study a still slightly different set of matrices). For easier reference, we 
note down a consequence of (2. 7), (2.8): 

(2.9) 
n-1 n zk-1 

2k- L a)">zi "' L 1 

j=O j=n 

Coronary 2.4. Let neN satisfy n~2k, keN. If 1 ~j~n-1 has the representation 
2~'(2m-1), where p=O, 1, ... and meN, then ag'>=n and 

(2.10) 

Proof From Lemma 2.3 we find that 

a)")= - L ( -d.)i2-•2v' 
2'li 

which yields (2.1 0) after a simple computation. D 

3 Reduction to the Case n Odd 

The following is an immediate consequence of Corollary 2.4: 

Hence, if 

a~2;"> = 2 a)">} 
(2 n) 0 ' 0 ~j ~ n - 1 . 

a2j+1 = 

is an eigenvector for s: and the eigenvalue A., then the two vectors 

are eigenvectors for Si,. and the eigenvalue 2A.. It is now easily seen that Theorem 1 
holds for 2n if it holds for n. In view of this fact, we can restrict ourselves to the case 
n odd, which from now on will be always assumed. 

4 The Largest Eigenvalue 2k. 

The right-hand side of (2.9) can be written as 

Zk-1 1 

j~n 1-e 2ni(cj c,. 1lz 
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with a positive (discrete) measure J.l. Hence, 

2k ["- s: = (Y ei(l-m)<f> dJ.l(tP )) ' 
0 O~l,m;'jin-1 

which readily implies that 2k I,.- s: is positive semidefinite. This shows that all 
eigenvalues of s: are ~ 2k if 

(4.1) 

This proves assertion i) of Corollary 2. From now on we shall assume that n, k 
satisfy the relation ( 4.1 ). We shall use the following general result. 

Lemma 4.1. Let m,n E lN, m <n. Let A.ie IR, eiE <I: with !sil = 1, j= 1, ... , m, and set 

co m A,. L a.z•= L __ J -. 

s=O j=l 1-siz 

Then A.=O is an eigenvalue of multiplicity at least n -mfor the (Hermitian) Toeplitz 
matrix 

E= Toep (a0 , a1 , .•. , a,._ 1). 

Note that the following proof contains a description of n-m linearly 
independent eigenvectors of E. We adopt the following terminology: a polynomial 

n-1 

P(z)= L bizi 
j=O 

is said to represent the vector 

e=(bo,bt, ... ,b,._t)te<r:". 

Sometimes, if we say this, the actual degree of the polynomial may be less than n -1. 
In this case we assume that the missing high components of the vector are set to zero. 

Proof of Lemma 4.1. We write 
m 

P(z)= n (si-z), 
j=l 

and we want to show that the polynomials 

Ps(z):=zsP(z), s=O, ... ,n m 1, 

represent (obviously linearly independent) eigenvectors forE and the eigenvalue 
zero. We can write 

m 

E= L A.i Toep(l,ei,e;, ... ,ej- 1
). 

j=l 

Hence, it suffices to show that the vectors e. represented by P. are annihilated by 
every term in this sum, for instance by 

We have 
Toep (1, £1 , ei, ... , ei- 1). 

m-1 

P,(z)=(s1 -z) L rizi+•. 
j=O 

214
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Hence, the vectors e. can be written as 
m-1 

e.= L rj(O, ... ' 0, 81' - 1' 0, ... ' oy, 
}""0 

i 
row j+s 

from which the assertion becomes obvious. 0 

A. Cordova et aL 

It is clear from (2.9) and Lemma 4.1 that S, has 2k as an eigenvalue of 
multiplicity at least n-n' (in the notation of Corollary 2). It should also be noted 
that 

k-1 k-1 

(4.2) z• 0 (1+d1z
21

), s=O, ... ,n-n'-1, n' = '\' d.21 
£.... J , 

j=O j=O 

represent eigenvectors of s: and the eigenvalue 2k, as can be deduced from the proof 
of Lemma 4.1, formula (2.9), and Lemma 2.2. 

To complete the proof of Corollary 2 (and Theorem 1), we only need to prove 
part iii) of the corollary for n odd. This will be done in the following two sections. 

5 The Matrices T,. 

Let n ~ 3 be odd, 2~<- 1 < n < 2k, and write 

so that 

k-2 

2k n= L d12i, d1E{0, 1}, 
j=O 

k-2 k-2 

n=2k+ L (1-d1)2i -(2k- 1 -1)= 1 +2k- 1 + L (1-d1)2
1 (since do= 1). 

j=O j=l 

This implies 

(5.1) 

Hence, for n odd and f.l ~ 1, we obtain from (2.1 0) the relation 

u~J(2m-l)=2(n mod21L) -(n mod2~t+l), 2~211(2m-1)~n-1, 

while u)"> = 1 for j odd. For reasons of simplicity in the subsequent proofs, we now 
introduce the matrices 

where 
T -T (t(n) t(n) t<n) ) 

II - oep Q > 1 '• • • ' n-1 ' 

t (n)_n 
0 - ' 

!t±.L 

nodd, 

t" -() 
{ 

(-1)2, 
2"(2m-t)- 2(n mod 2") -(n mod2P+l), 

f.t=O, 
f.t>O. 

It is here always understood that the index is in the proper range, and that mE IN. It 
is immediately clear that the eigenvalues ofT, are identical with those of S11 and s:. 
We shall now exhibit a number of important properties of the matrices T,. 
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As before, we are relating k = k(n) E JN to the odd natural number n by 

and we are associating with n the two numbers 

Lemma 5.1. The following relations holdfor n~5: 

(5.2) t<n) - t<n) 
zk- t + i- i ' }= 1, ... ,n" 1, 

(5.3) t<n) - t<nl zk- 1 - o 2k 
' 

(5.4) t<n) - t<n) zk-2+ i- i , J= 1, ... , 2k-Z -1' 

(5.5) t(n)- l(n) i - zk- J_ j• j = 1 , ... ' 2k- 1 - 1 , 

(5.6) t\") = t\n") 
J ] ' 

j = 1, ... , n" - 1 , 

(5.7) l(n) = - t!n') 
] J ' 

j=l, ... ,n'-1. 

Proof (5.2): For j odd, this is clear. Now, for j even, we have 

1 <j=2~'(2m-1)~n-1 2k-t <2k- 1 -1, 

so that 1 ~p.~k-2. Hence, 

2k-l +j=2~'(2m-1 +2k- 1 -")=2"(2m* -1), m* ElN, 

and the result follows from the definition of tj"l. 
(5.3): We have n=(nmod2k)=2k- 1 +(nmod2k- 1). Hence, 

t:W-1 =2(n mod2k- 1)-(nmod2k) 

= -2k+2(2k- 1 +(nmod2k- 1))-n 

=n-2k 

=t6"'-2k. 
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(5.4): As (5.2), but now using 1 ~p.~k-3, ifk > 3. Ifk= 3, weonlyhavej= 1, an 
'odd' case. 

(5.5): The case j odd is again obvious. Let j be even with 1 <} = 211 (2m -1) 
~2k-l 2, so that 1 ~p.~k 2. Hence, 

zk-! 2~'(2(2k- 2 - 11 -m+ 1) -1) 

=211 (2m* -1). 

Since the number on the left is positive, we deduce m* E JN, and the result follows. 
(5.6): We have 

n + 1 n" + 1 + 2k- 1 
-2 

2 2 
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which gives the result for j odd. Next, for j even, write 1 <j = 214(2m -1) < n" < 2"- 1
, 

so that 1 ~J..l.~k-2. Hence, 

(nmod2")=(n-2"- 1)mod2~', 

(nmod2,..+ 1) (n-2k- 1)mod214 +1, 

which proves this case. 
(5.7): We have 

nl + 1 zk-n+ 1 
--= 

2 2 
which shows 

( -t{i1 n+l -( -1)_2_, 

and hence the assertion forjodd. Forjeven, we use the definition of tt' and (2.10), 
(5.1) to obtain (i=214 (2m-1),J..1.>0): 

t~n) = u(1l) 
1 1 

(2.l0) 
= ((2k-n)mod2,..+1)-2((2k-n)mod214) 

= -tt''. 0 

To simplify the proof for the next lemma, we introduce the following periodic 
doubly infinite sequences: 

(11) _ 1(n) 
aj+mzk-1- i , 1, ... , 2k- 1 , m E 7L , 2"- 1 < n < 2" , 

which have the following properties (n ~ 5): 

(5.8) a<.11>=a<11>· 
J - J' jElL, 

(5.9) a<.11")=a("1 
J J ' 

1 s ·s2k- 1 -t _}_ ' n">n 1
, 

(5.10) a<.11'>=-a<.11> 
J 1 ' 

1 < "<2"- 1 -1 =1= ' n"<n'. 

To prove (5.8), we assume without loss of generality that 1 ~j~ 2"- 1 1 
(periodicity). But then we have by (5.5): 

Property (5.9) has to be proved only forj=n", ... ,2"- 1 -1 because of(5.6). The 
assumption n" > n' implies that 2"- 2 < n" < 2k -l' and hence that ar> has period 2k- 2 . 

Then, using 1 ~j-2"- 2 <2"- 2 in the following application of (5.4), we get 
(11") _ (11") (5~) (n) (5~) (11) 

ai -aj-zk-z - aj-zk-z - ai . 

A similar argument proves (5.10). 
We note that by (5.3), 

a (n) _ 1(11) _ 2k 
0 - 0 , 

and hence, using (5.8), 

A · -(a<nl ) - T. -2"1 
11 ·- j-i Otiiii,j~ll-1- 11 11' 

It is convenient to associate with A,. the matrix 

B · -(a(n) ) 
n ·- j-i+n" O~i~n-1 · 

O;;,ij;fin'-1 
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The following information about the structure of A, is basic for the inductive 
argument in the next section. 

Lemma 5.2. Let n ~ 5. Then we have 

where 
{ B,. .. , n'<n", 

M= 
n'>n". -B~., 

Proof We write 

C" 
M12 M,} 

A,= M21 M22 M23 
M31 M32 M33 

where M 11 ,M13 ,M31 ,M33 and n"xn" matrices, M 12 ,M32 ,Mi1 ,Mh are n"xn' 
matrices, and M 22 is a n' x n' matrix. Since n' +n" = 2k-t, it follows immediately 
from the periodicity of a)"l and (5.8) that 

Mu =Mt3 =M31 =M33 • 

Mtz M3z=Mi1 Mb. 

Hence, we can confine ourselves to the identification of M 11 , M22 , M 12 . 

As for M 11 , we have 

M -( (n)) 
11- aj-i O~i,j~n"-1 

-( (II) ) - a1·-·1 o<· ·< "-1 1 • ='·1=11 

= Toep (t~"' 2k, tf">,. .. , t~?-,_ 1 ) 
-T ( (n")-2/c-1 (n") (n") ) - oep to ' t 1 ' ... ' t n" - 1 (by (5.6)) 

= T,, -2k-t I, ... 

For M 22 we have 

M22 = (a)"!..;)o~i.j~n'-1 

Toep (t&"'- 2k, t1"l, ... , t~'!~ 1) 

-T (- (n') _ (n') _ (n') ) - oep t0 , t1 , ... , t,._ 1 (by (5.7)) 

=-T, .. 

Now let n' < n", which implies 2k- 2 < n" < 2"- 1
. We also observe that 

n' = 2k-t - n", which means n' = (n")'; likewise, (n")" (n"- n'). We then have 

B, .. = a .. _ . o:::;L-:>n"-1 · 
( 

(n") ) 

~+j-i o~/~n'-1 

If we set s=n" +j-i, then 1 ~s~n' +n" -1 =2k-l -1, and we have to show 

a;"'=a1""' '+ , , 1 ~s~2k- 1 -1. 
s-~ 
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.. . n'+n" 
But a)11 l has penod 2k- 2 =-

2
-, and we are left with 

a~nl=a~n''l, 1 ~s~2k- 1 -1, 

which is (5.9). Hence, M 12 =Bn" in this case. A similar argument works for n' > n", 
where (n')" =i(n' -n") and we have to use (5.10) instead of (5.9). D 

6 Proof of Corollary 2 

As we saw above, only part iii) of Corollary 2 for n odd remains to be proven. We 
shall prove the following, more precise statement. 

Lemma 6.1. Let nElN be odd. Then the following hold: 
i) A.= 1 is the smallest eigenvalue of T11 • 

ii) Every eigenvalue A ofTn, except for 2", is also eigenvalue ofT11., with the same 
multiplicity. 

iii) To every eigenvalue A. of T11 there exists a polynomial e"(A, z) of degree 
~n-m,(A), where m"(A) is the multiplicity of A., such that 

zse,(A,z), O~s~m11 (A) 1, 

represents an eigenvector e;">(A.) of T11 for A. 
iv) These polynomials obey the following recursion: 

e1 (1,z)=1, 

e3 (1, z)= 1 + z+z2, 

en()..,z)= {( 2~~;)z
2k-')e11,(A.,z)+z""e".().,z), n">n', 

1-y (1+z2k-')e11,(A,z)+zn"e11.(A.,z), n'>n", 

k-1 

n'= L di2i. 
j=O 

In this formula, if A does not happen to be an eigenvalue ofT""' we set e11,(A.,z):=O. 
v) The vectors e~n) satisfy the following relations: 

B" · e~"'l(A) = - A.e~n>(l), m11.(A.) =FO, 

B! · e~")(A) =(1- 2k)e!"'l(A.), m,.(A) :f: 0, 

for s=O, 1, ... , m11(A.)-1. 

Proof The truth of this lemma is readily checked for n = 1, 3, which permits us to 
start an induction. Note that i) is contained in ii). Assume we are done upton- 2, 
and let 2"- 1 < n < 2k, k ~ 3. We now have to distinguish between two cases. 

a) n">n'. In this case we have 2k- 2 <n" <2k-t, and hence 

(n")' =n' =2k-I -n". 

Thus, by assumption ii), applied ton", every eigenvalue). ofT". is also eigenvalue of 
T,. .. , with the same multiplicities (the largest one, 2"- 1

, of T11 .. is not among them!). 
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Hence, for all eigenvalues A. ofT,.. we find from v) (applied ton"), 

B,. .. · e;n'l(A.) = - A.e~n"l(A.), 

B! .. · er>().)=(A.- 2"- 1 )e~"' 1 (A.), 

O~s~m,..(A.)-1. Our recurrence iv) says that 

s=O, ... ,m,..(A.)-1, 

589 

should be eigenvectors forT,. and A.. By Lemma 5.2 and the assumptions we find that 

(

(T,. .. -21<- 1 
/ 11,.) ·e~n"l(A.)) (B,. .. ·e~"'l(A_) ~ 

(T,- 2k /,) · e;"1(A.) = 2 B! .. · e~""l(A_) + - T,.. · e~"'1 (A.) 

(T,,.-2~<- 1 /
11
,.) ·ei""l(A.) B,. .. ·ei"'1(J.) 

=(A.- 2")e~"l(J.), 

which proves this assertion. Since we do know already that T, has the eigenvalue 2" 
with multiplicity n-n' and the mentioned polynomial e,.(2~<, z) (see ( 4.2) and recall 
the sign changes made in the definition of tj"1), the proof of iv) is completed for the 
present case a). We need to prove v). We have by Lemma 5.2 

( 

B ..... e;n'l(J.)) 
B,.·e~n'l(A.)= -T,..·e~n'l(A.) =-Ae~"l(A.) 

B .... · e~"'1 (A.) 

for all eigenvalues ofT,.. by the assumptions, and similarly, 

B! · e;"l(J.) = B! .. · e~n"l(l)- T,.. · e~"'l(J.)+ B!- · e~n"l(A_) 
=[(A.- 2k-1) -l+(A -2k-1)]. e;n'l().) 

=(A.-2") ·e;"'l(l) 

for all eigenvalues of T,. .. For the remaining case l=2" we note that e~"l(2") is 
eigenvector to the eigenvalue 0 of the symmetric matrix A, T,. -2~< I,.. This implies 
by Lemma 5.2 that 

B! · ei"1(2") =0, 0 ~m,.(2") 1, 

which completes the proof of case a). 
b) n"<n'. In this case we have 2"- 2 <n'<2k-1, and hence 

(n')'=n"=2k-t_n'. 

Thus, by assumption ii), applied ton', every eigenvalue A. ofT,. .. is also eigenvalue of 
T,.., with the same multiplicities. However, r ... has in addition the eigenvalue 2~<-I of 
multiplicity n' -n". Here we find from the assumption that 

B,.. ·e~"" 1 ().)= -J.e~"'l(A.), A-<2"- 1 , 

B!. ·e;n'l(A_) =(A.-2"-l)e~n"l(l), ),~2k-l, 
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for O~s~m11.(1l)-1. The claimed eigenvectors forT, and ll now have the form 

( 1- 2k;l )e~n"l(Jl) 
e;n'l(A.) 

(t- 2kA. 1 )e~n"l(A.) 

s=O, ... ,m11.(A)-1, 

where e~n"l(zk- 1 )=0. Using Lemma 5.2 and the assumptions, we now find 

(A. eigenvalue of T,.), which proves iv). v) is verified in a similar fashion as in 
case a). 0 

It is clear that Lemma 6.1 completes the proof of Corollary 2. By a backward 
induction n-n'-(n')'- ... (check the alternating binary representations of nand 
n') we deduce easily that Corollary 2 implies Theorem 1, and we are done. 

7 Proofs of Theorems 4 and 5 

The polynomials e,(z) as described in the introduction are now immediately 
identified with the polynomials e,(1, z), which represent the eigenvector of the simple 
eigenvalue 1 ofT,, n odd. This eigenvalue is the smallest one ofT,, and thus T, 1, 
is positive semidefinite (with eigenvalue zero), and therefore we must have 

11 n-2 A,. 
t (n) -1 + t(n) ~ + + t(n) z"-1 ........., ,. __ }-
0 1 "' .. · n-1 L... 1 ' 

i~O -siz 
where 

and 
n-2 

L A.i=n-1. 
i""O 

From Lemma 4.1 we can now deduce that we must have 

n-2 

TI (si-z)=Ce,(z), 
j~O 

since the product on the left represents, up to a factor, the only eigenvector to 
T,-1,, exactly as does the polynomial on the right. This proves Theorem 4. 
Theorem 5 is also a consequence of the fact that Sm+l -/m+l is positive semi
definite, using the representation (1.1) of the st'+ 1>. We omit the simple details. 
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Abstract Vandermonde matrices with real nodes are known to be severely ill-
conditioned. We investigate numerically the extent to which the condition number
of such matrices can be reduced, either by row-scaling or by optimal configurations
of nodes. In the latter case we find empirically the condition of the optimally condi-
tioned n × n Vandermonde matrix to grow exponentially at a rate slightly less than
(1 + √

2)n. Much slower growth—essentially linear—is observed for optimally con-
ditioned Vandermonde-Jacobi matrices. We also comment on the computational chal-
lenges involved in determining condition numbers of highly ill-conditioned matrices.

Keywords Singular value decomposition · Condition numbers · Vandermonde
matrices · Optimal scaling · Optimal conditioning

Mathematics Subject Classification (2000) 15A18 · 15Bxx · 65F35

1 Introduction

The problem of optimally conditioned Vandermonde matrices,1 that is, of determin-
ing a configuration of real nodes in a Vandermonde matrix that minimizes its condi-
tion number, has been addressed by us some time ago [3]. A related problem is that of

1As is well known, the attribution to Vandermonde of these matrices is incorrect. While it is true that
Vandermonde made notable contributions to the theory of determinants, which he founded, and to the
theory of equations and combinatorial analysis, there is no trace of “Vandermonde determinants”, let alone
“Vandermonde matrices”, in any of his four mathematical papers. See Lebesgue [10, p. 207], who suggests
that mistaking upper indices for powers may have been the source of this error.
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104 W. Gautschi

optimal scaling of a Vandermonde matrix with given real nodes, which seems to have
received less attention. There are indeed serious computational challenges brought
on by the highly ill-conditioned matrices involved. In the case of condition numbers
based on the Frobenius matrix norm, for example, the singular value decomposition
of Vandermonde matrices can produce results that, at first sight, look reasonable, but
in fact are wrong by many orders of magnitude. An example of this is exhibited in
Sect. 2. To obtain reliable answers requires the use of variable-(high)precision com-
putation. Further examples of optimal scaling are presented in Sect. 3, including one
that is close to optimal conditioning. In Sect. 4 we first draw attention to, and cor-
rect, a small error in our example [3, (5.14)] of an optimally conditioned third-order
Vandermonde matrix with real symmetric nodes. We then use high-precision calcu-
lations in combination with constrained and unconstrained optimization to compute
optimally conditioned Vandermonde matrices of orders n up to 10, with nonnegative
nodes in Sect. 4.1, with symmetric nodes in Sect. 4.2, and, for n ≤ 13, with uncon-
strained real nodes in Sect. 4.3. In the last case we find numerically the optimal Frobe-
nius condition number to grow exponentially at a rate somewhat less than (1 +√

2)n.
In Sect. 5 we give an analogous discussion of the conditioning of Vandermonde-like
matrices and show that optimally conditioned Vandermonde-Chebyshev matrices are
perfectly conditioned in the Frobenius norm.

The implications of conditioning, based on condition numbers as here defined,
to the sensitivity to errors in the data of Vandermonde systems, and its relevance to
the numerical stability of specific solution algorithms, will not be considered in this
paper. For an interesting discussion of this we refer to the work of N.J. Higham [8]
for ordinary Vandermonde systems and [9] for Vandermonde-like systems.

2 Singular value decomposition: an instance of computational deception

In studying condition numbers of optimally scaled Vandermonde matrices, using the
Frobenius norm, we had occasion to employ the singular value decomposition to
compute

condF (V ) =
√
√
√
√

n
∑

ν=1

σ 2
ν

n
∑

ν=1

σ−2
ν , (1)

where σν are the singular values of the matrix V ∈ Rn×n. In the course of these
computations, we observed substantial discrepancies between computed results and
those expected from theory, although the patterns of the former, at first sight, seemed
rather reasonable. The trouble can be traced to an unreliable behavior in the case of
highly ill-conditioned matrices of the singular value decomposition, unless executed
in appropriately high precision.

Consider, for example, the Vandermonde matrix

V (x) = [vν,μ] ∈ Rn×n, vν,μ = xν−1
μ , (2)

where n = 50, and xμ = 4(n+1−μ)/n, μ = 1,2, . . . , n. Row-wise scaling, DV (x),
with D = diag(1,R−1, . . . ,R−(n−1)), when R = x1, produces an equilibrated ma-
trix V sc(R) (again a Vandermonde matrix), each row having the same ∞-norm
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Optimally scaled and optimally conditioned Vandermonde 105

Fig. 1 Frobenius condition of scaled Vandermonde matrices (purported)
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106 W. Gautschi

Fig. 2 Condition of scaled Vandermonde matrices (correct) solid line: using ‖ · ‖F ; dashed line: using
‖ · ‖∞

(= 1). This in turn minimizes the condition(-like) number maxν,μ |aν,μ| · ‖A−1‖∗,
where ‖ · ‖∗ denotes any p-norm, or the Frobenius norm, of a matrix [13, Theo-
rem 2.5(b)]. Wanting to illustrate this, we computed the Frobenius condition number
of V sc(R), using the Matlab singular-value-decomposition routine svd.m, both in
ordinary double-precision arithmetic and in symbolic/variable-precision arithmetic
(with digits= 16), for R = 1 : .05 : 6. The results are depicted respectively on the
top and bottom of Fig. 1. (The numerical data for the figure on the top are gener-
ated by the routine Fig1a.m2, using VdMsc.m, and for the figure on the bottom by
sFig1b.m, using sVdMsc.m with the test for complex singular values commented
out. The curves themselves are produced respectively by the routines plotFig1a.m
and plotFig1b.m.) Both figures look reasonable, showing a minimum near R = 4
(= x1), as expected, but the graph on the top is higher by 1–10 decimal orders than the
one on the right, and both exhibit suspicious wiggles. Which one is more trustworthy?

The plain answer is: neither. The correct graph is shown in Fig. 2, another 20
decimal orders higher! Note that, according to this graph, the condition number of
the matrix V itself (R = 1) is of the order 1056.

2All Matlab routines (other than the standard ones) referred to in this paper can be found on the website
http://www.cs.purdue.edu/archives/2002/wxg/codes/OCVdM.html.
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Optimally scaled and optimally conditioned Vandermonde 107

How can these enormous discrepancies be explained? We discovered, in the case
of the symbolic routine svd.m, that quite a few of the singular values computed are
complex, in fact purely imaginary, some with rather large imaginary parts. For these
imaginary σν , the squares σ 2

ν and σ−2
ν are real again, but negative, and therefore in

(1) have the effect of substantially lowering the Frobenius condition number or even
making it complex. In the double-precision routine svd.m, all computed singular
values appear to be positive, and it is not entirely clear what mechanism it is that
caused the substantial underestimation of the condition number in that case.

Why do we think that the solid graph in Fig. 2 is indeed the correct one? First
of all, we made sure that all computed singular values σν are positive. This required
us to carry out the computation in as much as 112-digit arithmetic. Secondly, the
∞-condition number

cond∞(V ) = ‖V ‖∞‖V −1‖∞ (3)

of a Vandermonde matrix with nonnegative node vector can be computed directly,
without requiring matrix inversion (cf. [2, (4.1)]),

cond∞(V n(x)) = max
1≤ν≤n

n
∑

μ=1

xν−1
μ · max

1≤ν≤n

n
∏

μ=1
μ �=ν

1 + xμ

|xν − xμ| , x ≥ 0. (4)

(This is implemented in the Matlab routine condVp.m.) Using the ∞-norm in-
stead of the Frobenius norm, we obtain the dashed curve in Fig. 2, which indeed
is very much within the expected range from the curve for the Frobenius norm. (The
routines that produced the numerical data for the two curves are sFig2a.m and
Fig2b.m, the former using the routine sVdMsc.m and the latter using the routine
condVsc.m. The curves themselves are produced by the routine plotFig2.m.)

The exact location of the minimum, together with the minimum value, can be de-
termined with the help of the routine fminbnd.m of the Matlab Optimization Tool-
box. Minimizing the functions defined by the routines fFig2a.m and fFig2b.m,
one finds

min
R

log10 condF (V sc(R)) = 43.416 attained at R = 3.8340,

min
R

log10 cond∞(V sc(R)) = 43.305 attained at R = 3.7277.

Thus, while optimal scaling of the matrix V (x) reduces its condition number
by more than ten decimal orders, the scaled matrix produced is still very much ill-
conditioned. This is a pervasive phenomenon for Vandermonde matrices of this type,
since any Vandermonde matrix of order n with nonnegative nodes cannot have an
∞-condition number less than [6, Theorem 2.2]

(n − 1)

{

1 +
(

1 − 1

n

)−1/(n−1)}n−1

, (5)

which for n = 50 is 2.786 . . . × 1016.
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3 Equilibrated Vandermonde matrices

As already mentioned in Sect. 2, equilibration of a matrix A ∈ Rn×n with respect to
the infinity vector norm, i.e., scaling it in such a way that all rows have the same infin-
ity norm, has the effect of minimizing a condition(-like) number of the matrix. Similar
facts hold for other vector norms. Thus, in the case of the �1-norm, equilibration min-
imizes the ∞-condition number cond∞(A) = ‖A‖∞‖A−1‖∞ [13, Theorem 2.5(a)],
while in the �2-norm, it approximately minimizes cond(A) = ‖A‖2‖A−1‖∗ as well
as cond(A) = ‖A‖F ‖A−1‖∗ within a factor

√
n, where ‖ · ‖∗ is any p-norm or the

Frobenius norm (ibid., Theorem 3.5(a)). In the case of Vandermonde matrices A = V
and the �p-norm, the scaled matrices, of course, are no longer Vandermonde matrices,
unless p = ∞. To compute condition numbers, therefore, requires matrix inversion.

Since we are dealing with highly ill-conditioned matrices, we will use the singular
value decomposition V = U ��UT

r of the matrix V , in combination with the compu-
tational precautions, in particular variable-(high)precision arithmetic, mentioned in
Sect. 2, to obtain

V −1 = U r�
−1UT

� , � = diag(σ1, σ2, . . . , σn), U r and U � orthogonal, (6)

where

σ1 > σ2 > · · · > σn > 0 (7)

are the singular values of V . In the examples to be presented, we shall display con-
dition numbers consistently in the Frobenius norm, computed in variable-precision
arithmetic from (1), and implemented in the Matlab routine sVdMsc.m.

We begin with the example discussed in Sect. 2.

Example 3.1 The Vandermonde matrix (2) with

xμ = 4(n + 1 − μ)/n, μ = 1,2, . . . , n. (8)

We compute the condition numbers of the equilibrated matrices relative to the
�p-norms for p = 1,2,∞, display them as a function of n for n ≤ 50 and compare
them with the condition number of the original matrix. The results obtained, with the
routine sVdMsc1.m, in 96-digit arithmetic, are depicted in Fig. 3; cf. Matlab routine
plotFig3_1.m. It can be seen that equilibration in this case has a notable effect of
reducing not only the magnitude of the condition number, but also its rate of growth.
Yet, the improved condition is still too high for most applications in practice. It is
also evident that the choice of vector norm in equilibration plays a relatively minor
role, as the three respective graphs are almost indistinguishable.

Example 3.2 The Vandermonde matrix (2) with

xμ = n

2

(

−1 + 2
μ − 1

n − 1

)

, μ = 1,2, . . . , n. (9)

This is an example of symmetric, and increasingly spread out, nodes. Graphs anal-
ogous to those in Example 3.1, but for n ≤ 20, and computed with sVdMsc2.m in
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Fig. 3 Frobenius condition numbers of equilibrated and original matrix in Example 3.1

48-digit arithmetic, are shown in Fig. 4; cf. plotFig3_2.m. We have a behavior
of the condition number of equilibrated matrices vs that of the original matrix which
is similar to the one in Fig. 2, but showing markedly superior improvement of condi-
tioning.

Example 3.3 Vandermonde matrix with Chebyshev nodes,

xμ = cos
2μ − 1

2n
π, μ = 1,2, . . . , n. (10)

Here the graphs in Fig. 5, produced with sVdMsc3.m and plotFig3_3.m in 48-
digit arithmetic, differ from the preceding graphs in a startling way: the graph for
cond(V ) seems to have disappeared! In fact, however, it merged with the other graphs
for the equilibrated matrices, being practically identical with them. Equilibration,
which, as we know, optimizes the condition of the matrix in one sense or another,
has little effect in this case, which means that the matrix is already close to optimally
conditioned. We will say more about this in Sect. 4.3.

We recall from [2, (6.5)] that the ∞-condition number of the n × n Vandermonde
matrix with Chebyshev nodes has the asymptotic behavior

cond∞(V ) ∼ 33/4

4
(1 + √

2)n, n → ∞, (11)
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Fig. 4 Frobenius condition numbers of equilibrated and original matrix in Example 3.2

i.e., has exponential growth with rate (1 + √
2)n, which is confirmed in Fig. 5.

It may be worth noting that stretching or shrinking the nodes in (10) (by multiply-
ing them by a constant a > 1 resp. a < 1) worsens the condition of V , but leaves the
condition numbers of the scaled matrices unchanged.

Minimality properties of condition numbers similar to those mentioned in Sect. 2
and at the beginning of this section hold also for column equilibration. Thus, the
condition(-like) number defined in Sect. 2 is minimized by column equilibration in
the �∞-norm [13, Theorem 2.5(c)], the condition number ‖A‖1‖A−1‖∗ (for ‖·‖∗, see
the first paragraph of this section) by column equilibration in the �1-norm (ibid., The-
orem 2.5(d)), and the condition number ‖A‖2‖A−1‖∗ or ‖A‖F ‖A−1‖∗ is minimized
approximately by column equilibration in the �2-norm (ibid., Theorem 3.5(b)).

One could be tempted to equilibrate a matrix twice in succession, first by rows
and then by columns, in an attempt to further optimize the condition of the matrix.
However, since the first equilibration already minimizes a condition number of sorts,
one cannot expect the second one to do more than reduce the condition number by an
additional small amount, if at all. This has been confirmed for the Frobenius condition
number in the Examples 3.1 and 3.2, where the improvement of the condition by the
additional column equilibration is never more than about one decimal order and often
much less.
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Fig. 5 Frobenius condition numbers of equilibrated and original matrix in Example 3.3

4 Optimally conditioned Vandermonde matrices

The word “optimal”, in what follows, is to be understood as meaning “locally opti-
mal”. There is no easy way of establishing global optimality, although the possibility
of there existing only one optimal point cannot be dismissed entirely.

4.1 Vandermonde matrices with nonnegative nodes

The problem of minimizing the infinity condition number (4) over all nonnegative
node configurations

x1 > x2 > x3 > · · · > xn ≥ 0 (12)

has been considered in [3, Sect. 5] and solved analytically for n ≤ 3. For arbitrary n,
it was shown (ibid., Theorem 5.3) that the optimal node vector xopt satisfies x

opt
n = 0,

and moreover (ibid., Theorem 5.2),

n
∑

ν=1

(x
opt
ν )n−1 = n. (13)
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Fig. 6 The graphs of g2 and g3

We wish, however, to point out that the analytic solution for n = 3 given in the cited
reference is slightly in error. The problem, in this case, boils down to solving

max
x1>x2>0

[g2(x1, x2), g3(x1, x2)] = min

subject to x2
1 + x2

2 = 3, where [3, top of p. 12]

g2(x1, x2) = 1 + x1

x2(x1 − x2)
, g3(x1, x2) = (1 + x1)(1 + x2)

x1x2
.

Taking x = x2 as the independent variable, one must solve the one-dimensional min-
imax problem

max[g2(
√

3 − x2, x), g3(
√

3 − x2, x)] = min (14)

subject to 0 < x <
√

3/2. The two graphs for g2 and g3 are shown in Fig. 6 in the
critical portion of the interval [0,

√
3/2]. In [3], we erroneously assumed that the

point of intersection of the two curves yields the minimum point of (14), whereas
Fig. 6 shows that the minimum point occurs on the graph for g2 somewhat to the
right of the intersection. By elementary, but tedious, calculations one finds that the
correct minimum point is located at the unique positive root of the equation

2x6 − 13x4 + 6x3 + 39x2 − 18 = 0,
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Table 1 Optimal ∞-condition
number and lower bound for
nonnegative nodes

n min(cond∞(V p)) lb(cond∞(V p))

2 3.0000(0) 3.0000(0)

3 1.2524(1) 9.8990(0)

4 7.1725(1) 2.7809(1)

5 3.6102(2) 7.1666(1)

6 1.8844(3) 1.7542(2)

7 9.9422(3) 4.1497(2)

8 5.3511(4) 9.5817(2)

9 2.9009(5) 2.1727(3)

10 1.5997(6) 4.8580(3)

which is x
opt
2 , and for xopt yields

x
opt
1 = 1.586908974551119,

x
opt
2 = 0.6940604487284352,

x
opt
3 = 0,

(15)

giving

cond∞(V (xopt)) = 12.52354612417062 (n = 3). (16)

To go beyond order 3, we use the routine fmincon.m of the Matlab Optimization
Toolbox to determine the optimal condition number (4) subject to (12) for n ≤ 10.
This is implemented in the routine optcondVp.m using condVp.m. The required
initial approximation x0 to xopt for each n is found by extrapolating the xopt for the
preceding values of n. The results are then checked against the identity (13). If there
is insufficient agreement, the initial approximation is improved on the basis of the
approximation of xopt currently at hand, and the routine is run again. This is repeated
until sufficient agreement is achieved. A summary of the results so obtained, to five
significant digits, is shown in Table 1. The last column, for comparison, lists the lower
bound of the condition number according to (5). The respective optimal nodes x

opt
ν

can be found on the website cited in footnote 2 in the file xoptVp.

4.2 Vandermonde matrices with symmetric nodes

If there is a unique (up to permutation of the nodes) optimally conditioned Vander-
monde matrix in the ∞-matrix norm, its nodes must be distributed symmetrically
with respect to the origin [3, Theorem 3.1],

x1 > x2 > · · · > xn, xν + xn+1−ν = 0, ν = 1,2, . . . , n. (17)

We therefore turn now our attention to this case of symmetry. It suffices here to con-
sider the reduced vector

xs = [x1, x2, . . . , x�(n+1)/2]T ≥ 0, (18)
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Table 2 Optimal ∞-condition
numbers, those for Chebyshev
nodes, and lower bounds for
symmetric nodes

n min(cond∞(V s)) cond∞(V Ch) lb(cond∞(V s))

2 2.0000(0) 2.4142(0) 2.0000(0)

3 5.0000(0) 7.0000(0) 2.8284(0)

4 1.1776(1) 1.8942(1) 4.0000(0)

5 2.1456(1) 4.1000(1) 5.6569(0)

6 5.1330(1) 1.1282(2) 8.0000(0)

7 1.1060(2) 2.5984(2) 1.1314(1)

8 2.4222(2) 6.5152(2) 1.6000(1)

9 5.4541(2) 1.5727(3) 2.2627(1)

10 1.2282(3) 3.7495(3) 3.2000(1)

where x�(n+1)/2 = 0 whenever n is odd. In this case the ∞-condition number (3) of
V is given explicitly by [2, Theorem 4.3]

cond∞(V n(x)) = max
ν

∑

μ

xν−1
μ ·

⎧

⎪
⎨

⎪
⎩

maxν[(1 + 1
xν

)
∏

μ �=ν

1+x2
μ

|x2
ν −x2

μ| ], n even,

2 maxν[εν(1 + xν)
∏

μ �=ν

1+x2
μ

|x2
ν−x2

μ| ], n odd,

(19)
where ν and μ vary over all integers for which xν ≥ 0 and xμ ≥ 0, respectively, and
where εν = 1

2 when xν > 0, and εν = 1 when xν = 0. (This is implemented in the
Matlab routine condVs.m.)

The problem of finding the optimal xs has been solved analytically in [3, Sect. 4]
for n ≤ 6. Here we use fmincon.m, in optcondVs.m, to successfully reproduce
these results and to extend them to n = 10. The procedure is similar to the one adopted
in Sect. 4.1 for nonnegative nodes, the check being provided by the identity [3, The-
orem 3.3]

�(n+1)/2
∑

ν=1

(x
opt
ν )n−1 = n

2
. (20)

The results are summarized in the second column of Table 2. The third column shows
condition numbers for Vandermonde matrices with the Chebyshev nodes (10), and
the last column the lower bound 2n/2 from [6, Theorem 3.1]. Optimal conditioning is
now distinctly better than in the case of nonnegative nodes.

The optimal nodes x
opt
ν can be found on the website cited in footnote 2 in the file

xoptVs.

4.3 More on optimal node configurations

We have seen in Example 3.3, and confirmed in Table 2, that Chebyshev nodes are
close to optimal. We therefore use them as initial approximations in the unconstrained
optimization routine fminsearch.m to compute optimally conditioned Vander-
monde matrices relative to the Frobenius norm. (There are no longer explicit formu-
lae for the ∞-condition number.) The objective function to be supplied to fmin-
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Table 3 Optimal Frobenius
condition numbers n min(condF (V )) n min(condF (V ))

2 2.0000(0) 8 2.9074(2)

3 4.5109(0) 9 6.8528(2)

4 1.0156(1) 10 1.6213(3)

5 2.3101(1) 11 3.8473(3)

6 5.3238(1) 12 9.1502(3)

7 1.2397(2) 13 2.1804(4)

search.m is generated in the routine condV.m, which uses symbolic/variable-
precision tools to evaluate (in the routine sVdMsc.m) the Frobenius condition num-
ber of a Vandermonde matrix for arbitrary real nodes. The driver routine is opt-
condV.m. We succeeded, with only 16-digit computation, to determine optimally
conditioned Vandermonde matrices up to order n = 13. (The machine time on our
SUN workstation varied from a few seconds for the first few values of n to 55 minutes
for n = 13. The computation for n = 14 failed after about an hour’s worth of comput-
ing, producing the cryptic error message “integer too large in context”. It appears that
the message was generated in the symbolic svd.m routine.) The resulting condition
numbers are shown in Table 3; the optimal nodes are listed in the file xoptV on the
website cited in footnote 2. They are indeed symmetric with respect to the origin, at
least to within the accuracy provided by the routine fminsearch.m, and are not
much different from those in the file xoptVs.

In order to probe into possible alternative extrema, we repeated the computation
with the initial approximations deliberately transformed to the interval [0,1]. We
found that the routine fminsearch.m converged to exactly the same symmetric
solutions as obtained previously, and didn’t even take any longer. This seems to sug-
gest that for optimal conditioning of Vandermonde matrices we have both uniqueness
and symmetry.

It is evident from our computations that the condition numbers of optimally scaled
and optimally conditioned Vandermonde matrices grow at an exponential rate with
respect to the order n. In the present case of Frobenius-optimal conditioning it appears
that the exponential law for the optimal condition number holds not only for large n,
but already for n ≥ 2. Assuming this is the case, we find numerically, since for n = 2
the optimal condition number is 2, that

min
x∈Rn

condF (V n(x)) ≈ 2 × (2.32)n−2. (21)

A log-plot of (21) (dashed line) together with actually computed logarithms of the
optimal condition numbers (indicated by stars) is shown in Fig. 7 and produced by
plotoptV.m. The asymptotic law (11) of the ∞-condition number in the case of
Chebyshev nodes is shown as a dashdot line. The rate of growth for the optimal
condition numbers is seen to be just slightly less than the one, (1 + √

2)n, for the
∞-condition numbers involving Chebyshev nodes.

For a related result involving the condition number in the Euclidean 2-norm, see
also [1, Theorem 4.1].

~Springer 
236



116 W. Gautschi

Fig. 7 Optimal Frobenius conditioning of Vandermonde matrices

5 Optimally and perfectly conditioned Vandermonde-like matrices

Vandermonde-like matrices, first considered in [4], are matrices of the form

W n = Wn(x) =

⎡

⎢
⎢
⎢
⎣

p0(x1) p0(x2) · · · p0(xn)

p1(x1) p1(x2) · · · p1(xn)

p2(x1) p2(x2) · · · p2(xn)

· · · · · · · · · · · ·
pn−1(x1) pn−1(x2) · · · pn−1(xn)

⎤

⎥
⎥
⎥
⎦

, (22)

where pν , ν = 0,1, . . . , n − 1, are polynomials of exact degree ν. Thus, the mono-
mials xν in a Vandermonde matrix are now replaced by polynomials pν(x). An espe-
cially interesting example are polynomials

pν(x) = pν(x;dλ), ν = 0,1,2, . . . , (23)

orthogonal with respect to a positive measure dλ. Here, row-scaling amounts to renor-
malizing the orthogonal polynomials. A natural way to do this is to let pν in (23) be
the orthonormal polynomials. We shall henceforth assume this to be the case unless
stated otherwise.
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If x = [x1, x2, . . . , xn]T is the vector of the zeros of pn(·;dλ)—the “Gauss vector”
for dλ—then (cf. [4, Theorem 2.1])

condF (W n(x)) =
√
√
√
√

n
∑

ν=1

λν

n
∑

ν=1

1

λν

, (24)

where λν = λ
(n)
ν , ν = 1,2, . . . , n, are the Christoffel numbers for the measure dλ.

5.1 General theory

We begin by noting that (cf. (1))

condF (W n) =
√
√
√
√

n
∑

ν=1

σ 2
ν

n
∑

ν=1

σ−2
ν = n

√

mA(σ 2)

mH (σ 2)
≥ n, (25)

where mA(σ 2) is the arithmetic mean of the quantities σ 2
ν and mH (σ 2) their harmonic

mean. As is well known, the former is larger than, or equal to, the latter and equal if
and only if all singular values σν are equal. Any matrix W n for which equality holds
in (25) is called perfectly conditioned with respect to the Frobenius norm.

In the case of Gauss vectors x we have similarly, from (24), that

condF (W n(x)) =
√
√
√
√

n
∑

ν=1

λν

n
∑

ν=1

λ−1
ν = n

√

mA(λ)

mH (λ)
≥ n. (26)

If equality holds in (26) for all n, then λ
(n)
1 = λ

(n)
2 = · · · = λ

(n)
n for all n, which in

turn implies, by a classical result of Posse (cf. [5, Example 1.49]), that dλ must be
the Chebyshev measure dλ(x) = √

1 − x2 on [−1,1], and there is no other mea-
sure having the same property. Thus, Vandermonde–Chebyshev matrices W n(x) with
Gauss–Chebyshev vectors x are the only Vandermonde-like matrices that for all n

are perfectly conditioned with respect to the Frobenius norm.
Orthonormalization is a major step toward optimizing the conditioning of Wn.

Also, it allows us to express the Frobenius condition number, for arbitrary vector x,
explicitly in the particularly simple form [4, (4.4) and (4.6)]

c := condF (W n(x)) =
√
√
√
√

n
∑

ν=1

n−1
∑

k=0

p2
k(xν) ·

∫

R

n
∑

ν=1

�2
ν(t;x)dλ(t), (27)

where �ν are the elementary Lagrange interpolation polynomials for the nodes
x1, x2, . . . , xn,

�ν(t;x) =
n

∏

μ=1
μ �=ν

t − xμ

xν − xμ

, ν = 1,2, . . . , n.
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Moreover, the gradient

g := grad c = [g1, g2, . . . , gn]T , gi = ∂c

∂xi

,

computes to

gi = ρ

n−1
∑

k=1

pk(xi)p
′
k(xi) + 1

ρ

∫

R

n
∑

ν=1

�ν(t;x)
∂�ν

∂xi

(t;x)dλ(t), (28)

where

∂�ν

∂xi

(t;x) =
{ 1

xν−xi

t−xν

t−xi
�ν(t;x) if i �= ν,

−�ν(t;x)
∑

k �=ν
1

xν−xk
if i = ν,

(29)

and

ρ =
√∫

R
∑n

ν=1 �2
ν(t;x)dλ(t)

∑n
ν=1

∑n−1
k=0 p2

k(xν)
. (30)

Both c and grad c can be computed in a straightforward way, the polynomials pk

and their derivatives by the three-term recurrence relation satisfied by orthonormal
polynomials, and the integrals in (27) and (28) exactly by n-point Gauss quadrature
relative to the measure dλ. This is implemented in the routine condVl.m. Using
this routine as input to the Matlab optimization routine fminunc.m allows us to
compute optimally conditioned Vandermonde-like matrices; see the routine opt-
condVl.m.

If x is the Gauss vector for dλ, the formula for gi can be simplified by noting
that the integrand in (28) is a polynomial of degree 2n − 1, so that n-point Gauss
quadrature (for the measure dλ) gives exactly

∫

R

n
∑

ν=1

�ν(t;x)
∂�ν

∂xi

(t;x)dλ(t) =
n

∑

ν=1

λν

∂�ν

∂xi

(xν;x) = −λi

n
∑

k=1
k �=i

1

xi − xk

,

where the last equality follows from (29). Likewise, using the well-known formula
(see, e.g., [12, (3.4.8)])

n−1
∑

k=0

p2
k(xν) = λ−1

ν ,

one finds

ρ =
√ ∑n

ν=1 λν
∑n

ν=1 λ−1
ν

. (31)
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Table 4 Frobenius condition numbers of Vandermonde–Legendre matrices with monic and normalized
polynomials, and optimal condition numbers

n Monic Normalized Optimal ‖g‖∞ M’time

5 2.0433(01) 5.3624(00) 5.2296(00) 7.5011(–8) .4

10 6.7459(02) 1.1550(01) 1.1018(01) 2.6139(–4) 5

20 7.0071(05) 2.4941(01) 2.3468(01) 1.5052(–3) 930

35 2.3097(10) 4.6321(01) 4.3348(01) 2.9835(–3) 1,061

50 7.5861(14) 6.8600(01) 6.4128(01) – –

Therefore,

gi = ρ

n−1
∑

k=1

pk(xi)p
′
k(xi) − λi

ρ

n
∑

k=1
k �=i

1

xi − xk

(x = Gauss vector for dλ) (32)

with ρ as given by (31).

5.2 Examples

Example 5.1 (Vandermonde–Legendre matrices) These are Vandermonde-like matri-
ces with pν the Legendre polynomials. We first compare Frobenius condition num-
bers when the Legendre polynomials are monic with those for normalized polyno-
mials. In both cases we take x to be the Gauss–Legendre node vector. For selected
values of n, the two condition numbers are shown respectively in the second and
third column of Table 4. They were computed, with identical results, in two ways,
by actual scaling and by the explicit formula (24); see the routine runVdMlsc.m.
It can be seen that normalization of the polynomials indeed reduces the condition-
ing dramatically, which is typical for other Jacobi polynomials as well. In the next
column we show the optimal condition numbers computed (by optcondVl.m) as
indicated above. Here the routine fminunc was used with, and without, gradient
information. For the former, which is considerably slower, we show in the remaining
columns the ∞-norm of the gradient3 upon exiting the optimization routine, and the
machine time in seconds (on our SUN workstation) expended to compute the optimal
condition number. (When n = 50, convergence of the gradient-based routine could
not be achieved within a reasonable amount of time.) Figure 8 has a graph of the op-
timal condition numbers together with the one (dashed line) for normalized Legendre
polynomials. It is seen that the condition of Vandermonde–Legendre matrices with
normalized polynomials and Gauss–Legendre vector x is nearly optimal.

3Another possible indicator of the accuracy is the measure of symmetry maxν |xν + xn+1−ν | for the
computed xopt.

~Springer 
240



120 W. Gautschi

Fig. 8 Frobenius condition of optimal and normalized Vandermonde–Legendre matrices

Example 5.2 (Vandermonde–Chebyshev matrices) Here, pν are the Chebyshev poly-
nomials of the first and second kind. For the former, when x is the respective Gauss–
Chebyshev vector, the Vandermonde–Chebyshev matrix, as already mentioned, is
perfectly conditioned,

condF (W n(x)) = n (x = first-kind Gauss–Chebyshev node vector). (33)

For the latter, λν = π sin2(νπ/(n + 1))/(n + 1), so that by (24)

condF (W n(x)) =
√
√
√
√

n
∑

ν=1

sin2 νπ

n + 1

n
∑

ν=1

1

sin2 νπ
n+1

(x = second-kind Gauss–Chebyshev node vector). (34)

Frobenius condition numbers for monic and normalized Chebyshev polynomials,
and Gauss–Chebyshev vector x, as well as optimal condition numbers for normalized
Chebyshev polynomials, are shown in Table 5.

Perfect conditioning (33) in the case of Chebyshev polynomials of the first kind
implies zero gradient of W n(x) at the Gauss–Chebyshev point x. This can be nicely
confirmed analytically. To begin with, λν = π/n, so that by (31), ρ = π/n. Further-
more, since xi = cos θi , θi = (2i −1)π/2n, one finds for pk(x) = √

2/πTk(x), k ≥ 1,
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Table 5 Frobenius condition numbers of Vandermonde–Chebyshev matrices with monic and normalized
polynomials, and optimal condition numbers

n Monic Normalized Optimal

Cheb1 Cheb2 Cheb1 Cheb2 Cheb1 Cheb2

5 1.6869(01) 2.4558(01) 5 5.9161 5 5.5446

10 5.3970(02) 8.5144(02) 10 14.832 10 12.954

20 5.5265(05) 9.0818(05) 20 39.243 20 32.408

35 1.8109(10) 3.0289(10) 35 88.148 35 70.299

50 5.9340(14) 9.9957(14) 50 148.66 50 –

that
n−1
∑

k=1

pk(xi)p
′
k(xi) = 1

π sin θi

n−1
∑

k=1

k sin(2kθi).

From the identity [7, (1.352.(1))]

n−1
∑

k=1

k sin(2kθ) = 1

4

sin(2nθ)

sin2 θ
− n cos((2n − 1)θ)

2 sin θ
,

which, for θ = θi , yields nxi/(2
√

1 − x2
i ), one gets

n−1
∑

k=1

pk(xi)p
′
k(xi) = n

2π

xi

1 − x2
i

,

hence, by (32),

gi = xi

2(1 − x2
i )

−
n

∑

k=1
k �=i

1

xi − xk

. (35)

Now,
n

∑

k=1
k �=i

1

x − xk

= T ′
n(x)

Tn(x)
− 1

x − xi

= (x − xi)T
′
n(x) − Tn(x)

(x − xi)Tn(x)
,

which, for x → xi , by applying the rule of Bernoulli-L’Hôpital twice, yields

n
∑

k=1
k �=i

1

xi − xk

= T ′′
n (xi)

2T ′
n(xi)

.

On the other hand,

(1 − x2)T ′′
n (x) = xT ′

n(x) − n2Tn(x),
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Table 6 Frobenius condition
numbers of Vandermonde–
Laguerre matrices with monic
and normalized polynomials,
and optimal condition numbers

n Monic Normalized Optimal

5 3.0362(03) 2.0757(02) 2.1067(01)

10 1.3860(11) 1.0047(06) 1.3409(03)

15 1.9857(20) 7.9047(09) 1.1749(05)

20 2.2351(30) 7.7699(13) 1.8408(08)

25 1.0948(41) 8.7177(17) 1.4895(12)

Table 7 Frobenius condition
numbers of Vandermonde–
Hermite matrices with monic
and normalized polynomials,
and optimal condition numbers

n Monic Normalized Optimal

5 1.4185(01) 1.3731(1) 8.3937(0)

10 7.4990(03) 6.8318(2) 8.2754(1)

15 3.1256(07) 4.8288(4) 7.8092(2)

20 4.1560(11) 3.9886(6) 7.4769(3)

25 1.2370(16) 3.6159(8) 7.2162(4)

so that
n

∑

k=1
k �=i

1

xi − xk

= xiT
′
n(xi)

(1 − x2
i ) · 2T ′

n(xi)
= xi

2(1 − x2
i )

,

giving gi = 0 by (35).

Example 5.3 (Vandermonde–Laguerre matrices) Monic and normalized Laguerre
polynomials and the Gauss–Laguerre node vector x give rise to Frobenius condition
numbers shown in Table 6. Because of severe ill-conditioning, the second column
(headed “monic”) had to be computed in 48-digit arithmetic. Also, in the routine
fminunc.m for computing optimal condition numbers the default value of ‘Max-
FunEvals’ was increased to 5000. While normalized polynomials do lead to substan-
tially smaller condition numbers than do monic polynomials, the matrices involved
are still quite ill-conditioned. Optimal conditioning helps somewhat. A few of the
optimal nodes are consistently negative.

Example 5.4 (Vandermonde–Hermite matrices) The condition of Vandermonde–
Hermite matrices, with x the Gauss–Hermite vector, is roughly halfway between that
for Vandermonde–Legendre and Vandermonde–Laguerre matrices, as is shown in Ta-
ble 7. The optimal nodes are symmetric with respect to the origin, as in the case of
Vandermonde matrices.

As a matter of curiosity, we remark that for n = 2, the optimally conditioned
Vandermonde-like matrix W 2(x;dλ) is perfectly conditioned with respect to the
Frobenius norm, for any (positive) measure dλ. The proof, and a formula for
xopt ∈ R2, is given in the Appendix.
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Acknowledgement The present work was motivated by recent attempts of C.-S. Liu, D.-L. Young, and
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Appendix

For n = 2, the Vandermonde-like matrix for the orthonormal polynomials p0, p1 has
the form

W (x) =
[

p0 p0
p1(x1) p1(x2)

]

, p0 = 1√
β0

, x = [x1, x2]T ∈ R2, (A.1)

where p1(x) = p1(x;dλ) = c0 + c1x, x1 > x2, and β0 = ∫

R dλ(x). Its inverse is

W−1(x) = 1

c1(x1 − x2)

[−p1(x2)/p0 1
p1(x1)/p0 −1

]

,

and hence

F(x) := condF (W (x)) = 1

c1p0(x1 − x2)
[2p2

0 + p2
1(x1) + p2

1(x2)]. (A.2)

We have

∂F

∂x1
= 1

c1p0

2(x1 − x2)p1(x1)c1 − [2p2
0 + p2

1(x1) + p2
1(x2)]

(x1 − x2)2
,

∂F

∂x2
= 1

c1p0

2(x1 − x2)p1(x2)c1 + [2p2
0 + p2

1(x1) + p2
1(x2)]

(x1 − x2)2
.

The extremal point xopt = [x1, x2]T is determined by the equations

2(x1 − x2)p1(x1)c1 = 2p2
0 + p2

1(x1) + p2
1(x2),

2(x1 − x2)p1(x2)c1 = −[2p2
0 + p2

1(x1) + p2
1(x2)],

(A.3)

which, subtracting and adding, are equivalent to

(x1 − x2)
2c2

1 = 2p2
0 + p2

1(x1) + p2
1(x2),

p1(x1) + p1(x2) = 0.

The latter equation yields immediately

x1 + x2 = −2
c0

c1
, (A.4)

which, inserted in the former equation, gives, after a little computation,

(c0 + c1x1)
2 = p2

0,
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hence

x1 = ±p0 − c0

c1
. (A.5)

At the extremal point xopt, by (A.2) and the first equation in (A.3), we get

F(xopt) = 2(x1 − x2)p1(x1)c1

c1p0(x1 − x2)
= 2

p1(x1)

p0
.

Since, by (A.5), p1(x1) = c0 + c1(±p0 − c0)/c1 = ±p0, we must take the plus sign,
giving

F(xopt) = 2,

as was to be shown. Moreover, from (A.4) and (A.5),

x
opt
1 = p0 − c0

c1
, x

opt
2 = −p0 + c0

c1
. (A.6)

We may express this more conveniently in terms of the moments μk of the measure
dλ,

μk =
∫

R
xkdλ(x), k = 0,1,2, . . . .

By orthogonality of p1, we find

c1 = −μ0

μ1
c0, (A.7)

and by orthonormality, after some manipulation,

c0 = −μ1
√

μ0(μ0μ2 − μ2
1)

, (A.8)

where the radicand is positive by Schwarz’s inequality. Insertion into (A.7) yields

c1 =
√

μ0

μ0μ2 − μ2
1

. (A.9)

Substituting (A.8) and (A.9) in (A.6) and noting that p0 = 1/
√

μ0 finally gives

x
opt
1 =

μ1 +
√

μ0μ2 − μ2
1

μ0
, x

opt
2 =

μ1 −
√

μ0μ2 − μ2
1

μ0
. (A.10)

As expected, for symmetric measures (μ1 = 0), the optimal point xopt is also sym-
metric with respect to the origin.
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SOi\IE ELEMENTARY INEQUALITIES RELATING TO THE GAMMA 
AND INCOMPLETE GAMMA FUNCTION* 

BY WALTER GAUTSCHr 

1. In a recent note Y. Komatu (31 has proved the inequality 

l r' !"' -t' l 
( L ) ~ -+ y' ~2 + 2 < e r e dt < X + y' x2 +t ( 0 .;::: X < ro ) . 

The deviation of the bounds from the estimated function decreases monotonically 
to zero as x varies from zero to infinity. H. 0. Pollak [51 has improved the upper 
bound by showing that 

(2) e'' j"" e _,, dt :5: 1 
r - X + v' X 2 + 4/1f 

with a deviation increasing from zero to a maximum value and decreasing, from 
there on, monotonically to zero. 

We shall prove in section 3 the more general inequality 

H (xP + 2) 11 P -x) < e"" j"' e-tP dt 

(3) 

(( 
l )l'p ) r ( 1)}p/(p-l) 

;::: Cp XP + c;, - X , Cp = 'l f 1 + p (O;:::x<oo) 

where p is any real number > L 1 For p = 2 the right~hand inequality in ( 3) 
reduces to (2) while the left-hand inequality reduces to the corresponding in
equality in ( L). The deviatiDns of the bounds in the general p-ease behave the 
same way as in the special case p = 2. Also, (3) remains valid if we replace cp 

by l. The quality of the bounds is indicated in Fig. I. 
By an easy transformation \Ve can write (3) in terms of the complementary 

gamma function r(a, x) = f" e-•t-l dt as follows: 
L 

(4) 
1 (( +?)ltv_ 1/p) / Lr( -l ) 
2 p X ~ X "'- e \p , X 

< (( + -1)1/p - lip) = pep X Cp X (O;:::x<lfJ). 

In particular, if p --• X>, we obtain an inequality for the exponential integral 
Et(x) r(O, x): 

(5) 

This improves an inequality due to E. Hop£ {II; the bounds in ( 5) exhibit the 
IDgarithmic singularity of Et ( x) at x = 0. 

*This paper wa.s prepared under a National Bureau of Standards contract with American 
University. 

1 The integral in (3) for p = 3 occurs in heat transfer problems (2!, for p = '1 in the study 
of electrical discharge through gases (6j. An application of (3) for general p is given in {41. 
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Fw. L Relative error of upper (u) and lower (l) bounds in (3) 

!ul 

!II 

FIG. 2. Relative error of upper (u) and lowec (l} bounds in (6) 

2. From ( 4) \Ve can deduce a simple inequality for the gamma function if we 
set p = l/-5, x = 0 and replace Cp by l: 

2'-1 ~ r( L + s) ~ L (0 ~ s ::S: L}. 

We shall prove in section 4 the sharper and more general inequality 

(6) e(•-0\Hnt-ll ~ r(n + s) < s-1 

r(n + l) = n 
(0 ~ s ~ l, n = l, 2, 3, · · ·) 
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where lf(n + l) = E;;~t l/k - I' and I' = 0.57721 ... is the Euler-Mascherooi 
constant. We have equality in (6) only for s = l on the Left-hand side and for 
8 = 0 and s = Lon the right-hand side. Fig. 2 illustrates the quality of the bounds 
Since I{ ( n) < ln n we have also 

(7) ( _L )t-s ::::; ~+ S )_ ::::; (~)L-• 
n + l - r(n + l) - n 

(0 ~ s ~ l). 

It may be of interest to note that by letting n --+ CX> in (7) we obtain a 
sirnple proof of Euler's product formula in the segment 0 ~ 8 ~ L In fact, (7) 
is equivalent to 

-,-----:-,-:;--n_! ( n + J_)' -1 ::::; r (l + s ) 
(S) (s+l)(8+2)···(s+n-l)-

.- (n - t) !n' 
~ (s + T)(s + 2) · · · (s +-n---------,-0 · 

Setting 

( n - I)! n" 
y,.(s) = . 

(s + t)(s + ·~)- · ·(s + n- I) 

we can write (8) in the form 

Yn(s). 

Therefore 

0 ~ Yn(s)- f(l + s) ~ f(l + s){(L + L/n) 1-'- l! = O(L/n) (n-> oo ). 

3. Proof of ( 3). Let 

(9) .1.P(a, x) = ae-"'((xP + a-1 ) 11 ~'- x) - J~ e-tP dl (a> O). 
r 

We have to pro\re that 

(tO) 

Differentiating (9) with respect to x we find 

up-1(u~'- l)erP }!_ .1.P(a, x) = (l - a)u211-t 
ax ( L l) 

(O~x<co). 

- (p - a)u~' + (p +a - L)ttp-t -a 

where 

(l2) u ~ L 

Denoting the polynomial on the right-hand side of (tl) by gp(u) we have 

(l3) gp(l) =g:(l) =0, g;(l) =p(p -l)(l-2a). 

Consider now the case a = Cp • vVe first note th.at 

(L4) 
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Next we notice that the coefficients of gp( u) alternate in sign. Since there are 
three sign changes we conclude from Descartes' rule that gp( u) has either three 
positive zeros or one. ( 13) shows that two zeros are located at u = l; thus 
g P( u) ha.s exactly three positive zeros. Furthermore, since g: ( 1) < 0 and 
gp( x;) = X), the third zero must be larger than l. Therefore, as u increases from 
l to <X) the polynomial gp(u) decreases from zero to a minimum value and from 
there on increases monotonically to oo . On account of ( ll), ( 12) and ( 14) this 
means that ~P( cP , x) increases from zero to a maximum value and from there on 
decreases monotonically to zero as x varies from zero to ao. This proves the first 
relation in ( LO). 

Consider next the case a = !. Again, Descartes' rule applies and from ( 13) 
it follows that aU three positive zeros of gv( u) coincide at u = L Therefore 
gp(u) > 0 for u > l, from which follows (ajax).6v(t, x) > 0 for x > 0. This 
proves the second relation in ( 10) since L1p( t oo ) = 0. 

4. Proof of ( 6). Consider 

J(.~) = _l__ In f £'(n + s)} 
t - s \r(n + l) 

(0 ~ s < l). 

We havej(O) = ln (l/n) and by using the rule of Bernoulli-L'Hospital 

where if;(x) 
We have 

Letting 

we have 

Iim,_1f(s) = -lim,.tl/;(n + s) = -if;(n + l) 
(d/dx )[In r(x) 1. We show that f( s) is monotonically decreasing. 

(l - s)f'(s) = f(s) + if;(n + s). 

'P(s) (I - s)ff(s) + if;(n + s)j 

<p(O) = if;(n) - fn n < 0, 'P( l) = 0, <p'(s) = (l - s)4t'(n + s). 

Since lj;' ( n + s) > 0 it follows that 'P( s) < 0 and therefore f' ( s) < 0 for 
0 < s < l. Thus 

-4t(n + 1) ~ f(s) ~ In (l/n) 

which is equivalent to ( 6). 
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Exponential Integral f 00 e ., r "dt for 

Large Values of n 1 

Walter Gautschi 

An asymptotic expansion i.s given which is well suited for numerical computation when n is large and x arbitrary positi\·e. 

L Let 

n=l, 2, 3, .... 

By means of four integrations by parts, G. Blanch2 has found the approximation 

(l) 

(2) 

She also gives an integral representation for the error. Formula {2) ltas proved very efficient for 
computing En(x) for large ,-alues of n in the whole range x>O. Iu what follows, the complete 
expansion is given, as well as error estimates. 

Denote by hk(u) the polynomial (of degree k-l if k>O), defined recursively by 

hk+ 1 (u)=(1-2ku)hk(u)+u(l+u)h~(u) (k=O, l, 2, ... ), h0 (u)=L 
Let 

and let ak, f3k be low-er and upper bounds, respectively, for Ht(u) in the inLerval u2:0: 

(u2:0). 

Then it will be proved that 

t This paper w.as prepared under a National Bureau of Standards contract with The Arneriean University. 
'G. Blanch, An asymptotic expansion for E.(x)~ J, 00 

(e-'"fu•)du, NBS Applied Math. Series 31, iH (1954). 

(3) 

(4) 

(5) 

(6) 

(7) 
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For reference, the first eight polynomials hJu) and corresponding values of ak, {Jk are listed: 3 

h,(u)=1-2u 

h5(u) = l-52u+328u2 -444u3 + l20u4 

h6(u) = l-ll4u+ l452u2-4400ua+3708u1-720u5 

h7(u) = l-240u+56l0u2-32120u3 +58140u4-33984u5 +5040u6 

a 1=0, a2=-0.07, a 3 =-0.l8, a 4=-0.36, a,=-0.60, a.=-0.94, a 7 =-L4 

2. Consider, more generall_y, the integr~l 

l= io et<odt, (8) 

wheref(t) is a real function defined on the finite or infinite interval (a, b). It is assumed that 

f(t) has derivatives of any order in (a, b) and thatj'(t)r"O. Following van der Corput and 

Franklin, 4 we define the sequence gk(t) by 

(k=0,1,2, ... ). (9) 

Setting 

clearly [ 0 = I, and integration by parts yields 

lk=[gk(t)e1<0 1!-ib g;(t)e1(t 1dt=vk- [k+t' (10) 

where 
(ll) 

Hence, 
(12) 

(13) 

'The author is indebted to Mrs. L. K. Cherwinsk:i and Mrs. B. H. Walter for the. calculation of tb.e ""and /it. 
'J. G. van der Corput and Joel Franklin, Approximation of integrals by integration by parts, Nederl. Akad. Wetensch. Proc. Ser.{Aj54 

213-219 (195l). 

257



In case of an infinite interval (a, b) it has to be assumed that the values (ll) exist for all k. 
Equation (LO) then shows that the existence of the integral lk implies the existence of !HI· 

3. The integral in (8) is equal to E,.(.c) if 

f(.l) = - (.ct + n In t), (t= l, 

A short computation shows that with this definition of j(t), the sequence ih(l) w (9) IS 
equal to 

xt 
U=-, 

n 

where the hk(u) arc the polynomials defined in (:.>)and Hk(u) the rational functions (4). For the 
quantities L'k in (ll), one obtains 

Furthermore, 

Hence, from (12) and (13), 

By (5) 

and using the well-known inequality/ 

l L l ·--+ ~e E,.(x) ~ + 1 x n · · x n-
one gets 

xt 
u=-· 

n 

From this and (14) the formulas (6), (7) follow immediately. 

(14) 

It may be observed that the result (6), {7) holds also for noniutegral values of n with n> L 

'E. Hopf, Mathematical problems of radiative equilibrium, Cambridge Tracts in Mathematics and Mathematical Physics, No. ·at, p. 26 
{Cambridge University Press, 1934). 

WASHINGTON, October 14, 1958. 
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Recursive Computation of the Repeated Integrals 
of the Error Function 

By Walter Gautschi 

1. This paper is concerned with a special technique, originated by J. C. P. 
Miller [1, p. xvii], of computing a solution f,. of a second-order difference equation 

(1.1) (n = 1, 2, 3, · · ·) 

for n = 0(1)N, N large, in cases where (1.1) has a second solution, g,., which ul
timately grows much faster than f,. • Straightforward use of ( 1.1) is then not ade
quate, since rounding errors will "activate" the second solution g,. , which in turn 
will eventually overshadow the desired solution f,. • Miller's device consists of 
applying (1.1) in backward direction, 

( 1.2) Yn-l = - b,. -l ( a,.y,. + Yn+l) (n = "- 1, "- 2, · · · , 1;" > N), 
starting with the initial values 

(1.3) Y•-l = a, y. = 0, 

where a is any real number ~0. If " is taken sufficiently large the values so obtained 
turn out to be approximately proportional to f,. in the range 0 ;;;;; n ;;;;; N. The factor 
of proportionality may then be determined, e.g., by comparing Yo with fo . 

This technique was originally devised [1] for the computation of Bessel functions 
l,.(x), and has since then been applied to various other Bessel functions [2], [5], 
[9), to Legendre functions [8], and to the repeated integrals of the error function* [6], 

(1.4) 

.,. rf 2 1 .. (t - x)" -e• dt 1. e ex=- e · v'i,. n! 

t 1 erfc x = ~ e-:o•: 

(n = 0, 1, 2, · · · ), 

An analogous technique for first-order difference equations is described in [4, p. 25]. 
We shall present in Section 2 a detailed description of Miller's procedure, 

paying special attention to the error term. In Section 3 we study the procedure as 
applied to the computation of the functions (1.4) and show that the process con
verges for any positive x, as " --+- oo. In Sections 4-5 estimates will be developed of 
how large" must be taken to ensure any prescribed accuracy. 

Received August 22, 1960. 
• In this notation i"(n ~ O) should be interpreted as the nth power of the integral operator 

i = 100
, so that 

~"0 erfc x == erfc x, i" erfc :& = L .. i·o-1 erfc t at (n = 1, 2, · :. ). 

This notation for the repeated integrals of the error function, even though not entirely satis
factory, has become standard. 
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2. Consider the homogeneous second-order difference equation 

(2.1) (n = 1, 2, 3, · · ·) 

and assume that 

(2.2) b,. ~ 0 for all n ~ 1. 

Let f,. be the (nontrivial) solution of (2.1) to be computed for n = 0(1)N. We 
assume 

(2.3) /o ~ 0. 

Let there be another solution g,. of (2.1), for which 

(2.4) g,. ~ 0 for all n ~ 0, 

and 

(2.5) lim ,f,. I= 0. 
·- g,. 

It follows readily thatj,., g,. are linearly independent. 
Now let y,.<•>(n = 0, 1, · · · , " - 2; " > N) be the result of applying (2.1) in 

backward direction, starting with 

(2.6) <•> Y•-1 =a, (a~ 0). 

These values, by (2.2), are well defined, and, as will presently be shown, yo<•> ~ 0 
for " sufficiently large. Let us then define 

(2.7) 

We show that for any fixed n, 

(2.8) 

Moreover, 

J <•> - /o y <•> 
" - Yo<•> " · 

limj,.<•> = f,.. -
1-l!.~ 

(2.9) f,.<•> = f,. g.j,. 

1-l!.~ 
g. fo 

It is sufficient to prove (2.9), since (2.8) then follows from (2.5). Let y,.<•> be 
extended to all n > " by means of (2.1). Then for every fixed " the sequence 
(y,.<•>Hn = 0, 1, 2, · · ·) is a solution of (2.1), and therefore representable in the 
form 

(n ~ 0). 

By (2.6), 

(2.10) 
A <•>'j + B<•> r-1 Ur-1 = a, 

A·<•>j. + B<•>g, = 0. 
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Certainly, A<•> ¢ 0, since otherwise, by (2.4), A<•> == B<•> == 0, which contradicts 
the first equation in (2.10). From the second equation,B<•> /A <•> = - f,j g,. Therefore 

y,. I•) - A <•> (! .. + B<•> g .. ) - A <•> (! .. - /. g .. ) • A <•l . g. 

If" is sufficiently large it follows because of (2.3) and (2.5) that Yo<•> ¢ 0. By (2.7), 

fo A <•> (1 .. _I..!_ g .. ) 1 _[!_ f!!! 
~:<•>- g. -f, g,J,. 

n - A <•> (!o _I!_ go) - ,. 1 _I!_ ~ 1 

g, g, fo 

which proves (2.9). 
It is convenient to define 

(2.11) J,.go 
Pn == -. g,.fo 

so that p,. ~ 0 as n ~ oo, and 

/ .. <•> = f,. 1 - (p,jp,.). 
1- p, 

The relative error off,.<-> is given by 

(2.12) J,.<•> - /n = _P_•_ (1 - .!..) • 
j,. 1 - p, Pn 

(n == 0, 1, 2, · · · ), 

The approximations f,. <•> obviously do not depend on a, so that a can be chosen 
at will. If a high-speed computer is employed it is advisable to choose a small value 
for oi to guard against "overflow" in the values of y,. <•>. 

3. Now let 

(3.1) f,. = i"-1 erfc x, X 70 (n = 0 1 2 .. ·) , ' , . 
Then f,. is a solution of 

(3.2) X 1 
Yn+1 + - y,. - - Yn-1 = 0 n 2n (n = 1, 2, 3, · · ·) 

as is readily verified by writing 

.,. rf 2 (1 1 .. (t - x)"-1 te_,. dt x 1 .. (t - x)"-1 _,. dt) 
~ecx==-- -- e Vi n ., (n - 1)! n "' (n - 1)! 

and evaluating the first integral by parts. A second solution of (3.2) is given by 

(3.3) g,. = ( -1)"i,._1 erfc ( -x) (n = 0, 1, 2, .. · ). 

It is clear that the assumptions (2.2)-(2.4) are satisfied in this case. We shall now 
verify (2.5), i.e. 

(3.4) 1. ~ ... erfc x 0 
Im -,. .... i" erfc ( -x) (x > 0). 
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230 WALTER GAUTSCHI 

This then will prove the convergence of the procedure in Section 2, as applied to 
(3.2). 

We recall that the repeated integrals of the error function are related to the 
parabolic cylinder functions D,(x) by [7, p. 76] 

-tzl 
i" erfc x = 2<,. e1H2v1r D_,._.(xy2-). 

It is furthermore known [3, p. 123] that 

(n-+ oo, z bounded). 

Therefore we obtain immediately for any fixed x, real or complex, 

(3.5) ,• eric x ~ 2•r (~: 1 )'-Vi"• [I +0 ( Jn) J (n-+ oo ). 

Hence, 
·n rf 
~ e c x "" e-tv2iiz 

i" erfc ( -x) 
(n-+ oo ), 

which proves (3.4). 
4. Withf,., g,. defined by (3.1) and (3.3) we have for the quantities p,. in (2.11) 

(4.1) 
,. t""-1 erfc x 

Pn = ( -1) .,._1 rf ( ) 
~ · e c -x (n = 0, 1, 2, · · · ). 

It is shown in this section that for any fixed x > 0 the sequence {I p,. I} is mono
tonically decreasing, i.e., 

(4.2) I Pn+II = t"" erfc x . t"'-1 erfc ( -x) < 1 (n ~ O). 
p,. i,._1 erfc x i" erfc ( -x) 

Inequality (4.2) is obvious if n = 0 and, by (1.4), equivalent to 

{" (t - x)"-•e-'' dt L: (s + xte-•' ds 

- ].,"' (t - x)"e-12 dt L: (s + xt-• e-'1 ds > 0 

if n > 0. By introducing new variables of integration, t = u + x, s = v - x, and 
writing the left-hand side as a double integral, one obtains 

(4.3) hr. n-1 n-l( ) -(u+z)1-(o-z)l d d > 0 u v v-ue u v , 
0 

where Q denotes the first quadrant u ;;;; 0, v i;; 0. Let Q. , Q2 denote the regions 

0 < u < v, O<v<u. 
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Interchanging variables of integration gives 

~~~ u"-V'-1(v - u)e-<u+slt-<v-zl' du dv == - ~~1 u"-1v"-1(v- u)e-<v+sl•-cu-zl2 du dv. 

Therefore ( 4.3) is equivalent to 

/~, u"-lvn-l(v - u)[e-<u+s)l-(v-:e)l - e-<•+s)l-(u-z)l] du dv > 0. 

Now, u"-V'-1(v- u) > 0 in Q1, and the same is true for the expression in brackets, 
since 

-(u + x) 2 - (v- x) 2 > -(v + x) 2 - (u- x) 2 for u < v. 

This proves (4.3), and thus (4.2). 
5. We are now in a position to estimate v such that for any given integer p, 

I (!,.<•> - f,.)jf,. I ~ w-p for n = 0, 1, ... 'N + 1. 

Here,f,.<•> denotes the approximations tof,. = i"-1 erfc x obtained by the procedure 
of Section 2. 

Since, by (2.12), 

I (!,.<•> - J,.)/Jn I ~ I P•l (1 + I Pn ~-l) + O(p/), 

and since I p,. l-1 increases with n, by ( 4.2), it is sufficient to choose v such that 

(5.1) 

From (3.5) and (4.1) we have 

(5.2) 1 Pn+I 1 = e-2v'znz [ 1 + 0 (Jn) J. 
Assuming N large enough to neglect the 0-term in ( 5.2) for n ~ N, the requirement 
(5.1) may be simplified to 

or even to 

(5.3) 

having made the right-hand bound smaller. Inequality (5.3) yields 

~ (2v'2Nx + pln 10 + ln2)2 

"- 2V2x ' 

which gives us the desired estimate of v. 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee 
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EFFICIENT COMPUTATION OF THE COMPLEX ERROR FUNCTION* 

WALTER GAUTSCHit 

Abstract. The paper is concerned with the computation of w(z) = exp (- z2) erfc (- iz) for complex 
z = x + iy in the first quadrant Q1 : x ~ 0, y ~ 0. Using Stieltjes' theory of continued fractions it is 
first observed that the Laplace continued fraction for w(z), although divergent on the real line, represents 
w(z) asymptotically for z-+ oo in the sectorS: -n/4 < argz < 5nj4. Specifically, the nth convergent 
approximates w(z) to within an error of O(z- 2" - 1) as z -+ oo inS. A recursive procedure is then developed 
which permits evaluating w(z) to a prescribed accuracy for any z e Q 1 • The procedure has the property 
that as lzl becomes sufficiently large, it automatically reduces to the evaluation of the Laplace continued 

fraction, or, equivalently, to Gauss-Hermite quadrature of (i/n) f_00

00 
exp (- t2) dt/(z - t). 

1. Introduction. The error function of a complex variable, in more or less 
disguised forms, occurs in many branches of science and technology. Properties 
of this function, and computational methods, have been studied extensively. 
A useful survey, as of 1966, may be found in [1], and more recent work in [2], 
[11], [14]. In many applications the function must be evaluated a large number 
of times. It is therefore important to search for methods which are as efficient 
as possible. Current practice attempts to achieve the desired economy by adopting 
different methods in different regions of the complex plane. In this paper, instead, 
we propose a single algorithm which is uniformly effective for all complex argu
ments. A corresponding ALGOL procedure appears in [8]. 

In § 2 we review some relevant math'ematical properties of the complex error 
function. Although much of this material is known, a few remarks are made which 
do not seem to be common knowledge. Among these is the observation that a 
certain continued fraction, known as the Laplace continued fraction, while divergent 
on the real line, approximates the error function asymptotically in the sense of 
Poincare. The computational algorithm is developed in § 3. Basically, it consists 
of evaluating an approximation to a truncated Taylor expansion. The increment, 
h, as well as the number of terms, N, are made to depend on the argument z at 
which the function is evaluated. As lzl increases, h and N decrease, until eventually 
both become zero, at which time the algorithm reduces to that of evaluating the 
Laplace continued fraction. Some performance characteristics, and data on testing 
the algorithm, are included in § 4. 

2. Mathematical preliminaries. The function 
(2.1) w(z)=e-z2 erfc(-iz), 

where erfc C = (2/.j;c) L00 e- 12 dt denotes the complementary error function, was 

first introduced (and tabulated) by Faddeeva and Terent'ev [4]. As a function of 
the complex variable z, w(z) represents. an entire function, and has the property 
that both its real and imaginary parts are between zero and one for z in the first 

*Received by the editors June 5, 1969, and inrevised form August 6, 1969. 
t Department of Computer Sciences, Purdue University, Lafayette, Indiana 47907. This work was 

supported, in part, by the National Aeronautics and Space Administration under grant NGR 15-005-039 
and, in part, by Argonne National Laboratory. 
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quadrant of the complex plane. This property may well have been one of the 
motivations for considering (2.1) as the basic form of the error function for complex 
argument. 

Closely related to (2.1) is the integral 

(2.2) f(z) = _e_dt. Joo -t2 

-00 z - t 

We have in fact 

(2.3) 
{ 

i 
- f(z), 
1t 

w(z) = . 
l 2 
-:;;f(z) + 2e -z , 

Imz > 0, 

Im z < 0. 

While w(z) is an entire function, f(z) is analytic for all z not on the real line, and 
represents two analytic functions, one in the upper, another in the lower half-plane, 
neither of which is the analytic continuation of the other. For real z, the integral 
in (2.2) is meaningful only in the sense of a Cauchy principal value integral. 

We note that (2.2) is a special case of a Stieltjes transform J~oo drx(t)j(z - t). 

Most of the properties to be described below follow from Stieltjes' classical theory 
[12], [10] concerning integrals of this type, and are therefore applicable in other 
situations as well (e.g., in the computation of the complex exponential integral). 

Expanding the integrand in (2.2) in descending powers of z, and integrating 
term by term, one obtains the asymptotic expansion 

(2.4) 
oo Jls 

f(z) "' L ---s+I• 
s=O Z 

z ..... oo in lim zl ~ a, a> 0 arbitrary, 

where 

(2.5) Joo 2 {0, 
J1 = t8e- 1 dt = 

s - oo r((s + 1)/2), 

s odd, 

seven, 

are the moments of e- 12 . Since e-zl has the zero asymptotic expansion in 
-n/4 < arg z < n/4 and 3nj4 < arg z < 5n/4, it is not surprising, in view of 
(2.3), that 

(2.6) 

(2.7) 

i oo Jls 
w(z) "' - L S+T• 

1ts=oZ 
z __... oo in -n/4 < arg z < 5nf4. 

With the (formal) expansion (2.4) is associated the continued fraction 

Jlo 1/2 1 3/2 
z- z- z- z-

known as the Laplace continued fraction. More precisely, (2.7) is associated with 
(2.4) in the following sense. Let 

(2.8) 
z- z- z- z- z 
Jlo 1/2 1 3/2 (n - 1)/2 qn(z) 

= Pn(z) 
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COMPLEX ERROR FUNCTION 189 

denote the nth convergent of the continued fraction (2. 7). It is easily verified that 
q11(z) is a polynomial of degree n - 1, while pn{z) is a monic polynomial of degree n. 
Then the quotient in (2.8), if expanded in descending powers of z, 

(2.9) qn(z) - oo v~n) 

Pn(z) - s~O z•+ 1 ' 

yields a power series which agrees with that in (2.4) up to and including the term 
with z- 2", i.e., 

(2.10) fors = 0, 1,2, ... , 2n- 1. 

It is also known [13] that the continued fraction (2.7) in fact converges to f(z) for 
every nonreal z. 

Another remarkable connection of the continued fraction (2. 7) with the 
integral in (2.2) is obtained if the rational function (2.8) is decomposed into partial 
fractions, 

(2.11) 
qnCz) 11 l1"> 
-() = L (n)' PnZ k=1z-tk 

(All zeros of p11 (z) are known to be simple.) Expanding both sides of this equation in 
descending powers of z, and comparing coefficients of like powers, one finds that 

n 

v<n) = " A,<n>[t<n>J• s L.,kk• s=0,1,2, .... 
k=1 

In view of (2.10) it follows that 

n 

J.ls = L Ak">[t1")Js for s = 0, 1 , 2, · · · , 2n - 1 , 
k= 1 

which, on account of (2.5), implies that 21"> and t1"> are the weights and nodes, 
respectively, of n-point Gauss-Hermite quadrature. Consequently, 

(2.12) lim L k = _e_dt, 
n A(n) Joo -t2 

n-+ook=1z-t1;> _ 00 Z-t 
Imz #- 0, 

i.e., Gauss-Hermite quadrature, applied to the integral in (2.2), converges for every 
z not on the real line. 

Using the well-known remainder term of Gauss-Hermite quadrature it also 
follows that 

(2.13) Joo " lnn I 
II _ V(n) = t2ne-t2 dt _ " A_(n)[t(11)]2n = V_ 1_~. 
r2n 2n L., k k 2" ' 

-00 k= 1 

It is interesting to observe that, although (2.12) does not converge if z =xis 
real, the Gauss-Hermite quadrature sum (2.11) for fixed nand z = x-+ oo neverthe
less approximates -inw(x) to within an error of O(x- 2"- 1). In fact, this is true as 
z -+ oo in the sector -n/4 < arg z < 5n/4. In other words, the quadrature sums 
(2.11), and thus the convergents of the Laplace continued fraction (2.7) approxi
mate - inw(z) asymptotically as z -+ oo in -n/4 < arg z < 5nj4. This follows by 
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combining (2.6) and (2.9)-(2.11), 

w(z) - - " _k __ = - '\"' -•- + 0 -- - - '\"' -•-
i n A_fn) i 2n f.1 ( 1 ) i 00 v<n) 

n k~1 z- 4"> n.~o z•+ 1 z2n+3 n s~o z•+ 1 

' (n) ( 1 ) = !_ f.12n - V2n + O __ 
n z2n + 1 z2n + 3 ' 

. n 5n 
z--+ oo m - 4 < argz < 4 . 

We have used here the symmetry of the Gauss-Hermite weights and nodes, which 
implies that (2.11) is an odd function of z, and therefore v~"> = 0 forsan odd integer. 
Also, the series in (2.9), in view of(2.11), obviously converges for lzl > maxk t~">. By 
virtue of (2.13) we thus have 

(2.14) 
i n 21") i n! 1 ( 1 ) 

w(z) - - I t<"> = J- 2n 2n+ 1 + o 2n+ 3 , n k= 1 z - k n z z 

. n 5n 
z--+ oo m - 4 < argz < 4 . 

If this is compared with the asymptotic expansion (2.6), i.e., 

(2.15) i lnL- 2 f.Ls i f.12n ( 1 ) w(z)-- - =--- + 0 --n s=O z•+1 1t z2n+1 z2n+3 ' 

one notes that the leading term on the right in (2.14) is smaller than the correspond
ing term in (2.15) by a factor of 

Jnn! C t -n 

2"r(n + !) "' v nn 2 , n-+ oo. 

This is why Gauss-Hermite quadrature is so much more effective for computation 
than straightforward asymptotic expansion. 

There is yet another approach to the continued fraction in (2.7), which in
volves the repeated integrals of the complementary error function. Consider (see [6] 
for notations) 

(2.16) 2 
n = 0, 1,2,···, w_ 1(z) = Jn' 

so that in particular 

(2.17) w0(z) = w(z). 

If Im z > 0, the sequence { wn(z)}:"= _1 is known to be a "minimal" solution of the 
linear second order difference equation 

(2.18) 
iz 1 

Yn+1- n + 1Yn- 2(n + 1)Yn-1 = 0, n = 0, 1, 2, · · ·. 
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(For terminology, and subsequent development, see [7].) For any integer N ~ 0, 
and v > N, define 

'n-1 = . ( 1) ' -tz + n + rn 
1/2 

n=v,v-1,···,0, 
(2.19) 

2 
v_1 = Jn' n = 0, 1, 2, · · · , N. 

We shall write r~v! 1 (z), v~v1(z) for r n- 1 , vn, if we wish to indicate their dependency on v 
and z. It can then be shown that 

(2.20) lim v~vl(z) = wn(z), Imz > 0, n = -1,0, 1,2, · · ·, 
V"" 00 

and consequently, 

v-+ oo 

In particular, by (2.17), 

w(z) = lim v~l(z) = ~ lim rl~11 (z), 
v ... oo ynv-+oo 

Imz > 0. (2.21) 

To see the connection with the Laplace continued fraction, let n = 0 in the 
second line of(2.19), and then in turn n = 0, 1, 2, · · · , v in the first line of(2.19). One 
obtains 

[vJ( ) __ 1_ 1 1/2 1 3/2 ... _v_/2_ 
Vo z- Jrr_(-iz)+ (-iz)+ (-iz)+ (-iz)+ (-iz) 

i Jio 1/2 1 3/2 v/2 
=-----···-

n z- z- z- z- z 

where the second expression follows from the first by an obvious equivalence 
transformation. Comparison with (2.8) shows that 

(2.22) [v]( ) _ i qv+ 1(z) v0 z -- . 
1t Pv+l(z) 

Curiously, the function wn(z) defined in (2.16) is related to the nth derivative 
ofw(z) by 

(2.23) w<n>(z) = (2i)"n!wn(z), n=0,1,2,···, 

a result apparently first observed in [5, p. 223]. 

3. Computational procedure. Our objective is to devise an efficient procedure 
for computing the function w(z) defined in (2.1) to a given number d of correct 
decimal digits after the decimal point, i.e., to within an (absolute) error of f1o-d. 
We shall assume z to lie in the first quadrant Q1 of the complex plane. This is 
no restriction of generality, since 

(3.1) w(-z) = 2e-z2 - w(z), w(z) = w(-z) 

can be used to continue w into the remaining quadrants. 
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As shown in (2.12), (2.14), Gauss-Hermite quadrature, or equivalently, the 
Laplace continued fraction (2.7), provides an effective means of computing w(z) 
for z E Q1 and lzllarge. To obtain a more concrete idea as to the errors involved, 
we construct the altitude map of the merom orphic function 

i n ,A_~n) 
en(z) = w(z) - - L (n)' 

n k= 1 z- tk 

i.e., the curves of constant modulus len(z)l = r. These may be obtained by numerical 
integration of the differential equations 

dx [en{z)J 
d¢ = - Im e~(z) ' 

dy = R [e"(z)J 
d¢ e e~(z) ' 

Z =X + iy, 

subject to the initial conditions 

x(O) = 0, y(O) = Y/, 

where Y/ is the root of len{iy)l = r. Selected results are shown in Fig. 1, where n = 9 
and r = -!10- 4, d = 2(2)10. 

(3.2) 

y s.ooo ,-------------------------, 

... ooo 

3.000 

2.000 

J.ooo 

0 .ooo +----..-------,,---l----r--l.---l.-,--...l.--.,.-.....l------1 

o.ooo J.ooo 3.000 ... ooo s.ooo . 
FIG. 1. Altitude map of the function w(z) - (ijn) I .A.i•lj(z - tl"l), n = 9 

k=l 

s.ooo 
X 

Given any d, it is obviously possible to construct a rectangular region 

R: 0 ~X~ Xo, 0 ~ Y ~Yo 

outside of which 9-point Gauss-Hermite quadrature yields an accuracy of d 
decimal places. For d = 10, e.g., Fig. 1 suggests the choice x0 = 5.33, y0 = 4.29. 
Larger values of n would result in a smaller rectangle R, whereas smaller values of n 
would require a larger rectangle R for the same accuracy. It does not seem possible, 
in general, to arrive at an optimal choice of n, as such a choice would depend on the 
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relative frequency with which the procedure is used in various regions of the 
complex plane. The choice n = 9 appears to be a reasonable compromise, and 
we shall fix this value for what follows. 

To compute w(z) outside of R, we thus apply (2.19) with v = 8 and N = 0. 
In view of (2.22), (2.11), this is indeed equivalent to evaluating w(z) from the 
integral representation (2.2), (2.3) by a 9-point Gauss-Hermite quadrature rule. 

It remains to consider the case where z e R. If y = lm z is relatively small, 
a common procedure consists of computing w(z) from a Taylor expansion about 
z0 = Re z, or alternatively, to write 

w(z) = e-z2 + JnF(z), 

and to expand F(z) about z0 = Re z. There are two disadvantages to this approach: 
(i) it requires the computation of Dawson's integral, F(x), for x = z0 • 

Although good rational approximations are available for F(x) (see, e.g., [3]), 
the necessity of computing F(x) is apt to increase both the length of the program, 
and the total machine time, for computing w(z); 

(ii) the recursive computation of the expansion coefficients is subject to 
considerable loss of accuracy, particularly for large x > 0. 

Interestingly enough, both these defects are removed if one expands "down
ward" rather than "upward'', i.e., if one computes w(z) from the Taylor expansion 

( ) ~ w<"1(z + ih)( 'h)" 
W Z = £... I -l , 

n=O n. 
(3.3) 

where h > 0 is suitably chosen. This approach has the further advantage of being 
related to the Laplace continued fraction approach, and in fact gives rise to an 
algorithm which generalizes algorithm (2.19) (used outside of R). 

We observe from (2.23) that (3.3) can be written in the form 
00 

(3.4) w(z) = L (2h)"w11(Z + ih). 
n=O 

Approximating W11 by v~vl [cf. (2.20)], and truncating the infinite series, we are led 
to define 

N 

(3.5) u~1(z, h) = L (2h)"v~"1(z + ih). 
n=O 

Letting tn = (2h)"v~"1(z + ih), one obtains from (2.19) the following algorithm to 
compute (3.5), 

1/2 
rn-t=h . ( 1)' - lZ + n + rn 

n = v, v- 1, ·· ·, 0, 

(3.6) 
2 

to = u o = j"i/- 1> 

tn = 2hrn-ltn-1• Un = Un-1 + tn, n=1,2,···,N. 

We note that for h = 0, N = 0, algorithm (3.6) reduces to algorithm (2.19). 
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Given e = !-10-d, it is clearly possible to determine Nand v (both depending 
on z, h, and e) such that 

(3.7) 

Since the series in (3.4) converges for every z and h, we can indeed find N such that 
la~001(z, h) - w(z)l ~ e/2, and with N so determined, find v > N such that loW(z, h) 
- a~001(z, h)l ~ e/2. The triangular inequality then yields the desired result (3.7). 

Efficiency being one of our major concerns, we propose to 
(i) let h, N and v depend on z in such a way that h = N = 0, v = 8 for z 

outside of R, the rectangle introduced in (3.2); 
(ii) empirically determine the smallest integers N and v, subject to (i) and 

compatible with (3.7), for each zE R. 
The motivation behind the first of these objectives is to arrive at a single 

algorithm for computing w(z) in all of Q1, viz. algorithm (3.6), which, as was 
already observed, automatically reduces to the Laplace continued fraction 
algorithm (2.19) when h = N = 0. The objective can be attained in many different 
ways. Exploratory computations led us to set up h, N, v tentatively in the form 1 

h=h0s(z), N={N0 +N 1s(z)}, v={v0 +v1s(z)} ifzER, 

h = N = 0, v = 8 if ZE Ql\R, 
(3.8) 

where 

Z =X+ iy, 

and h0 , N 0 , N 1 , v0 , v1 are parameters which remain to be determined. Our second 
objective (ii) will serve to determine the last four of these parameters, while the 
first, h0 , will be chosen so as to minimize machine time. 

A basic aid in this parameter study is a gauging routine r, which does the 
following: given z = x + iy, h, and e, it returns nearly optimal values N = N r, 
v = vr compatible with (3.7). The detailed steps involved in r are as follows: 

(a) Select N = N max sufficiently large (say, N max = 40). 
(b) Determine vmin• the smallest integer v > Nmax such that maxo&N&Nmax 

Ia~+ 10l(z, h)- a~l(z, h)l ~ e/100. The quantities a~mtnl(z, h), N = 0, 1, · · · , 
N max, are considered sufficiently accurate to represent true partial sums 
of the Taylor series (3.4). 

(c) Find Nr as the smallest integer N ~ Nmax- 3 satisfying la~+131(z, h) 
- a~minl(z, h)l ~ e. If there is no such integer N, increase Nmax by 10, 
and repeat steps (a)-(c). 

(d) Determine vr as the smallest integer v satisfying Ia~; 11(z, h) - a~~(z, h)l 
~e. 

A first application of the gauging routine r is made in determining the 
parameter h0 . The choice of h0 affects both the convergence of a~1(z, h), as v ~ oo, 
and the convergence of the Taylor expansion (3.4). In fact, large values of h0 

give rise to fast convergence of a~1(z, h), but slow convergence in (3.4), while 

1 {u} denotes the integer closest to u, i.e., the largest integer contained in u + 1/2. 
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small values of h0 yield slow convergence of oW(z, h) (particularly if y = Im z 
is small), but fast convergence in (3.4). A good choice of h0 is therefore one which 
strikes a balance between these two opposing effects. In order to search for such 
a value, we let y = 0 (where these effects are most pronounced) and apply r with 
input parameters z = x, h = h0 s(x), e, for selected values of x and h0 • After each 
application of r we measure the machine time required to compute a~1(x, h) by 
algorithm (3.6), where v = vr, N = Nr are the integers returned by r. With 
x0 = 5.33, e = fl0- 10, the results are shown in Fig. 2, where machine time (in 
milliseconds) is plotted versus h0 for x = 0(1)5. It is seen from these graphs that 
a good choice of h0 is h0 = 1.6. 

t (millisec.) 

.6 1.2 1.4 1.6 1.8 2.0 h0 

FIG. 2. Machine time for algorithm (3.6) as a function ofh0 and z = x 

We next apply r to determine the parameters N 0• N 1> Vo, Vt in (3.8). A first 
pair of constraints is obtained by letting z = 0 and requiring that 

(3.9) 

where N~, v~ are the results returned by r with input parameters z = 0, h = h0 , e. 
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A narrow band near the separation line y = y0 is then examined more carefully, 
since our preliminary computations indicated that N r and vr approach limits 
larger than 0 and 8, respectively, as y j y0 • With N~ the largest Nr, and v~ the 
largest Vr returned by r for input parameters z (near the line y = Yo). h = hos(z), 8, 

we let 

(3.10) 

which, together with (3.9), determines the desired parameters uniquely. In our 
case of interest (x0 = 5.33, y0 = 4.29, h0 = 1.6, e = !10- 10), the results are 
N~ = 29, v~ = 30, N~ = 6, v; = 9, giving 

(3.11) h = 1.6s(z), N = {6 + 23s(z)}, v = {9 + 21s(z)} if z E R. 

Note that v > N for all z, as required in algorithm (3.6). 
It remains to examine whether this choice of parameters is indeed compatible 

with (3.7). This is done by applying r with input parameters z = X + iy, h = hos(z), 
8 over a grid of points z E R, and by checking the inequalities 

where N r(z) and vr(z) are the output values of r at the point z. Using the grid 
x = 0(.5)5(.05)5.4, y = 0(.2)4(.05)4.4, and 8 = ! 10- 10, it is found that both 
inequalities are consistently satisfied. 

With the values of h, N, v, defined in (3.8), (3.11), the desired function w(z) 
is thus. approximated by a~1(z, h) in (3.5), which in tum can be calculated by 
algorithm (3.6). The result is essentially the algorithm in [8], except that in this 
procedure the sum for a~l(z, h) is evaluated somewhat differently. Letting 
sn = [v~1(z + ih)r 1 L:=n+ 1 (2h)kv~v1(z + ih), sN = 0, one can write indeed 

(3.12) 
1/2 

' ' ' ' 
'"- 1 = h - iz + (n + l)r/ 

Sn-l = rn-1[(2h)" + snJ, 
} n=v v-1 ··· 0 

ifn ~ N 

and then has 

2 
Jns-1, 

2 
;-:;;'-1• 

(3.13) 

h > 0, 

h =0. 

The advantage of this algorithm over algorithm (3.6) is its increased speed 
on a digital computer [ cf. § 4] together with the fact that no array of storage must 
be provided to hold the quantities rn-t, n = 1, 2, · · · , N. 

4. Performance characteristics and tests. We begin by comparing the com
puting times of the algorithm in [8] (referred to below as "Algorithm 363") with 
those of a similar algorithm, in which (3.12), (3.13) is replaced by (3.6). Both 
algorithms are compiled and executed on the CDC 6500 computer. 
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We select five layers S", n = 0, 1, · · · , 4, in R, defined by 

S,.: 0 ~ x ~ x0 , ny0/5 ~ y ~ (n + l)y0 j5, x0 = 5.33, Yo= 4.29, 

and time the algorithms on each S". The average time on S" is obtained by measuring 
the computing time ofevaluating w(z) for 1000 values of z, distributed uniformly 
in S", and by dividing the measured time by 1000. Both algorithms are timed 
similarly in the region outside of R (where computing time is independent of z). 
The results2 are shown in Table 1. It is seen that the second algorithm is slower 
than the first by a factor of 1.6 to 2.2. 

TABLE I 
Timing of Algorithm 363 and a related algorithm 

Computing time (in millisec.) 
z in 

Algorithm 363 (3.6) replacing (3.12), (3.13) 

So 6.7 14.5 
s, 6.0 12.6 
82 5.2 10.7 
s3 4.4 8.7 
s4 3.6 6.8 
Q,\R 2.2 3.6 

For comparison we also timed the library subroutine for the exponential 
function tr for selected values of X in the interval 1 ~ X ~ 20. The time observed 
was rather consistently .315 milliseconds. The computation of w(z) (both real and 
imaginary part) by Algorithm 363 thus takes about as long as 7 to 21 exponentia
tions, depending on the location of the argument z. 

In order to gain further confidence in the accuracy claimed, Algorithm 363 is 
run for x = 0(.02)5.32(.005)5.35, 5.4(.2)6, y = 0(.02)4.28(.005)4.31, 4.4(.2)5, the 
results being compared with those obtained by the same algorithm, where h is 
replaced by 1.6, N by 33, and v by 36. (This combination of parameter values yields 
14 correct decimal digits for z near the origin.) The largest absolute deviation is 
found to be 5.18 X 10-ll in the real part, and 4.91 X 10- 11 in the imaginary part, 
suggesting that 10 decimal accuracy has indeed been attained. 

Although we limited ourselves to an absolute error criterion, the relative 
error is not substantially larger for z e Q1 , since w(O) = 1 and lw(z)l decreases 
slowly (like n- 1121zl- 1) as lzl increases. In fact, as z-+ oo in Q1 , the relative error 
p(z) is asymptotically given by p(z)- 9!2- 9z- 18, as can be seen from (2.14), 
with n = 9, and (2.6). Thus, e.g., lp(z)l = 1.03 x 10- 8 if lzl = 4, and lp(z)l = 1.86 
x 10-to if lzl = 5. These estimates, it must be noted, do not necessarily apply 
to the relative errors in the real and imaginary parts individually. For example, 
Im w(iy) = 0 for real y, which implies a large relative error in Im w(z) when z is 
very close to the imaginary axis. Similarly, Re w(x) = e-x2, x real, implying a 
large relative error in Re w(z) for z very close to the real axis andRe z large. 

2 Such timings are subject to slight variations, even on the same computer, due to such incidental 
factors as compiler, executive system, clock reading routine, etc. 
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To illustrate the last remark, we use our algorithm to compute n- 112 

Re w(x + iy) for X = 0(1)10 and y = s. w-r, s = 1, 2, 3, 5, 7, r = 4, 3, 2, and 
compare the results with those in Hummer's table [9]. Although some of the 
answers (for large x and small y) have order of magnitude 10- 7 , there is still 
agreement to 8 significant digits (the precision in [9]), excepting occasional end 
figure errors of 1 to 7 units. 

As a final note, we observe that loss of significant accuracy may also occur 
in the use of (3.1), since w(- z) has zeros in the first quadrant Q 1 , as may be inferred 
from the altitude chart in [6, p. 298]. 

Acknowledgments. The author is indebted to Professor Henry C. Thacher, Jr., 
for stimulating conversations, and to Mr. Thomas J. Aird for writing the program 
to produce the altitude map of Fig. 1. 
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A HARMONIC MEAN INEQUALITY FOR THE GAMMA FUNCTION* 

WALTER GAUTSCHit 

Abstract. We prove that the harmonic mean of r(x) and r(l/x) is greater than or equal to f(l) = 1 
for arbitrary x > 0. 

1. Introduction. V. R. Rao Uppuluri [2] brought the following conjectured 
inequality to the author's attention: 

(1.1) 
2 

1/(r(x)) + 1/(r(l/x)) ~ 1 on 0 < x < oo. 

It states that the harmonic mean of r(x) and r(1/x) is always larger than or equal 
to r(1) = 1, equality being assumed for x = 1. Because of the well-known in
equalities between the harmonic, geometric and arithmetic means, the conjecture 
implies these other inequalities, r(x)r(1/x) ~ 1 and r(x) + r(1/x) ~ 2. 

The proof of ( 1.1), given below in§§ 2-5, is "computational" in the sense that 
it relies on certain isolated numerical values of the psi function 

'''( ) = r'(x) 
'+' x r(x) 

and its derivative. This deficiency, however, is removed in § 6, where numerical 
values of only standard constants, such as n, In 2, and Euler's constant y, are re
quired. 

It suffices to prove (l.l)for 1 < x ~ x0 , where x 0 = 1.4616 ···is the positive 
minimum point of r(x). In fact, the left-hand expression in (1.1) is clearly in
creasing on the interval (x0 , oo). If we prove the inequality for 1 < x ~ x0 , it will 
hold for all x > 1, hence also for all positive x < 1, on account of its invariance 
under the substitution x -+ 1/x. 

(2.1) 

2. Reformulation of the inequality. Letting 

1 
</J(t) = r(e~, -oo<t<oo, 

we may rewrite (1.1) in the form 

(2.2) t[</J(t) + </J(- t)] ~ </J(O), 

which expresses a "symmetric concavity" property for </J. We must prove (2.2) for 
0 < t ~In x0 • 

Using Taylor's theorem, we have fort > 0, 
2 

!(<fJ(t) + c/J( -t)]- c/J(O) = ~ [¢(r 1) + <i)(r2)], 

*Received by the editors May 24, 1972. 
t Department of Computer Sciences, Purdue University, Lafayette, Indiana 47907. 
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where dots denote derivatives with respect to t, and 

(2.3) 0 < 1.'1 < t, -t < ;;2 < 0. 

We will show that 

(2.4) 

3. The second derivative of lj>. Differentiating (2.1) we obtain 

where 

1 f 1(e') 
<fo(t) = - e [f(e,)] 2 = - xy(x), 

t/J(x) 
y(x) = r(x). 

Another differentiation gives 

" ( d ')dx 1 1 lj>(t) = dx 4> dt = x( -xy) = -x(y + xy ), 

where primes indicate differentiation with respect to x. Noting that 

yf=t/1, 

yT = t/11 
- yr' = t/J 1 

- yft/J = t/J1 
- tfJ 2 , 

we may express the second derivative of 4> in terms of t/1 and t/1 1, 

(3.1) 

279 

4. Some monotonicity properties. We now observe that both functions 
xt/f(x) and x2t/1 1(X) are monotonically increasing on the interval 1/x0 < x < x0• 
To see this for the first, we use the known expansion [1] 

oo x(x- 1) 
xt/f(x) = -1 + (1 - y)x + L ( 1)( )' 

m=l m + m +X 
(4.1) 

where y = .5772 ···is Euler's constant. One checks that form > 0, 

x(x- 1) 

m+x 

is monotonically increasing for x > (1 + J1 + 1/m)- 1, hence in particular for 
x > 1/x0 • Monotonicity of xl/1 thus follows from (4.1). Since t/J(x0) = 0, we also 
see that 

xt/J(x) < 0 on 1/x0 < x < x0 • 

For x2t/1 1, our assertion follows directly from 

x2t/JI(x) = ~ (-x-) 2' 
m=O m +X 
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x/(m + x), for each m ~ 1, being monotonically increasing for x > 0. We also note 
that 

x21/J'(x) > 0 on 1/x0 < x < Xo. 

5. Conclusion of the proof. We are now in a position to estimate the second 
derivative of 4> in (3.1), first on the interval 1/x0 < x < x0 , then on 1 < x < x0 • 

On the first interval we have by the monotonicity properties of§ 4, 

(5.1) xi/J + x21/J' - x 21/12 ~ xi) 1t/1(1/x0 ) + x0 21/J'(1/x0 ) - xi) 2 1/J 2(1/x0). 

Using linear interpolation in [1, Table 6.1] we find I/J(1/x0 ) = t/1(1 + 1/x0 ) - x0 

= -1.2657 · · · , I/J'(1/x0 ) = 1/J'(l + 1/x0 ) + x~ = 2.9392 · · · , so that the lower 
bound in (5.1) is -.2400 · · · . From (3.1), since f(x0 ) = .8856 · · · , we thus obtain 

.. 2400 ... 
¢(t) ~ · f<xo) < .272 on -lnx0 < t < lnx0 . 

On the second interval, similarly, 

(5.2) xi/J + x 21/J' - x 2 1/J 2 ~ 1/1(1) + 1/1'(1)- 1/12(1) = .7345 · · ·, 

where we have used [1] 

1/1(1) = -y, t/1'(1) = ((2) = n2/6. 
Thus, 

.. -.7345 ... 
¢(t) ~ r(1) < -.734 onO < t < lnx0 • 

The proof is now completed by recalling from (2.3) that 

0 < r 1 < In x0 , -In x0 < r 2 < 0, 

and hence 

cj}(r d + ci)(r2) < -.734 + .272 = -.462 < 0, 

as we set out to show in (2.4). 

6. A less computational variant of the proof. Reference to numerical values of 
t/1(1/x0 ) and I/J'(1/x0 ) in (5.1) can be avoided by observing that xi) 1 > ! and that 
xt/f and x 21/J' are monotonically increasing on!< x < x0 • Using [1] 

1/J{!) = -y - 2ln 2, 1/J'{!) = 3((2) = n2 j2, 

we can thus write in place of (5.1), 

xi/J + x 21/J' - x 21/J 2 ~ !1/J(t} + !1/J'{!) - !1/12(!) = -. 7118 · · · . 

Together with the companion inequality (5.2), and (3.1), this gives 

cj}(t)r(e') ~ .712 on -In x0 < t < ln x0 , 

cj}(t)r(e') ~ -.734 on 0 < t <In x0 . 
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It follows, in particular, that 

(6.1) ¢(rd < 0 and ¢(r 1)r(et') + ¢(r2)r(et2) ;£ -.734 + .712 = -.022 < 0. 

Were ¢( r 2) negative or zero, our assertion (2.4) would follow immediately 
from the first inequality in (6.1). If ¢(r2)were positive, then ¢(r2)r(et2 ) > ¢(r2)r(et'), 
and the second inequality in (6.1) would give 

0 > ¢(r 1)r(et') + ¢(r2)r(et2) > r(et')[¢(< 1) + ¢(r2)], 

that is again (2.4). Thus (2.4) is true in either case, and the proof, once more, is 
completed. 
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Abstract. We determine the infimum of the harmonic mean of r(x 1), r(x2), •. · , r(x.) under the 
constraints n:= I xk = I' all xk > 0. We present numerical evidence for this infimum to be equal to 
r(l) = I if n ;:;:;; 8, and show it to be less than I when n > 8. We also prove that the geometric mean 
of r(x 1), r(x2), · · · , l(x.) is always ii:; 1 under the same constraints, and that the geometric mean is the 
power mean with the smallest exponent for which this is true. 

1. Introduction. In a recent note [1] we proved that the harmonic mean of 
r(x) and r(1/x) for x > 0 is never smaller than r(l) = 1, that is, 

2 > 
(1.1) 1/r(x) + l/r(l/x) = 1 for 0 < x < oo. 

Equality, of course, is assumed when x = 1. We report here on attempts at generaliz
ing (1.1) to more variables. A natural generalization would be nfl:;= 1 1jr(xk) 
~ r((x 1x2 · · · xn) 11"), which, however, is readily dismissed as false by considering 
the case n = 2, x 1 = 1, x 2 large. More promising is the conjecture 

(1.2) n ~ 1 forallxk>Owithxlx2·"Xn=l. I:= 1 1/r(xk)-

We present evidence that this inequality is in fact valid for n = 1, 2, · · · , 8, but 
prove it to be false for n ~ 9. We also determine the infimum of the expression on 
the left of (1.2) under the constraints listed in (1.2). We next show that for all n ~ 1 
we have 

(1.3) 

In terms. of the power means 

( 
r + r + + ') 1/r (1.4) M~l(a;) = a1 a2 n . . . an ' 

the last inequality may be restated as M~01(r(xJ) ~ 1, for all n ~ 1 , and all xi > 0 
with x 1x2 · · · xn = 1. Since M~l increases monotonically with r, the same state
ment holds for any power mean with r ~ 0. We show, on the other hand, that the 
statement is false for any power mean with r < 0. 

2. Main results. We denote by R" the space of real vectors xT = [x1 , 

x2, · · · , xn] and by R~ the positive orthant R~ = {x E R" :xk > 0, k = 1, 2, · · · , n}. 

*Received by the editors July 18, I972, and in revised form October 22, 1972. 
t Department of Computer Sciences, Purdue University, Lafayette, Indiana 47907. This research 

was performed at the U.S.A.F. Aerospace Research Laboratories under Contract F33615-71-C-I463 
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The constraints in (1.2) can then be written as 

X E Sn, where Sn = {x E R"t : fi Xk = 1} . 
k= 1 

Our main results are as follows. 
THEOREM l. For n = l, 2, 3, ···we have 

(2.1) 

where 

(2.2) Yn = max { max gn)x)}, 
l~v~n-l O~x~l 

def l [ V n - V J 
gn)x) = -;, r(x) + r(x- vj(n- v)) . 

Moreover, 

(2.3) 
1 

y -+ -- = l 1291 · · · as n -+ oo, 
n r(xo) . 

where x 0 = 1.4616 · · · is the unique point at which r(x) attains its minimum on the 
positive x-axis. 

Equation (2.1), for n = 1 with y1 = l, is trivial, since the only point x 1 satis
fying the constraints is x 1 = 1. For n > 1, the maxima in (2.2) can easily be com
puted with the aid of a digital computer. It turns out (cf. § 5) that Yn = 1 for 
1 ~ n ~ 8, and it will be shown that Yn > 1 for n ~ 9. The conjecture (1.2) thus 
seems true for n ~ 8, but is certainly false for all n ~ 9. 

We also note from (2.3) that in the (obvious) inequality 

(2.4) 
n 

z:=-z=-1- 1-1-1(-x-k) ~ r(x0) = .88560 · · · , n = l, 2, 3, · · ·, 

the constant on the right is best possible under the constraints x E Sn. 
THEOREM 2. 1 For n = 1, 2, 3, ···,we have 

(2.5) L01 r(xk)J/n ~ 1 for all X E sn. 

THEOREM 3. For the power means M~1 defined in (1.4) we have 

(2.6) M~1(1(x;)) ~ 1 on Sn for all n ~ 1 

if and only if r ~ 0. 

3. Auxiliary propositions. We need a few elementary properties of the 
psi function t/f(x) = i'(x)/r(x) and some related functions. 

PROPOSITION 1. The function xt/f(x) is convex for x > 0. 
Proof. We have 

1 An examination of inequality (2.5) was suggested to the author by Professor R. A. Askey. 
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From the known expansion 

(3.1) 
1 oo x-1 

1/J(x) = -X+ 1 - y + m~t (m + 1)(m + x)' 

where y = .57721 · · · is Euler's constant, we obtain by two differentiations, 

oo ( X )3 oo ( X )2 x 3t/J" + 2x2t/J' = -2 - 2 L -- + 2 + 2 L --
m=t m +X m=l m +X 

oo m 
= 2x2 L ( )3 > 0, 

m=l m +X 

i.e., (xt/1)" > 0 for x > 0. 
The next result concerns the function 

(3.2) 
X d 

f(x) = x[r(x)]'t/J(x) = - -d {[r(x)]'}, 
r x 

r < 0, 

where r is a fixed (negative) parameter. By x0 we denote, as before, the abscissa of 
the minimum of r(x). 

PROPOSITION 2. The function fin (3.2) vanishes at x = 0 and x = x0 , and is 
negative and unimodal on 0 < x < x0 , i.e., there exists a ~ with 0 < ~ < x0 such 
that f decreases on 0 < x < ~ and increases on ~ < x < x0 . 

Proof. From the known power series expansion of ljr(x), letting p = lrl, we 
find 

f(x) = -xP- (p + l)yxp+t + ... , 
showing that f(O) = 0. (It is also seen, incidentally, that f need not be convex on 
0 < x < x0 ; for example, if p = 1, then f"(O) = - 4y < 0.) By definition of x0 , 

we also have f(x0) = 0. 
To prove unimodality, we look at the derivative f'. A simple computation 

gtves 

(3.3) 

Let 

(3.4) 

From the power series expansion of t/J(x + 1), we obtain 

xt/J(x) = xt/J(x + 1) - 1 = -1 - yx + ((2)x2 + .... 

This shows that the function xt/J(x) decreases for small positive x; since it is con
vex by Proposition 1, and vanishes at x = x0 , it must have a unique minimum at 
some point ~* with 0 < ~* < x0 • (In fact, ~* == .2161.) As the derivative of xt/J 
vanishes at this point, we have 

(3.5) 

We consider first the interval 0 < x < ~*.On this interval, we have from (3.4), 
since r < 0 and x 2t/J 2(x) > 1, 

(3.6) u(x) < U(x), U(x) = xt/J(x) + r + x2t/J'(x), 0 < x < ~*. 
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Note that 

(3.7) U(O) = -1 + r + 1 = r < 0, U(e*) = r < 0, 

the second relation being a consequence of (3.5). We now show that U(x) is con
vex on 0 < x < e*. By Proposition 1, it suffices to show that the last term in U(x) 
is convex, i.e., 

(3.8) 

Repeated differentiation of (3.1), however, gives 

(x21/1')" = f 2m(m - :x), 
m-= t (m + x) 

o < x < e*. 

which is certainly positive if 0 < X < ! , hence, in particular\ if 0 < X < e*. From 
(3.6), (3.7), and the convexity of U(x) just established, it now follows that u(x) 

< r < 0 On 0 < X < e*, i.e., by virtue of (3.3), (3.4), 

(3.9) f'(x) < 0 on 0 < X < e*. 
On the remammg interval e* < X < Xo, the function xl/f(x), while still 

negative, increases monotonically. Since also x 21/J'(x) increases monotonically for 
X > 0 (cf. [1]), it follows from (3.4) that u(x) is monotonically increasing one* < X 

< Xo. Moreover, u(xo) = x~l/l'(xo) > 0. Hence there is a unique point e. with 
e* < e < Xo, SUCh that u(e) = 0, and thus u(x) < 0 for 0 < X < e and u(x) > 0 
for e < X < Xo. In view of (3.3), (3.4), this implies unimodality of f. 

4. Proof of Theorem 1. We assume n ~ 2, since the case n = 1, as we pointed 
out, is trivial. For short, let 

Since obviously 

y(x 1 , x2, · · ·, Xn) ;;;=;;; r(~o) for all X E R~, 

the function y is bounded from above in all of R~ , and hence, in particular, on Sn. 
We denote 

(4.1) an= SUpy(Xt,Xz, · · ·, Xn) < 00. 
xeSn 

We want to prove that 

We distinguish two major cases (not a priori mutually exclusive): 
Case I. The supremum an is "assumed at infinity", i.e., there exists a sequence 

of vectors x<•> E Sn SUCh that 

(4.2) !Jx<•>u 4 00, y(x<•>) ~an as r ~ 00. 

By virtue of the first relation, and the fact that x<•> e Sn, there must exist a sub
sequence of x<•> for which at least one component tends to oo and another tends 
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to 0. Let us write again x<'> for this subsequence, and for definiteness, assume that 

(4.3) 

Since 

(r) _ 1 1 ~ 1 
ny(x ) - r(x<[>) + r(xn + k~J r(xl:>) 

1 1 n - 2 
;;;;; r(x<[>) + r(x~') + r(x0) ' 

we obtain from (4.2), (4.3), by letting r--+ oo in this inequality, 

(4.4) 

We show that equality holds in (4.4). Define x(t) by 

x 1(t) = tc, x 2(t) =eft, x3 = · · · = x" = x0 , 

Clearly, x(t) E sn for all t > 0, and 

1 1 n- 2 
ny(x(t)) = r(tc) + r(cjt) + r(x0 ) • 

_ -(n-2)/2 c- x0 . 

Letting t --+ oo gives y(x(t))--+ (1 - 2jn)jr(x0 ), and therefore strict inequality can
not hold in (4.4). 

(4.5) 

(4.6) 

Thus, in Case I, we conclude that 

1 - 2/n 
Un = r(xo) . 

Case II. The supremum u" is assumed at a finite point x = s of Sn, 

y(x) ;;;;; y(s) for all X E Sn. 

The function y thus has on S" a global maximum at s. 
Using Lagrange multipliers, it follows that ST = [sl,s2, ... 'sn] must be a 

solution of the system of equations 

that is, 

(4.7) 

(4.8) 

a:Jy(xl,x2, ... , Xn) + ;.CI)l xk- 1)] = 0, i = 1,2, ... 'n, 

n n xk- 1 = 0, 
k=l 

n n sk = 1. 
k=l 

i=1,2,···,n, 

Multiplying the ith equation in (4.7) by s;, and taking note of (4.8), we find 

(4.9) 
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where the function f is as in (3.2), with r = -1. Since f(x) < 0 for 0 < x < x0 

and f(x) f; 0 for x f; x0 , it follows from (4.9) that either all sk are between 0 and 
x0 , or all sk are f;x0 • The latter, however, is excluded by (4.8), since x0 > 1. 
Consequently, 

(4.10) k=l,2,···,n. 

Now, using Proposition 2 of§ 3, according to which f is unimodal on 0 < x 
< x0 , we conclude from (4.9) and (4.10) that only one of two situations can arise: 

Ila. All sk are the same. By (4.8), this implies s1 = s2 = · · · = s11 = 1, and so 
(J n = y(s) = 1 in this case. 

lib. There are exactly two distinct sk, say, 

S1 = S2 = ... = Sv < Sv+ 1 = Sv+2 = ''' = Sn, 1 ~ v < n, 

s~s~-v = 1. 

We then have 

1[ v n- v] 
(Jn = y(s) =;; r(s1) + r(sn) ' 

Since s = s- vf(n- v) and s < s it follows that 0 < s < 1 (In fact X- (n- v)/v < s 
n 1 1 "' 1 · • 0 1 

< 1, by virtue of S11 < x0 .) According to the definition of gn,v in (2.2), we thus have 

(4.11) 

Furthermore, by (4.9), s1 is a solution of the equation 

(~.12) f(x) = f(x-vf(n-v)). 

One checks readily that the roots of (4.12) are precisely the stationary points of 
g11,v(x). Since 

y(x,x, ···, x,y,y, ···, y) = gn,.(x), 
~~ 

v-times (n- v)-times 

y = x-v((n-v), 

where the argument ofy is a point on S" for each x > 0, and since (J11 is the global 
maximum of y. on S11 , the stationary point (4.11) cannot be other than a local 
maximum. There are now two possibilities: 

Ilba. For no integer v with 1 ~ v ~ n - 1 does g11,.(x) have a local maximum 
on (0, 1). 

Ilbb. There is at least one integer v, 1 ~ v ~ n - 1, for which g11,v(x) has a 
local maximum on (0, 1). 

Case Ilba is incompatible with Case lib, so that Ila necessarily applies, and 
(J11 = 1. In Case Ilbb we must look for the largest local maximum (if there are 
several, corresponding to different values of v), which is then equal to (J11 if larger 
than 1. Otherwise, (J11 = 1 from Case Ila. 

Summarizing Case II, we can write 

(Jn = max { max gn,v(x)} = 'l'n• 
1~v~n-1 O~x~1 

where the inner maximum picks up a local maximum of g"·" if it is larger than 1, 
or the value g11)l) = 1, if it is less than l or nonexistent. With Case I, equation (4.5), 
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taken into account, we thus have 

[ 1 - 2/n J 
an =max r(xo) 'Yn . 

Observing, however, that 

> > -(n- 1) 1 [ 1 n - 1] Yn = max gn 1(x) = gn t(Xo ) =- r( (n 1)) + r(xo) o~x~ 1 ' ' n · x 0 

1 - 1/n 1 - 2/n 
> > ' r(xo) r(xo) 

we see that in fact an= 'l'n• proving (2.1). 
Noting further that 

gn,v(X) ~ ~[ r(:o) + ~(~o~J = r(~o) on 0 ~ X ~ 1, 

we have 'l'n ~ 1/r(x0 ), and thus 

1 - 1/n 1 
r(xo) < Yn ~r(xo)' n=1,2,3, .. ·, 

showing that limn ... oo 'l'n = 1/r(x0), as claimed in (2.3). Theorem 1 is now proved. 

5. Numerical results and graphs. In this section we present some information 
concerning the functions gn,v(x) in (2.2) which was obtained by extensive numerical 
computation, using the CDC 6500 computer. 

First of all, we observe that for large n many of the functions gn,v(x) do in 
fact have local maxima in 0 < x < 1. This can be seen by noting that 

so that gn,v(x0<n-v)fv) > 1 whenever (1 - vjn)jr(x0 ) > 1, i.e., whenever 

(5.1) 
v 
- < 1 - r(x0 ) = .1143 .. · . 
n 

Since gn,v(O) = 0, gn)l) = 1, the presence of a local maximum in the case of (5.1) 
is thus evident. 

More detailed computations, covering the range 2 ~ n ~ 30, 1 ~ v ~ n - 1, 
revealed that: 

(i) gn)x) is monotonically increasing on 0 ~ x ~ lfor n ;;;;; 6, 1 ~ v ;;;;; n - 1. 
(ii) gn,l (x) for n ~ 7 has a unique local maximum on (0, 1) which is less than 1 

for n = 7 and n = 8, but larger than 1 for n ~ 9. 
(iii) gn,v<x) for v = 2, 3, 4 has a local maximum only for n ~ 14, n ~ 21, n ~ 28, 

respectively, each being smaller than the respective maximum of gn,1. As v increases 
from 2 to 4, the maxima in question decrease. 

(iv) gn.,.(x) for 7 ;;;;; n ;;;;; 30, 5 ;;;;; v ;;;;; n - 1 is monotonically increasing on 
O;;i;x;;i;l. 
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The numerical results suggest the conjecture that the relative maxima of 
gn,v decrease as v increases (with n held fixed), but we do not have a proof for this. 
Some critical portions of the "dominant" curves y = gn, 1(x), 7 ~ n ~ 10, are 
shown in Fig. 1. 

'1.020 GRAPHS OF THE FUNCTION 

gn,1 (x) on O~X~ I 

n=7,8,9,10 

1.010 

.990 

.980·~--~----~--~~--~--~~--~--~~--~--~~--~~~ 
0.0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.0 

X 

FIG. l. Graphs of y = gn, 1 (x) for 7 2 n 2 10 

Based on the numerical evidence described above in (i) and (ii), we may infer 
with confidence that2 

(5.2) Yn = 1 for 1 ~ n ~ 8. 

From (5.1) with v = 1, on the other hand, we see that Yn > 1 whenever n 
> 1/(1 - r(x0 )) = 8.741 · · · , i.e., 

(5.3) Yn > 1 for all n ~ 9. 

2 Equation (5.2) is trivial for n = 1, and established in [1] for n = 2. 
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The local maxima y: of gn, 1 , 7 ~ n ~ 30, were computed more accurately by 
applying Newton's method to the equation (4.12) with v = 1. A binary search 
method was used to obtain fairly accurate initial approximations. The results, 
believed to be accurate to all digits shown, are displayed in Table 1. (Observe that 
11: = Yn for n ~ 9.) 

TABLE 13 

Local maxima 1'! = g •. 1(e!l of g •. 1(x) for 7 ~ n ~ 30 

n ~: Y: ~: Y: 

7 1.900855126( -1) .9874040859 19 1.087835945(- 3) 1.069800731 
8 9.819583769( -2) .9986294355 20 7.425128883( -4) 1.072752220 
9 6.005471800(- 2) 1.009798259 21 5.071386946( -4) 1.075427804 

10 3.840859500(- 2) 1.019864207 22 3.465411640( -4) 1.077863530 
11 2.512555627( -2) 1.028706548 23 2.368819775( -4) 1.080089658 
12 1.66621 527 4(- 2) 1.036420644 24 1.619635354( -4) 1.082131717 
13 1.114939565( -2) 1.043152112 25 1.107593956( -4) 1.084011358 
14 7.506998631( -3) 1.049045683 26 7.575306970( -5) 1.085747033 
15 5.076813299( -3) 1.054229841 27 5.181558830(- 5) 1.087354549 
16 3.444215694( -3) 1.058813803 28 3.544457248(- 5) 1.088847512 
17 2.341999266( -3) 1.062888730 29 2.424710624(- 5) 1.090237691 
18 1.595180690( -3) 1.066530189 30 1.658765573( -5) 1.091535309 

3 The integers in parentheses denote powers of 10 by which the preceding numbers are to be 
multiplied. 

6. Proof of Theorem 2. The proof follows similar lines of reasoning as the 
proof of Theorem 1. We can therefore be brief. Letting 

we denote 

(6.1) t1n = inf y(x 1 ,x2 , • ··, Xn) > -00, 
xeSn 

and propose to prove that 

The infimum in (6.1) cannot be assumed at infinity, since otherwise there 
would be a sequence of vectors x<r> e Sn satisfying (4.2), (4.3), hence 

n 

ny(x<'>) = In r(x\'>) + In r(x~>) + L In r(xt>) 
k=3 

~ In r(xy->} + In r(x~>) + (n - 2)r(x0) __.. oo as r __.. oo. 

The function y(x) thus assumes a minimum on sn at some finite point X = s E sn, 
y(x) ~ y(s) for all X E Sn. 
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On using Lagrange multipliers, it follows that sT = [s1 , s2 , • · • , sn] must 
satisfy 

(6.2) 

n 

(6.3) n sk = 1, 
k=1 

where 

</>(x) d,;r xt/J(x). 

Since </>(x) < 0 for 0 < x < x0 , and ¢(x) ~ 0 for x ~ x0 , we conclude from (6.2), 
(6.3) that 

k=1,2,···,n. 

From Proposition 1 we know that <J>(x) is convex for x > 0, and from the 
proof of Proposition 2, that 

¢(0) = - 1, ¢'(0) < 0, ¢(x0 ) = 0. 

There are thus points e*, eo, with 0 < e* < eo, such that ¢(0) = </>(eo) = -1 and 
</>(x) is monotonically decreasing on 0 ~ X < e* and monotonically increasing on 
e* <X~ Xo. Since </>(1) = -y > -1, we have in fact 0 <eo < 1. 

From (6.2) we now conclude that only one of two situations can hold: 
(a) All sk are the same. Then s1 = s2 = · · · = sn = 1, giving G'n = 0. 
(b) There are exactly two distinct sk, say, 

1 ~ v < n, 

such that 

0 < S1 < e* < Sn <eo< 1. 

Since the last inequalities imply s~s~-· < 1, in contradiction to (6.3), case (b) is 
impossible, leaving us with case (a), i.e., G'n = 0. Theorem 2 is proved. 

7. Proof of Theorem 3. We have already observed in§ I that (2.6) is true for 
all r ~ 0. It suffices therefore to show that (2.6) is false for r < 0. 

By an obvious adaptation of the proof of Theorem 1, one finds that 

(7.1) inf M~l(r(x;)) = y~lr, r < 0, 
xeSn 

where 

def 1 { 1 gn,v(x) = n v[r(x)]' + (n- v)[r(x-•<n-v))]'}. 

Now arguing as in (5.3), we have 

Yn ~ max g" 1(x) ~ g" t(Xo(n-tl) 
O;l;x;l; 1 ' ' 
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from which it follows that Yn > 1 as soon as 

1 
n > 1 - [r(xo)] -r· 

For all these values of n, the infimum in (7.1) is < 1, and thus the inequality (2.6) 
false. This proves Theorem 3. 
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§4. Computer software for special functions 

4. 1 NATS software for special functions 

4. 2 NAG software for special functions 

4. 3 Other software for special functions 

Introduction 

Scientific computing often requires special functions. In the past, 

the need for numerical values was partly satisfied by extensive mathe

matical tables. Today, with powerful digital computers available, such 

values are obtained almost invariably by direct computation. We wish to 

review here the principal methods used in computing special functions. 

We may group these methods into two large classes, namely those 

based on direct approximation, and those based on functional equations. 

Among the former, we consider only rational approximation methods(§ 1). 

We thus leave aside a multitude of possible expansions in terms of other 

special functions. These expansions, indeed, while often helpful, still 

leave us with the problem of evaluating the special functions involved. 

Among the functional equations most useful for computation are linear and 

nonlinear recurrence relations. These are discussed in § §2 and 3. 'Ne omit 

references to other functional equations, such as differential and integral 

equations, since we consider them of secondary importance in our context. 

In §4 we give a brief account of the current state of computer software 

development for special functions. 

Due to limitations in time and space, a number of important topics 

are omitted in this survey. Nothing is said, e. g., about elementary 

functions and special computational techniques related to them. Good 

accounts of this can be found in Lyusternik, Chervonenkis and Yanpol'skii 

[1965) and Fike [1968]. Other topics not covered include methods based on 

numerical quadrature and on Euler-Maclaurin and Poisson summation for.

mulas, the computation of zeros of special functions and of inverse func

tions, and the computation of special constants to very high precision. 
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Few references are given to computer algorithms for special functions, as 

they can be retrieved from the indices in the journal "Communications of 

the ACM" and in "Collected Algorithms from CACM" (a looseleaf collec

tion issued by ACM of all algorithms published in Comm. ACM since 

1960). Another topic dealt with only superficially are asymptotic methods, 

as these are discussed more fully elsewhere in this volume. 

There are not many general references on computational methods 

for special functions. The only book devoted entirely to this subject is 

Hart et al. [1968]. The two volumes of Luke [1969] also contain much 

relevant material, and informative survey articles have been written by 

Bulirsch and Stoer (1968] and Thacher [1969]. 

As to notations for special functions, we try to be consistent with 

Abramowitz and Stegun [1964]. With regard to bibliographic references, 

we give special emphasis to the literature of the past twenty years or so. 

Little attempt has been made to trace all results back to the original 

sources. 

§1. Methods based on preliminary approximation 

Our concern in this paragraph is with the approximation of a given 

function of a real or complex variable by means of" simpler" functions. 

Most attractive among these simpler functions are polynomials and 

rational functions, since they can be evaluated by a finite number of 

rational operations. Hence we restrict ourselves to polynomial and 

rational approximation. One should keep in mind, however, that other 

means of approximation, e.g., expansions in special functions like 

Bessel functions, can be equally effective if one takes advantage of ap

propriate recursive schemes of computation. (cf., e. g., l. 5. 3, 2. 2. 2.) 

The selection of a particular rational approximation depends on a 

number of circumstances. If the region of interest is an interval on the 

real line and our objective is to produce an approximation of high effici

ency, and if we are prepared to expend the necessary effort, then we may 

seek to obtain a best rational approximation, L e. , one whose maximum 

300



COMPUTATIONAL METHODS 

error on the interval in question is as small as possible. This is often 

the preferred choice in computer subroutines. If, on the other hand, we 

are dealing with functions of a complex variable, or functions of several 

variables, we are led to use analytic approximation methods, the con

structive theory of best approximation in the multivariate case still being 

in its infancy. (See, e. g., Collatz [1968), Williams [1972], Harris (1973), 

Fletcher, Grant and Hebden [1974), Watson (1975).) Even if we decide to 

construct a best approximation, in the process of doing so we still need 

to be able to calculate the function to high accuracy. Here again, ana

lytic methods can be useful. 

With regard to polynomial vs. rational approximation, folklore has 

it that "in some overall sense, rational approximation is essentially no 

better than polynomial approximation" (Newman [1964 ]) . Precise theorems 

to this effect (Walsh [l968b], Feinerman and Newman [1974, p. 71 ff)) add 

further support to this contention. Experience, nevertheless, seems to 

show that for the special functions encountered in everyday practice, 

rational approximations are in fact somewhat superior. 

In designing a rational approximation, certain preliminary decisions 

need to be made regarding the best form in which to approximate the func

tion, the choice of auxiliary variables, and the best type of segmentation 

of the independent variable. As there is little theory to go by, such de

cisions are usually made by trial and error. Taylor series, or asymptotic 

expansions, usually suggest appropriale forms. For the problem of seg

mentation, see Lawson [1964), Collatz [1965], Meinardus [1966), [1964, 

§ll of English translation], Hawkins [1972). 

l. l. Best rational approximation 

Many computer subroutines for special functions employ rational 

apr,roximations in appropriate segments of the real line. If the sub

routine operates in an environment in which every value of the independ

ent variable is equally likely to occur, it is natural to design the approx

imation in such a way that the error on each segment is "uniformly 
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distributed", and about the same from segment to segment. In this way, 

no user is going to be punished if he happens to prefer one particular re

gion over another. The logical conclusion of this philosophy is to em

ploy the principle of best uniform approximation (Chebyshev approxima

tion) on each segment and to arrange the maximum error to be about the 

same from segment to segment. The "uniform distribution" of the error 

is then guaranteed by the equi-oscillation property of the best approxi-

mation (cf. l. l. 1). 

The theory of best uniform approximation is an important chapter of 

approximation theory, and is dealt with in a number of excellent books. 

We mention, e. g., Achieser [1956], Davis [1963], Meinardus [1964], 

Natanson[l964], Rice (1964b], (1969], Cheney [1966], Werner [1966], 

Rivlin [1969], Walsh [1969], Schonhage (1971], Feinerman and Newman 

[1974]. A treatise on numerical methods of Chebyshev approximation (not 

including, however, rational approximation) is Remez [1969]. Practical 

aspects of generating rational and polynomial approximations are reviewed 

by Cody (1970]. 

l. l. l. Best uniform rational approximation. We denote by W the 
n 

class of polynomials of degree .::::_ n, and by JR the family of ration-
m, n 

al functions 

(l) 
p(x) 

r(x) = q(x) , peW, qeJP, q?"'O. 
n m 

Given a real-valued continuous function f on the compact interval 

[a, b], * there exists a unique element r e JR such that 
m,n m, n 

(2) II r* - f!l < II r - f II for all r e IR 
m, n oo - oo m, n 

Here the norm is II u II max lu(x)l or, more generally, 
a<x<b 

00 
!lull = 

00 

max w(x) lu(x) I, where w is a positive weight function. One calls 
a<x<b 
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* r 
m,n 

the rational function of best uniform approximation to f from lR 
m, n 

(or briefly the rational Chebyshev approximation of f from lR ) . 
m,n 

The 

associated error is denoted by 

(3) E ( f) = II r* - f II 
m,n m,n oo 

* In particular, there is a unique polynomial p E lP of best uniform ap-
n n 

proximation, with associated error E (f) = E0 (f) . The array of ration-
n , n 

al functions 

is referred to as the L Walsh array of f on [a, b] . 
00 )::: 

The best approximation r 
m,n 

is characterized by the equi -oscil-

lation property, which states (excepting certain degenerate cases) that 

* the error curve w(r -f) assumes its extreme value ( 3) at m + n + 2 
m, n 

consecutive points of [a, b] with alternating signs (Achieser (1956, p. 55]). 

Moreover (barring again degeneracies), if r E lR is any rational 
m, n 

function bounded on [a, b] which has the oscillation property, i.e., an 

error curve e = w(r-f) assuming values of alternating sign on m + n + 2 

consecutive points X. E [a,b], 
l 

say, 

i 
e(x.) = (-l) A.., A.. > 0, 

l l l 

then (Achieser [1956, p. 52]} 

(4) min 
i 

1, 2, ..• , m+n+Z , 
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Concerning the behavior of E (f) as m and n both tend to in-
m, n 

finity, little is known. If m, or n, remains fixed, there are asymptotic 

results for meromorphic functions, due to Walsh (l964b], (1965], (l968a], 

while in the polynomial case m = 0 one has the classical results of 

Jackson and Bernstein. The former states that E (f) = o(n -p) if 

f E Cp[a, b], the latter that lim sup (E (f)]l/n < ~ precisely if f is ana

lytic on (a, b], and (E (f)]l/n = o(l) ;recisely if f is entire (see, e. g., 
n 

Natanson [1964, pp. 127, 183]). 

l. l. 2. A list of available Chebyshev approximations. Some entries 

of the Walsh array, often those along or near the diagonal m = n, have 

proven to yield remarkably efficient approximations for many of the spe

cial functions in current use. Table l lists those for which (numerically 

constructed} rational Chebyshev approximations are available. The first 

column shows the function being approximated, in the notation of 

Abramowitz and Stegun [1964]. The second column records the segmenta

tion used, where [a0 , a 1, ... , as] is written to indicate that the interval 

(a0 , a ] is broken up into segments (a. 1, a.], i = l, 2, ... , s . The ex-
s 1- l 

act form of the function which is being approximated, as well as the type 

(m, n) of rational function, usually changes from segment to segment in 

a manner not shown in the table. The third column tells whether the ap

proximant is truly rational or polynomial. The fourth column indicates 

the approximate range of accuracy, where S is to be read as "signifi

cant decimal digits" and D as "decimal digits after the decimal point". 

The final column gives the source of the approximation. For an extensive 

bibliography of approximations see also Hart et al. (1968, pp. 161-179]. 

Table l. Chebyshev approximations to special functions 

f(x) segmentation type accuracy reference 

(O,l,4,:xJ] rat. 2-ZOS Cody & Thacher (1968] 

Ei(x} [0, 6, 12, 24, :xJ] rat. 3-20S Cody &Thacher (1969] 
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f(x) segmentation type accuracy reference 

r(x) [2,3) pol. 7-18S Werner&Collinge(l96lJ 

1' n r(x) 

r{x) 

[.5,1.5,4,12) rat. 2-17S 

[2, 3](1) pol.&rat. l-24D 

1nr(x)-(x-t)1'nx [8,1000] 

+ x-1' n.JT; 

8 -18D 

arg r(l+ix) 

tj;{x) 

tj;(x) 

erfc x 

II 

II 

erf x 

erfc x 

2 X 2 

(12, 1000] 9-23D 

[o, 2, 4,oo] rat. 4 -20S 

[I, 2) pol. 6-8D 

[.5,3,oo] rat. 2-20S 

[0, 10] 

[0, 20] 

[ o, 4] 

[0, 8] 

[8, 100] 

rat. 

[o,. 5] rat. 

[.46875,4,oo] rat. 

l-23D 

4-6D 

l-9D 

l-16S 

3 -17S 

5 -19S 

2 -l8S 

-X J t e e dt [0, 2. 5, 3. 5, 5,oo] rat. 1-2 lS 
0 

C(x), S(x) [0, l. 2, l. 6, L 9, 2, 4, oo] rat. 2 -18S 

J (x), I (x), Y (x), K (x) [0, 8] pol. 2 -7D 
n n n n 

n=O, l 

I (x), I (x) 
v v 

1 2 
K (x) v =- -

v ' 3' 3 

H( 1) (x) = !._ ~ 
v ,v 3'3 

I 0 (x), r1(x) 

K0(x) 

[0, 4] pol. 10D 

pol. lOD 

[4,oo] rat. lOD 

[0, 8, 70] rat. 8S 

[0,.1,8] rat. 8S 

Cody & Hillstrom [1967) 

Hart et al. [1968] 

Cody & Hillstrom (1970] 

Moody [1967] 

Cody, Strecok&Thacher 
[19 7 3] 

Hart et al. [1968] 

II 

Cody [1969] 

.. 

Cody, Paciorek&Thacher 
[1970] 

Cody [1968] 

Werner [1958/59] 

Bhagwandin [1962] 

Gargantini [1966] 

II 
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f(x) segmentation type accuracy 

K1 (x) [0, 8] rat. 73 

J0(x), J1 (x), Y0 (x), Y1 (x) (0, 8, oo] rat. 3-25D 

I0(x), 11 (x) [ o, 1] rat. 2-233 

K0 (x), K1(x) [0, l,:xJ] rat. 2-238 

r0 (x), r1 (x) [O,l5,oo] rat. 8-233 

r0 (x), r1 (x) (O,l5,oo] rat. l-233 

Ki (x), r=l, 2, 3 [O,:xJ] rat. 2-73 
r 

X 

J r0(t)dt 
0 

[0, 8, 30] rat. 8-9S 

00 

J K0 (t)dt (o,. 1, 8, 70] rat. 73 
X 

( o, l] rat. 163 

G0 (f1, 30), G0(TJ, 30) (15, 18. 5, 22] rat. 13-143 

1'n{G0 (11 , 30)), 

1'n(-G0<11 , 30ll 
[22, 30] 

TI/2 2 2 ± _!_ J (1-x sin t) 2 dt [0, 1] 
0 

s(x) [. 5, 5, ll, 25, 55] 

X 
-1 J k t -1 x t (e -1) dt [0, 10] 

0 k = 1, 2, 3, 4 
00 1 

J - t-x -1 
t 2 (e tl) dt [ _oo, 1, oo] 

0 

00 

rat. 133 

pol. 4-17D 

rat. 8-228 

rat. 2-5D 

pol. 3S 

J v t-x -1 
t (e + l) dt [ _oo, 1, 4, oo] rat. 2 -lOS 

0 1 1 3 
v = -z-. 2· 2 

reference 

Gargantini [1966] 

Hart et al. (1968] 

Russon &Blair [1969] 

Blair [1974] 

Blair & Edwards [1974] 

Gargantini & Pomenta1e 
(1964] 

Gargantini (1966] 

" 

3trecok & Gregory (1972] 

Cody [1965] 

Cody, Hillstrom &Thacher 
[1971] 

Thacher [1960] 

Werner & Raymann [196 3] 

Cody & Thacher [1967] 

(1} range incorrectly stated in Hart et al. [1968]. 
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1. 1. 3. Computation of Chebyshev approximations. Most, if not all, 

of the approximations in Table l were generated by some version of Remez' 

second algorithm. This is a procedure, originally devised for polynomials 

(Remes (1934]) and later extended to rational functions, which attempts to 

achieve the equi-oscillation property in an iterative fashion. The object 

of the iteration, basically, is to move the two bounds in (4) ever closer 

together. There are many variants of the procedure, differing somewhat 

in the technical execution of each iteration step. Detailed descriptions 

of these can be found in some books on approximation theory, e. g., 

Meinardus [1964], Rice [1964b], Cheney [1966], Werner [1966], Remez 

[1969], Rivlin (1969], as well as in survey articles by Cheney and 

Southard [1963], Stiefel [1959], [1964], Fraser [1965), Ralston [1967], 

Krabs [1969], Cody (1970]. Computer algorithms are given in Stoer [1964], 

Werner [1966), Cody and Stoer (1966/67], Werner, StoerandBommas [1967], 

Cody, Fraser and Hart (1968], Huddleston [1972], Johnson and Blair (1973]. 

The construction of rational Chebyshev approximants, in spite of the many 

aids available, is still a tricky business due to the possibility of near

degeneracies. For a discussion of this, the reader is referred to Rice 

[1964a), Cody [1970], Huddleston [1972], Ralston [1973]. 

There are other methods of obtaining best rational approximations 

which rely more heavily on mathematical programming. Some of these are 

referenced in Lee and Roberts [1973] and compared there with Remez' 

algorithm. Others, more recently, are proposed by Har-El and Kaniel 

[1973] and Kaufman and Taylor [1974]. 

1. 2. Truncated Chebyshev expansion 

There is some effort involved in generating a best rational, or even 

polynomial, approximation to a given function f . Polynomials which a p

proximate f "nearly best" can be obtained more easily by truncating the 

Chebyshev expansion of f . 

Assuming that the interval of interest has been transformed to [ -1, 1], 

we can formally expand f into a series of Chebyshev polynomials, 
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1T 

J f(cos 8) cos k8d8, 
0 

-1 <X< l 

k = o, l, 2, ... 

In effect, (l) is the Fourier cosine expansion of f(cos 8) . It converges 

uniformly and absolutely on [ -1, 1] if f e C[ -1, l] and f' e L [ -1, 1], p > 1 
p 

(Zygmund [1959, p. 242]). The polynomials referred to above are the 

partial sums of (1), 

( 3) n = 0, 1, 2, ... 

The classical source on Chebyshev polynomials and their applica

tions is Lanczos' introduction in National Bureau of Standards [19 52]. 

More recent accounts can be found in the books of Fox and Parker [1968] 

and Rivlin [1974]. 

l. 2. L Convergence. The functions f encountered in practice are 

usually quite smooth, typically real-valued analytic on [ -1, 1] and holo

morphic in a domain of the complex plane enclosing the segment [ -1, 1] . 

If e is the eccentricity of the largest ellipse, with foci at ±1, in which 

f is holomorphic, then (1) converges like a geometric series with ratio 

e/(l +J 1-e 2 ) (see, e. g., Werner (1966, §20]; Rivlin (1974, p. 143]}. 

For entire functions one has e = 0, and the convergence is supergeo

metric. 

Scraton (1970] observes that convergence can be enhanced if one 

uses a suitable bilinear, rather than linear, transformation of variables 

to obtain the canonical interval [ -1, 1] . Experimental evidence of this 

has previously been presented by Thacher (1966]. 

Compared with expansions of f in other orthogonal polynomials, 

particularly ultraspherical polynomials P~a, a), Lanczos early recognized 
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(National Bureau of Standards [1952]) that convergence is most rapid when 

a = - 1/2, i.e., when the expansion is indeed in Ch~byshev polynomials. 

Some firm results in this direction, for restricted classes of functions, 

are due to Rivlin and Wilson [1969] and Handscomb [1973]. 

Closely related to convergence is the asymptotic behavior of the 

expansion coefficients ak as k .... OCJ. This is studied in detail by 

Elliott [1964] for meromorphic functions, and also for functions with a 

branchpoint at an endpoint of the basic interval, and by Elliott and 

Szekeres (196 5] for entire functions. The case of logarithmic and branch

point singularities on the real line, and combinations of such, is treated 

by Chawla [1966/67] and Piessens and Criegers [1974]. It is not uncom-

mon to also find essential singularities at an endpoint or midpoint of 

[ -1, 1) . This occurs, e. g., if the original interval is infinite and f has 

an essential singularity at infinity. Mapping the interval onto [ -1, I] 

by a reciprocal transformation carries the singularity into a point of 

[ -1, 1] . The extent to which this slows down the convergence of (l) is 

studied by Miller [1966 ). Asymptotic results for the expansion coeffici .. 

ents in the case of generalized hypergeometric functions are given by 

Nemeth [1974). 

l. 2. 2. Relation to best uniform approximation. Letting 

(4) s (f) = 
n 

max 
-l< X<] 

[s (f;x)- f(x)[ , 
n 

we clearly have E (f) < S (f), where E (f) is the error of best uniform 
n - n n 

approximation of f by polynomials of degree n . The difference between 

S (f) and E (f) can be remarkably small if f is smooth. This can be 
n n 

seen from de La Vallee Poussin's inequality [1919, p. 107] 

( 5) 

and from other similar results (Hornecker [1958], (1960), Hewers and 

Zeller [1960/61], Blum and Curtis [1961], Cheney (1966, p. 131), Rivlin 
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[1974, p. 139ff]). If ak+1 = o(ak)' for example, it follows from (5) that 

S (f) - E (f) as n ..... oo. Even for larger classes of functions, e. g., the 
n n 

n+l . n+1 . I (n+l) 1 class eM of functiOns f E c [ -1, l] Wlth max f (x) _:::_ Mn' the 
n -l<x< l 

spread is still infinitesimal in the sense (Remez and Gavriljuk [1963]) 

(6) 
l 

S (f) = [1 + 0(-)] sup 
n n 

fe c~1 
n 

E (f), 
n 

Widening the class further to include all continuous functions fe C( -1, l] 

we have from the theory of orthogonal series (Alexits [1961, Theorem 

4. 5. l]) that 

(7) 
s (f) 

n 
l _:::_ E (f) _:::_ l + An 

n 

where A is the Lebesgue constant for Fourier series (Zygmund [1959, 
n 

p. 67]). Although these constants eventually grow logarithmically with 

n (Fejer [1910]), they are fairly small in the domain of common interest. 

It is known that A is monotonically increasing, in fact totally mono-
n 

tone (Szego [1921]), and A1 = L 436, A.1000 = 4. 07 (Powell [1967]). The 

error of the truncated Chebyshev expansion, in the range l _:::_ n _:::_ 1000 , 

is therefore never worse than five times the error of the corresponding 

best uniform approximation. 

When f is a polynomial of degree n + 1, then in fact S (f) = 
n 

E (f) For polynomials of degree > n + 1 the ratios in (7) are investi-
n 

gated by Glenshaw [1964], Lam and Elliott [1972] and Elliott and Lam 

(1973]. Some of this work, however, is based on conjectures. For re

lated work, see also Riess and Johnson [1972 ]. 

It is possible to modify the truncated Chebyshev expansion so as 

to bring it closer to the best uniform approximation (Hornecker (1958], 

[1960], Kornelcuk and Sirikova [1968], Sirikova (1970]). Other modifica

tions can be made to fit interpolatory conditions at the end points (Cohen 
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(1971)). This may be useful in segmented approximation when continuity 

at the joints is desirable. 

Using a method reminiscent of Lanczos' T -method, Stolyarcuk 

[1974a, b J obtains explicit polynomial approximations to the sine integral, 

error function, anci Bessel functions of integer order, which are valid on 

an arbitrary interval and are infinitesimally close to the best polynomial 

approximations on that interval as the degree tends to infinity. 

1. 2. 3. Calculation of expansion coefficients. There are a number 

of methods available to calculate (or approximate) the expansion coef

ficients ak . Some will now be considered. 

(i) Fourier analysis. Since we are dealing with Fourier coeffici

ents, we can enlist the techniques of harmonic analysis, and thus, for 

example, approximate ak, k ~ n, by 

( 8) 
n 

Jn) = ~ \'" 
~k u f(xj) Tk(xJ.), 

n j=O 
x. cos(jrr/n) . 

J 

(The primes on the summation sign indicate that the first and last term is 

to be halved.) Since Tk(xj) = Tj(xk)' the sum in (8) can be evaluated 

effectively by Glenshaw's algorithm (cf. l. 5. l(ii)). 

It is a relatively simple matter to increase the accuracy of (8), by 

doubling n, if one observes that about half of the terms in (8) can be 
(n) 

reused, and only half of the ak need to be computed, by virtue of 

(Glenshaw [1964), Torii and Makinouchi [1968)). 

(ii) Rearrangement of power series. The coefficients ak of the 

Chebyshev expansion (1) aa:,e related to the coefficients ck of the 

Maclaurin series, f(x) = L, ckxk, by the linear transformation 
k=O 
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u UOl uoz c 
00 0 

0 ull ul2 c 
l 

0 0 u22 c2 

....................... 

if i + j is even, j > i > 0 

otherwise 

(Minnick [1957], De Vogelaere [1959]). As some of the coefficients ck 

may be quite large, and of different signs, the application of (9) is likely 

to require high-precision work. Another complication occurs if the power 

series converges very slowly (Clenshaw {1962]). The infinite series im

plied in (9) then also converge very slowly, although, sometimes, they 

respond well to nonlinear acceleration techniques (Thacher [1964]). 

(iii) Recurrence relations. In many cases of practical interest it 

is possible to derive recurrence relations for the coefficients ak' either 

directly from the integral representation (2), or indirectly via differential 

equations. In using these recursions, a certain amount of skill is re

quired to maintain numerical stability (Clenshaw [1962], Luke and Wimp 

[1963], Nemeth [1965], [1974], Clenshaw and Picken [1966], Hangelbroek 

[1967], Wood [1967], Luke [1969 , Vol. II, §12. 5], [l97lb, c], [1972a]). 

(iv) Numerical quadrature. The integral in (2) can be approxi

mated directly by numerical quadrature. Eq. (8), in fact, is an example. 

For others, see Rivlin [1974, p. l53ff] and Bjalkova [1963]. 

(v) Explicit formulas. Explicit formulas for ak in terms of easily 

computed functions are known for a number of important special functions, 

e.g., Bessel functions J , I , Y , K (Wimp [1962], Cylkowski (1966/68]), 
v v v v 

312



COMPUTATIONAL METHODS 

Dawson's integral (Hummer (1964]), LjJ(a+x), l'n r(a+x), Ci(x), Si(x) 

(Wimp [1961]). Luke and Wimp [1963] express the expansion coefficients 

for confluent hypergeometric functions in terms of Meijer's G -function. 

1. 2. 4. Tables of Chebyshev expansions and computer programs. 

The most extensive tables are those of Glenshaw [1962], Glenshaw and 

Picken [1966], and Luke [1969, Vol. II, Ch. XVII]. References to addi

tional tables are given in Luke [1969, Vol. II, pp. 287 -291]. Among the 

more recent specialized tables are those of Nemeth [1967] for Stirling's 

series, Strecok [1968] for the inverse error function, Wood [1968] for 

Clausen's integral, Ng, Devine and Tooper [1969] for Bose-Einstein 

functions, Wimp and Luke [1969] for modified Bessel functions and their 

incomplete Laplace transform, Kolbig, Mignaco and Remiddi [1970] for 

generalized polylogarithms, Nemeth [1971] for Airy functions, Nemeth 

[1972] for zeros of Bessel functions J (considered as functions of v ), 
00 v 00 ' J _.!. 2 z J -1 z Nemeth [1974] for the integrals t 2 exp(- t- t /x )dt, (x+t) exp(- t )dt , 

0 0 
and Sheorey [1974] for Coulomb wave functions. 

An interesting and potentially useful idea, advanced by Clenshaw 

and Picken (1966] and pursued further by Luke [197lb, c], [l972a], is to 

provide "miniaturized" tables for functions of several variables. These 

are tables of coefficients in multiple Chebyshev series. The idea is 

carried out for Bessel functions of real argument and real order. 

A set of ALGOL procedures facilitating the use of Chebyshev ex

pansions is given in Clenshaw, Miller and Woodger [1962/63]. FORTRAN 

programs for generating Chebyshev expansion coefficients can be found 

in Havie [1968] and Amos and Daniel [1972]. 

( l) 

1. 3. Taylor series and asymptotic expansion 

A special function f is often naturally represented in the form 

f(z) = a(z) g(z), 
00 

g(z)- L~ ck(z- zo)\ 
k=O 

c = 1 
0 ' 

where the factor a(z) may vanish at z 0, be singular there, or represent 
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some other peculiar behavior. The expansion for g is a Taylor series 

if it converges to g(z) at some z * z 0, hence in some circle I z-z 0 I< p, 

p > 0 . It is called an asymptotic expansion if it possibly diverges for 

every z * z0 , but for each n (n = 1, 2, 3, ... ) obeys the law 

(2) 
n-1 

g(z) - \' ck(z -z )k L1 o 
k=O 

z ~ z 
0 

It is customary, then, to write (2) in terms of descending powers of s , 
-1 

where s = (z -z0) . 

We will not give here a systematic account of Taylor's series and 

of asymptotic expansions, but limit ourselves to a few remarks on the 

computational uses of these expansions, and to an example. We refer 

to Olver [1974) for a thorough treatment of asymptotic expansions and 

their application to special functions. 

1. 3. l. Computational uses. As a computational tool, Taylor series 

are most useful near the point of expansion, z 0, and then indeed may 

be quite effective. Further away from z0 one runs into several problems, 

notably slow convergence, or absence of it, and severe cancellation of 

terms, with the attendant loss of significant digits. Asymptotic expan

sions, likewise, may be quite useful sufficiently close to z 0 . The ac

curacy obtainable from a divergent asymptotic expansion, however, is 

limited at any fixed z * z 0, in contrast to convergent expansions. Also, 

error bounds are not always available, and the evaluation of higher order 

terms may be laborious. 

Both expansions may serve purposes other than direct evaluation 

of functions. For one, they suggest an appropriate form in which to seek 

best rational approximations. For another, they may be used as input to 

some of the methods of 1. 2, 1. 4 for generating polynomial or rational 

approximations (cf., in particular, 1. 2. 3(ii), l. 4. l, 1. 4. 2, l. 4. 5). 

Nontrivial problems arise in the expansion of functions of several 

complex variables. Expanding in one variable leaves the coefficients to 
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be functions of the remaining variables. This creates challenging prob-

lems of effective computation, satisfactory rate of convergence, etc. An 

example in point is the Taylor expansion of the Bessel function K (z) of 
v 

complex order and complex argument, which is treated by Temme (1973]. 

Another example will be discussed below. 

A further important problem is the computation of the Taylor expan-

sion coefficients ck' when z 0 is an arbitrary point in the complex 

plane. (In particular, this yields g(z0 ) = c 0 . ) There are various ap

proaches one can take: numerical quadrature on Cauchy's integral 

(Lyness and Sande [1971]), recursive computation of higher derivatives 

(as, e. g., in Gautschi [1966] and Gautschi and Klein [1970]), or more 

general backward recurrence techniques in cases where g satisfies a 

linear differential equation with polynomial coefficients (Thacher (1972 J, 

and work of Thacher in progress). The more obvious process of analytic 

continuation (Henrici [1966]), unfortunately, is inherently unstable. 

l. 3. 2. An example (Van de Vel [1969]). Consider the incomplete 

elliptic integral of the first kind (cf. 3. l. l), 

(3) 
<p 2 2 _.!. 

F(<p, k) = J (l- k sin 8) 2 de, 0 ~ k ~ 1, 0 < <p < n/2 , 
0 

where <p is the amplitude and k the modulus of F . The developments 

to be made for (3) apply similarly to the integral of the second kind. The 

complementary modulus k' is defined by 

(4) k'=~ 

and the complete integral by 

( 5) JK(k) 
TT /2 1 J 2 2 --

(1-k sin 8) 2 de, O<k<l. 
0 
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We are interested in Taylor's expansion of F with respect to the modu-

lus k . 

The most obvious attack is to expand the integrand in a binomial 

series and to integrate term by term. The result is 

(6) 
cp 2r 

<J r ( cp} = J sin 0 d 0 
0 

For the <J one can find a simple recurrence formula. The series (6} con-
r 

verges geometrically, with an asymptotic quotient k 2 sin2 cp • We have 

rapid convergence, therefore, if k is small, but slow convergence, if 

k is near l and cp near rr/2 . 

When k is near l, then (4) suggests finding an expansion in k' . 

This can be achieved by writing ( 3) as 

<P de 
F(cp, k) = J 2 2 l 

o cos e[l + k' tan e]Z 

and again using the binomial expansion, 

(7) F(cp, k) = ~ ( }) 
r=O 

2r 
T(cp)k' 1 r 

<p 

T (cp) = J 
r 0 

. 2r 
Sln 0 

2rtl 
cos e 

de . 

As before, the T can be generated by a simple recursion. The asymp

totic convergenc~ quotient of the series (7) is now k' 2 tan2 cp, and thus 

satisfactory if k' is small and cp not too close to rr/2 . 

It remains to deal with the last contingency, viz., cp near rr/2 . 

Here we write 

TT 
--cp 

JK(k) - F(cp, k) = j 2 

0 

de 
2 2 -

cos e[k' +tan ef 

and make the change of variables tan 0 k' tany;. The result is 
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u 
JK(k) - F(<P, k) = j 

0 

u 
cos e d _ J ____ d...~..*----...--
cos l\J tjJ - 2 2 _! 

0 cos tjJ(l + k' tan t)!J2 

-l 
u = cot (k' tan <P) 

Therefore, if k' 2 tan 2u < l, i.e. , <P > 1r /4, we can expand in a bi

nomial series and find 

00 

(8) lK(k) - F(tp, k) L: 
r=O 

2r 
T (u)k' 

r 

W h . h . . k2 2 2 e now ave a senes w ose convergence quot1ent 1s ' tan u =cot <P , 

thus independent of k, and which converges more rapidly, the closer 

<p is to 1r/2 . Note, however, that (8) requires the computation of the 

complete elliptic integral. (For this, see 3. 4.) 

It is easily verified that for any k and <p in the region 0 _:::. k _:::. 1 , 

0 _:::. <p < 1r/2, at least one of the series (6), (7), (8) converges geometric

ally with an asymptotic quotient _:::.l/2 . 

Other methods of computation, based on Gauss and Landen trans

formations, will be considered in 3. 3. These are sometimes (but not 

always) more efficient than the expansions considered here. 

l. 4. Pade and continued fraction approximations 

Given a formal power series about some point z0 in the complex 

plane, one can associate with it certain rational functions having highest 

order contact with the power series at z0 The rational functions in 

turn can be interpreted as convergents of continued fractions. These 

often converge faster, or in larger domains, than the original series, and 

may even converge when the series diverges. It is this property which 

makes them useful as a tool of approximation. Without loss of generality 

we shall assume the point of contact at the origin, z 0 = 0 . 
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The basic references are Wall (1948], Perron (1957] and Khovanskii 

[1963]. On Pade approximation there are survey articles by Gragg [1972] 

and Chisholm [l973b], as well as a forthcoming book by Baker [1975]. 

Informative surveys on the use and application of Pade approximants and 

:::ontinued fractions can be found in the collection of articles edited by 

Baker and Gammel (197 0], and in recent conference proceedings, e.g. , 

Graves-Morris [l973a, b] and Jones and Thron [l974b]. We single out the 

extensive survey of Wynn (197 4 ], containing many references, both to 

original sources and to newer developments. A good introduction into 

the numerical evaluation of continued fractions is Blanch [1964 ]. For a 

collection of computer algorithms see Wynn [1966b]. 

L 4. l. Pade table . Let 

(l) 

be a formal power series, and v, p. two nonnegative integers. It is pas-

sible to determine polynomials 

such that 

p e IP , q e IP , with q ~ 0 , 
v,p. f-1 v,p. v v,p. 

(2) q (z) f(z) p (z) (zv+p.+l) , 
v, f-1 v, f-1 

where the symbol on the right stands for a formal power series beginning 

with a power zk, k .:::_ v + p. + l . Although the polynomials p and 
v,p. 

q are not unique, they determine a unique rational function 
v,p. 

P (z)/q (z), which may be expressed, in irreducible form as 
v, f-1 v, f-1 ' 

( 3) 
P (z) 

v f-1 
q (z), 

v, f-1 
p E IP ' q E IP ' q (0) = 1 . 

v, f-1 f-1 v, f-1 v v, f-1 

One calls [ v, p. ]f the Pade approximant of order v, p. generated by f(z) 

(Wall [ 1948, p. 377 ff], Perron [19 57, p. 2 3 5 ff]). We note from (2) and 

(3) that 
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(4) 
l 

[ v p.] = v _> o, p. _> 0 
' f (p., v ]l ' 

f 

The array of rational functions 

[0, O]f [ 0' l Jf [o, z]f 

( 5) ( 1, O]f [ 1, l]f [l,Z]f 

(Z, O)f (Z, l]f (Z,Z)f 

.................. Q ........ 

is called the Pade table of f . 

r+l r+l 
If f(z) - [ v, p.]/z) = (z ), and (z ) cannot be replaced by 

s+l 
(z ) with s > r, we say that [v, p.)f has contact of order r with f. 

A Pade table in which each approximant [ v, p. ]f has contact of order 

v + p. ' 

(6) 
v+p.+l 

f(z) - [ v, p.)f(z) = (z ) , 

is called normal. A necessary and sufficient condition for this is 

(Wall (1948, p. 398]) 

(7) 

c c c 
n-m n -m+l n 

cn-m+l cn-m+2 cn+l 

A = det * 0, n, m = 0, l, Z, ..•. 
m, n ....................... . 

c 
n 

c 
n+m 

(The convention ck = 0 for k < 0 is used here.) If this condition holds, 

p and q in (3) are of exact degrees p. and v, respectively. 
v,p. v,p. 

In the abnormal case, identical approximants lie in square blocks of the 
' 

Pade table of the form (i+r, j+sJf (r, s = 0, l, ... , k), each approximant 

of this block having contact of order i + j + k . 
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The question of convergence, [v,f.L]f- F as v,f.L, or both, tend 

to infinity, where F is a function associated in some way with f, is a 

difficult one, depending, as it does, on the behavior of the poles of 

[v,f.L]f. We refer to Baker [1965], (1970], and Chisholm[l973c], for sum

maries of results and conjectures, and to Wynn (1972], Jones and Thron 

(1975], for more recent results. 

l. 4. 2 Corresponding continued fractions. If the series in (1) is 

such that 

(8) !:!. of. 0 for m = 0, 1, 2, ... 
m,m 

we can associate with it an infinite J -fraction, 

bo b1z 
2 

b z 
2 

XJ 

(9) I ck 
k 2 

bk * o, bo z 
1-a z- l-a z- l-a2z- .... ' = c 

0 k=O 0 1 

If the series is such that 

( 10) !:!. of. 0, !:!. 1 of. 0 for m = 0, l, 2, ... , 
m, m m, m+ 

we can also associate an infinite S-fraction, 

(ll) 
s 0 s 1z s 2 z s 3z 

------
1- 1- l- 1- .... ' 

Both continued fractions are completely characterized by their contact 

properties: the p-th convergent of the J -fraction (p = l, 2, 3, ... ) has 

contact of order 2p, that of the S-fraction contact of order p, with the 

series (l). The J-fraction, in fact, is a contraction of the S-fraction. 

The correspondences (9) and (ll) are often written for series in de

scending powers of z (usually asymptotic series), in which case they 

assume the form (Wall [1948, pp. 197, 202]) 

co ck bo b1 b2 
(9 0) I --- ------

k+l z-a0 - z-a1- z-a -
k=O z 2 
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s 0 sl s2 s 3 

Z- 1- Z- 1-

An important special case of (8 ), namely D. > 0, occurs pre-
m,m 

cisely when {ck} is a moment sequence (Wall (1948, p. 325]), 

00 

(12) ck = J tk dcp(t), k = o, l, 2, ... 
_oo 

with cp a bounded nondecreasing function having infinitely many points 

of increase. The series (1), called Stieltjes series, is then the formal 

expansion of a Stieltjes transform, 

(13) 

The continued fraction (9) associated with (13) has all ak real, and all 

bk > 0 (Perron (1957, p.l93)). Its convergents, as well as the converg

ents of (9'), are expressible in terms of the orthogonal polynomials 

{ Tik (t)} belonging to d¢(t), or in terms of Gaussian quadrature. For 

example, in the case of (9' ), 

CIJ 

(14) J z- t _oo 

we have 

(15) 
b l 00 7T ( z) - 7T ( t) 

p-l = -- J p p d<j>(t) 
z-a rr (z) z-t 

p-1 p _CIJ 

(16) 
p 

(p) 
w 

L: 
k 

= 
k=l Z-T(p) 

k 

where T~p) are the zeros of 11p(t) and w~P) the associated Christoffel 
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numbers. The polynomials Tik(z) are thus the denominators of the con

tinued fraction in (14), the associated orthogonal polynomials 

oo 1Tk(z)-1rk(t) 
crk(z) = J d¢(t) 

z-t _oo 

the numerators. Both satisfy the same recurrence formula, 

(17) Yr+l = (z-a )y - b Y 1' r r r r-
r = 0, l, 2, ... 

where y 0 = l, y_ 1 = 0 for {1rk}' and y 0 = 0, y_ 1 = -1 for {crk}. This 

is meaningful not only for Stieltjes series, but for any series which has 

an associated J -fraction, provided orthogonality is defined algebraically 

(Wall [l948, p. 192]). We also note that in terms of the continued frac

tion (11), we have 

ao sl, b ::: s 
0 0 ' 

(18) a 
s + s } r 2r 2r+l 

r = l, 2, 3, ... 
b s s 

r 2r -l 2r 

A special case of (10), similarly, is A. >0 A. >0 
m, m ' m, mtl ' 

and obtains precisely when (12) holds for some measure d¢(t) vanishing 

for t < 0 (Wall [1948, p. 327]}. In this case, sk > 0 for all k > 0 in 

(ll), a source of useful inequalities when z is real and negative. 

With regard to convergence of the continued fractions in (9) and 

(11), and their limits, we refer to Perron (1957, p. 145ft]. 

' l. 4. 3. Relation between Pade table and continued fractions. 

Assume that the series (l) is normal. The conditions (8) and (10) are then 

valid not only for the given series, but also for all delayed series 

(1 ) 
m 

2 
f (z) ~ c + c 1z t c 2 z + ... , m = 0, l, 2, ... 
m m m+ m+ 
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Each of these, therefore, has an associated J -fraction 

b(m) b(m) 2 b(m) 2 

(9 ) f 
0 l z 2 z 

b (m) * 0 b(m) (z)-
(m) (m) 1-a(m)z_ 

... ' = c 
m m k ' 0 m 

l-a z- l-a1 z-
0 2 

and an associated S- fraction, 

(ll ) 
m 

(m) s(m)z s(m)z (m) 
5 0 l 2 5 3 z 

f (z)- ---- ... , 
m l- 1- l- 1-

s(m) * 0 
k ' 

It turns out (Wall [1948, p. 380]) that the entries of the Pade table for 

f = f in the stairlike sequence 
0 

[0, m-1] [0, m] 

[l,m} (l,m+l] 

[2, m+l] [2, m+2] 

are identical with the successive convergents of the continued fraction 

(19) 

while those along the para-diagonal 

[0, m-1) 

[ 1, m] 

(m) m 
so z 

l-

(m) 
s1 z 

1-

[2, m+l) 

are the successive convergents of 

(20) 

b (m) 2 
l z 

{m) 
s2 z 

l-

b (m) 2 
2 z 
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As in (15), the latter are expressible in terms of the orthogonal polynomi-
(m) m 

als {rrk } belonging to the measure t d<jl(t) . (See, in this connec-

tion, Allen, Chui, Madych, Narcowich and Smith [1974]). Similar state-
/ 

ments can be obtained for the entries in the lower half of the Pade table 

by using (4). 

We remark that in the case of convergence, the continued fraction 

l 
1- 1-

(m) 
s2 z 

1-

in (19), and the analogous continued fraction in (20), serve as "converg
m 

ing factor", being the factor by which the last term c z is to be mul-
m 

tiplied in order to obtain the correct limit of the series (1). 

l. 4. 4. Algorithms. The entries of the Pade table may be gener-

ated either in explicit form, as ratios of polynomials, or in their con

tinued fraction form (19). For the former, there are a number of recursive 

schemes for generating the polynomials in question (Wynn [1960], Baker 

[1970], [197 3], Longman [1971], Watson (197 3]). For the latter, one has 

the quotient -difference (qd- ) algorithm (Rutishauser [19 54a, b], (19 57], 

Henrici [1958], (1963], (1967]), which consists in generating the qd-array 

(0) 
eo 

(0) 

(1) 
ql 

(0) 
eo 

( 1) 
el 

(0) 

(2) ql (1) q2 (0) 
eo (2) el ( l) e2 

ql 
(2) 

q2 
( 1) (3) 

eo e e 
(3) 

1 
(2) 

2 

ql ( 3) q2 (2) 
el 

(3) 
e2 

q2 (3) 
e2 
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from left to right by means of 

o, 

(n) (n+l) (n) (n+l) 
ek = qk - qk + ek-1 

(n) 
qk+l 

(n+l) 
ek 

= ---zr;) 
ek 

n = o, l, 2, .. " 

k::: 1, 2, 3, ... ' n = 0, 1, 2, ... 

The coefficients in the continued fraction (19) are then given by 

(m) 
s 

2k -1 

(m) 
ek k = 1, 2, 3, ... , m = 0, 1, 2, .... 

Unfortunately, the generation of the qd -array, as described, is 

unstable, and should be carried out in high precision, or with some other 

precautions (Gargantini and Henrici [1967]). Thacher [1971] notes, how

ever, that inaccuracies in the higher order coefficients s~m) need not 

necessarily imply an inaccurate value of the continued fraction (19). 

In some instances one has explicit expressions for the e~n), q~n) , 

for example, in the case of the complex error function (Thacher [19671), 

or for certain special hypergeometric and confluent hypergeometric func-

tions (Wynn [1960], Henrici [1963]). For series (1), with c = 
m-1 m 

-~-~ {(a- qa+f!)(b-qf3+f!) -l }, Wynn [1967] gives closed expressions for the 

J-1-0 - (n) (n) 
numbers ek , qk , and also for the numerator and denominator poly-

/ 

nomials of the approximants in the upper half of the Pade table. Limiting 

forms of these results (obtained, e. g., when a = b = 1, q .... l) yield all 

cases in which these numbers and polynomials are known in closed form. 

There are other algorithms, notably the E -algorithm and related 

methods due to Wynn [1956], (1961], [1966a], which operate directly on 

the entries of the Pade table. Their most important use, probably, is in 

the calculation of numerical values for a sequence of Pade approximants, 
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e. g., the values at z = l in an attempt to speed the convergence of 
00 

l. 4. 5. Applications to special functions. The qd -algorithm, either 

applied to a Taylor series or to an asymptotic expansion, has been used 

by many authors to obtain the corresponding S-fraction explicitly or nu

merically. We mention the work of Gargantini and Henrici (1967] on the 

Bessel function K0(z) and more general confluent hypergeometric func

tions, the work of Thacher (1967] on the complex error function, of Cody 

and Thacher (1968] and Chipman [1972] on the exponential integral E1(z) 

and related integrals, of Strecok and Gregory (1972] on the irregular 

Coulomb wave function along the transition line, and the study of 

Shenton and Bowman [1971] on the polygamma functions tjJ(n)(z). Jacobs 

and Lambert [197 2] apply S- fractions to polylogarithms of a complex 

argument, while Barlow [1974] does the same to generalized polylogar

ithms. 

Earlier, Fair [1964] uses Lanczos' T-method for obtaining the J

fraction for functions defined by Riccati differential equations, and ap

plies the technique to confluent hypergeometric functions and Bessel 

functions of the first and second kind. Fair and Luke (1967] further apply 

it to incomplete elliptic integrals (cf. also Luke [1969, Vol. II, p. 77££]). 

For large classes of functions, including Gauss hypergeometric 

functions and the incomplete gamma function, Luke [1969, Vol. II, Chs. 

XIII and XIV], [l970b], [197la], [1975] gives explicit expressions for the 
/ 

Pade entries on the diagonal, and immediately above, as well as ap-

praisals of the errors. Those for the incomplete gamma function also 

serve to approximate the gamma function in the complex plane. See, 

however, Ng [197 5] for a comparison with other methods. Tables of 

Pade coefficients are given in Luke [1969, Vol. II, p. 402££] for the ex

ponential, sine, and cosine integrals and for the error function. Golden, 

McGuire and Nuttall [197 3] give an experimental study of the diagonal 

Pade approximants in the case of Hankel functions of the first and 

second kind. 
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Gaussian quadrature, or the equivalent J -fraction in (15), have been 

used by Todd [1954] for evaluating the complex exponential integral, and 

by Gautschi [1970] for evaluating the complex error function. In the latter 

work, the continued fraction approach is combined with a Taylor series 

approach, there being a gradual transition from one to the other as the 

complex argument decreases in magnitude. 

L 4. 6. Error estimates. It is important to have reasonably good 

estimates o.f the error due to premature truncation of a continued fraction. 

One distinguishes between a priori estimates, which are expressed di

rectly in terms of the elements of the continued fraction, and a posteriori 

estimates, which depend on the knowledge of a finite number (usually 

two or three) of convergents. Concerning the latter, we mention the ele

gant work of Henrici [1965) and Henrici and Pfluger [1966] on Stieltjes 

fractions, in which a sequence of nested lens-shaped regions is con

structed the intersection of which contains the value of the continued 

fraction. For more recent extensions of this work, as well as for other 

types of estimates, we refer to the survey of Jones [1974). 

For a large number of continued fraction expansions of special 

functions, Wynn (196Za, b] gives "efficiency profiles", i.e., tables from 

which the order of convergents can be determined as a function of the 

(real) argument and the accuracy desired. 

1. 4. 7. Generalizations. In view of the contact properties of Pade 

and continued fraction approximations, one expects these approximations 

to be best near the point of contact, and to gradually worsen away from 

it. There is, in fact, a close relationship between the best uniform 

rational approximants on small discs I z I:::_ e, or small intervals 

0 :::_ z :::_ E, and the Pade approximant, the former tending to the latter as 

E -+ 0 (Walsh [l964a], [1974], Chui, Shisha and Smith [1974]). The rea

son for this behavior is largely due to the employment of powers in set

ting up the Pade table. To obtain a more balanced rational approximation 

on a given interval, it has been suggested to use systems of orthogonal 
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polynomials instead, and to proceed similarly as in l. 4. l, starting with 

the appropriate orthogonal expansion of f . It will be noted that the an

Ellogue of (2) is still a linear problem, but the analogue of (6) is not. 

The original work along this line is due to Maehly [1956], [1958] (see al

so Kogbetliantz [1960], Spielberg [l96lb]), who uses Chebyshev poly

nomials, and is continued by Cheney [1966, p. l77ff], Holdeman [1969] 

and Fleischer [1972]. These authors use the linear approach. The non

linear problem, which is closer in spirit to Pade approximation, has only 

recently been considered (Common [1969], Fleischer [l973a, b], Frankel 

and Gragg [197 3], Glenshaw and Lord [1974], Gragg and Johnson [1974]). 

The use of Chebyshev polynomials often leads to nearly best rational ap

proximations (Glenshaw [1974]). 

In another direction, one might generalize Pade and continued frac

tion approximation by imposing contact conditions not only at one, but at 

several points (typically, at the origin and at infinity). See Baker, 

Rushbrooke and Gilbert [1964] and Baker [1970] for recent attempts in this 

direction, and McCabe [1974] for an interesting continued fraction ap

proach. The potential of this approach remains largely to be explored. 

Finally, we mention generalizations of Pade approximation to func

tions of two variables by Chisholm [197 3a], Hughes Jones and Makinson 

[1974], Graves-Morris, Hughes Jones and Makinson [1974], Common and 

Graves-Morris [1974]. 

l. 4. 8. Other rational approximations. We already mentioned the 

T-method (Lanczos [1956, pp. 464-507]) applied to linear and nonlinear 

differential equations as a source of rational approx1mations (Luke [1955], 

(1958], (1959/60], Guerra [1969], Verbeeck [1970]). Other sources are 

Maehly' s economization of continued fractions and related techniques 

(Maehly [1960], Spielberg [196la], Ralston [1963]), Hornecker's method 

of modifying the Chebyshev expansion (Hornecker [l959a, b], [1960]), the 

method of Luke and co -workers (Luke [1969, Vol. II, Ch. XI]) on general

ized hypergeometric functions and functions representable as Laplace 

transforms, and the nonlinear sequence-to-sequence transformation of 

Levin applied to the partial sums of power series (Levin (197 3], Longman 
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[1973]). Integrating Padeapproximants for the square root, Luke[l968), 

(1970a)obtains rational approximations to the three normal forms of incom

plete elliptic integrals, including asymptotic estimates of the error. We 

also mention the curious ad-hoc approximation to the gamma function 

r(z) on Re z 2: l due to Lanczos (1964]. 

l. 5. Representation and evaluation of approximations 

Once an approximation to a special function has been construe-

ted, it is often possible to represent this approximation in different math

ematically equivalent forms. Each form in turn suggests one or several 

algorithms of evaluation. Although mathematically equivalent, these 

forms may behave quite differently under evaluation in finite precision. 

It is important to select a representation, and a corresponding evaluation 

algorithm, which to the maximum extent possible is invulnerable to the 

vagaries of finite precision arithmetic. 

With regard to representation, what one aims for is well-condition

ing. This means that the value of the particular functional form be insens-

itive to small perturbations in the parameters (coefficients) involved. 

With regard to algorithms, one strives for economy and stability, i.e., 

few urithmetic operations and maximum resistance to rounding errors. It 

is a rare instance where all three of these requirements are in complete 

harmony with each other. 

We discuss some possible representations and algorithms for poly

nomiul and rational approximations, and then consider an algorithm for 

evaluating approximations in the form of orthogonal sums. 

l. 5. l. Polynomials 

(i) Power form. A polynomial of degree n is most frequently rep-

resented in the form 

(l) p(x) 
n + ... +a x 

n 

which can be evaluated rather economically by a scheme ascribed to 

Horner [1819] (but already known to Newton (Ostrowski [1954])), 
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k = n-l, n-2, ... , 0 , 

The scheme requires n multiplications and n additions. With regard 

to addition, this is optimal (Ostrowski [1954]). The conditioning of the 

form (l) (at the point x ) depends on the relative magnitudes of the quan

tities m:x I ak xk I and I p(x) I . If the former is much larger than the 

latter, then (l) is ill-conditioned at x . Horner's scheme is generally 

stable, but can be moderately, and in some cases severely, unstable 

(Wilkinson [196 3, p. 36 ], Reimer and Zeller [196 7], Reimer [1968 ]). The 

Chebyshev polynomials, of all, are particularly vulnerable (Reimer [1971]). 

(ii) Chebyshev polynomial form. Every polynomial of degree n 

can be represented in terms of Chebyshev polynomials as (cf. l. 2. 3(ii)) 

(3) p(x) 

One of the attractive features of this form is the possibility of obtaining 

a sequence of approximations of varying accuracy by merely truncating 

(3) at consecutive terms. For the evaluation of p(x) one has an algor

ithm due to Glenshaw [1955], 

u=a,u =0, 
n n n+l 

(4) k = n-l, n-2, .•. , 0 , 

requiring 2n additions and n multiplications (cf. l. 5. 3). Although 

more time-consuming than Horner's scheme, Glenshaw's algorithm is 

often preferred on account of its more favorable stability properties. See 

Newbery [197 4] for a comparative study. 
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(iii) Root product form. This is the form obtained by factoring the 

polynomial into its linear and quadratic factors, 

r r+s 
(5) p(x) =an TT (x-xk) Tf [(x-xk/ +yk], yk > 0, r + Zs = n . 

k=l k=r+l 

Like Horner's scheme, this form requires n additions and n multiplica-

tions. For maximum stability, however, the differences x - xk must be 

evaluated with care: Assuming x machine representable (in floating-
"· .,, 

point arithmetic), and denoting by xk the machine representable part 

of xk' and by \ the remainder, 

one should evaluate x - ~ in two steps as (x - x:) - rk, thereby pre

serving as much significance as possible when x is close to ~ . Note 

that this doubles the number of additions. The construction of the form 

(5) requires some effort, namely the calculation of all zeros of P, but 

this effort may be rewarded by a well-conditioned representation. 

(iv) Newton form. In a sense intermediate between (l) and (5) is 

Newton's form 

(6) 
t a (X-X )(x-x1) ..• (X-X l) , 

n 0 n-

which reduces to (l) if all xk = o, and to (5) (with s 0), if ak = 0 for 

k < n. We have the Horner-type evaluation scheme 

(7) 

u a 
n n 

uk = (x-xk)uk+l + ak' 

p(x) = u 0 , 

k n-l, n-2, .•. , 0 , 
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which is quite stable if the differences x-xk are evaluated as above in 

(iii), and the parameters xk' ak are selected to make the two additive 

terms on the right of (7) of equal sign. This can always be done 

(Mesztenyi and Witzgall [1967]). A special form of (6) has proved useful, 

e. g., in approximating modified Bessel functions (Blair and Edwards [1974 ]) 

(v) Lagrange form. Given any n + l distinct real numbers x 0, xl' 

..• , xn' we may represent a polynomial of degree n in its Lagrange form 

(8) 

n 

p(x) = Z ak £ k(x), 
k=O 

n 

£k(x) = TT 
r=O 
rick 

X-X 
r ---

X -X ' 
k r 

familiar from interpolation theory. It is evaluated most conveniently in 

the barycentric form (see, e. g., Bulirsch and Rutishauser (1968]) 

n fck 
~ ak X-Xk go 

(9) p(x) 
n fck 

(x * x., o, l, ... , n) 
' 1 

) 
LJ X-X 

k=O k 

are precomputed constants. 

(vi) Ultraeconomic forms. There are a number of representations, 

due to Motzkin, Belaga, Pan, and others, which require only of the order 

n/2 multiplications and n additions. While these forms are highly in

teresting from the standpoint of complexity theory, their practical merits 

are not entirely clear. For one thing, they tend to be poorly conditioned 

(Rice [1965], Fike [1967]), although this matter deserves further analysis. 

For another, the time saving gained by fewer multiplications may well be 

lost on some computers by the need for more memory transactions (Cody 

[1967]). 

l. 5. Z. Rational functions 

(i) Polynomial ratio form. This is the collective name given to 
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all the forms that can be obtained by representing the polynomials p 

and q in 

(10) r(x) - p(x) 
- q(x) 

in any one of the forms discussed in l. 5. l. Since division is a stable 

operation, the conditioning and stability properties of r depend entire

ly on those of p and q . Occasionally it is preferable (see, e. g., 

Cody and Hillstrom [1970, p. 676]) to write the two polynomials in de-

scending powers of x . 

(ii) Continued fraction forms. Intrinsically different are repre

sentations of r in terms of continued fractions. There are many differ

ent types of continued fractions that can be used in this connection. We 

mention only the J-fractions (cf. 1.4. 2), which are of the form 

( 11) r(x) 

r 
n 

x+s 
n 

r k * 0 all k , 

and refer to Hart et al. [1968, p. 7 3ff] for others. The continued fraction 

(11) represents a rational function in lR 1 . Conversely, a rational 
n,n-

function in m 1 can be represented in the form (11), unless certain 
n, n-

determinants in the coefficients of p and q happen to vanish (Wall 

[1948, p. 165] ). Conversion algorithms are given in Hart et al. [1968, 

pp. 155-160]. 

For the evaluation of (ll) one proceeds most easily "from tail to 

head", according to 

(12) k = n, n -1, ... , l , 

r(x) = u 1 . 
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This requires 2n-l additions and n divisions, which, unless division 

is very slow, compares favorably with the 2n-l additions, 2n-l multi

plications, and 1 division, required with Horner's scheme in (10), and 

even more favorably with the evaluation of the continued fraction by 

means of the fundamental three-term recurrence relation. The algorithm 

(12) is not only more economical than Horner's scheme, but also more 

stable, in general. There are, however, exceptions (Cody and Hillstrom 

[1967, p. 203]). The stability of evaluation schemes for continued frac

tions is discussed by Macon and Baskervill [1956], Blanch [1964] and 

Jones and Thron [l974a, c]. 

l. 5. 3. Orthogonal sums. The Chebyshev polynomials Tk in (3) 

are a special case of orthogonal polynomials, {nk }, which are known 

to satisfy a recurrence relation of the form (cf. l. 4. 2 (17)) 

(13) = a (x) rr + !3 (x) 1r 1, 
r r r r-

r = 1, 2, 3, ..• 

Other (nonpolynomial) systems of special functions also satisfy relations 

of this type. When expanding a given function in terms of 1rk' it is 

useful to have an efficient algorithm for evaluating a partial sum, 

(14) 
n 

s(x) = l: ak 1rk(x) . 
k=O 

One such algorithm is Glenshaw's algorithm (Glenshaw [1955]}, a gener

alization of the algorithm in (4), 

(15) 
k = n-1, n-2, ... , 0 , 
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The validity of (15) is best seen by writing (13) in matrix form (Deuflhard 

[1974]) as 

1 

-Q' 
0 

1 0 

-13 1 
- (}' 

1 
1 

0 
-!) -(}' 

n-1 n-1 
1 

TT 
0 

TTl 

TT 
2 

TT 
n 

TT 
0 

TT -Q' TT 
1 0 0 

0 
= 

0 

or briefly as LTT = p, and noting that the recurrence in (15) is simply 
T 

L u = a . Thus, 

T T -l T -1 T T 
s(x) = a TT = a L p = ((L ) a) p = u p , 

which is the last line of (15). The argument clearly extends to functions 

TTk satisfying recurrence relations of order larger than two. Other pos

sible extensions are considered in Saffren and Ng [1971]. 

For orthogonal polynomials {TTk} one has TTl- a 0 (x)TT0 = 0, and 

the last line in (15) simplifies to s(x) = u 0 TT 0 . The derivative s'(x) 

can be computed by a similar algorithm (Smith [l965J, Cooper [1967]). 

Applying (15) to the Chebyshev polynomials Tk' Uk of the first 

and second kind, and noting that Tk (cos 9) = cos k9, (sin 9) U k (cos 9) = 
sin (k+l)9, one is led to an algorithm for evaluating trigonometric sums, 

known as Goertzel's algorithm (Goertzel(I958],[1960]), orWatt'salgorithm 

(Watt [1958/59]). 

Floating- point error analyses of Glenshaw's and Goertzel' s algo-

rithms are given by Gentleman [1969/70], Newbery [1973] and Cox [un

pubL ). Although usually quite stable, these algorithms are not without 

pitfalls. Glenshaw's algorithm (15), e. g., should be avoided if {TTk} 

is a minimal solution of (13) (cf. 2. 2.1). The computation of s(x) in 

the final step of (15) then likely leads to large cancellation errors 

(Elliott [1968]). Goertzel's algorithm, in turn, suffers from substantial 
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accumulation of rounding errors if 8 is small modulo rr (Gentleman 

[1969/70]). It can be stabilized either by incorporating phase shifts 

(Newbery [l973]), or by reformulating the recurrence in a manner proposed 

by Reinsch (Stoer [1972, p. 64]). 

For computational experiments with Clenshaw' s algorithm see Ng 

[1968/69]. 

§2. Methods based on linear recurrence relations 

It is often necessary to compute not just one particular function, 

but a whole sequence of special functions. The task is considerably 

simplified if the members of the sequence satisfy a recurrence relation. 

It is then possible to compute each member recursively in terms of those 

already computed. The process is not only fast, but also well adapted 

to modern computing machinery, and may be useful even if only one mem

ber of the sequence is desired. 

Most recurrences of interest in special functions are linear differ-

ence equations. The particular solution desired is often rapidly decay

ing, but embedded in a family of growing solutions. The question of 

numerical stability then becomes a central issue. In order to keep the 

dominant solutions in check, special precautions need to be adopted. 

The nature of these precautions is the subject of this paragraph. 

Computational aspects of recurrence relations have been reviewed 

by several writers, notably Fox [1965], Gautschi [1967], [1972], Wimp 

[1970], and Amos (1970]. 

2. l. First-order recurrence relations 

The simplest linear recurrence is 

(1) y =a Y 
n+l n n' 

n = 0, 1, 2, ... 

where y 0 and an * 0 are given numbers. Multiplication being a stable 

operation, errors due to rounding will essentially accumulate linearly 
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with n, making (1) a stable computational process. A classic example 

is the recurrence relation for the gamma function. 

As we proceed to inhomogeneous recurrences, 

(2) y =a y +b 
n+l n n n' 

n = 0, 1, 2, ... 

the stability characteristics may change significantly. The relation (2) 

indeed involves repeated additions, thus potentially unstable operations. 

It suffices that the two terms on the right be nearly equal in magnitude 

and opposite in sign to cause significant loss of accuracy, due to "can

cellation". If this happens repeatedly, the computation may quickly de

teriorate, giving rise to numerical instability. 

2. l. l. A simple analysis of numerical stability. Suppose f * 0 
n 

is a solution of (2) that we wish to compute. It is instructive to examine 

how a relative error e in f , 
n 

committed at n = s ( s for "starting"), 

< affects the value of fn at n = t (t for "terminal"), where t > s, 

assuming that no further errors are being introduced. If we denote the 

* perturbed solution by f , 
n 

computation that 

( 3) 

where 

(4) 

'~ so that f = (l + e )f , we find by a simple 
s s 

f h 
0 n 

Pn = -f
n 

and hn is the solution of the homogeneous recurrence (l), with h0 = 1 . 

Going from s to t, the relative error is thus amplified if I pt I > Ips I , 
and damped if I pt I < Ips I . In an effort to maintain optimal numerical 

stability, the recurrence (2), therefore, should be applied in the direc-

tion of decreasing I P. I, whenever practicable. 
n 

An important special case is 
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( 5) lim lpl=oo 
n ' 

where I p I diverges monotonically. The recurrence (2) is then unstable 
n 

in the forward direction, the ratio I p I p I being unbounded for t > s , 
t s 

but stable in the backward direction, the same ratio now being bounded 

* by l . More than that, we can start the recursion arbitrarily with f = 0, 
v 

for some v sufficiently large, and recur downward to some fixed n, 

thereby obtaining f to arbitrarily high accuracy. This is because the 
n 

initial error, e = -l, according to ( 3), will be damped by a factor of 

I p I p I, which can be made arbitrarily small by choosing v large 
n v 

enough. All intermediate rounding errors, moreover, are being consist-

ently damped. 

We can interprete ( 5) by saying that the particular solution of (2) 

desired is dominated by the "complementary solution" of (2), i.e., the 

solution of the corresponding homogeneous recurrence (1). It should be 

clear on intuitive grounds that forward recurrence cannot be stable under 

these circumstances. 

We remark that similar stability considerations apply to general 

systems of linear difference equations (Gautschi (1972]). 

2. l. 2. Applications to special functions. Although not many 

special functions obey relations of the type (2), there are some which do, 

e. g., certain integrals in the theory of molecular structure (Gautschi 

[1961]), the incomplete gamma function (KohU'tov~ [1970], Amos and 

Burg meier (197 3 ]), in particular the exponential integrals E (z) (Gautschi 
n 

[197 3]}, and successive derivatives of f(z)lz (Gautschi (1966], [1972], 

Gautschi and Klein (1970]). The techniques indicated above provide ef

fective schemes of computation in all these cases. 

2. 2. Homogeneous second-order recurrence relations 

We assume now, more importantly, that f satisfies a three-term 
n 

recurrence relation 
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(l) y 1 + a y + b y 1 = o, 
n+ n n n n-

n = 1, 2, 3, ... 

where, for simplicity, 

(2) f of. 0, b of. 0 for all n . 
n n 

Given f0 and f1, we can use (l) in turn for n = l, 2,... to successive-

ly calculate f2 , f3, ... This is quite effective if f0 and f1 are 

easily calculated and the recurrence (l) is numerically stable. We ex

pect the latter to be the case if no solution of (l) grows faster than f . 
n 

An important example of such a recursion is the one for orthogonal poly-

nomials, f = 1r 
n n' 

where the second solution is the sequence of associ-

ated orthogonal polynomials, g = o- (cf. l. 4. 2), 
n n 

and where by a 

theorem of Markov the ratios <r /1r converge to a finite limit, the cor-
n n 

responding Stieltjes integral, at least outside the interval of orthogonality 

(Perron [19 57, p. l98ff]). The recurrence relation is reputed to be stable 

even on the interval of orthogonality, except possibly in the vicinities of 

the endpoints. 

If there are solutions which grow much faster than f , then for
n 

ward recursion on (l), as in 2.1(5), is bound to fail. Such is the case 

if the solution f is minimal. 
n 

2. 2.1. Minimal solutions. We call a solution f of (l) minimal, 
n 

if for every other, linearly independent, solution g we have 
n 

( 3) lim f /g = 0 . 
n n 

All solutions g , for which (3) holds, are called dominant. A minimal 
n 

solution, if one exists, is unique apart from a constant factor. It can be 

specified by imposing a single condition, e. g., 

(4) 

or more generally, 
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I: 
m=O 

.\ f = s ' m m 

where s and .\ are given numbers. 
m 

Defining 

(6) r f 1/f , 
n n+ n 

n = 0, l, 2, ... 

we have by a result of Pincherle (see, e. g., Perron [1957, Satz Z.46C], 

Gautschi [1967 ]) that 

(7) 
f 
n 

f 
n-l 

-b 
n 

a -
n 

b 
n+l 

an+l-

b 
n+2 

a -
nt2 

... ' n = l, 2, 3, ... , 

where the continued fractions converge precisely if (1) has a (nonvanish-

ing) minimal solution, 

known, and ( 5) gives 

f 
n 

In principle, therefore, all ratios r 1 are 
n-

(8) fo = oo 
s 

\' .\ r r1 ..• r 1 L! m 0 m-
m=O 

from which 

(9) f - r f 
n - n-l n-1' n = l, 2, 3, ... 

by virtue of (6). 

2. 2. 2. Algorithms for minimal solutions. Any implementation of 

the approach just described will involve, explicitly or implicitly, the 

truncated continued fractions 

(10) 
(v) 

r n-l 

-b b 
n n+l 

a - a -
n ntl 

b 
v 

n = l, 2, ... , v . 
a 

v 
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We assume they all exist. (They do for v sufficiently large.) For sim

plicity of exposition, we consider the case of prescribed £0 , see (4). 

(i) Nonlinear backward recursion. Evaluating (10) recursively 

from behind, and then using an approximate version of (9), we get the 

algorithm (Gautschi [1967]) 

(v) (v) 
b 

n 
r = o, r = 

(v) ' v n-1 
a +r 

n = v, v-1, ... , l , 

( ll) 
n n 

f( v) = fo, 
f(v) = r(v) f(v) 

0 n n-1 n-l 
n = l, 2, ... , v . 

From Pincherle' s result it follows that 

{12) lim f(v) f 
n n 

for any fixed n . 

The major inconvenience with (11) is the fact that we do not always 

know an appropriate value of v ahead of time, and may have to repeat 

(ll) several times, with increasing until the iv) converge to the v, n 

desired accuracy. 
( v) ( v) 

Replacing r v = 0 in (ll) by r v = p v' a suitable approximation 

of r = f 1 /f , often leads to improved convergence (Gautschi [1967, 
v v+ v 

pp. 38, 40], Scraton [1972]). 

(ii) Linear algebraic system. The approximations f(v) in (ll) can 
n 

be identified with the solution of the tridiagonal system 

al l 

bz az l 

(13) 

0 
b 

v 

0 

a 
v 

f(v) 
l 

f(v) 
2 

-b f 
l 0 

0 

= 

0 

which is formally obtained from (l) by setting y vtl = 0 . 
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(iii) Miller's backward recurrence algorithm. We may start the 

recurrence (l) with 

(14) Y]v = l, T]v+l = 0 ' 

and use it in the backward direction to obtain TJ = TJ(v)' n = v-1, v-2, 
n n 

... , l . In effect, we produce a solution of the linear system (13), where 
( v) 

f0 on the right is replaced by llo Consequently, 

f 
0 (v) 

= ~ lln ' 
(15) n = 0, l, ... , v . 

TJo 

(v) (v) 
Generating lln as described, and then fn by (15), is known as 

Miller's algorithm (British Association for the Advancement of Science 

[1952, p. xvii]). It has the same disadvantage as noted in (i). In ad

dition, the quantities 11 ~v) may become large enough to cause overflow 

on a computer. 

(iv) Olver's algorithm. Miller's algorithm can be thought of as 

solving the system (13) by a form of Gauss elimination, in which the 

elimination is performed backwards, from the last equation to the first, 

and the solution then obtained by forward substitution. The algorithm 

proposed by Olver [1967a] uses the more conventional forward elimination 

followed by back substitution. To describe it, let 

(16) p = -a p - b p } n+l n n n n -l 

e = b e 
n n n-1 

n = 1, 2, ... , v . 

Then 

(17) f(v) = 0 
v+l ' 

n = v, v-1, ... , 1 , 

which yields f(v) 
v ' ... ' fiv) in this order, provided none of the pn 

vanishes. 
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We note from (17} that 

so that 

(18) 

f(v) f(v) 
n n+l 

Pn Pn+l 

In particular, by (12), 

(19) 

= 
e 

n 

It follows that f(v) has relative error 
n 

(20) 

f -f(v) 
n n 

f 
n 

n = 1, 2, ..• , v . 

the approximation on the far right being valid if the series in (19) con

verges rapidly. (Using the techniques in Olver (1967b] one could esti

mate the series more carefully and thus obtain a rigorous error bound). 

If we wish to obtain f to within a relative error E, we may thus iter-
n 

ate with (16) until a value of v is reached for which 

(21) 

the minimum being taken over all values n of interest. With v so de

termined, the lv) are then obtained as described in (17). It is this 
n 

feature of automatically determining v, which makes Olver's algorithm 

attractive. 
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(v) Olver's and Miller's algorithm combined. In some applications, 

the recursion in (16) for p is mildly unstable, initially, although ulti-
n 

mately it is always stable. Olver and Sookne [1972] therefore suggest 

applying the procedure (16), which serves mainly to determine the cutoff-

index v, only in a region n _:::: n0 of perfect stability for the p-recursion, 

starting with p = 0, p 1 = l as before, but with e = l . Once v 
n n + n 

is determined, u?e desired 0approximations are then obtain2d by recurring 

backward, as in Miller's procedure, starting with iv) = 0, f(v) = 
v+l v 

e v/p v+l' and by a final normalization, as in (15). 

We remark that all algorithms described can be extended to ac-

commodate the more general "normalization condition" (5). This is an 

important point, inasmuch as the algorithms so extended do not require 

the calculation of any particular value of fn (such as f0 above). For 

details, we refer to the cited references. 

2. 2. 3. Applications to special functions. The algorithms of 

2. 2. 2 have been applied to a large number of special functions. The 

first major applications involved Bessel functions and Coulomb wave 

functions, whose recurrence relations are similar in nature. Further ap

plications soon followed, e.g., to Legendre functions, incomplete beta 

and gamma functions, repeated integrals of the error function, and others. 

Detailed references, up to about 1965, can be found in Gautschi [1967]. 

More recently, in connection with Bessel functions, Mechel (1968] and 

Cylkowski (1971] discuss appropriate choices of the starting index v in 

Miller's algorithm, while Amos [1974] proposes accurate starting values 

from uniform asymptotic expansions. The latter approach, combined with 

Taylor expansion where appropriate, is carefully implemented in Amos 

and Daniel [197 3] and Amos, Daniel and Weston [unpubl. ]. Ratios of 

successive Bessel functions (and of other functions, e. g., the repeated 

integrals of the error function ) can also be computed by an iterative al

gorithm based on certain inequalities satisfied by these ratios (Amos 

[1973], [1974]). For Bessel functions, this is implemented in Amos and 

Daniel [1973]. Still on Bessel functions, we mention the work of Luke 
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[l972b], which relates Miller's algorithm to certain rational approxima

tions in the theory of hypergeometric functions, and the computer imple

mentation and certification of Olver's algorithm by Sookne (197 3a, b, c, d). 

Sidonskii [1967] has a related algorithm for Bessel functions of integer 

order and real argument, furnishing upper and lower bounds. Hitotumatu 

(1967 /68] recommends a nonlinear normalization condition in place of the 

linear condition ( 5). On Coulomb wave functions we note a recent im

provement by Gautschi [1969] on the recurrence algorithm (i), and refer 

to Wills [1971] for a procedure very similar to Olver's. Kolbig [1972] 

gives a survey of computational methods for Coulomb wave functions. 

Legendre functions are discussed by Fettis [1967) and more recently by 

Amos and Bulgren [1969] in connection with series expansions for the bi

variate t-distribution in statistics. Bardo and Ruedenberg [1971] revisit 

the repeated integrals of the error function. Temme [1972) applies algor

ithm (i) to certain Laplace integrals connected with van Wijngaarden's 

transformation of formal series. 

The stability of forward recurrence is analyzed by Wimp (1971/72], 

and in the case of orthogonal polynomials of the Laguerre and Hermite 

type, by Baburin and Lebedev [1967). 

2. 3. Inhomogeneous second -order and higher-order recurrence 

relations 

Some of the more esoteric functions are solutions of inhomogeneous 

second -order recurrence relations, 

(l) y 1 +ay +by 1 =c, 
n+ n n n n- n 

n = l, 2, 3, ... 

Others satisfy recurrences of even higher order. The latter are also en-

countered in the computation of expansion coefficients, e. g., the co

efficients in a Taylor series or a series in Chebyshev polynomials. Fre

quently, the solutions of interest are of the recessive type, in which 

case some of the algorithms described in 2. 2. 2, suitably extended, are 

again effective. 
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2. 3. l. Subdominant solutions of inhomogeneous second -order 

recurrence relations. Assume that the homogeneous recurrence associ-

ated with (l) has a pair of linearly independent solutions g and h , 
n n 

of which g is minimal (with g * 0), 
n 0 

call a solution f of (l) subdominant if 
n 

hence h dominant. We then 
n 

(2) lim f /h = 0 . 
n n 

n-+oo 

A subdominant solution may or may not dominate the minimal solution 

gn If it does, neither forward nor backward recurrence is entirely sat-

isfactory. 

In analogy to 2. 2(13) we consider the linear algebraic system 

1 

1 

( 3) 

0 

0 

b a 
v v 

c 1 - b f 1 0 

c 
v 

If this system has a solution for all v sufficiently large, and if f is 
n 

a subdominant solution of (1}, then by a result of Olver (1967 a], 

(4} lim f(v} 
n 

f 
n 

The algorithms of Olver and Olver and Sookne (cf. 2. 2. 2(iv), (v)} thus 

extend readily to the case of subdorninant solutions. So does in particu

lar Olver's device for determining the appropriate v and estimating the 

error (Olver [l967a, b]}. Related algorithms are also discussed in Amos 

and Burgmeier [197 3]. 

Olver applies his algorithm to Anger- Weber and Struve functions, 

while Amos and Burgmeier apply theirs to numerous other special func

tions, including incomplete Laplace transforms, and moments, of Bessel 
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and Struve functions, the incomplete gamma function and Lommel func

tions. Sadowski and Lozier (1972] give an interesting application of 

Olver's algorithm to certain definite integrals in plasma physics, in

volving Chebyshev polynomials. Similar integrals are also treated by 

Piessens and Branders [197 3]. 

2. 3. 2. Higher-order recurrence relations. Miller's algorithm is 

applicable to recurrence relations of arbitrary order, but, unless sub

stantially modified, is effective only for solutions which are "sufficient

ly minimal". For a penetrating study of this we refer to Wimp (1969]. 

There are applications to hypergeometric and confluent hypergeometric 

functions in Wimp (1969], as well as in Wimp (1974], and another appli

cation in Wimp and Luke (1969]. Thacher [1972] discusses Miller's al

gorithm in connection with the solution in power series of linear differ

ential equations with polynomial coefficients and relates minimality of 

the expansion coefficients to the singularities of the differential equa

tion. 

Given enough information about the growth pattern of fundamental 

solutions, approaches via boundary value problems appear to be more 

widely applicable. By imposing the right boundary conditions, it is 

sometimes possible to filter out a desired solution which is neither min

imal nor dominant. The principal references in this direction are Oliver 

[1966/67], [l968a,b]. 

§ 3. Nonlinear recurrence algorithms for elliptic integrals and 

elliptic functions 

Some functions of several variables, notably elliptic integrals, 

have the remarkable property that their values remain unchanged as the 

variables undergo certain nonlinear transformations. Repeated applica

tion of these transformations, moreover, causes the variables to con

verge rapidly to certain limiting values, for which the functions can be 

evaluated by elementary means. These invariance properties thus give 
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rise to interesting and powerful recursive algorithms for computing the 

functions in question. 

3. l. Elliptic integrals and Jacobian elliptic functions 

3. l. l. Definitions and special values. The best known functions 

enjoying invariance properties of the type indicated are the elliptic inte

grals of the first, second, and third kind. In Legendre's canonical form, 

they are, respectively, 

(1) 

(2) 

( 3) 

(/) 

F(q;, k) = f 
0 

(/) 

E(q;, k) = f 
0 

de 

J 2 . 2 
l-k s1n ede, 

The variable k is known as the modulus; we assume it in the interval 

0 < k < l The complementary modulus k' is defined by 

(4) 

The variable <P is called the amplitude, and we assume that 0 _::::_ q; _::::_ TT/2 

The variable n in (3) may take on arbitrary values, provided the integral 

is interpreted in the sense of a Cauchy principal value, should n be 

negative and l + n sin2 q; < 0 . 

The integrals (l) -( 3) are called complete, or incomplete, depending 

on whether q; = TI/2, or q; < -rr/2 . The complete elliptic integrals are 

usually denoted by 

(5) lK(k) = F(¥- , k), 
1T 1r 

lE(k) = E(-2, k), IT(n, k) = IT(z, n, k) . 
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As k l 0, or k f l, we have the limiting values 

lim F(cp, k) 

kto 
lim E(cp, k) = cp , 
qo 

-1 I lim F(cp, k) = tanh (sin cp) (0 ~ cp < 1r 2 ), 

ktl 
lim E(cp, k) = sin cp 

k t 1 

Similar, but more complicated formulas hold for IT(cp, n, k) (see, c. g., 

Byrd and Friedman [1971, p. 10]). We also note 

(8) F(cp, k) ~ 1n 
4 

E(.p, k) ~ l as kf 1, .pf 1r/2 , 
I 2 2 ' 

cos.p+r-Jl-k sin cp 

where the first relation is given by Carlson [1965, p. 39]; see also Nellis 

and Carlson [1966, p. 228]. 

Considering k fixed, the function u = F(cp, k) is monotone in <P , 

and thus possesses an inverse function, 

(9) cp=amu, 

the amplitude function. In terms of it one defines Jacobian elliptic func

tions by 

(l 0) sn u = sincp, J 2 2 
en u = cos cp, dn u = 1-k sin cp 

3. L 2. Gauss transformations vs. Landen transformations. One 

distinguishes between Gauss transformations and Landen transformations, 

and for each between descending and ascending transformations. (Term

inology, however, varies). In a descending transformation, the modulus 

k always decreases; in an ascending transformation, it always increases. 
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In a Gauss transformation, the amplitude ({! varies in parallel with k 

(i.e., cp and k both increase or both decrease), while in a Landen 

transformation they vary in opposite directions. Repeated application of 

a descending transformation causes k to converge down to zero, while 

({! converges down to some limiting value cp00 in a Gauss transformation 

and up to oo in a Landen transformation. The former, therefore, event

ually invokes the equations in (6). Repeated application of an ascend-

ing transformation, instead, causes k to converge upward to l, while 

({! converges upward to rr/2 in a Gauss transformation and down to some 

limiting value ({! in a Landen transformation. The former, therefore, 
00 

eventually invokes the relations in (8), the latter those in (7). 

In describing these transformations, we limit ourselves to elliptic 

integrals of the first kind, and must refer to the literature for the others. 

An early treatment of computational algorithms for elliptic functions and 

integrals is King [1924]. We follow more closely the work of Carlson 

[1965], who develops the algorithms in a unified way, at least for inte

grals of the first two kinds. Hofsommer and van de Riet (1963] have 

ALGOL programs for integrals of the first and second kind, using Landen 

transformations, as well as programs for elliptic functions, based on 

ascending Landen and descending Gauss transformations. See also 

Neuman [1969/70a, b] and Kami, Kiyoto and Arakawa [197la, b]. Descend

ing transformations for integrals of the third kind are discussed by Ward 

[1960] in the case of complete integrals, and by Pettis [1965] in the case 

of incomplete integrals. A thorough treatment of descending Gauss and 

Landen trqnsformations for integrals of all three kinds, complete with 

ALGOL procedures, is given in Bulirsch [196 Sa, b ], and more definitively, 

especially as regards integrals of the third kind, in Bulirsch (l969a, b). 

In the latter work, more general transformations, ascribed to Bartky, 

and extensions thereof, are used effectively. A good introduction into 

these developments is Bulirsch and Steer [1968]. For the theory of ellip

tic integrals and elliptic functions we refer to the books of Neville(l944], 

[1971] and Tricomi [1948], (1951]. 
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We begin with Gauss' process of the arithmetic-geometric mean, 

which underlies all algorithms for elliptic functions. 

3. 2. Gauss' algorithm of the arithmetic-geometric mean 

Starting with a 0 > b 0 > 0, Gauss' algorithm generates two 

sequences {a }, {b } by compounding the arithmetic and the geometric 
n n 

mean in the following manner, 

1 
a =-(a + b ) 

n+l 2 n n ' 

(l) 

b l = ,_]~ ' n+ n n 

n = 0, l, 2, ... 

Since the iteration functions are homogeneous of degree I, only the 

ratio b 0 /a0 matters. 

The arithmetic mean being larger than the geometric mean, we have 

a > b for all n, and therefore b < a 1 < a , b < b 1 < a 0 . It 
n n 0 n+ n n n+ 

follows that {a } and {b } both converge monotonically to certain 
n n 

limits, which, by letting n- oo in (1), are readily found to be equal. The 

common limit is denoted by M = M(a0, b0 ), and called the arithmetic

geometric mean of a 0 and b0 . Clearly, b 0 < M(a 0 , b 0 ) < a 0 . 

In order to discuss the rate of convergence, it is convenient to in

troduce 

(2) 
a - b 

n n 
En a + b 

n n 

One finds by a simple computation that 

( 3) n = 0, 1, 2, ... 

The sequence {E }, therefore, converges monotonically and quadratic
n 

ally to zero. Since 
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(4) 0 < an - M < (a0 + M)E n' O<M-b <2ME 
n n 

we see that also {a } and {b } converge quadratically. We note from 
n n 

(2) that 

( 5) 

b 
n 

a 
n 

2 
= 1 - 2 € + 0(€ ), 

n n 
n- oo • 

Quadratic convergence is a common feature of more general proc

esses of compounding means (Lehmer [1971]). For variants of Gauss' 

algorithm (none of which quadratically convergent, however), and for many 

historical notes, see also Carlson [1971]. For complex variables, the al

gorithm is discussed by Fettis and Caslin [1969] and Morita and Horiguchi 

[1972/7 3]. 

In applications to elliptic integrals, the ratio b 0 /a0 will be ident-

ified with either the modulus k, or the complementary modulus k' . The 

algorithm (l) then generates a sequence of transformed moduli 

or k' = b /a respectively, where in the former case 
n n n' 

(6) 
2,_]k 

n 
k =-
ntl ltk ' 

n 

and in the latter, 

(7.) 
z,_J~ 

k' = __ n 
n+l 1 + k' ' 

n 

An equivalent form of (7 ') is 

(7) 
1-k' 

k = __ n_ 
ntl 1tk' ' 

n 

n = o, 1, 2, ... , k0 = k , 

n = o, 1, 2, ..• ' ko = k' . 

n = o, 1, 2, ..• , k0 = k . 

k = b /a , 
n n n 

Since the modulus increases in (6), and decreases in (7), we call (6) an 

ascending and (7) a descending transformation. The convergence is to 

1 and 0, respectively, and quadratic in both cases. 
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The choice of the transformation is dictated by the speed of con-

vergence, which depends on the magnitude of e = (1-b /a )/(l+b /a0) 
0 0 0 0 

Since we want e 0 small, we choose an ascending transformation if 

k2 > ~, and a descending transformation otherwise, so that in either 
2 I 

case l > (b0 /a0 ) ~ Z, and thus 

From ( 3) we then find that 

2 

< .172 . 

2 
E 

n 

2 
E 

(8) 'n+l 0 (l+j:'~~) < 
(1+~)2 

n <--
3.94 

and so, 

-5 -ll -22 
(9) e 1 <.0075l, e 2 <l.44Xl0 , e 3 <5.27Xl0 , e 4 <7.05Xl0 , ... , 

illustrating the quadratic nature of convergence. 

3. 3. Computational algorithms based on Gauss and Landen 

trans formations 

3. 3.1. Descending Gauss transformation. We define. 

l 
a 1 = -2 (a + b ) , 

n+ n n 
( l) 

b l = ,)~ n+ n n 
n = 0, I, 2, ... 

l J 2 2 2 t 1 = -(t + t -a +b ) , 
n+ 2 n n n n 

One verifies without difficulty that t and a /t both decrease. Hence, 
n n n 

a /t < l, and t must converge, 
n n- n 
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t ~ T, 
n 

n-+OO , 

The speed of convergence is comparable to that of 

n- oo . 

E 
n 

To see this, observe from the last relation in (1), and from 3. 2(5), that 

=!._t rl+l-2(M)
2

E +o(E )~=t h -(M)
2 

E +o(E )~ 
2 n l T n n') n l T n nj 

from which 

2 
Since E converges quadratically, in particular E 1 < E , we easily 

n n+ n 
obtain, for any p ~ 0 , 

M2 
t - t l = -T E + O(E ) , n n+p+ n n 

from which (2) follows by letting p- oo. 

We now set 

a b 
(3) 

n 1T 
t =sin <pn (O<<pn < z->, n = k' 

a n' 
n = 0, l, 2, ... 

n n 

which for n = 0 is consistent with the first relations in (l) (if <po = cp , 

k' = k') 
0 

form as 

The last relation in (l) can then be written in trigonometric 
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(l+k')sincp 
n n 

n = 0, 1, 2, ... 

<p n 2 2 _.!_ 
If in the integral F(.-p , k ) = J (l- k sin e) 2 de we make the change 

n n 0 n 

of variables 

(l+k') sine 
n 

sin A. = --J-;====z;;==. =z;:;==-
1+ 1-knsme 

0 < e < <pn ' 

we find, after a little computation, that 

(4) l F( k ) F( k ) a <pn' n - -- cpn+l' n+l ' 
n an+l 

n = 0, 1, 2, ..• 

This is the descending Gauss transformation for elliptic integrals F(.-p, k) . 

Since k ! 0, and recalling 3.1(6), we conclude 
n 

( 5) 

Thus, 

F(.-p, k) = lim 
a 

n 

F(.-p , k ) 
n n 

-1 M 
sin 

M T 

-I -1 I F(.-p, k) may be approximated by evaluating a sin (a t ) for 
n n n 

some n sufficiently large. Observing that 

an M 
0<---= 

t T 
n 

(a -M)T+ M(T-t ) 
n n 

t T 
n 

a -M 
n 

< ---,T~-

and using Taylor's theorem, and 3. 2(4), we find 

I a I l -l M 1 -1 n M+l n 
- sin - - - sin - < -- (- +sec <PIE 
M T a t- 22 n 

n n M 

For a -l sin -l(a /t ) to be an acceptable approximation to F(.-p, k), it 
n n n 
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suffices, therefore, that E be sufficiently small [which for most pur-
n 

poses will be the case when n = 3 or n = 4; cf. 3. 2(9)]. 

3. 3. 2. Ascending Landen transformation. We define 

(6) 

Clearly, 

to the one 

fact, 

(7) 

Letting 

a 

a 0 = l, b 0 = k, s 0 = cot <p , 

l 
an+l = 2 (an + bn) ' 

b l =.Ja-b ' n+ n n 
n = 0, l, 2, . , . 

s l=-2l(s +)s2+a2-b2)' n+ n n n n 

s increases, while a /s decreases. An argument similar 
n n n 
surrounding (2) shows that s t S, where S < oo, and in 

n 

s - s 
n 

n n 
b 

n 
{8) 

s 
n 

= tancpn (0<<['0 < 2 ), 
a 

n 
k ' n 

n = 0, l, 2, ... 

we can recast the last relation in (6) in the trigonometric form 

tan <p 1 nt 

(ltk ) tan<p 
n n 

J 2 2 ' l + l + k' tan <p 
n n 

Similarly as in 3. 3. l, it follows that 

(9) 
l 

a 
n 

F(<p , k ) 
n n 

n = 0, 1, 2, ... 

n o, l, 2, ... 

which is known as the ascending Landen transformation. Making use of 

3.1(7), we now obtain 
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F(<P, k) = lim 
a n-oo n 

F(<P , k ) 
n n 

-1 M 
_ M sinh S 

When S is small, there is some loss of significant figures in 
2 2 2 

computing s + a - b We can avoid this by introducing 
n n n 

(11) J 2 2 
d = a - b 

n n n 

2 2 2 2 2 
and computing s + a b s +d 

n' 
where the d are generated re-

n n n n n 
cursively by 

d2 

(12) d 
n 

n = 0, l, 2, ... ----
ntl 4a 1 ' n+ 

3. 3. 3. Ascending Gauss transformation. We define 

(13) b 1 =0ab, 
n+ n n 

n = 0, l, 2, ... 

One verifies without difficulty that q > a for all n . Consequently, 
n- n 

qntl < qn' and the sequence {qn }, being monotone decreasing and 

bounded from below by M, converges to some limit. It is easily seen 

that the limit is M , 

We set 

q l M, n _,. oo . 
n 
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TT 
(O<cpn <z-l, 

b 
n 

a 
n 

= k ' n 

and rewrite the last relation in (13) as 

sin cp 1 n+ 

(l+k )sincp 
n n 

l+k sin2 cp 
n n 

n = 0, l, 2, ... 

n = o, l, 2, .•. 

which shows that cp indeed increases. The ascending Gauss transfor
n 

mation takes the form 

( 15) 
l 

-- F(cp , k ) 
n n n 

2 a 2 n+l a F(cpn+l' kn+l)' 

n+l 

n = 0, l, 2, ... 

n 

In contrast to the previous transformations, F(<p , k ) no longer remains 
n n 

Indeed, simultaneously cp t TT/2 and k I l, and 
n n 

bounded as n _,. oo • 

so, by 3. 1(8) ' 

F(<p ,k )-In 
n n 

From (15) we obtain 

4 
n-+oo. 

I 2 2 ' 
cos cp + '../ l-k sin cp 

n n n 

(16) l { -n F(cp, k) = M lim 2 In 
n-+oo 

2q + 2a } n n 

J-rq=~~-=a=:~'P"-+-J-rq=;~~-=b=;~;;==- . 

It suffices to evaluate the expression on the right for n large enough so 

that E is negligible compared to l . 
n 
The denominator 

J 2 2 J 2 2 e = q -a + q -b 
n n n n n 

can be computed without loss of significance by means of 
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4q e 1 n n+ 
2 2 

e +(a -b) 
n n n 

where the second term on the right is substantially smaller than the first, 
2 2 

(a - b ) < E e The cancellation error incurred in computing a - b , 
n n-nn n n 

therefore, is of no consequence. 

3. 3. 4. Descending Landen transformation. We define 

(17) 

1, b 0 = k' 
0' 

p0 = cot ffJ , 

b 1 = ,_J--;;--b ' n+ n n 
n = 0, 1, 2, ..• 

1 ( a b ) 
pn+l = 2 pn - ~n n ' 

This time, p cannot possibly tend to a finite limit P, as this would 
2 n 2 

imply P = -M , which is absurd. Neither need p preserve its sign. 
n 

Letting 

(18) 
a 

n 
= tan <p , 

Pn n 

b 
n 

a 
n 

k' n' n = 0, l, 2, ... 

and writing the last relation of (17) in trigonometric form, 

tan ffJ 1 n+ 

(l+k' )tan ffJ 
n n 

n = o, l, 2, ... 
2 

l - k' tan ffJ 
n n 

we find however that <p n increases, if we take (Carl son [196 5]) 

(19) 

where 
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{

2i l n-

in= 2in-l+l 

if p > 0 ' n-

if p <0 00 n or pn = . 

The descending Landen transformation states that 

(21) l F(m k ) = ----n- '~'n' n n+l 
2 a 2 a 

n n+l 

n = 0, l, 2, ... 

and consequently, since k l o, 
n 

that 

(22) 
l -n 

F(tp, k) = M lim 2 tp n' 
n-+- oo 

The branch of the inverse tangent is to be taken in conformity with (19) 

and (20). 

3. 4. Complete elliptic integrals 

All four transformations discussed in 3. 3 apply equally for complete 

integrals. Some of them, however, simplify. 

Thus, in the descending Gauss transformation, we find that t =a 
n n 

for all n, which reduces the algorithm 3. 3(1), and 3. 3(5), to 

(l) 

ao = 1, bo = k' ' 

l 
a 1 = -2 (a + b ) , 

n+ n n 

b l =.Jab' n+ n n 

lK(k) 
2M 

n=O,l,2, ... 

The arithmetic -geometric mean M = M(l, k ') is thus seen to be related 

to the complete elliptic integral of the first kind, lK(k) . 

Similarly, in the descending Landen transformation, we have p0 = 0 , 
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and thus p = oo for all n ~ l, 
n 

which, by 3. 3{20) has the consequence 
n-l 

that i 
n 

zn -1 . By 3. 3(19), therefore, .pn = 2 1r, and 3. 3(22) then 

reestablishes (l). The descending Gauss and Landen transformations 

thus become identical. 

Not so for the ascending transformations. In the ascending Gauss 

transformation, we find q = a for all n, and 3. 3{13), together with 
n n 

3. 3(16), where n is conveniently replaced by n + l, simplify to 

(2) 

ao = l, bo = k ' 

l 
a 1 = -2 (a + b ) , 

n+ n n 

b 1 =.Jab n+ n n 

l ( -n 4 ) IK(k) = ZM lim 2 ln ~ 
n-oo n 

n = 0, 1, 2, ... 

The ascending Landen transformation, finally, neither simplifies, nor 

does it preserve the completeness of the integral. 

3. 5. Jacobian elliptic functions 

All four algorithms of 3. 3, suitably reversed, yield algorithms for 

computing Jacobian elliptic functions. We recall that, by definition, 

(l) sn u =sin .p, where u = F(.p, k), 0 .:::_ u .:::_ IK(k) 

In the case of the descending Gauss transformation, e. g., we 

need to compute sn u = l/t0 in 3. 3(1), knowing that T = lim tn = 

M/sin(Mu) by virtue of 3. 3(5). We accomplish this by u~~~ the Gauss 

arithmetic-geometric mean process to compute M, hence T, and then 

reversing the recursion for tn in 3. 3(1) to compute t 0 . Thus (Salzer 

[1962], Hofsommer and van de Riet (1963], Carlson [1965]), 
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a = 1 b0 = k' 
0 ' 

1 
a 1 = -2 (a +b ) } n+ n n 

b 1 =0ab 
n+ n n 

WALTER GAUTSCHI 

n = 0, l, ... , v-1 , 

a /sin(a u) , 
v v 

n = v, v -1, ... , l , 

snu= t(~) , cnu =J[tbv)]2 -lsnu, dnu = (2t{v) -tbv))snu , 

0 

where v is chosen large enough for a -M to be negligible. (By 3. 2(4), 
v 

this will be the case if E is negligible compared to 1/2 ). A simpler 
v 

form of the t-recursion results from using 3. 3. 2(11) and (12), 

(2.) n=v,v-1, ..• ,1. 

From the ascending Landen transformation we obtain (Southard 

[1963], Hofsommer and van de Riet [1963], Carlson [1965]), similarly, 

( 3) 

ao = 1, bo = k ' 

a 1 = !_2 (a + b ) } n+ n n 

b l = .J----a-b n+ n n 

s(v) a /sinh(a u) 
v v v 

a d 
n n 
( v) ' 

s 
n 

n = 0, l, ... , v-1 , 

n=v,v-1, ... ,1, 

cnu=s(v)snu 
0 ' 

dn u = (2 s(v)- s(v))sn u 
l 0 
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According to the discussion at the end of 3. 2, the ascending algorithm 

(3) is faster than the descending algorithm (2} when k2 > ~. 

§4. Computer software for special functions 

Good numerical methods need to be made easily accessible to the 

interested user. One way of doing this is by providing computer pro

grams written in one of the higher-level languages such as FORTRAN or 

ALGOL. For special functions, as well as for many other mathematical 

problem areas, a great number of such programs are in fact available, 

and have been so for some time. There are published algorithms in 

specialized journals (e. g., Comm. ACM, Numer. Math., BIT, Computer 

Physics Comm., Applied Statistics, and ACM Trans. Mathematical Soft-

ware), and many others in user's group libraries, commercial libraries, 

local subroutine libraries, etc. Unfortunately, the quality of these al

gorithms and programs varies enormously. It has been felt, therefore, 

in recent years, that libraries should be established by selecting a few 

algorithms, known for their outstanding quality, implementing them care

fully into reliable and thoroughly tested pieces of computer software, 

integrating the pieces into larger, well-streamlined, and easy-to-use 

collections of subroutines, and finally releasing these collections to the 

computing public, with provisions for updating them at regular intervals. 

This is not the place to enter into a discussion of the many design 

objectives and desirable attributes of such packages, nor of explaining 

the considerable difficulties in trying to attain them; we refer for this to 

Rice (1971] and Cody (1974). We would like to draw attention, however, 

to two current efforts in this direction, one in the United States known 

as the NATS project (~ational ~ctivity to :!_est §_o ftware), the other in 

England, known as the NAG project (~umerical ~lgorithms group, former

ly ~ottingham ~lgorithms group). The former's original objective is to 

produce high-quality software for two restricted problem areas, namely 

matrix eigensystem problems, and special functions, for which initial 

packages have been released in 1972 and 1973 under the names EISPACK 
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and FUNPACK, respectively. The latter's objectives are similar, but 

embrace a wider problem area - essentially all the major numerical an

alysis problems. The most recent version ("mark 4") was completed in 

197 3. For a general description of the NATS project we refer to Boyle et 

al. [1972] and Smith, Boyle and Cody [1974], and for a discussion of the 

NAG project to Ford and Hague [1974] and Ford and Sayers [1974]. We 

briefly compare the two efforts, as far as they concern special functions. 

4.1. NATS software for special functions 

The special function package of the NATS project - FUNPACK - is 

developed and maintained under the direction of Cody at Argonne 

National Laboratory (Cody [197 5]). His principal decisions in designing 

FUNPACK are, first of all, to adopt FORTRAN as the exclusive language 

of the package, and, secondly, to limit the programs to three different 

lines of computers, namely the IBM 360-370 series, the CDC6000-7000 

series, and Univac 1108. Accordingly, only three accuracy requirements 

have to be dealt with, roughly 14 significant decimal digits on CDC 

equipment, and 16, respectively 18, decimal digits for the hardware 

double-precision arithmetic on IBM and Univac equipment. The pack-

age, therefore, is designed to perform well on these particular machines, 

and is not expected, nor intended, to be easily transportable to other 

machines. 

The limitation to three different precisions has a major influence 

in the selection of approximation methods. Most attractive, under the 

circumstances, are rational Chebyshev approximations, both by virtue 

of their efficiency and uniform accuracy. This, in fact, is the choice 

made in FUNPACK. The current version I includes subroutines for six 

special functions - the exponential integral, the complete elliptic inte

grals of the first and second kind, Dawson's integral, and the Bessel 

functions K0 and K1 . All of them are computed from appropriate best 

rational approximations. Plans are underway to extend the package to 

include sequences of functions and multivariate functions. 
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All the programming of the package, as well as the initial testing, 

was done at Argonne National Laboratory, which has IBM equipment. 

Similar tests were run on CDC equipment at the University of Texas, 

and on Univac equipment at the University of Wisconsin. After this initi· 

al testing and "tuning" of the routines, they were subjected to additional 

field tests on the same type of computers, running, however, with differ

ent FORTRAN compilers and under a variety of operating systems, some 

in batch mode, others in time sharing mode. 0 ,1ly after successful com

pletion of all field tests, in September of 197 3, was the first version of 

the package released. 

4. 2. NAG software for special functions 

The special function chapter of the NAG library is being developed 

by Schonfelder at the University of Birmingham (Schonfelder (l974a, b]). 

While the basic objectives, and methods of testing, are similar to those 

of the NATS project, there are some significant differences. For one, all 

programs in the NAG library are written separately in two languages, 

FORTRAN and ALGOL. For another, the library is designed to be highly 

portable, i.e., to run, with a minimal amount of changes, on a wide 

variety of different machines. Finally, coverage is hoped to eventually 

include all the major functions in Abramowitz and Stegun [1964) -roughly 

fifty separate functions. At the moment (Schonfelder [197 5)), the list of 

functions for the forthcoming edition ("mark 5") is to include the expo-

nential , sine, and cosine integral, the gamma function, the error 

function and Fresnel integrals, and the Bessel functions J0 , J1, Y 0 , Y1 , 

r0 , Il' K0 , K1 . Plans exist to cover functions of several variables, and 

of complex variables, but implementation appears to be several years in 

the future (Schonfelder (197 5)). 

The choices made for the methods of computation reflect the multi-

machine character of the NAG library. Preference, in fact, is given to 

expansions in Chebyshev polynomials, which can be truncated easily to 

fit various machine precisions, although they may be somewhat inferior 

in efficiency compared to rational approximations. 
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4. 3. Other software for special functions 

Good subroutines for special functions can be found in other mathe

matical subroutine libraries, e.g., the Boeing library and handbook 

(Newbery (1971]), containing programs in FORTRAN, and the NUMAL library 

(Numerical procedures in ALGOL 60) developed at the Mathematical Centre 

in Amsterdam (den Heijer et al. [1974]). The latter has appeared in seven 

volumes, volume 6 being devoted to special functions. In addition, there 

• are a number of commercial subroutine packages. IBM offers SSP 

(§_cientific §_ubroutine l:_ackage), currently in its 5th edition, and SLMATH 

(§_ubroutine ~ibrary Mathematics) and its PL/1 version, PLMATH, while 

IMSL (!_nternational Mathematical §_tatistical ~ibraries) regularly issues 

revised editions of its library. 

We listed only those library projects, relevant to special functions, 

which are most familiar to us, realizing that there are undoubtedly many 

others. 
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Anomalous Convergence of a Continued Fraction 
for Ratios of Kummer Functions* 

By Walter Gautschi 

Abstract. We exhibit a phenomenon of apparent convergence to the wrong limit in con

nection with a continued fraction of Perron for ratios of Kummer functions. The phe
nomenon is further illustrated in the special cases of Bessel functions and incomplete 

gamma functions. 

1. Introduction. From the differential equation satisfied by Kummer's function 

a z a(a+l)z2 
M(a, b; z) = 1 +bIT+ b(b + 1) 2! + 

Perron [4, p. 278] develops the following continued fraction, 

( 1 1) zM'(a, b; z) =....!E._ (a+ l)z (a+ 2)z 
· M(a,b;z) b-z+ b+l-z+ b+2-z+'"' b:i=O,-l,-2, ... , 

where M'(a, b; z) = (d/dz)M(a, b; z) = (a/b )M(a + 1, b + 1; z). While the continued 
fraction converges for any complex z not a zero of M(a, b; z), the convergence behavior 
can be extremely deceptive, when lzl > max(lal, lbl), particularly if Re z > 0. The 
point is illustrated by concrete examples involving Bessel and incomplete gamma func
tions. 

2. The Phenomenon of Apparent Convergence to the Wrong Limit. We assume, 
for simplicity, that a* 0 and b- z * 0, -1, -2, .... Equation (1.1) can then be 
written in the form 

(2.1) 
b- z M'(a, b; z) 1 at a2 

a M(a, b; z) = I+ 1+ I+···' 

where 

(2.2) 
a = (a+ k)z 

k (b- z + k- l)(b- z + k) , k = 1, 2, 3, .... 

Alternatively (cf., e.g., Wall (6, p. 17ff] ), 

(2.3) 

where 

b- z M'(a, b; z) _ L 
a M(a, b; z) - k=O pk, 

Po= 1, k = l, 2, 3, ... , 
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and 

-ak(I +pk-1) 
Pk = 1 + a (1 + p ) ' k k-1 

(2.4) Po= 0, k=1,2,3, .... 

The infinite series in (2.3) represents the continued fraction in (2.1) in the sense that 

the nth partial sum of the former is equal to the nth convergent of the latter, n = 

1, 2, 3, .... 

Evidently, the terms pk in the series of (2.3) decrease or increase in absolute value 

according as lpkl < I or lpkl > 1, respectively. It is useful, therefore, to examine 

the behavior of lpkl as a function of k. 
Assuming lpk_ 1 1 <I, then lpkl < 1 certainly if lakl.;;;; %. On the other hand, 

by (2.2), if lzl > lbl + k, then lakl < (lal + k)lzl(lzl - lbl - k)- 2 , and an elementary 

calculation shows the upper bound for lakl to be.;;;;% if 

(2.5) lzl ~ 2(lbl + 21al + 3k). 

It follows that (2.5), together with lpk_ 11 <I, implies lpkl <I. Since, initially, Po = 

0, we obtain by induction that lpkl < l for all k satisfying (2.5). 

If lzl is large, we see that the terms pk in (2.3) must decrease initially, the rate of 

decrease being greater the larger lzl. The continued fraction in (2.1) then gives the 

appearance of converging rapidly to a value of the order of magnitude l, yielding for 

M'(a, b; z)/M(a, b; z) a value approximately equal to -ajz. This is obviously the wrong 

answer, if Re z > 0. Indeed, from known asymptotic formulas [5, Eq. 13.1.4), 

(2.6) M'(a, b; z) _ 1 
M(a, b; z) as lzl ._ oo in Re z > 0. 

What is likely to happen, then, is that the terms pk, after the initial descent, begin to 

increase again, and converge to zero only after reaching some peak values which are 

sufficiently large so as to contribute to a limit consistent with (2.6). It is only during 

the "final descent" of the terms pk that the correct limit will be attained (assuming no 

rounding errors). 

The phenomenon of apparent convergence, while prevalent for Re z > 0 and lzl 
large, need not occur if Re z < 0, since in this case [5, Eq. I3.1.5] 

(2.7) M'(a, b; z) a I I . R < 0 ""'( b. ) - -- as z ._ oo m e z . 
1w a, , z z 

Nevertheless, we will see in examples that the phenomenon persists if rr/2.;;;; larg zl < 1r, 

albeit in a weakened form. 

3. The Case of Real z. It is instructive to examine in more detail the case of 

real arguments z and real parameters a, b satisfying 0 < a + l if z > 0, and 0 < a + 1 

.;;;; b if z < 0. 

It will be convenient to introduce the quantities 

(3.1) k = 0, I, 2, ... , 

for which the recursion (2.4) gives 
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(3.2) a0 = l, k=l,2,3, ... 

3.1. The Case z = x > 0, a+ l > 0. We consider two subcases, (i) b- x > 0, 
(ii) b- X< 0. 

In case (i), it follows from (2.2) that ak > 0 for all k ~ l, hence from (3.2) that 
0 < a k < l for all k ~ 1, and therefore from (3 .l) that -1 < p k < 0. We see that the 
terms pk in (2.3) alternate in sign and decrease monotonically in modulus. In fact, 
since ak ~ 0, hence akak_ 1 ~ 0 as k ~ 00, we have ak ~ 1, and so pk ~ 0, 
meaning that the series in (2.3) converges faster than any geometric series. Indeed, 

(3.3) 

as is easily verified. 

X 
P ~-- ask~oo 

k k ' 

In case (ii), there exists a unique integer ko ~ l such that x- b < k0 <x- b + 1. 

Therefore, ak0 < 0, while ak > 0 for all k -:/= k0 • It follows as before that -1 < 
pk < 0 for k < k0 • If ako > 0 (even though ako < 0), then -1 < pk < 0 also for all 
k ~ k0 , and we have the same alternating and supergeometric convergence behavior as 

in case (i). If, however, ako < 0 (which will be the case if x is large), then lpk0 1 > 1. 
Since_ ak > 0 for k > k0 , the inequality lpkl > l will persist as long as ak remains 
negative. Eventually, however, ak has to turn positive (the series in (2.3) being conver
gent), and from this point on, all subsequent a's remain positive, and the correspond

ing p's less than one in modulus. Therefore, if x is large, the sequence {lpkl} initially 
decreases, then increases, and finally decreases to zero at a supergeometric rate given 
by (3.3). The "dip-and-peak" effect is more pronounced, the larger x, and is what gives 
rise to the phenomenon of apparent convergence. 

3.2. The Case z = -x < 0, 0 < a + 1 ...;;; b. This time, ak < 0 for all k ~ I. 
Noting that the function x(b + x + k - l )- 1 (b + x + k)- 1 on 0 ...;;; x < co assumes a 
unique maximum at (b + k- l)Yz(b + k)Yz, we find that 

I IE;;; a+ k 
ak (vb + k- l + vb + k) 2 • 

k ~I, 

and thus, in particular, 

a+k a+k 
lakl...;;; 2b + 2k- I + 2"-/b + k- h/b + k < 2b + 2k- 1 + 2(b + k- 1) 

1 a+ k 
<4b+k-I" 

Since a + l ...;;; b, it follows that 

ak <O, 

From this, and (3.2), we deduce inductively 

hence, in particular, 0 < pk < I for all k ~ I. The series in (2.3) is now a series of 
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positive monotonically decreasing terms, and convergence thus monotone and, as before, 

supergeometric. 

4. Examples. 

4.1. Bessel Functions. We specialize (1.1) to a = v + ~. b = 2v + I, where 

v;;;. ~.and use M(v + ~. 2v + I; z) = r(l + v)exp(~)(Y..z)-v/v(~). together with 

the differential-difference relation I~(z) = Iv_ 1 (z)- vlv(z)/z, to obtain 

I }Iv-1(~) 4v l 
2z1 Iv(~) --;--+I~ 

(4.1) 
_ ( v + k)z (v + ~)z (v + ~)z 
- 2v + 1 - z+ 2v + 2 - z+ 2v + 3 - z+ 

In Figure 4.1, the moduli of the terms, lpkl' are plotted in function of k, for v = 1, 

and z = reiop, r = 10, 20, 40, .p = 0, tr/8, 2tr/8, ... , 1r. The behavior of lpkl, when r 

is fixed and .p varies between 0 and tr/2, is almost identical and is represented by one 

curve in Figure 4.1. The dependence on .p is shown only in the case r == 40, but is 

analogous for the other values of r. 
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FIGURE 4.1 

Anomalous convergence of (4.1) for v = 1 and z = reiop 
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It is seen, typically, that the terms lpkl decrease rapidly at the beginning, then 
bottom out and rise to a sharp peak, before finally converging to zero. The dip of 
the curve, and the upswing that follows, are quite substantial if 0 <; op <; Tr/2 and r is 
large, for reasons explained in subsection 3.1, case (ii). As op increases from Tr/2 to 1r, 

the peaking of the curves gradually weakens and finally disappears when '{J = 1r. A 
similar attenuation takes place upon increasing the value of v, as is to be expected 
from the discussion in subsection 3.1, case (i). 
, The seriousness of the convergence anomaly can be seen, e.g., in the case v = 1, 
r = 40, 0 <; '{J <; Tr/2. If we require ten decimal digit accuracy, we will attain it at 
about k = 15 and retain it through about k = 60, the partial sums in (4.1) all having 
the same value to ten decimal digits in the range 15 <; k <; 60. This "apparent limit", 
of course, is totally incorrect, as the main contribution to the series comes from the 
few terms around k = 100. The situation is aggravated by the fact that the numerical 
process of generating the terms pk is accompanied by a substantial loss of accuracy 
during the upswing of the curve, amounting to a loss of about 16 digits when r = 40. 
A further complication is the 'apparent lack of warning signals: Ktlown a posteriori 
error estimates (see, e.g., (3]) either do not apply, or seem to apply only in the region 
of "final descent". 

·On the other hand, the convergence behavior of the continued fraction in (4.1) is 
quite acceptable when '{J = 1r, i.e:, z = -x, x > 0, in which case (4.1) can be given the 
form 

(4.2) !)1v-IO~x) _ 4v _ 1l = -(v + k)x 
2 1 I.,(%x) x ~ 2v + 1 + x-

0+~)x (v+~~ 
2v + 2 + x- 2v + 3 + x-

Convergence is more rapid the larger x and/or v. The use of this continued fraction, 
in combination with Gauss' continued fraction, is further discussed in [2}. 

4.2. Incomplete Gamma Function. We have M(a, a + 1; z) = a(-z)-4 'Y(a, -z), 
where 'Y(a, · ) denotes the incomplete gamma function. Noting that 

M'(a, a+ 1;z) =a~ 1M(a +I, a+ 2;z), 

Eq. (1.1) now takes the form 

(4.3) 
'Y(a + 1, -z) _ -az (a+ 1}z (a+ 2)z ... 

'Y(a, -z) - a + 1 - z+ a + 2 - z+ a + 3 - z+ · 

The convergence behavior of (4.3) for a> 0 appears to be quite analogous to that of 
(4.1), exhibiting the phenomenon of apparent convergence for z large in the complex 
plane cut along the negative real axis. Along the negative real axis, we have monotone 
convergence, if a > -1, according to the results of subsection 3.2. In this case, 

(4.4) 
'Y(a+1,x)_ ax (a+l)x 

'Y(a, x) a + 1 + x- a + 2 + x-
(a+ 2)x ... 

a+3+x-

We may combine this with 'j(a + 1, x) = a'Y(a, x)- x4 e-x to obtain 

(4.5) x-4 tr'Y(a, x) = _!_ ax (a+ I)x 
a- a+l+x- a+2+x-

(a+ 2)! 
a+3+x-

x>O. 

x>O. 
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The use of this continued fraction, in combination with other methods, to evaluate in

complete gamma functions is discussed in [ 1] . 
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A Computational Procedure for Incomplete 
Gamma Functions 

WALTER GAUTSCHI 
Purdue University 

We develop a computational procedure, based on Taylor's series and continued fractions, for 
evaluating Tncomi's mcomplete gamma functton y*(a, x) = (.x-"fr(a))JO e-1t"- 1 dt and the 
complementary mcomplete gamma function r(a, x) '"'r: e-'e"-1 dt, suitably normahzed, m the region 
x 2: o, -oo < a < oo. 

Key Words and Phrases: computation of incomplete gamma functions, Taylor's series, contmued 
fractions · 
CR Categories: 5.12 
The Algorithm: Incomplete Gamma Functions. ACM Trans. Math. Software 5, 4(Dec. 1979), 482-
489. 

1. INTRODUCTION 

The incomplete gamma function and its complementary function are usually 
defined by 

(1.1) 

By Euler's integral for the gamma function, 

y(a, x) + r(a, x) =- r(a). (1.2) 

We are interested in computing both functions for arbitrary x, a in the half-plane 

7t' == { (x, a) : x 2: 0, -co < a < oo}. 

The function r(a, x) is meaningful everywhere inK, except along the negative 
a-axis, where it becomes infinite. The definition of y(a, x) is less satisfactory, 
inasmuch as it requires a > 0. The difficulty, however, is easily resolved by 
adopting Tricomi's version [14] of the incomplete gamma function, 

y*(a, x) - ;(:) y(a, x), (1.3) 
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@ 1979 ACM 0098-3500/79/1200-466$00.75 

ACM Tr8lllllletJons on MathematJ.cal Software, Vol 5, No.4, December 1979, Pages 466-481 

403



Incomplete Gamma Functions 467 

which can be continued analytically into the entire (x, a)-planet resulting in an 
entire function both in a and x, 

*(a x) = e-xM(l, a+ 1; x) = M(a, a+ 1; -x). 
y , r(a + 1) r(a + 1) 

(1.4) 

Here, 

a z a(a + 1) z2 

M(a, b; z) = 1 + b 1! + b(b + 1) 2! + · · · 

is Kummer's function. Moreover, y*(a, x) is real-valued for a and x both real, in 
contrast to r(a, x), which becomes complex for negative x. 

Our objective, then, is to compute the functions y*(a, x) and r(a, x), suitably 
normalized, to any prescribed accuracy for arbitrary x, a in fit. We do not attempt 
here to compute y*(a, x) for negative x, which may well be a more difficult (but, 
fortunately, less important) task. We accomplish our task by selecting one of the 
two functions as primary function, to be computed first, and computing the other 
in terms of the primary function by means of 

r(a, x) = r(a){l- X0 y*(a, x)} (1.5) 

or 

*( ) -a{ rca, x)} 
y a, x = x 1 - r(a) . (1.6) 

If y*(a, x) is the primary function, we evaluate it by Taylor's series. For r(a, x) 
we use a combination of methods, including direct evaluation based partly on 
power series, recursive computation, and the classical continued fraction of 
Legendre. Although our procedure is valid throughout the region /It, excessively 
large values of a and x will strain it, particularly when a* x » 1 (cf. Section 5). 
In such cases it may be preferable to use asymptotic methods, e.g. the uniform 
asymptotic expansions of Temme [12]. We shall not consider these here, however, 
nor do we implement them in our algorithm. 

An evaluation procedure of the generality attempted here is likely to be of 
interest in many diverse areas of application. Widely used special cases of 
y*(a, x) or r(a, x) include Pearson's form of the incomplete gamma function 
[10], 

l(u, p) == (u.Jp + l)P+1y*(p + 1, u.Jp + 1), 

the x2-probability distribution functions 

the exponential integrals 

u~ 0, p > -1, (1.7) 

(1.8) 

(1.9) 
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(which, for ., • -n, a negative integer, yield the molecular integrals A,.(x) [7]), 
and the error functions 

(1.10) 

When a is integer-valued, y*(a, x) becomes an elementary function, 

y"'(-n, x) • x", y*(n + 1, x) = x-<n+I>[1- e-.. e,.(x)], n • 0, 1, 2, ... , (1.11) 

where e,.(x) == LZ-o xk fk!. 

2. NORMALIZATION AND ASYMPTOTIC BEHAVIOR 

The purpose of normalizing functions is twofold: In the first place, one wants to 
scale the function in such a way that underflow or overflow on a computer is 
avoided in as large a region as possible. In the second place, one wants to bring 
the function into a form in which it is used most naturally and conveniently in 
applications. There is little doubt as to what the proper normalization ought to 
be for r(a, x) and y*(a, x), when a is a positive number. The formulas (1.7), (1.8), 
(1.10), and (1.11), indeed, all point toward the normalization 

r(a, x) 
G(a, x) = r(a) , g*(a, x) = x"y*(a, x), 0 s x < oo, a> 0. (2.1) 

We then have, by (1.5), 

G(a, x) + g*(a, x) = 1, 0 s x < oo, a> 0. 

It is equally clear that division by r(a) to normalize r(a, x), when a is negative 
or zero, is undesirable, as this would generate functions identically zero for x > 0, 
when a is integer-valued, and would cause complications in evaluating exponential 
and molecular integrals (cf. (1.9)). Growth considerations, on the other hand, 
suggest a multiplicative factor exx-". The function y"'(a, x) behaves rather 
capriciously for a < 0 and is not easily normalized. We decided (somewhat 
reluctantly) to adopt the same normalization as in (2.1), primarily for reasons of 
uniformity and good behavior for large a and x. We are doing this, however, at 
the expense of introducing a singularity along the line x - 0. For nonpositive a, 
we thus define 

g"'(a, x) == x"y"'(a, x), 0 s x < oo, as 0. (2.2) 

Our efforts will be directed towards computing G(a, x) and g*(a, x) in the 
region ?f. 

It is useful to briefly indicate the behavior of G( a, x) and g* (a, x) in the various 
parts of the region ?f. The limit values, as x approaches zero for fixed a, are 
readily found to be 

G(a, 0) = 1, 

G(a, O) = oo, 

G(a, 0) = 1/laJ, 

g*(a, 0) ""0 if a> 0, 

g*(a, 0) = 1 if a= 0, 

g*(a,O)=oo ifa<O. 

(2.3) 

(It should be noted that g*(a, x), considered as a function of two independent 
variables, is indeterminate at a = 0, x = 0.) If I a I is bounded and x large, we 
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deduce from well-known asymptotic formulas [13, p. 174], 

e-xxa-1 
G(a, x) ""' r{a) , a> 0 bounded, 

1 
G(a, x),..,-, 

X 

g*(a, x)"" 1, 

as 0 bounded, x.....,. oo. 

I a I bounded, 

(2.4) 

Equally simple is the case I xI bounded and a.....,. oo (over positive values of-a), in 
which case [13, p. 175] 

G(a, x)""' 1, I x I bounded, 
a(>O) -+ oo. (2.5) 

e-xxa 
g*(a, x) ""r(a + l), lxl bounded, 

An indication of the behavior of these functions, when both variables are large, 
can be gained by setting x = pa, p > 0 fixed, and letting a-+ oo. Laplace's method, 
applied to the integrals in (1.1), then gives 

1, 0 <p < 1, 

;, p == 1, a-+ oo, 
G(a, pa) "" p"e-(p-I)a 

J2wa (p - 1) 
, p > 1, 

(2.6) 
pae(l-p)a 

0 < p < 1, 
J2wa (1 - p) 

I 

g*(a, pa)"' 
t. p ==1, a.....,. oo. 

1, p > 1, 

Similarly, 
1 

0 < p < oo, a-+ oo; G(-a, pa)-
(p + 1)a I 

~(p+1) 
g*(-a, pa)-I 2 sin 'Ita -a -a(p+l) if p+l < 1 -==---p e pe , 

a >F 0 (mod 1), a.....,. oo. (2.7) 

l 1 if pep+l 2: 1, 

3. CHOCCE OF PRIMARY FUNCTION 

Either of the two functions r(a, x), y*(a, x) can be expressed in terms of the 
other by means of the relations 

r(a, x) = r(a){1 - x"y*(a, x)}, *( ) -a{ r(a,x)} y a, x = x 1 - r(a) . (3.1) 

In our choice of primary function, we are guided primarily by considerations of 
numerical stability. We must be careful not to lose excessively in accuracy when 
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we perform the subtractions indicated in braces in (3.1). No such loss occurs if 
the absolute value of the respective difference is larger than, or equal to, }. This 
criterion is easily expressed in terms of the ratio 

r(a, x) 
r(a, x) - r(a) . (3.2) 

Indeed, the first relation in (3.1) is stable exactly if I r(a, x) I~!, while the second 
is stable in either of the two cases r(a, x) ~ i and r(a, x) :s }. As a consequence, 
an ideal choice of the primary (unction is y*(a, x) if l :s r(a, x) ::5 i, and 
r( a, x) ifl r( a, x )I ::5 l; in all remaining cases either choice is satisfactory. 

For the practical implementation of this criterion, consider first a > 0, x > 0. 
In this case, 0 < r(a, x) < 1, and r(a, x) incr~ases monotonically in the variable 
a ([14, p. 276]). Since lim-o r(a, x) == 0 and, by (2.5),lim-.,. r(a, x) "'"' 1, there is 
a unique curve a== a(x) in the first quadrant x > 0, a> 0, along which r(a, x) 
== !, and r(a, x) ~ l depending on whether a if! a(x). Since, by (2.6), r(x, x) - ! 
as x-+ oo, we have a(x) * x for x large. By numerical computation it is found that 
in fact a(x) * x for all (except very small) positive x, the value of a(x) consistently 
being slightly larger than x. As x-+ 0 one finds a(x) -In t/ln x, which suggests 
the approximation a(x) * a*(x), where 

I X + t, t :S X < oo, 
a*(x)-

In lJlnx, 0 < x :s t. 
(3.3) 

The proper choice of primary function thus is r(a, x) (resp. G(a, x)) if 0 < a :s 
a(x), and y*(a, x) (resp. g*(a, x)) if a> a(x), where a(x) may be approximated 
by a*(x) in (3.3). 

In the case a :s 0, x > 0, the second relation in (3.1) is stable if r(a) < 0, i.e. if 

-m-l<a<-m, (3.4) 

where m a:: 0 is an even integer. If m a:: 1 is an odd integer and a as in (3.4), then 
for x not too large there is a possibility that y*(a, x) will vanish. The second 
relation in (3.1) is. then subject to cancellation enors. A similar problem of 
cancellation, however, would occur if y*(a, x) were calculated directly (e.g. from 
its Taylor expansion in the variable x). Furthermore, if y*(a, x) were the primary 
function, the first relation in (3.1) would create serious (though not unsurmount
able) computational difficulties for values of a near (or equal!) to a nonpositive 
integer (cf. the relevant discussion in [3]). All these considerations lead us to 
adopt .r<a, x) (resp. G(a, x)) as the primary function, whenever a :s 0. 

In summary, then, our choice of primary function is r(a, x) (resp. G(a, x)), if 
-oo <a :s a(x), and y*(a, x) (resp. g*(a, x)), if a> a(x). Here, a(x) is adequately 
approximated by a*(x) in (3.3). 

4. THE COMPUTATION OF G(a, x) 

As discussed in Section 3, it suffices to consider the region -oo < a ::5 ~*(x), 
x 2: 0. We shall break up this region into the following three subregions: 

Region 1: 0 :s: x :s Xo, -t ::5 a :s ~*(x). 
Region II: 0 :S x :S Xo, -oo <a< -t. 
Region III: x > Xo, · -oo <a :s a*(x). 
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The breakpoint xo will be chosen to have the value xo = 1.5. (A motivation for 
this choice is given in subsection 4.1.) We use a different method of computation 
in each of these three subregions. In Region I we first compute r( a, x) directly 
from (1.4) and (1.5), and then use (2.1) or (2.2), depending oft whether a :> 0 or 
a :s 0, to obtain G(a, x). In Region II we employ a tectirrence relation in the 
variable a, the starting value being computed by the method appropriate for 
Region I (except, possibly, when x < t). In Region III we usij a continued fraction 
due to Legendre. We now proceed to describe and justify these various methods 
in more detail. 

4.1 Direct Computation of r<a, x) and G(a, x) 
for 0 < x :5 Xo, - t :5 a ::= a *(x) 

Using (1.5), we can write 

x" xa 
r(a, x) = r(a)-- +- [1- r(a + 1)y*(a, x)]. 

a a 

We let 

and propose to use 

xa 
u = r(a)--

a' 

xa 
v =- [1 - r(a + l)y*(a, x)), 

a 

r(a, x) = u + v 

(4.1) 

(4:2) 

(4.3) 

as a basis of computation in Region I. The breakpoint xo will be determined, 
among other things, from the requirement that the relative error generated in 
(4.3) (due to respective errors in u and v) be within acceptable limits. 

Before analyzing these errors, we observe that both quantities u and v have 
finite limits as a ~ 0, when x > 0. Indeed, 

lim u = -y ..... In x, 
a-.0 

lim v = Et(X) + y + lnx, 
a--o 

(4.4) 

where y = .57721 ... is Euler's constant and E 1 (x) is the exponential integral. The 
first relation follows at once from 

r(l + a) - 1 xa - 1 
u= --, 

a a 
(4.5) 

the second from (4.3) by letting a ~ 0 and noting that r(O, x) - E 1(x). 
Furthermore, from (1.1) and (1.3), we have 

. v- {l' ea- 1(1 - e-1)dt, 

valid not only for a > 0, but even for a > -1. In particular, therefore, 

v > 0 if a > -1, x > 0. 

(4.6) 

(4.7) 

Using Taylor's expansion in (4.6) it is possible to compute v very accurately, 
essentially to machine precision. The same can be said for u, except that near the 
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Fig. 1. The subregions u !:! 0 m Region I 

line where u = 0 (see Figure 1) the precision will be attained only in terms of the 
absolute error, not the relative error. If the absolute and relative error of u is eu 
and Eu, respectively, and Ev is the relative error of v, then the relative error E1• of 
r(a, x), computed by (4.3), will be 

eu + VE,, UEu + VE,. 
Er· = = . u+v u+v 

Therefore, if E = max( I Eu I, I E., I), we have, in view of (4.7), 

lEd s E if u > 0, IErl s (1 + 2'"')E if u < 0. (4.8) u+v 

Similarly, if e =max( I eu I, IE,. I), then 

l+v IErl s--e. (4.9) u+v 

It is seen from the fJrSt relation in (4.8) that (4.3) is perfectly stable if u > 0, 
except possibly when u is very close to zero, in which case the absolute (not 
relative) error of u is what matters. Even then, however, one finds that the error 
magnification in (4.3) is negligible, since along the line u = 0 in Region I the 
factor 1 + 1/v multiplying e in (4.9) is always less than 3~8. In the subregion 
u < 0 of Region I it has been determined by computation' that the magnification 
factor 

I'( a, x) = 1 + 21 u I 
u+v 

1 A prelurunary versmn of an algonthm for computing r(a, x) and y•(a, x) (see [3]) was used for thJS 
purpose. 
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Table I Maximum Error Magnification m Formula (4.3) 

Xo 05 1.0 1.5 2.0 2.5 3.0 

Jt(-t, Xo) 3.426 18.34 56.25 142.6 327.3 706.5 

in (4.8) decreases monotonically as a function of a. It is easily verified, moreover, 
that in the same subregion the quantity p.(a, x) increases monotonically as a 
function of x. Therefore, the maximum error magnification occurs at the comer 
( -t, xo) of Region I. Table I shows the value of p. at this comer point in 
dependence on xo. A similar behavior is exhibited by the magnification factor in 
(4.9). Its values at (-t, xo), however, are generally smaller than those in Table I. 

Since the continued fraction used in Region III converges rather more slowly 
when x gets small, we have an interest in choosing Xo as large as possible. 
Unfortunately, this runs counter the increased instability of (4.3). By way of a 
compromise, we will adopt the value Xo - 1.5, thus accepting a possible loss of 
between 1 and 2 decimal digits. This choice of xo also strikes a reasonable balance 
in the computational work on either side of the boundary line separating Region 
III from Region I. 

For the actual computation of u, we use (4.5) when I a I < ! and the fll'St of 
(4.2), otherwise. The term in (4.5) involving the gamma function will be written 
in the form 

r(l +a)- 1 

a 
1 { 1 } 1 --.r(l+a)· -1. lal<-, 
a f(l +a) 2 

and evaluated using the Taylor expansions of [r(l + a)]-1 and [r(l + a)]-1 -1, 
respectively. High-precision values of the necessary coefficients are available in 
[16, table 5]. Similarly, for the remaining term we write 

xa- 1 ealnx_ 1 
--· == ln ·ln x, a a x 

and evaluate the first factor on the right by Taylor expansion whenever I a ln xI 
<1. 

The· computation of u is most easily accomplished by series expansion. From 
(4.6) we find immediately 

a ~ (-x)n 
v = -x '-' , 

n•l (a+ n)n! 
a>-1, (4.10) 

or, equivalently, 

(a+ 1)(-x)k 
t~t = (a + k + l)(k + 1)!' k = 0, 1, 2, .... 

The terms t, can be obtained recursively by 

to= 1, 
(a+ k)x 

t~t =- (a+ k + I)(k+ 1) t~t-I, k = 1, 2, 3, .... 
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In an effort to reduce the number of arithmetic operations, we define Pk = 
(a+ k)x, qk .. (a+ k + 1)(k + 1), r11 =a+ 2k + 3, and generate (t.t} by means 
of 

Po = ax, qo = a + 1, ro = a + 3, to = 1, 

P.t '= P1t-1 + x, 

qk = qk-t + r11-1, 

rk == rk-1 + 2, 
k = 1, 2, 3, .... 

tk = -pk•tk-t/qk, 

This requires only three additions, one multiplication, and one division per 
iteration step. 

It is worth noting that overflow poses no serious threat in computing r(a, x) as 
described. Indeed, r(a, x) decreases in x, hence is largest along the left boundary 
of Region I. The respective boundary values are finite, equal to t r(a) = 
(1/2a)r(a + 1), if a> 0, and infinite, if as 0. As x-+ 0 for fixed a :S 0, r(a, x) 
behaves like Et(X) -- y-In x, if a= 0, and like -x"/a, if a< 0. In all cases 
(a> 0, and- t <a :S 0) the values of r(a, x) are machine representable if a, 
1/ a, and x are. 

Having computed r(a, x), one obtains G(a, x) from the first relations in (2.1) 
and (2.2), according as a > 0 or a :S 0, respectively. The secondary function 
g*(a, x) then follows from G(a, x) by 

1-
e-xxaG(a, x) 

r(a) 
g*(a, x) = 

1, a== 0, 

1- G(a, x), 

4.2 Recursive Computation of G(a, x) 
for 0 < x :S Xo, -oo < a < -t 

We let2 m,... [!-a], so that 

a"" -m + E, 

G(a, x) = G(-m + E, x), 

' a<O, 

(4.11) 

a>O. 

where m is an integer greater than or equal to 1. Defining G,. = G(-n + E, x), 
n - 0, 1, 2, ... , the well-known recurrence relation in the variable a, satisfied by 
r(a, x), yields3 

Go""' G(E, x), 

1 
G,. ""'-- (1 - X Gn-J), n ""' 1, 2, ... ' m. n-E 

l The symbol [r] denotes the largest integer less than or equal to r. 
1 The normalization (2.2) for G(E:, X) must be adopted here, even if E: > 0. 
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The error propagation pattern in (4.12) is very similar for all E in -i < E sf. 
When x is small (x :< 0.2), the error is consistently damped for all n. When x is 
larger, there is an initial interval 1 s n s no in which the error is amplified, and 
a subsequent interval n > no of rapid error damping. AB x increases, both no and 
the maximum error amplification increases. The latter, however, is well within 
acceptable limits, if x s Xo = 1.5, the error never being amplified by more than a 
factm of 5.7. The case e = 0, which is typical, is analyzed in [5, example 5.4 and 
fig. 3]. (Note, in this connection, that G(-m, x) = ffEm+l(x), where Em+t(X) is the 
exponential integral of order m + 1.) The recurrence relation (4.12), therefore, is 
extremely stable in the region in which it is being used. 

The initial value Go = G(E, x) can be computed by the method appropriate 
for Region I (see Section 4.1), except when x < t and E > a*(x), in which 
case g*(E, x) is computed first (see Section 5), whereupon G(E, x) is obtained 
in a stable manner from g*(E, x), using G(e, x) = I'(E)ftx-E(1 - g*(E, x)) 
(cf. footnote 3). 

4.3 Computation of G(a, x) for x > x0, -oo <a s a *(x) 
by Legendre's Continued Fraction 

The following continued fraction, due to Legendre, is well known ([11, p. 103; 1, 
eq. 6.5.31]), 

1 1-a 1 2-a 2 
x-ae·'T(a x) =- ------· • •. 

' x+ 1 + x+ 1 + x+ 
(4.13) 

It converges for any x > 0 and for arbitrary real a. We can write (4.13) in 
contracted form as 

k- 0, 1, 2, ... , 

Po= 1, {Jk == k(a - k), k = 1~ 2, 3, ... , 

or, alternatively, in the form 

a 1 a, a2 aa 
(x + 1- a)x- ftr(a x) ==-- - - • · • 

' 1+ 1+ 1+ 1+ ' 
(4.14) 

where 

k(a-k) 
ak = (x + 2k- 1- a)(x + 2k + 1- a)' k = 1• 2• 3• .... <4·15) 

We investigate the convergence character of the continued fraction in (4.14) for 
x > Xo == 1.5, -oo <a :s a*(x), which is Region III, in which (4.14) is going to be 
used. 
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It is well known (cf., e.g. [15, p. 17ft]) that any continued fraction of the form 
(4.14) can be evaluated as an infinite series, 

1 a1 a2 aa "" 
- -- -o 0 0 .... l: t~e, 
1+ 1+ 1+ 1+ Jl-o 

(4.16) 

where 

to =-1, tk .. P1P2 ° 0 • Pk, k = 1, 2, 3, ... , (4.17) 

-a~e(l + Pk-1) 
Pk = k = 1, 2, 3, .... 

1 ~ a~t(l + P~t-1> ' 
po = 0, (4.18) 

The nth partial sum in (4.16), in fact, is equal to the nth convergent of the 
continued fraction, n = 1, 2, 3, .... If we let Ok = 1 + P~<, ther. the recursion for p~e 
in (4.18) translates into the following recursion for o~t: 

1 
oo -= 1, Ok = 1 , k = 1, 2, 3, .... + a~tok-1 (4.19) 

Consider now the case of ak as given in (4.15). If k < a (thus a > 1), then 
ak > 0 (since a :::; x + t), and it follows inductively from (4.19) that 0 < Ok < 1; 
hence -1 < Pk < 0. In view of (4.17), this means that (4.16) initially behr..ves like 
an alternating series with terms decreasing monotonically in absolute value. •• 

If k > a, then ak < 0, and ok may become larger than 1. However, if 0 < CJ~t-t 
:::; 2, we claim that 1 < Ok :::; 2 whenever x 2: t. Indeed, for the upper bound we 
must show that 1 + akCik-t 2: t, i.e. a.~~ok-1 =:::: -t, or, equivalently, I ak I Ok-1 s t. 
Since CJ1t-1 s 2, it suffices to s~ow I ak I !S t. which is equivalent to 1 s (x - a)2 + 
4kx. Since k =::: 1 and x > 0, the latter is certainly true if x =::: t, which proves the 
assertion Ok :::; 2. The other inequality, 1 < Ok, is an easy consequence of 
1 + akOk-t > 0, established in the course of the argument just given, and the 
l)egativity of a~t. Since for the first k with k >a we have 0 < Ok-t s 1 (by virtue 
of the discussion in the preceding paragraph, or by virtue of 0o = 1), it follows 
inductively that 1 < Ok ::: 2 for all k > a, hence 0 < Pk s 1. In the case k = a, we 
have ak = 0 and Ok = 1, thus Pk .. 0, and the argument again applies. 

We have shown that I Pk I s 1 for all k a: 1, that is, the terms in the series of 
(4.16) are nonincreasing in modulus, whenever -oo < a s a*(x), x a: l, in 
particular, therefore, when (x, a) is in Region III under consideration. Moreover, 
the series changes from an alternating series (if a > 1), initially, to a monotone 
series, ultimately. 

In the region a > a*(x), convergence of Legendre's continued fraction may 
deteriorate considerably in speed, which, together with the appropriate choice of 
primary function, is the reason we prefer a different method for a> a*(x) (cf. 
Section 5). 

Computationally, the summation in (4.16), with the ak given in (4.16), can be 
simplified similarly as in (4.10). We now definepk = -k(a- k), qk • (x + 2k-
1 - a)(x + 2k + 1 - a), rk = 4(x + 2k + 1 - a), Sk = 2k - a + 1, and generate the 
terms tk in (4.16) by means of 
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Po== 0, Qo = (x - 1 - a)(x + 1 - a), ro == 4(x + 1 - a), 

So == - a + 1, po = 0, to == 1, 

Pk .. Pk-1 + Sk-1 

Qk == Qk-1 + Tk-1 

rk = rk-1 + 8 

Sk = Sk-1 + 2 

Tk 
P~t=--

Qk- Tk 

tk = Pktk-t 

k = 1, 2, 3, .... (4.20) 

This requires six additions, two multiplications, and one division per term. 

5. THE COMPUTATION OF g*(a, x) = K'y"{a, x) 

We need to consider only the region a> a*{x), x 2:: 0, in which g*(a, x) is the 
primary function (cf. Section 3). Among the tools available for computing 
y* (a, x) are the two power series 

00 a(-x)n co xn . 
r(a + 1)~y*(a, x) = ~ ~ ( ) 1 = r(a + 1) ~ f( . l)' (5.1) 

n•O a + n n. n•O a + n + 

which follow immediately from (1.4), and the continued fraction 

r( 1)~ *( ) 1 x (a+ l)x (a+ 2)x (5.2) 
a+ Y a,x ==1- a+l+x- a+2+x- a+3+x-···, 

which can be derived from Perron's continued fraction for ratios of Kummer 
functions [4]. In our preliminary work [3] we used the first series in (5.1), if x S 

1.5, and the continued fraction (5.2), if x > 1.5. Our preference for the altemating 
series in (5.1) was motivated by the fact that y*(a, x) in [3] served as primary 
function in the whole strip 0 :s x :s 1.5, -oo < a < oo. In this case the first series 
in (5.1) has the advantage of terminating after the first term, if a = 0, and of 
presenting similar simplifications if a is a negative integer. These advantages had 
to be reconciled with problems of internal cancellation, which increase as x gets 
larger. In the present setup, these considerations become irrelevant, and indeed 
for a> a*(x) the second series in (5.1) is clearly more attractive, all terms being 
positive (hence no cancellation), and convergence being quite rapid, even for x 
relatively large (in which case a> x + t). 

How does this series compare with the continued fraction (5.2)? Rather 
surprisingly, the answer is: They are identical! In other words, the successive 
convergents of the continued fraction are identical with the successive partial 
sums of the series. To see this, let An, B, be the numerators and denominators of 
the continued fraction in (5.2), so that, in particular, 
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B2 =a+ 1, 

Bn • (a+ n- 1 + x)Bn-1- (a+ n- 2)x.Bn-2, n • 3, 4, .... 

One easily verifies by induction that 
Bt • 1, Bn = (a + 1)(a + 2) · • • (a + n - 1), n • 2, 3, .... (5.3) 

From the theory of continued fractions it is known that 

~_An-t== (-l)n-t a1a2 • • • an 
B,. Bn-t Bn-tBn ' 

where at = 1, a2 = -x, a,. - -(a + n - 2)x (n > 2) are the partial numerators in 
(5.2). It follows, by virtue of (5.3), that 

hence 

A,. An-t xa-1 ----= , n~2; B,. Bn-t (a + 1)(a + 2) • • • (a + n - 1) 

An " (Ak Ak-1) n xk-l 
-- 1 + 1: ---. = 1 + 1: --------,.--Bn k•2 Bk B1H k-2 (a+ 1)(a + 2) • · • (a+ k- 1)' 

which is the nth partial sum of the series on the far right of (5.1). 
Since series are easier to compute than continued fractions, we propose to 

compute g*(a, x) by 

oo n 
*( ) _ a -x ~ X g a, X - X e "-" r( l) n-o a+n+ 

(5.4) 

everywhere in the region a> a*(x). 
The use of (5.4) in the region a > a*(x) is comparable, with regard to 

computational effort, td the use of Legendre's continued fraction in the neigh
boring region a< a*(x), x > 1.5, except when xis very large and a* a*(x), in 
which case Legendre's continued fraction is more efficient. Some pertinent data 
are shown in Table II. We determined the number of iterations required for 8 
decimal digit accuracy in Legendre's continued fraction (4.14), when a= a*(x) 
(1..;. h), and in the power series (5.4), when a= a•(x)(l +h), where h was given 
the values 0.001, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and x = 10, 20, 40, 80, ... , 
10240. Table II shows for each x the minimum and maximum number of iterations 

Table II. Number of Iterations m Legendre's Continued Fraction (4.14) and m Taylor's Expansion 
(5.4) for 8-Digit Accuracy 

x= 10 x= 20 x=40 x=80 x•I60 x=320 

mm max min max min max mm max min max mm max 

Legendre 7 10 6 15 5 19 4 25 4 32 3 41 
Taylor 13 24 13 31 14 42 14 57 14 77 14 106 

%""640 X •1280 X= 2560 X • 5120 X= 10240 

Legendre 3 52 3 65 3 82 2 101 2 124 
Taylor 14 146 14 202 14 279 14 387 14 536 
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as h varies over the values specified. The number of iterations consistently 
decreases with increasing I h I , so that the maximum occurs on the boundary line 
a = a* (x ). In order to properly evaluate the data in Table II, one must keep in 
mind that each iteration in Legendre's continued fraction, using the algorithm in 
(4.20), requires seven additions, two multiplications, and one division, whereas 
each iteration in Taylor's series requires only two additions, one multiplication, 
and one division. Thus, Legendre's continued fraction is 2 - 21- times as expensive, 
per iteration, as Taylor's series. 

6. TESTING 

The algorithm in [2] and a double precision version of it were tested extensiv.ely 
on the CDC 6500 computer at Purdue University against a double precision 
version of the procedure in (3]. The double precision algorithms were used to 
provide reference values for checking the single precision algorithm, and on a few 
occasions, to check against high precision tables (notably the 148 tables in 
(8]). Other reference values were taken from various mathematical tables in the 
literature. 

The tests include: 

(i) the error functions (1.10), checked against tables 7.1 and 7.3 in [1]; 
(ii) the case (1.11) of integer values a -= n, -20 s n s 20; 

(iii) the exponential integral E~(x) in (1.9) for integer values"- n, 0 !S n !S 20, 
and fractional values of " in 0 :s " :s 1, checked against tables I, II, III 
in [9]; 

(iv) Pearson's incomplete gamma function (1.7), checked against tables I and II 
in [10]; 

(v) the incomplete gamma function P(a, x) == (x/2)"-y*(a, x/2), checked against 
the tables in [ 6]; 

(vi) the x2 distribution (1.8), checked against table 26.7 in [1]; 
(vii) the molecular integral An(x), checked against table 1 in [7] and the more 

accurate tables in [8]. 

An important feature of our algorithm is the automatic monitoring of overflow 
and underflow conditions. This is accomplished by first computing the logarithm 
of the desired quantities and by making the tests for overflow and underflow on 
the logarithms. As a result, minor inaccuracies are introduced in the final 
exponentiation, which become particularly noticeable if the result is near the 
overflow or underflow limit. 

7. SEQUENCES OF INCOMPLETE GAMMA FUNCTIONS 

Expansions in terms of incomplete gamma functions require the generation of 
sequences Gn = G(a + n, x) or gn • == g*(a + n, x) for fixed a and n = 0, 1, 2, ... , 
or of suitably scaled sequences {.AnGn}, (An •gn *},where An :J' 0, An*"!* 0 are scale 
factors. (For the purpose of the following discussion, the choice of these factors 
is immaterial; we shall assume, therefore, An ==An • = 1.) It would be wasteful to 
compute the Gn and gn * individually, for each n, by some evaluation procedure 
(such as the one developed in Sections 3-5). More efficient is the use ofrecurrence 
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relations satisfied by Gn and gn *. We discuss this in the case a> 0, x > 0, which 
is a case of practical importance. 

7.1 Generation of Gn ... G(a + n, x> 
From the difference equation G(a + 1, x) = G(a, x) + x"e-x /r(a + 1), letting 
a = a + n, one finds immediately the recurrence relation 

:!('+ne-x 

Gn+l = Gn + r(a + n + 1) , n = 0, 1, 2, .... (7.1) 

The numerical stability of (7.1) is detennined by the solution hn == 1 of 
the associated homogeneous recurrence relation, through the "amplification 
factors'' [5] 

Pn -I Gohn I = r(a, X) r(a + n) . 
Gn r(a) r(a + n, x) 

(7.2) 

Indeed, if 8 and tare arbitrary nonnegative integers, a small (relative) error E 

injected into (7.1) at n = 8 will propagate into a (relative) error ep,Jp. at n = t, 
causing the error to be damped if p, < p, and magnified if p, > p •. To achieve 
consistent error damping, hence perfect numerical stability, the recurrence rela
tion (7.1) ought to be applied in the direction of decreasing Pn· 

Since r(a, X) fr(a) increases from 0 to 1 on the interval 0 < a < OQ [14, p. 
276], we see from (7.2) that Pn decreases monotonically from 1 to r(a, x)jr(a), as 
n increases from 0 to oo. It follows that the recurrence relation (7.1) is perfectly 
stable in the forward direction. The proper way to compute the sequence { Gn}, 
therefore, consists in first evaluating~= G(a, x) (using our evaluation procedure, 
for example), and then applying (7.1) for n = 0, 1, 2, ... to successively generate as 
many of the Gn as desired. 

7.2 Generation of gn * == gn *(a + n, x) 

From the difference equation g*(a + 1, x) = g*(a, x) - x"e-"fr(a + 1), we now 
find the recurrence relation 

:!('+ne-x 
g• =g* n 012 n+l n - r(a + n + 1)' = • ' ' ... , (7.3) 

which has associated the amplification factors 

Pn. ==.I go*hn * I = y(a, x) r(a + n) 
· gn• r(a) y(a+n,x)' 

(7.4) 

since hn. = 1 and g,.. = y(a + n, X) fr(a + n). Noting that r(a, X) tr(a) - 1 -
y(a, x)/r(a), and that the ratio on the left increases monotonically from 0 to 1 as 
a function of a, it follows that y(a, x)/r(a) decreases monotonically from 1 to 0, 
hence that Pn • increases monotonically from 1 to oo as n increases from 0 to oo. 
Therefore, the recurrence relation (7.3) is perfectly stable in the backward 
direction. Wishing to compute gn • for n = 0, 1, 2, ... , N, say, we should therefore 
use our evaluation procedure ongN* = g*(a + N, x), and then employ (7.3) in the 
ACM Transactions on Mathematical Software, Vol. 5, No 4, December 1979 

417



Incomplete Gamma Functions 481 

form 

rx+ne-" 
gn • = g!+t + r(a + n + I), n = N- 1, N- 2, ... , 0, 

to generate all remaining values of gn •. 
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Lower bounds for the largest zeros of 
orthogonal polynomials* 

F. COSTABILE (Cosenza) and W. GAUTSCHI (Lafayette) 

Abstract. For the largest zero of orthogonal polynomials we derive lower bounds which 
are somewhat sharper than those classically known. 

1. Basic theorems 

Let Pn ( x) be a polynomial of degree n having distinct positive zeros, denoted by 

(1.1) 

We define 

(1.2) 

r1 > r2 > · · · > rn > 0. 

n 

Uk=Lcir7, k=0,1,2, ... , 
i=l 

where Ci are constants. 

Theorem 1.1. If the ci in (1.2) are positive, and n > 1, then, putting 

(1.3) 

one has 

(1.4) 

Proof. Since 

lim <Jk = r1, <Jk < <Jk+l < r1, k = 0, 1, 2, .... 
k-+oo 

* English translation by Walter Gautschi of "Stime per difetto per gli zeri pili grandi dei polinomi 
ortogonali", Bolletino U. M. I. (5) 17-A (1980), 516-522. 
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from (1.1) and (1.3) there follows 

lim <Yk = r1. 
k-HX:; 

Applying Cauchy's inequality, we find 

u~+l = (t Cirf+l) 2 
= (t JCir712 JCir712+l) 

2 
t=l t=l 

n n 

< L Cir7 L Cir7+ 2 c~ UkUk+2, 

i=l i=l 

from which, dividing by UkUk+l, the second relations in (1.4) follow. 

Theorem 1.2. Let {Qn(x)} be a sequence of polynomials orthogonal with respect to 

the (nonnegative and integrable) weight function p(x) on the finite or· semi-infinite 

interval [a, b], a ~ 01. Let 

r(n) > r2(n) > ... > r(n) > 0 
1 n 

be the zeros of Qn(x), and 

(1.5) mk = lb xkp(x)dx < oo, k = 0, 1, 2, ... 

the k th moments of the weight function p( x). Putting 

(1.6) 
mk+l 

Tk=--, k=0,1,2, ... , 
mk 

there holds 

(a) { Tk} is monotonically increasing 

( (n) 1 1b ? 
b) r 1 > T2n-1 - a w;;,(x)p(x)d.r, > T2n-2, 

m2n-l 
n > 1, 

with 
n 

Wn(x) = IJ (x - r;n>). 
i=l 

1 The original paper has a > 0. (Translator's note) 
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Proof For the constants Ci in (1.2) we choose the Christoffel numbers, so that 

(1. 7) 

~ E (a, b), 

holds for any function f having a continuous (2n)th derivative. 
Letting f(x) = xk in (1.7) gives 

from which 

mk=Uk, k=0,1, ... ,2n-1, 

m2n = 'U2n + 1b w~(x)p(x)dx, 
Clk = Tk, k = 0, 1, ... , 2n 2, 

1 1b Cl2n-1 = T2n-1 - -- w~(x)p(x)dx. 
ffi2n-1 a 

From Theorem 1.1 there follows 

rin) > CJ2n-1 = T2n-1 - 1 1b w~(x)p(x)dx > CT2n-2 = T2n-2, 
'fn2n-1 

that is, (b). 
The assertion (a) is obtained by applying Schwarz's inequality in place of 

Cauchy's, in a manner similar to the proof of Theorem 1.1. 

2. Applications to classical orthogonal polynomials 
2.1. Jacobi polynomials 

Let P~ae,f3)(x) be the Jacobi polynomial of degree n, that is, the polynomial orthog
onal with respect to the weight function (1 - x )a: (1 + x )!3 with a, j3 > -1 on the 
interval [ -1, 1 J. With 

1 > ~in) > ~~n) > ... > ~~n) > -1 

denoting the zeros of P~ ae,/3) ( x), we have the following theorem. 

Theorem 2.1. For n > 1, there holds 

(2.1) c(n) > H 
<,1 n, 

where 
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(2.2) 

F. Costabile and W. Gautschi 

Hn = 2n + (3 -a 1 
2n + (3 +a+ 1 

2f(n +a+ l)f(n + {3 + 1)r(n +a+ (3 + 1)r(n + 1) 

r(2n +a+ (3 + 2)r(2n + (3)r(a + 1) 

Proof We observe, first of all, that the polynomial P~a,{3\x), by means of the linear 

transformation 
X= 2y- 1, 

becomes the polynomial P~a,f3\y), orthogonal on [0, 1] with respect to the weight 

function (1 - y)ayf3. \Ve can therefore apply Theorem 1.2 to the polynomial 

Pn(a,{3)(y). D h. h ror t Is purpose, we note t at 

and therefore 

( 
Tnk = Jo (1- y)ayf3+kdy = B(k + {3 + 1, a+ 1) 

r(a + l)f(k + {3 + 1) 

r(k+a+f3+2) 

Tnk+I k + (3 + 1 
Tk = ---- = ----------

Tnk k + a + (3 + 2 · 

If ein) indicates the largest zero of P~a,f3) (y), from Theorem 1.2 one gets 

with 

-(n) -
.;1 > Hn > T2n-2, 

r(n +a+ 1)f(n + (3 + 1)f(n +a+ (3 + 1)f(n + 1) 

f(2n +a+ (3 +2)f(2n + (3)f(a + 1) 

Taking into account that dn) = 2ein)- 1, Hn = 2Hn- 1, one obtains (2.1), (2.2). 

Observation 2.1. The lower bound for ~in) just obtained is sharper than the one 

that can be obtained from Laguerre's theorem. The latter, in fact, is [1, p. 119] 

whereas 

c(n) 2n + {3- a - 2 
~1 > ' 2n + (3 +a 

2n + (3- a- 2 
1 = 2T2n-2 - 1 = 271 + (3 +a . 
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Observation 2.2. The subtrahend in (2.2) is an infinitesimal quantity as n-+ oo, 
tending to zero like 

2.2. Ultraspherical polynomials 

Let P~a,a)(x) be the ultraspherical polynomial of degree n, that is, the polynomial 
orthogonal on [-1, 1] with respect to the weight function (1- x 2 )a, and dnl, i = 
1, 2, ... , n, the respective zeros in decreasing order. We then have the following 
theorem. 

Theorem 2.2. For n > 2, there holds 

(2.3) ~(n) ( 2n- 3 
1
)! 

1 > 2n + 2n 

Proof Because of the symmetry of the interval and weight function, putting 

{ 
p(a,,a) (. x2 ) if n is even, 

p~a,a)(.r) = n/2 

xq(a,a) (x2 ) if n is odd 
Ln/2J ' 

the polynomials p~/2a)(t) and q[~~~~(t) form an orthogonal system on the interval 

[0, 1] with respect to the weigth functions (1- t)at-k and (1- t)ad. Furthermore, 

if by ~~n)' i = 1,2, ... , lni2J,2 we denote the zeros of p~/2a)(t) (q[~~~~(t)), one 
obviously has 

(2.4) 

We now apply Theorem 1.2 to the polynomial P~/2a)(t). 
Since -11( - )a k-! - r(k + !)r(n + 1) 

mk - 1 t t dt - r(k I ) , o +n+32 

and therefore 
mk+l k + 112 

Tk = -- = 
mk k +a+ 3/2' 

it follows that 
c-(n) n- 3/2 
.,1 > I , n+a-1 2 

2 The original has i = 1, 2, ... , 2L n/2 J. (Translator's note) 
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that is, (2.3), by virtue of (2.4). 
In a similar manner, one deals with the case n > 1 odd. 
Observation 2.3. From Laguerre's theorem [1, p. 119] one obtains the bound 

(2.5) 
() ( n-1 )1 ~ n > 
1 n + 2o: + 1 

which is worse, if n > 2, than the one just derived. 
Observation 2.4. One checks, with a simple calculation, that 

1 

( 2n - 3 ) 2 2n - 1 
2n + 2o: - 1 > 2n + 2o: + 1 

for n > 3, 

so that the bound (2.3) is sharper than the one in (2.1), (2.2) foro:= (3. 
In Table 2.1 we indicate the quality of our bound (2.3) in comparison with 

Laguerre's bound, (2.5), for various values of o: and n. 

2.3. Laguerre and Hermite polynomials 

Let L~a:) be the polynomial of degree n orthogonal on the interval (0, oo) with 
respect to the weight function e-xxa, o: > 1, and 

the respective zeros. From Theorem 1.2, taking into account that mk = f(o:+k+1), 
one has immediately the following theorem. 

Theorem 2.3. For n > 1, there holds 

(2.6) c(n) > H 
'>1 n, 

where 

(2.7) 
n!f(n + o: + 1) 

Hn = 2n + o: - f( ) > 2n + o: - 1. 
2n +o: 

For the Hermite polynomial Hn(x) of degree nand its zeros dn) > ~~n) > · · · > 
~~n) one obtains by a reasoning similar to the one in the proof of Theorem 2.2 the 
following theorem. 

Theorem 2.4. For n > 2, there holds 

(2.8) dn) > )n- 3/2. 
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Table 1. Comparison of (2.3) with (2.5). 

a n dn} (2.3) (2.5) 
-0.80 5 0.98008 0.97260 0.95346 

10 0.99533 0.98844 0.97849 
20 0.99887 0.99464 0.98964 
40 0.99972 0.99741 0.99491 
80 0.99993 0.99873 0.99748 

-0.40 5 0.94171 0.92394 0.87706 
10 0.98501 0.96647 0.93934 
20 0.99621 0.98417 0.96984 
40 0.99905 0.99230 0.98496 
80 0.99976 0.99620 0.99249 

0.00 5 0.90618 0.88192 0.81650 
10 0.97391 0.94591 0.90453 
20 0.99313 0.97402 0.95119 
40 0.99824 0.98726 0.97530 
80 0.99955 0.99369 0.98758 

0.75 5 . 0.84761 0.81650 0.73030 
10 0.95220 0.91064 0.84853 
20 0.98653 0.95581 0.91894 
40 0.99642 0.97802 0.95794 
80 0.99908 0.98904 0.97856 

1.50 5 0.79821 0.76376 0.66667 
10 0.93039 0.87905 0.80178 
20 0.97919 0.93859 0.88976 
40 0.99428 0.96903 0.94147 
80 0.99850 0.98445 0.96978 

3.00 5 0.71988 0.68313 0.57735 
10 0.88860 0.82462 0.72761 
20 0.96318 0.90676 0.83887 
40 0.98925 0.95178 0.91093 
80 0.99708 0.97546 0.95291 

Observation 2.5. From Laguerre's theorem [1, p. 119] one has for the largest 
zero of the nth-degree Laguerre and Hermite polynomial respectively the bounds 

~~n) > 2n+a -1, 

which turn out to be worse than the analogous bounds furnished by Theorems 2.3 
and 2.4. 
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\VALTER GAuTscml•l 

THE INCOMPLETE GAMMA FUNCTIONS SINCE TRICOMI 

1. THE INC01v!PLETE GAl\llv!A FUNCTIONS UP TO 1950 

Tricomi considered his work on the asymptotic behavior of Laguerre poly
nomials and their zeros among his «chief contributions to the theory of special 
functions» ([153, p. 56]). Nevertheless, the incomplete gamma function held a 
special fascination for him, as he was fond of calling it affectionately the Cin
derella of special functions. I feel especially privileged to talk about this topic 
here, since the only time I met Tricomi in person vvas shortly before his death 
when he honored me by his presence in a colloquium lecture I gave in '1\nin. 
It was precisely the incomplete gamma functions and methods for computing 
them that I was talking about, a subject in which Tricomi still expressed a vivid 
interest. 

The incomplete gamma functions arise from Euler's integral for the gamma 
function, 

by decomposing it into an integral from 0 to x, and another from x to oo, 

(1.1) 
--y(a,x) = 1x e-tta-ldt, Rea> 0; 

I'(a,x)= lCJOe-tta-ldt, Jargx/<Jr. 

Historically, this decomposition was first studied in 1877 for x = 1 by Prym[ll8j, 
apparently in an attempt to collect the poles at a = 0, -1, -2, ... of the gamma 
function in the first (more manageable) integraL 1( a, 1), leaving the second in
tegral, r(a, 1), an entire function. The functions (1.1), therefore, are sometimes 
referred to as Prym's functions. For general x > 0 (even for x < 0), how
ever, the second integral in (1.1) already appears in Legendre's Exercises [85, 
pp. 399-343] and in some of his later works. 

( *) Department of Computer Sciences- Purdue Universit-y- \VEST LAFAYETTE, IN ,17907-
1398 (U.S.A.) 
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Noteworthy special cases of (1.1) are obtained when a= 1 ±n is an integer. 

Specifically, for n ~ 0, 

(1.2) 

(1.3) 

(1.4) 

1'(1 + n,x) = n![1- e-xen(x)], 

r(1 + n,x) = nle-xen(x)' 

f(1-n,x) =x 1-nEn(x), 

where en(x) = 1 + x + x2 j2! + · · · + xn jn!, n = 0, 1, 2, ... , are the partial sums 

of the exponential series, and 

(1.5) En(x) = 100 

e-xtcndt, n = 0,1, 2, ... , 

the exponential integrals. The latter occur prominently in astrophysics and 

nuclear physics and include (for n = 1) such functions as the logarithmic, sine, 

and cosine integrals. The function 1(a, x) has a pole when a is a negative 

integer or zero; see, however, (2.1) and (2.2). When a= 1 one obtains the error 

functions 

(1.6) 1 (1 2) erf x = ..Jif 1' 2, x , erfcx = 1- erfx = ~r (~,x2) 

and their close relatives such as the Fresnel integrals. 

The older theory of the incomplete gamma function, including series ex

pansions of various kinds, asymptotic expansions, differentiation and recurrence 

relations, continued fractions, etc., can be found in Nielsen (103, Kap. II, XV, 

XXI], and further material, especially integral representations, in Bohmer [15, 

Kap. V]. The basic theory, however, remained rather stable, until in the late 

1940s, as a result of his involvement in the Bateman project, Tricomi fully 

recognized the importance of these functions and revitalized their theory by 

adding important contributions of his own (see § 2) and by summarizing the 

knowledge as of 1950 in the second volume of the Bateman project (40, Ch. IX, 

pp. 133-151]. He gave a more detailed exposition, in the context of the theory 

of confluent hypergeometric functions, in his monograph [151, §§ 4.1-4.6]. 

One aspect of incomplete gamma functions, namely their real and complex 

zeros, does not receive an entirely adequate coverage in these works, in part, 

perhaps, because Tricomi's interest was in the x-zeros for fixed a, while work 

done in the early 1900s was exclusively concerned with a-zeros for fixed x. The 

earliest investigations dealt with the real negative zeros of 'Y(a, x) for Prym's 

choice x = 1. Increasingly sharper localizations of these zeros were obtained 

in work of Haskins [59], Gronwall [56], and Walther (158]. Rasch [120] was the 

first to consider the case of arbitrary fixed x > 0, and Hille and Rasch [60] 

the case of x < 0. Complex zeros were already studied by Gronwall [56], who 

showed in the case x = 1 that there are exactly two conjugate complex pairs of 

them. They were subsequently computed to seven decimals by Franklin {43]. 
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Nielsen [103] proved that all zeros of r(a,x), for x > 0, lie in the half-plane 
Rea > x. Rasch [120] gave an asymptotic formula for the number lll(x) of 
pairs of conjugate complex a-zeros of ~r( a, x) as x ---) oo. Hille and Rasch [60] 
already in 1929, and Mahler [96] in 1930, investigated the behavior of the zeros 
when x is a fixed complex number; they also identified zero-free regions in the 
complex a-plane. 

Other texts on confluent hypergeometric functions are the one by Buch
holz [17] published shortly before 'Ihcomi's monograph, and one published later 
by Slater [125]. The former is based on Whittaker's definition [160, Ch. 16] of 
the confluent hypergeometric functions, a definition not favored by Tricomi; the 
latter also contains numerical tables. A detailed treatment of the probability 
integral and some of its generalizations, notably <P(z,a) = 7f-

1/ 2r (~a,z 2 ), can 
be found in a monograph by Hadzi [58]. 

2. TRICOMI'S CONTRIBUTIONS 

2 .1. Normalization 

The integral r( a, x) has the inconvenience of not only having poles at the 
nonpositive integers a = 0, -1, -2, ... , but also representing a multivalued 
function of the complex variable x, owing to the fractional power in the in
tegrand. Both these inconveniences can be avoided by introducing, as Tricomi 
does in [146] and Bohmer before him in [15, pp. 124-125], the function 

(2.1) r*(a,x) = ;~aa) r(a,x): 

which is an entire function in a as well as in x and real-valued for real a and 
real x (also for x < 0). In particular, 

(2.2) r*(-n,x) =xn, n=0,1,2,. 

In terms of the function (2.1), both incomplete gamma functions in (1.1) can 
be represented as 

(2.3) '"y(a,x) = r(a)xar*(a,x), r(a,x) = r(a)[1- xa~((a,x)]' 

where fractional powers of x, as always in this theory, are to be understood as 
having their principal values. Tricomi finds it useful to introduce yet another 
form of the incomplete gamma function, namely 

(2.4) rl(a,x) = r(a)xar*(a, -x)' 

for which, as he notes (cf. [151, p. 161]), one has 

(2.5) ri(a,x)= 1xetta-1dt, Rea>O. 
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This function allows the values of 1( a, x) above and below the branch cut along 

the negative real axis to be expressed as 

(2.6) 1(a, -x ± iO) = e±a"i11(a, x), x > 0. 

2.2. Series expansions 

To the classical power series expansions Tricomi in [147] adds expansions 

in Bessel functions, which he obtains as special cases of similar expansions he 

derived for the confluent hypergeometric functions. Characteristically, Tricomi 

adopts a form of the Bessel functions which makes them entire functions of 

both the variable and the order, namely 

(2.7) 

(Tricomi's notation for them is Ev(x ). ) In terms of these functions, he derives 

the expansion 

00 

(2.8) !*(a, x) =e-x I>n ( -1)xn J;+n( -x), 
n=O 

where en(-) is the ( n + 1 )st partial sum of the exponential series ( cf. § 1). 

For real arguments a and x, one can write (2.8) as an expansion in (ordinary) 

Bessel functions la+n(2Jfxf) if xis negative (see [147, 2d equation (39)], where, 

however, the factor xn should read xnf2 ), and as a similar expansion in modified 

Bessel functions Ia+n(2y'x) if x is positive. Both converge rather well, when 

0::::; a< 1 (for other values of a the recurrence relation (6.4) can be used), but 

the former suffers increasingly from internal cancellations as lxl becomes large. 

For good measure, Tricomi obtains yet another expansion, 

(2.9) * _ -x/2 X n * a - 1 
CXl ( ) 1 (a,x)- e ?;en (z) Ja+n - 2-x , 

where the coefficients Cn can be obtained recursively from(ll 

(2.10) 
Co= 1, c1 = 0, 

c = c + £(1-a-n)(1- a) n n-2 n 1 

and L~a:) are the Laguerre polynomials. The peculiar form An (y) = L}i!-n) (y) 

of the Laguerre polynomials appearing in (2.10) is studied by Tricomi in [148], 

where he derived the recursion 

(2.11) 
Ao(Y) = 1, A1(y) = 0, 

1 
An+1(Y) = ---

1 
[n.>...n(Y) + YAn-1 (y)], n = 1, 2, .... 

n+ 

(l)There is a misprint in [147, line after equation (41)] in that Ai (our ct) is erroneously 

defined to be 1 instead of 0. 
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(The same polynomials are also used by Temme [134] in uniform asymptotic 
expansions of Laplace transforms.) The series (2.9) seems to converge (for 
0 ~ a < 1) somewhat faster than (2.8) and, for x < 0, also suffers less from 
internal cancellations. We used it (in IEEE Standard double precision) to 
produce the plots in § 2.4 as well as the graphs in figure 5. 

Although Tricomi refers to the polynomials An (y) as being nonorthogonal, 
Carlitz [19] showed that in fact ( -1)n+ 1(n+2)xn+2 >-n+2 (x- 2 ), n = 0, L 2, ... , is 
a set of (monic) orthogonal polynomials relative to a measure that is discretely 
supported on the points x1 = ±r112 with jumps ~jJ-le-ijj!, j = 1.2,3 .... 
These polynomials occur also as «random walk polynomials» in the work of 
Karlin and McGregor [70, Appendix BJ on birth and death processes. Their 
asymptotics and zero distribution are studied in [52] and [53]. 

Other series expansions which may be original with Tricomi are an expan
sion [146, equation (44)] of f(a,x) in Laguerre polynomials L~~)(x), and an 
expansion (ibid., equation (45)) of 1(a,A.x) in {J(a + n,x)}. 

2.3. Asymptotics 

The asymptotic behavior of the incomplete gamma functions is elementary 
when only one of the two parameters a and x tends to infinity. l\Jore interesting 
(and also more difficult) is the behavior when jaj and jxj become large simul
taneously. Here Tricomi shows in [146] (see also [ 151, § 4.3]) that the matter 
depends on whether a and x are not near each other, or x is near a - 1, as 
jaj and jxj both tend to infinity. In the first case, he proves from the integral 
representation of f'( a + 1, X) that 

(2.12) e-xxa+l [ a 2a ( a
2 

)] 
f( a + 1, x) = 1 - ( )2 + ( . )3 + 0 ( ) ,1 x-a x-a x-a x-a 

as the modulus of Fa/(x- a) tends to zero and its argument ultimately remains 
between -3n /4 and 37T /4. He in fact has the complete asymptotic expansion 
in explicit (though complicated) form. In the second case there are two sub
cases depending on whether Re a is positive or negative. Equivalently, Tricomi 
considers the functions 1( 1 + a, x) and /I (1 - a, x) separately, both under the 
assumption Re a > 0. In the first subcase, again from the integral representa
tion (Ll), he finds, when a andy are both real andy bounded, that 

(2.13) 

o.--+oo. 

(For a simplified derivation of (2.13), see also [152].) A similar result holds for 
complex a, y (with Re a > 0), and again, Tricomi is able to write dmvn the 
complete asymptotic expansion. 
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As a by-product of (2.13) and (1.3), one obtains a nice asymptotic estimate 
for en(x) near x = n, namely 

(2.14) 
e.(n + ffny) ~ ~en+v2n, [erfcy- h/i,;"(l +y')e-•' + 0 G)] , 

n-4oo. 

In the second subcase, Tricomi finds, for real a > 0 and y E lR bounded, that 

'Yt(1- a, a+ J2ay) = rta) [ -rrcot a1f + 2,.fii 1y et
2 

dt 

(2.15) 

+~/¥(1- y2)e'' + 0 G)], a~ oo 

2.4. Zeros 

In [147] (see also [151, § 4.4]) Tricomi studies the zeros of -y*(a,x), a E IR, 
x E IR, considered as a function of x for fixed a. Except possibly for x = 0, these 
zeros coincide with the zeros of -y(a,x) or 'Yr(a, -x). Tricomi gives a complete 
description of these zeros and, more generally, a remarkable contour map of the 
function -y*(a, x), i.e., of the lines -y*(a, x) = const. In figure 1 we reproduce 
this map, and also provide the associated surface plot; they were generated by 
the MATLAB commands contour and surf, respectively. The function itself 
was computed with the help of the series expansion (2.9) for 0 ~a< 1 and the 
recurrence relation (6.4) for other values of a. 

5 
a 

4 

3 

2 
pos 

0 
neg 

-1 

pos -2 

neg -3 

pos- 4 

- 5 
- 4 -3 -2 -1 0 2 3 4 

X 

Fig. 1. -Contour map and surface plot of /*(a, x). The lines in the contour map correspond 
to altitudes -6{1)- 2(.5)0(.25)1(.5)2(1)6, the zero line being red. 

434



-209-

From his asymptotic results in [146), Tricomi derives the following asymp
totic approximations (as corrected by Kolbig [78]) for the real zeros: for the 
positive zeros x+(a) of J'*(a, x), 

(2.16) 
x+(a) = rjaj- _r_ log [(1 + r)~(l + jai)JT/2] + 0 ((log /a/ )2) ' 

1 + r sma1r a 

a< 0, sinmr > 0, a-> -oo, 

where r = .27846454 ... is the unique positive root of the equation 1 +x+ log x = 

0; for the negative zeros, 

(2.17) x_(a) = -(1 + jaj)- V2(1 + jaj)y0 + O(JaJ- 112
), a-> -oo, 

where y0 = y0 (a) is the unique root of J~ e12 
dt = ~ cot(/a/JT), provided Ja/ is 

not too close to a positive integer. 

2.5. Inequalities and monotonicity 

Obviously, 

(2.18) 
J'(a,x) 

g(a, x) := r(a) , a> 0, x > 0, 

is a probability distribution on [0, oo); thus, in particular, 0 :<:: g(a, x) :<:: l and 
g is monotonically increasing in x. In [147] Tricomi proves that g is monotone 
also in a, namely decreasing. Interestingly enough, Tricomi uncovers similar 
monotonicity properties also in the regions a < 0, x > 0 and a > 0, x < 0. In 
the former region, 

(2.19) 

and in the latter, 

(2.20) 

are both between 0 and 1 and are monotone in x as well as in a. l'viore difficult 
(not surprisingly in view of figure 1) is the region a < 0, x < 0. Here Tricomi 
manages to prove that jg*(a,x)/ :<:: 1, where 

(2.21) 
* ex/'• (a, x) 

g (a, x) := r(jaj + 1). 

Moreover, as a function of x, with a held fixed, g* has one, or at most two, 
maxima or minima. 

2.6. Applications 

2.6.1 Number theory 

It is known from a well-known theorem of Lagrange that each positive 
integer can be decomposed into a sum of (at most) four perfect squares, whereas 
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only some integers are decomposable into a sum of two squares, and even fewer 
into a sum of two cubes, or two fourth powers, or, more generally, two kth 
powers, k = 2, 3, 4, .... The problem of determining the distribution Nk(x) of 
all positive integers .;::; x that are the sum of exactly two kth powers seems 
to have led Tricomi in 1938 to his first encounter with the incomplete gamma 
function. By probabilistic heuristics, and at times- as he says [151, p. 286], 
«acrobatic»- arguments, Tricomi in [143] indeed arrives at the approximation 

(2.22) 

where 

[r(1/k)J2 
Ak = 2k2r(2/k) · 

The nature of the approximation in (2.22), given its roundabout derivation, is 
of course unclear, but definitely is not asymptotic for x ____, oo, since a similarly 
derived approximation for k = 2 gives N 2 (x) ~ (1- e-,-f8 )x, whereas, by a 
result of Landau, N2 ( x) rv bx / JlOgi ( cf. [86]), with a well-determined constant 
b approximately equal to .764 (cf. [151, p. 289]). Nevertheless, for x not too 
large, the formula (2.22) seems to give excellent results, as Tricomi demonstrates 
for k = 3 and x .;::; 2000. 

Precise asymptotic results have been obtained only more recently, for ex
ample in [61] fork= 3, and in [62] fork (odd) ?: 5. 

2.6.2. Random walks 

A problem of interest in physics, biology, and other areas of science, is 
the following. Given randomly n unit vectors in Euclidean space IRd, what is 
the probability Pn(r) = Pr(llsll < r) that their sum s has length < r, where 
0 .;::; r .;::; n? The problem has been solved in 1906 ford = 2 by J.C. Kluyver 
(even for vectors of arbitrary fixed lengths), with full details, ford = 3, supplied 
later in 1919 by Lord Rayleigh. In the case of general d, the result is derived in 
Watson [159, p. 421], where Pn(r) is given in the form of an integral involving 
Bessel functions (here written in terms of Tricomi's Bessel functions), 

What is of particular interest in applications is the behavior of Pn (r) as n -t oo. 
Watson already studied this informally by applying the method of steepest de
scent and arriving at an asymptotic approximation involving 1F1 (~; ~ + 1;- ;

2
;;), 

hence the incomplete gamma function. In [149] Tricomi,. by a more rigorous 
approach using power series and Laplace transform techniques, improves upon 
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·watson's result, showing that 

(2.24) 

where 

r2d 
x = 2n · 

The behavior of the leading term in (2.24) is illustrated in figure 2 for n = 10 
and d = 2,3, 5, 10. 

1.---~~-~~"?""':='=~~~~--, 

0.9 
p 

n 0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

2 3 4 5 6 7 8r9 10 

Fig. 2. -The probability Pn(r) for n = 10 and d = 2, 3, 5, 10. 

From (2.24) it takes a quick calculation for Tricomi to determine the mean 
value f of r, namely 

(2.25) 
_ ()() dPn f((d + 1)/2) {2;; [ 1 _2 ] 
1 

= }
0 

1 dr dr = r(d/2) V d 1 + 4(d + 2)n + O(n ) 

2.6.3. Laguerre's equation 

The Laguerre polynomial L~) ( x), as is well known, is a solution of the 
linear second-order differential equation 

(2.26) xy" + (a + 1 - x) y' + n y = 0 , 

a special case of the confluent hypergeometric equation. The second solution, 
Yz(x), therefore, must be a confluent hypergeometric function, which Tricomi 
in [150J, when a is not an integer, identifies explicitly in terms of the incomplete 
gamma function and products of Laguerre polynomials. Specifically, 

(2.27) Y2(x) = L~a) (xht (-a, x) + exx-a t ~L~~~k) (x)Lt~k) ( -x). 
k=l 

(For 1 1 , see (2.4).) There is an analogous formula involving f(O, -x) when ex is 
an integer. 
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2.7. Miscellanea 

Without in any way wanting to disparage the results contained in this 
subsection, it seems fair to say that they lie at the fringes of the general theory 
of incomplete gamma functions and are therefore mentioned only in passing. 

One concerns the gamma function itself, more precisely the ratio of two 
gamma functions, r(z + a)/f'(z +b), for which in [145] and [154] the complete 
asymptotic expansion in descending powers of z is derived, with an explicit 
charaCterization of the coefficients and the precise conditions of validity. Er
ror bounds for this and similar expansions have later been obtained by Fren
zen [44], [45]. 

In order to derive (2.15), Tricomi made use of the following (apparently 

new) integral representation of 'Y* (a, x) for real a and x, 

(2.28) r*(a, x) = e-_x Re {e-arri (oo e-ixt(1 + it)a-ldt} . 
f'(a) S1Ua1f lo 

Another curious integral representation is the one for the «norm» of the in
complete gamma function, r(a, ix)f'(a, -ix), which in [144] (or [40, § 9.3, equa
tion (6)]) is expressed in terms of the Laplace transform of a sum of two con-
jugate complex hypergeometric functions. 

3. ASYMPTOTICS 

3.1. An improved approximation {2. '13} 

Formula (2.13), after division by r(a + 1), can be interpreted as an asymp
totic approximation of the gamma distribution in terms of the normal distri
bution <P(x) = (21r)- 112 f~oo e-t

2
12dt, the leading term in (2.13) indeed being 

<P( .J2y). A more accurate approximation has been derived by Pagurova [111] by 
statistical arguments; it involves derivatives of the normal distribution, hence 
Hermite polynomials Hen(x), 

r(a, a+ xy'a) e-x
2

12 
{ 1 1 [1 1 ] 

r(a) = <P(x)- .j2ii 3foHe2(x) + 2a 2,He3(x) + -gHe5 (x) 

1 [1 1 1 ] + afo 5He4(x) + 
12

He6(x) + 
162

He8(x) 

1 [ 47 1 1 ] (3.1) + 
6
a2 Hes(x) + 

80
He7(x) + 

12
Heg(x) + 

324 
He 11 (x) 

1 [1 19 31 + a2 y'a 7He5(x)+ 
180

Hes(x)+ 
1440

Hew(x) 

+ 6!8 He12(x) + 29~60 He14(x)] + O(a-3)} . 

(The a- 112 term in (3.1), with He2 (x) = x 2 - 1, is consistent with the cor-
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responding term in (2.13). This can be seen by applying the recurrence rela
tion (6.4) to the left-hand side of (2.13), letting x = -/2y, and applying elemen
tary asymptotics to the additive term coming from the recurrence relation.) A 
similar, even more accurate, approximation (without the a- 112 term) is also 
derived, but it involves on the right-hand side a more complicated variable. 

3.2. Uniform asymptotics 

In deriving asymptotic results for large jaj, Tricomi found it necessary 
(cf. (2.12) and (2.13)) to distinguish cases according to the magnitude of jxj 
relative to jaj. One of the major advances since Tricomi's work in this area is 
the development of asymptotic expansions for large a that hold uniformly for, 
say, all x 2: 0. There is a price to be paid, however, for uniformity: For one, 
the expansion involves not only elementary but also transcendental functions, 
specifically the error function erfc in our case; for another, the calculation of 
the expansion coefficients is much more intricate. 

Uniform asymptotic expansions for the incomplete gamma functions were 
first derived by Temme [131], [132] (see also [140, § 11.2.4]). His point of 
departure is the integral representation 

(3.2) 

where 

(3.3) 

__ , _ = _ ea¢(t) --, 
r(a z) e-a¢()..) lc+ioo dt 

r(a) 2m c-ioo A-t 

¢(t) = t- 1 -In t, 
z 

A=-. 
a 

O<c<A, 

The integrand in (3.2) has a saddle point at t = I. Changing the contour of 
integration into a path of steepest descent, and separating out the pole close to 
the saddle point (when A;::::: 1), Temme arrives at asymptotic representations of 
the type 

r(a, z) 1 ( CJ()) 
r(a) = 2 erfc r7y aj2 + Ra(TJ), 

(3.4) 
I'( a, z) 1 ( CJ()) r(a) = 2 erfc -7)y aj2 - Ra(7J), 

1 Q1)2 00 ( ) 

R (n) rv ~ '\' Cn 7) . a --> 00 ·, 
a·, ~~ n. 

V LJfa n=O a 

where 

(3.5) = (A _ l) 2 A - 1 - In A 
7) (,\- 1)2 

(When A > 0, then 7J = ±J2(,\- 1 -In A) with the plus sign for A > 1 and the 
minus sign for A< 1.) The asymptotic expansion of Ra(7J) is valid for a going 
to infinity over positive values, and is uniform for all A 2: 0, i.e., for all z 2: 0. 
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Its validity, indeed, can be established for complex a and z as well; that is, (3.4) 

is valid as a ____. oo uniformly in I arg a! ~ 1r - c1 and I arg z / al ~ 21r - c:2, where 

c:1, c:2 are positive numbers with 0 < c:1 < 1r, 0 < E2 < 21r. 

As to the coefficients cn(7J) in (3.4), they are holomorphic functions Df 77 

and can be computed for small 1171 by a power series expansion, and for other 
values of 1111 by recurrence. For details, as well as for estimates of the remainder 

terms when the expansion in (3.4) is truncated at some finite n = N- 1, we 

must refer to the original paper [132]; also see [114]. An extensive set of Taylor 

coefficients for en(ry) is given in [30, Appendix F]. The growth of cn(1J) as n-+ oo 

is studied in [34]. 
For a rearranged version of the expansion (3.4), in the context of the Rie

mann zeta function, see also [113, Appendix A]. 
It is interesting to note the role played by the error function in (3.4). If 

z = .\a, with a and .\ positive, then f( a, .\a) as a function of). exhibits a sharp 

decrease near the transition point.\= 1, the decrease being sharper the larger a. 

Elementary functions would have a hard time describing this kind of behavior, 
but the error function does a nice job of it; this is shown in figure 3. 
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Fig. 3. - The leading term ~ erfc(rJVafi.) in (3.4) as a function of >.. in 0 < >.. :S: 2, for 

a= 20(20}100. 

At the transition point .\ = 1 one has 17 = 0, and from the first of (3.4) one 

gets 

a-->oo. 

A similar expansion in which the factor multiplying the series is replaced by the 

asymptotically equivalent factor f(a + 1)(eja)a is given in [89J, together with 

an asymptotic representation of the coefficients for large indices and the first 
eleven coefficients expressed exactly in rational form. 
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The expansions (3.4) do not cover negative values of a, but there are similar 
uniform expansions for 'Y( -a, -z) and r( -a, -z), involving the same coefficients 
Cn ( 1]), that are valid in I arg al :::; 1r - 61 , I arg .AI :::; 21r - 62 , with b 1 , 62 arbitrar
ily small positive constants (cf. [139]). Of special interest is the expansion for 

'Y*( -a, -x), where a and x are positive and/'* real but oscillatory [139, equa

tion (3.11)]. 
An alternative derivation of (3.4) and, with similar methods, of Tricomi's 

expansions in § 2.3, along with numerical comparisons, is given by Schell 

in [121]. 
Applying differential equations rather than integral representations, specif

ically the asymptotic theory of linear second-order differential equations with 
almost coalescent turning points, Dunster in [31] derives an alternative asymp
totic approximation (not expansion) for r(a, z) that also involves the comple
mentary error function, but an auxiliary variable ( rather more complicated 
than the 17 in Temme's expansion (3.4). The approximation holds, for example, 
when a --> oo, uniformly for z in a domain containing the positive real axis, but 
there are other possible interpretations of its asymptotic character. For details, 

we refer to the original paper [31, Remarks on p. 1346]. 

3.3. The generalized exponential integral 

If we taken= pin (1.4) to be an arbitrary complex number, we are led to 
consider the generalized exponential integral 

(3.6) Ep(z) = zP- 1f(1- p,z) = zP-l 1= et~t dt _ 

Even though closely related to the incomplete gamma function, it arises in this 

form in many applications and has attracted a considerable amount of interest 
in recent years. 

3.3.1. Asymptotic expansion for p--> oo 

If p goes to oo over positive values p > 1, and x is an arbitrary nonnegative 

number, it was shown in [46] by elementary means, involving integration by 
parts, that 

(3.7) 

where 

(3.8) O:n :=:; Gn(x,p) :=:; f3n (1 + l ) -
x+p-1 

Here, 

k = 0, 1, 2, ... ' 
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where hk(u) is a polynomial of degree k- 1 (if k > 0) defined recursively by 

ho(u) = 1, hk+I(u) = (1- 2ku)hk(u) + u(1 + u)hHu), k = 0, 1,2, ... , 

al].d Cin,f3n are lower and upper bounds, respectively, of Hn(u) on the interval 
u 2': 0. The first eight polynomials hk ( u) and respective constants Cik, f3k are 
given explicitly in [46]. For improvements, both in the error bounds and the 
approximations, see also [6, § 3]. More recently, Dunster [32, Thm. 2.1] showed 
that the same<2l expansion (3.7) with a different bound on the error term (and 
different notations), holds uniformly for complex x in the domain I arg xi :S: Jr-8, 
provided p > (1- coso)- 1 . 

An alternative asymptotic approximation for p (> 0) -+ oo, valid for com
plex x in a domain containing the negative real axis, is given in [32, Thm. 
3.1]. Similarly to the asymptotic approximation for the incomplete gamma 
function derived by the same author in [31], it also involves the complementary 
error function and a rather complicated auxiliary variable(. For an asymptotic 
expansion, including error bounds, see also [33, Thms. 5.1 and 5.2]. 

3.3.2. Stokes's phenomenon and uniform exponential improvement 

For fixed p, as z -4 .oo in I arg zj :::; ~7f - 8, where 8 is an arbitrarily small 
positive number, one has the classical asymptotic expansion 

(3.9) E (z) rv e-z ~( -l)k (p)k, 
P z ~ zk 

k=O 

where (p) k denotes the ascending factorial p(p + 1) · · · (p + k - 1). In the sector 
i1r + 8 :::; arg z :::; ~7f- 8, which partly overlaps with the preceding sector, one 
has an asymptotic expansion just like (3.9) but with an additional term 

(3.10) 
21rie-p1ri 

p-1 
-=r--;-(p--)-z 

In tb,e common sector !1r + 8 :::; arg z :::; ~Jr - 8 this term is exponentially 
small compared to the main term in (3.9). Nevertheless, as z crosses the line 
arg z = 1r, there occurs a rapid, though sinooth, change in the form of the 
asymptotic expansion. This is known as the Stokes phenomenon. It has been 
analyzed in a formal (but insightful) manner by Berry [11] and more rigorously 
by Olver [107], who writes the remainder term in (3.9), if truncated after the 
nth term, as follows, 

(3.11) 

(
2)There is a sign error in equations (2.11) and (2.13) of (32], where the second term on the 

right should be subtracted instead of added. 
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where 

(3.12) 

The interest lies in the sector ~1f < arg z < ~7f (containing the «Stokes line» 
arg z = 1r), where the factor Tn+p in (3.11) acts as a «Stokes multiplier>> 
(cf. (3.10))- If n is chosen optimally, i.e., the series (3.9) is truncated just 
before its numerically smallest term, and if z = pei(tr+O), -~7f :S B :S ~1r, then 
n = p- p + o:, where o: is complex and bounded in absolute value asp --> oo. By 
a delicate analysis, Olver then finds an asymptotic representation of the Stokes 
multiplier in the form 

1 1 -lpT)2 00 

Tn+p(z)rv2+2erf('I]JP72)+e ~ I>k(B,o:)p-k, p->oo, 
V "'"P k=O 

(3.13) 

which holds uniformly for e E [- ~1f, ~1f) and for Jo:J bounded. Here TJ is a 
complex-valued function of e defined by 

~'1]2 = 1 + iB- e;e 2 . 

(The branch with Re 1] > 0 is taken for 0 > 0 and the one with Re TJ < 0 for 
0 < 0.) The (complex) error function in (3.13) plays a similar role as the error 
function in (3.4), the transition point now being at 0 = 0. Plots of the real and 
imaginary parts of the leading term in (3.13) are shown in figure 4 as functions 
of>-, where 8 = A1f /2. 

An alternative discussion of Stokes's phenomenon is given more recently 
by Dunster in [32, §§ 4 and 5]. 

In [108] it is shown that choosing n optimally as described, and expanding 
the remainder term in (3.11) in descending powers of p, provides in the domain 
I arg zj :S 1r - b a «uniformly exponentially improved» approximation in the 
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Fig. 4. -The real and imaginary parts of the leading term in (3.13) as functions of A, e = A7rj2, 
-1::; A::; 1, for p = 20(20)100. 
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sense that truncating the remainder expansion at any fixed term yields, in 
combination with the (optimally) truncated expansion (3.9), an approximation 
of Ep(z) whose relative error is exponentially small, uniformly in the domain 
indicated. In the same work the asymptotic nature of the expansion (3.13) is 
further analyzed, its validity extended to the sector -271" + 8 :S e :S 21r - 8, and 
new, more convenient, formulae are given for the coefficients. (Note, however, 
that the notation in [108] differs somewhat from the notation in [107].) 

Much of what is discussed in this § 3.3, and more, is nicely summarized by 
Olver in [110]. See also § 7.2 for repeated re-expansion of remainders. 

4. INVERSE FUNCTIONS AND ZEROS 

4.1. Inverse functions 

For any a> 0, the functions 

(4.1) 
-y(a,x) 

P(a,x) = f(a) , 
r(a,x) 

Q(a,x) = f(a) ' 

satisfying P( a, x) + Q( a, x) = 1, are cumulative probability functions on the 
interval x 2: 0. For example, a= ~' x = ~x2 , where v 2: 1 is an integer, yields 
the chi-square probability functions with v degrees of freedom. For this reason, 
their inverse functions are important in statistical applications, where, given 
any p with 0 < p < 1, or q = 1 - p, one is interested in determining x such that 

(4.2) P(a, x) = p, or (equivalently), Q(a, x) = q. 

In principle, this amounts to solving a nonlinear equation, for which many 
iterative methods are available such as Newton's method. In practice, however, 
these would require good initial approximations as well as repeated evaluations 
of the incomplete gamma function, both of which can render the inversion 
costly. It is desirable, therefore, to be able to solve the equations (4.2) more 
directly and economically. 

The case a = ~ of the error function ( cf. (1.6)) is particularly simple, as the 
inverse error function is a function of a single real variable on [0,1] and hence 
accessible to approximation-theoretic methods. Thus, Strecok in [129] uses 
Chebyshev expansions in appropriate variables and ranges to obtain accuracies 
in the region [0,1 - w-300 ] of at least 18 significant decimal digits, whereas 
Blair et al. [13] use rational approximations to obtain even higher accuracies 
of up to 23 digits on a larger domain, [0,1 - w- 10000]. They also provide an 
asymptotic series approximation acurate to at least 25 digits for the remaining 
interval [1- w- 10000 , 1]. 

For general a, Temme (136] employs his uniform asymptotic expansion 
(3.4) to do the inversion. Thus, the second equation in (4.2), for example, in 
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combination with the first in (3.4), takes the form 

(4.3) ~ erfc ( ryJa72) + Ra(TJ) = q-

This is first solved for ry, whereupon (3.5) is used to solve for )., ·which by (3.3) 
finally yields x =a>.. To solve ( 4.3) for ry, one can take as initial approximation 
TJo the solution of 

(4.4) ~ erfc ( ryoVa/2) = q, 

which is computable in terms of the inverse error function previously discussed. 
Then for 17 one seeks an asymptotic expansion of the form 

(4.5) 

The determination of the coefficients c; is laborious. It is shown in [136] that 
they are analytic functions of ry0 for l71ol < 2ft and therefore can be expanded 
in powers of ry0 . For the first four coefficients E;, the power series are given 
in exact rational form up to 17, 11, 9, and 7 terms, respectively. For larger 
values of ry0 , the same four coefficients are expressed algebraically in terms of 
TJo, c1 = T}i) 1 lnf(1Jo) and f(1)o) = >.;:~ 1 , where Ao is the solution of (3.5) for 
17 = 1Jo- The procedure is particularly effective for large values of a, but yields 
typically 3 to 4 correct decimal digits already for a = 1 or a= 2. 

For the chi-square distribution an alternative asymptotic inversion is de
scribed in [41], which is valid for small q and a fixed. 

4.2. Real zeros 

The unique positive zero of Ei(x) = ~ [E1 ( -x + iO) + E 1 ( -x - iO)] is given 
to 30 decimal places in [29, p. 300]. Asymptotic approximations to the positive 
zeros of the sine and cosine integrals can be found in [37] and [127], respectively. 

Tricomi's interest, as noted in§ 1, was in the zeros of 1(a,:r) considered as 
a function of x for fixed a < 0. Little (to the author's knowledge) has been done 
on this problem beyond Tricomi's work. Curiously, though, the negative zero 
x_(a) of 1(a,x) for -1 <a< 0 has received some scrutiny in connection with 
a probability density (encountered by Mandelbrot) whose Fourier transform is 
[r(1 + a)r*(a, -is))- 1

. Lew [87] indeed shows that x_(a) decreases monotoni
cally in [-1, OJ (which can also be read off from the contour map of figure 1) 
and satisfies the inequalities 

(4.6) 
1 

1-~<x_(a)<lnlal, -1<a<0. 

4.3. Complex zeros 

The study of complex zeros becomes interesting already for some of the spe
cial cases (1.2)-(1.6) of the incomplete gamma function. Thus, e.g., the complex 
zeros of en(nz) (cf. (1.3)) and their asymptotics as n -too have received a great 
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deal of attention; see, e.g., Varga's monograph [156, Ch. 4]. Asymptotic ap
proximations to the zeros of the complex error function w(z) = e-z

2 

erfc( -iz) 
and to those of erf z are given in [42], including tables<3l to 11 significant dig
its of the first 100 of them. For the complex zeros of the Fresnel integrals, 

see [80J. 
For an asymptotic analysis of the complex zeros of f(a, z), Temme in [138J 

uses the same method as described previously in§ 4.1, except that in (4.4) he 
puts q = 0 and takes for 7]o Faf2 one of the complex zeros of the complementary 
error function. In particular, curves in the complex >.-plane are identified which 
are approached by the >.-zeros of f(a, >.a) as a ~ oo over positive values. A 
branch of this curve is the Szego curve known from [156], which has been 
studied in connection with integer values of a. 

In the work of Kolbig [76J, [77], [78] the focus is on the complex zeros of 
-y( a, x) considered as a function of a for fixed real x. From the contour map 
in figure 1 it is evident that the line x = const, for x suitably chosen, has two 
intersections with the zero level curve of -y* in each of the intervals -2m < a < 
1- 2m,m = 1,2,3, ... (visible in figure 1 explicitly form= 1 and m = 2). 
These intersections move toward each other as x is increased and eventually 
coalesce. If the point of coalescence is denoted by (a~, x;;.J, the double zero of 
-y* (or 'Y) at this point will split into a pair of conjugate complex zeros upon 
further increase of x beyond x~. Thus, for each m = 1, 2, 3, . . . there is a pair 
of conjugate complex trajectories in the complex a-plane emanating from a~ 
along which 'Y vanishes. Using Tricomi's result (2.16), Kolbig in [78J gives the 
approximations a~ rv 1 -2m - .623021 and X~ rv .556929m- .108906ln m -

.299840 and in [76] he provides graphs and tables of the first five (eight in [77]) 
trajectories a = am(x), x 2: x~, in the upper half-plane. In [78] the concern 
is with the trajectories a = am(x)jx, i.e., the zero curves of 1(xa,x) in the 
complex a-plane, and plots of the first eight of them are shown. As m -+ oo, 
according to a result of Mahler [96], they approach a limiting curve, which is also 
shown. 

5. INEQUALITIES AND MONOTONICITY 

5.1. Inequalities 

An early inequality of some generality for the incomplete gamma function 
is the author's inequality [47] 

(J)The heading of Table 2 in {42] is incorrect; it should be «Zeros of w(x)» or «Zeros of 

Erfc ( -iz)». 
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where 

Ca = [f(l + a)J-2--;;. 

For a = ~, the second inequality reduces to one of Pollak [117], the first to one 
of Komatu [79], for «Mills' ratio» ex

2 
fxoo e-t

2 
dt. For sharper bounds regarding 

this ratio, see also [16], and for related inequalities, [82]. As a j 1, both bounds 
tend to 1, which is the value of exf(l,x), since f(l,.r) =e-x. As a 1 0, one 
obtains an inequality for the exponential integral, 

(5.2) ~In (1 + ~)::; exE1 (x)::; In (1 + ~), 0 < x < oo, 

which sharpens an inequality due to E. Hopf [63, p. 26]. Another special case 
of (5.1) obtains by setting x = 0 and using r(l +a) :::; 1 on [0,1], 

2a-I :::; r(1 +a) :::; 1, 0 Sa :S 1. 

This has been sharpened and generalized in [47] to(4l ( lj; is the logarithmic 
derivative of the gamma function) 

(5.3) 
r(x + 1) 

x 1-a:::; r(x +a) :::; exp[(1- a)'I/J(x + 1)], 0:::; a:::; 1, x > 0, 

which in turn has been the subject of numerous improvements and extensions; 
see, e.g., [39], [155], [124], [64], [84], [74], [91], [81], [82], [142], [98, §§ 2,3], [116, 
§ 3], [112], [51]. Further inequalities for the gamma function can be found in 
[101, § 3.6], [72], [20], [71], [94], [73], [126], [123], [69], [119], [36], [83], [93], [38, 
§ 3], [54], [55]. 

An alternative inequality for the incomplete gamma function was recently 
obtained by Alzer [4], who proved 

(5.4) (1- c-s"x)a < ~~(~)) < (1- e-r"x)a, 0 S X< oo, a> 0, a f' 1, 

where 

ra = { [

1

f(l + a)j-l/a if 0 <a< 1, 

if a> 1, { 

1 if 0 <a< 1, 

Sa= [f(1 + a)j-l/a if a> 1. 

For a = ~' this reduces to inequalities of Chu [28] for the error function erf x. 

As a ---+ 1, both bounds tend to 1 - e-·", which is the value of!( 1, x). Rewriting 
(5.4) in terms of ri(~)l = 1 - 'i(~)l, and letting a l 0, yields a new inequality 
for the exponential integral, 

(
4

) Actually, (5.3) was proved in [47] only for x an integer n = 1, 2, :}, ... , but the proof 
given is valid for arbitrary x > 0 (cf. Math. Reviews 21, Review 2067). 
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where c is expressible in terms of Euler's constant 'Y as c = e'Y = 1. 7810724 .... 
In the domain 0 < a < 1 the inequalities for r(a,x) derivable from (5.4) are 
sharper than those in (5.1) if x is small, but weaker if x is large. The right 
inequality in (5.5) is always weaker than the corresponding inequality in (5.2), 
whereas the left inequality is sharper for small x and weaker for large x. 

Upper bounds for r( a, x) in the domain x 2: 0, a 2: 1 are also derived in [l4J. 
The rather special, but pretty, sequence of inequalities, 

(5.6) 
r(n, n) 1 r(n, n- 1) 
r(n) < 2 < r(n) 1 n= 1,2,3, ... , 

is proved in [157] and attributed to G. Lochs. 

5.2. Monotonicity 

Monotonicity, convexity, and higher monotonicity results abound for the 
gamma function, but seem to be scarce for incomplete gamma functions. Ab-

. solute monotonicity, i.e., positivity of all derivatives, has been shown in [35, 
§ 4bj for the sum of squares of «Hermite functions», which are expressible in 
terms of confluent hypergeometric functions. Lorch (90] has monotonicity re
sults for ratios o,f Whitt~ker functions. Convexity and logarithmic convexity of 
r(a + 1, a)jr(a + 1) on [0, oo) are shown by Temme (133]. The fact that this 
function decrea.Ses xnonotonically from 1 to ! has been shown previously by Van 
De Lune [95). According to the well-known Bohr-Mollerup-Artin theorem, log
arithmic convexitY,· on the other hand, lies at the heart of the gamma function, 
as, together .with the difference equation and normalization, it characterizes the 
gainrnafunction uniquely (cf. Artin [9]). 

Afunction f is said to be completely monotonic on an interval I if it has 
derivatives of.all orders in I and (-1)nj<n>(x) 2:0 on I for n = 0,1,2, .... 
It. is called strictly completely monotonic if strict inequality holds for each n. 
Remarkably, many functions involving the gamma and/ or the psi function are 
completely monotonic. Bustoz and Ismail [18J, for example, prove this for the 
functions 

(5.7) (
1 + __!_) -112 r(x)r(x + 1) 

2x P (x+ ~) 

on the interval {!,oo) and (O,oo), respectively. Likewise, they show that 

~~:: ~~ exp [(1- s)¢ ( x + ~(s + 1))] 
(5.8) 

( 
1 )s-1 

r(x+l) x+2s 
and 0 ~ s ~ 1, r(x + s) 
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are completely monotonic on (0, oo ), and strictly so if 0 < s < 1. Furthermore, 

r(x + 1) 
r(x + s) exp[(s- 1)1/J(x + y's)] 

(5.9) 
r(. + , ) [ x _ ~ + J, + ~r 

and r(x+ 1) O<s<l, 

are strictly decrea.sing on (0, oo), which, together with (5.8), generalizes inequal
ities of Kershaw [74]. Other examples are given in [66] and [2]. Far-reaching 
results are proved by Alzer in [3]. Thus, for example, x[lnx -1/J(x)] is shown to 
be strictly completely monotonic on (0, oo), which extends a mono tonicity and 
convexity result of Anderson et al. [8, § 3]. The convexity on (0, oo) of x¢(x), 
proved by the author [48], is generalized to 

(5.10) 0 < ( -l)nxn-l[x7f(x)j(n) < (n- 2)!, X> 0, n 2 2 

(!3, Thm. 4]). All remainders in the asymptotic expansion of In r( x) for x ___.. oo 
are completely monotonic. More precisely, if 

( 1) 1 ~ B2k Rn(x) = lnf(x)- x- 2 lnx + x- 21n(21r)- L.__; 2k(2k _ 
1

)x2k-I , (5.11) k=l 

n=0,1,2 ... , 

where B2k are the Bernoulli numbers, then (-l)nRn(x) is completely monotonic 
on (0, oo) ([3, Thm. 8]). This was proved earlier by Muldoon [102] for n = 
0, whereas convexity and concavity for general n were shown by Merkle [98]. 
Another remarkable result is the complete monotonicity on (0, oo) of 

(5.12) fr r(x + av) 
v=l r(x + b,) 

([3, Thm. 10]), provided 

0 :S a 1 :S a2 :S · · · :S an, 0 :S b 1 :S b2 :S · · · :S bn , 
J.L 1-' 

La, :S L bv for Jl = 1, 2, ... , n. 
v=l v=l 

This generalizes a result of Bustoz and Ismail [18, Thm. 6] for n = 2 and 
monotonicity results of Stolarsky [128, § 8] and Maligranda et al. [97, Thm. 2]. 

A monotonicity result of Kershaw and Laforgia [75], according to which on 
(0, oo) the function [r (I+ ~)t decreases, and x [r (1 + ~)r increases, extends 
an earlier inequality of Mine and Sathre [100]. See also [116, § 5] for additional 
monotonicity results of this kind. Logarithmic convexity on lR+ ofr(2x)jxf2 (x) 
and logarithmic concavity of f(2x)jf2 (x) are proved by Merkle [99]. 
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The q-analogue of the gamma function also enjoys inequalities and higher 
monotonicity properties, many of which extend those in this § 5.2. For a good 
account of this, the reader is referred to Ismail and Muldoon [65]. 

6. NUMERICAL METHODS 

6.1. General procedures 

As with other special functions, numerical methods for computing incom
plete gamma functions rely on a variety of standard tools. Thus, asymptotics 
is used by Takenaga [130] to evaluate r( a, x) for large a. In a series of pa
pers, Chiccoli et al. {23], [24], [25], [26], [27] use asymptotic approximations, 
Taylor and other series expansions (including Tricomi's series (2.8) ), and re
currence relations, to evaluate the generalized exponential integral Ep(x) for 
arbitrary positive p and x. A combination of forward and backward recurrence 
is the principal tool in the work of Amos [5], [7] to compute the exponential 
integrals for integer values p = n of p and positive, resp. complex x. Dif
ficulties near the negative real axis are overcome by an analytic continuation 
scheme. Allasia and Besenghi [1] propose quadrature methods, in particular the 
composite trapezoidal rule, to evaluate r( a, x) for a < -1, x > 0 and provide 
detailed error analyses. The use of (unstable) forward recurrence to compute 
the «molecular integrals» {I( n + 1, x)} is analyzed in [88]. A fairly compre
hensive procedure for evaluating incomplete gamma functions in the domain 
-oo < a < oo, x 2: 0 is described in [49]. If there is a weakness in this proce
dure, it is the fact of becoming computer-intensive when a and x are both very 
large and almost equal. This, however, has been corrected by DiDonato and 
Morris [30], who use, among other things, Temme's uniform asymptotic expan
sion (cf. § 3.2) to compute -y(a,x)/f(a) and f(a,x)jf(a) for a> 0, x 2:0, and 
by Temme himself [135], who uses (3.4) in the critical region, with the asymp
totic series (in a) for Ra ( 'f/) replaced by a more manageable Taylor series (in rJ). 
DiDonato and Morris also describe an inversion procedure which uses a third
order iterative method along with an elaborate scheme of computing a good 
initial value. Expansion in Chebyshev polynomials is used by !!arakat [10] to 
compute 1( a, z) for real a and purely imaginary z. Techniques based on contin
ued fractions are employed by Jones and Thron [68] and Jacobsen et al. [67], 
and still other, especially asymptotic, techniques by Temme [137], to compute 
1(a, z) and r(a, z) for complex a and z. There is an extensive literature deal
ing with the computation of special univariate cases of the incomplete gamma 
function, such as the exponential integral E1(x) and the error function and 
their close relatives, both for real and complex arguments. For this, as well as 
for relevant software, including software for incomplete gamma functions, we 
refer to the comprehensive documentation in [92]. Here we concentrate on real 
parameters and the stable use of recurrence relations. 
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6.2. Recurrence relations 

The recurrence relations satisfied by incomplete gamma functions are lin
ear, inhomogeneous, first-order difference equations of the form 

(6.1) Yn = anYn-1 + bn, n = 1, 2, 3, ... , an f= 0, 

where the coefficients an, bn depend on x and/or a. Given Yo, the recur
rence (6.1) defines uniquely the sequence {Yn}~=o· It is important, however, 
to know how robust the recurrence is to small perturbations such as rounding 
errors. An informative answer to this is provided by the «amplification factorS>> 
ws-+t, which determine the effect of a small relative error E at n = s ( «S» for 
starting) upon the value at n = t ( «t>> for «terminal>>), assuming exact arith
metic. Thus, if the desired solution of (6.1) is Un}, and if Ys = fs(l +c), then 
Yt = ft(1 + Ws-+t ·E) in exact arithmetic. Here s may be less than t, which is 
the case in forward recursion, or s > t, in which case ( 6.1) is applied in reverse 
order (computing Yn-1 in terms of Yn)· An easy calculation ( cf. [50]) will show 
that 

(6.2) Pt 
Ws-+t == -., 

Ps 

where 

(6.3) 

(assuming fo i- 0). Here, hn is a solution of the homogeneous equation ( 6.1) 
(with all bn = 0). Knowledge of the quantities {Pn} is thus sufficient to deter
mine all amplification factors in (6.2). Note that Pn = wo-+n· 

A first example is 1* (a, x), which satisfies the recurrence relation 

(6.4) 

Once we know/* (a, x) for 0 :S a < 1, repeated application of this relation allows 
us to obtain !*(a,x) for any a;::: 1, and also for any a< 0 if we apply (6.4) in 
the reverse order. Consider first the case of positive parameters, 

(6.5) ~~=!*(a+n,x), n=0,1,2, ... , 0:-Sa<l. 

Then (6.4) yields 

(6.6) ~~=~[~~-1-r(::n)]' n=1,2, ... ; io=i*(a,x), 

a relation of the form (6.1). Since here hn = x-n, we get 

(6.7) 
!*(a,x) 

Pn = ( ) , n = 0, 1, 2, .... 
/* a+ n,x xn 
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Fig. 5. -Amplification factors !wo-n I for the incomplete gamma function {r*(t + n, x) }. 

The behavior of the corresponding amplification factors Jwo__,nJ = IPnl is similar 
for all values of a in [0, lj; figure 5 shows them (on a logarithmic scale) for a=! 
and for selected negative values of x on the left, and positive values of x on the 
right. (The case x = 0 is uninteresting, since 'Y*(a, 0) = 1/f(a + 1).) In either 
case, IPnl --> oo as n--> oo, but in the first case there is a significant downward dip 
to a minimum at about n = jxj before IPnl grows monotonically to oo, whereas in 
the second case IPnl increases monotonically from the start. This has important 

.·computational implications. The fact that IPnl ----. oo by (6.2) indeed implies 
that jw8 _,ti for t fixed becomes arbitrarily small as s --> oo. In effect, this means 
that backward recurrence in (6.6) from some large n = v down to any fixed 
n produces arbitrarily accurate results if v is chosen large enough, regardless 
of the choice of starting value. The latter, therefore, may conveniently be 
taken to be zero. This procedure is particularly effective for positive x, because 
of the monotonicity of IPnl· When x < 0, backward recurrence should not 
proceed below n ~ jxj, since otherwise, by the nature of the dashed curves in 
figure 5, one would run into a regime of significant error amplification. The 
values of ')';,_ for n smaller than jxj therefore must be generated by forward 
recurrence. 

The case of negative parameters can be expected to be more complicated 
since we are getting into regions containing zero curves (cf. figure 1 and§ 2.4). 
Here the recursion for ,;,_ = 'Y* (a - n, x), 0 ::; a < 1, is 

(6.8) * * e-x 
'Yn=X!n-l+r(a-n+l)' n=1,2 ... ; !o=!*(a,x), 

where the second term on the right is to be replaced by zero if a = 0. Limited 
exploration suggests that the amplification factors IPnl = jw0 __,nl, when x > 0, 
are of the order of magnitude 1 for a while before decreasing rapidly, while 
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for x < 0 they also eventually decrease at a similar speed, but may assume 
relatively large values (especially if lxl is large) before they do so. Nevertheless, 
the recurrence (6.8), overall, is reasonably stable in forward direction. 

What has been said about 1* (a, x) holds also for 1( a, x), since the quanti
ties Pn in (6.3) are invariant with respect to any scaling transformation Yn I-t 

CnYn, Cn I 0. 
A second example is the complementary incomplete gamma function f(a,x), 

for which the recurrence relation reads 

(6.9) f(a + 1, x) = af(a, x) + xae-x. 

Its use for generating r~ = r(a + n, x) and r;;- = f(a- n, x), n = 0, 1, 2, ... , 
0 ::; a < 1, can be discussed along lines similar to the preceding, except that 
x is restricted to positive values. One finds that the respective amplification 
factors IP~ I and IP;;-1 behave much like those in figure 5, but upside-down. That 
is, IP~ I = p~ decreases monotonically whereas IP; I initially increases to a max
imum near n = lxl before decreasing to zero, the maximum being larger the 
larger lxl. The mono tonicity of p~ = r~(~)J / rg:.;~)J follows from the mono tonic
ity of f(a,x)/f(a) as a function of a, proved by Tricomi (cf. § 2.5). This means 
that the recurrence for r~ is perfectly stable in forward direction, whereas the 
one for r;;- should be started at a value of n near lxl, with backward [for
ward] recurrence being applied for the smaller [larger] values of n. The start
ing value can be computed by a continued fraction, for example. Note that 
r;;- is related to the generalized exponential integral by r;;- = xn-aEl-a+n(x) 
(cf. equation (3.6)). 

7. APPLICATIONS 

Many of the special cases of the incomplete gamma function are widely 
used in the applied sciences. Thus, the exponential integrals Ep(x) for p > 0 
play a significant role in transport theory and fluid flow, and for negative inte
ger values of p furnish basic auxiliary functions in molecular physics. The error 
functions are frequently encountered in heat conduction, and the Fresnel inte
grals in Fresnel diffraction, problems. The complex error function e-z

2 
erfc( -iz) 

is important in plasma wave problems, where it is known as «plasma disper
sion function», in astrophysics and Lorentz/Doppler line broadening, where the 
real and imaginary parts go under the name of «Voigt functions», and in the 
design of particle accelerators. Finally, the incomplete gamma function ratios 
and their special cases are used extensively in statistical applications. Rather 
than reviewing these «external» applications (a nearly impossible task), we limit 
ourselves to a few recent «internal» applications that we happen to be familiar 
with, i.e., applications within the theory of special functions. 
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7.1. Expansions in incomplete gamma functions 

7.1.1. The Riemann zeta function on the critical line 

Efforts to verify the Riemann Hypothesis, according to which all zeros 
of ((s) = I:~=l n-s in Re s > 0 lie on the critical line Re s = !, require 
high-precision calculation of the zeta function for s = ~ + it and t very large. 
Presently, the most efficient methods are based on the Riemann-Siegel formula 
and some ofits recent improvements; see, e.g., Odlyzko [104] and Berry [12]. A 
promising alternative method has been developed by Paris [113] and Paris and 
Cang [115], who use an expansion of the zeta function in incomplete gamma 
functions in combination with (essentially) Temme's uniform asymptotic ex
pansion (cf. § 3.2). Once a reliable estimate of the truncation error becomes 
available, the expansion could provide a useful tool for the rigorous verification 
of the Riemann Hypothesis. 

For an expansion in incomplete gamma functions of more general Dirichlet 
series, see also [57, p. 106]. 

7.1.2. A generalization of the incomplete gamma function 

The following generalization of the incomplete gamma function, 

(7.1) f(a,x;b) = 100 

ta-le-t-b/tdt, X> 0, a> 0, b 2:0, 

has been studied in [21]. By expanding e-b/t into a Taylor series in r 1 one 
obtains an expansion in incomplete gamma functions [21], [22], 

(7.2) 
oo ( -b)n 

r(a,x;b) = 2:.::: -,-r(a- n,x). 
n. 

n=O 

It is just the Maclaurin expansion of r( ·, ·;b), an entire function of b. When a > 0 
and b 2: 0 are restricted to bounded intervals, then (7.2) can also be viewed as an 
asymptotic expansion for X -4 00. The incomplete gamma functions r( a - n, X) 
required in (7.2) can be generated recursively as discussed in§ 6.2. There is also 
an asymptotic expansion of r( a, x; b) for large a analogous to (3.4), involving 
the complementary error function [22, equation (5.2)]. 

7.1.3. Fermi-Dirac integrals 

The Fermi-Dirac integral 

(7.3) 
1 100 tp-l 

Fp-t(x) = r( ) l t dt, P o +e-x 
p > 0, 

for negative values of x is easily evaluated by the series 

x<O. 

X E IR, 
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More difficult is the case of (large) positive x and p. Writing p =ax and assum
ing N- 1 <a < N for some integer N 2:: 1, Temme and Olde Daalhuis [141], 
improving on previous work of Schell [122], obtain the representation 

(7.4) 

where the terms in the sum on the right (if N 2:: 3) decrease monotonically. By 
contour integration in the complex plane, the function Gp-I (x) is expressible 
as the term with n = N in the summation of (7.4) multiplied by an incomplete 
gamma function ratio, 

(7.5) 

Here Temme's uniform asymptotic expansion for p ___, oo ( cf. § 3.2) is applicable, 
also when a= N. The last term, Hp-l (x), in (7.4) can be formally expanded in 
descending powers of x. Both terms Gp_ 1, Hp-l are negligible when N is large. 

7.2. Hyperasymptotics 

A process of successive re-expansion of remainder terms in asymptotic ex
pansions, called hyperasymptotics, is developed in [109] for solutions of the con
fluent hypergeometric equation, and in [105], [106] for solutions of more general 
linear homogeneous second-order differential equations having an irregular sin
gularity of rank one at infinity. By truncating the classical Poincare expansion 
after a judiciously selected number of terms, one re-expands the correspond
ing remainder term to obtain a «first-level» expansion, the Poincare expansion 
being at level zero. This first-level expansion is a series in generalized expo
nential integrals (cf. § 3.3). If that series in turn is judiciously truncated, its 
remainder term is re-expanded to obtain a «Second-level» expansion; it proceeds 
in functions called «hyperterminants», which are repeated infinite integrals of 
the generalized exponential integral. The process can be repeated indefinitely. 
An important feature of this sequence of re-expansions is that at each step the 
error is reduced by an exponentially small factor, of which the «exponential 
improvement» of the first-level expansion, mentioned at the end of § 3.3.2, is 
just one example. 
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Abstract 

Integral representations of hypergeometric and confluent hypergeometric functions with real parameters and complex 
arguments are used to approximate these functions by Gaussian quadrature. An analysis is given of the errors involved 
and of estimates of the munber of Gauss points required to achieve any given accuracy. Numerical examples illustrate 
the theory. © 2002 Elsevier Science B.V. All rights reserved. 

0. Introduction 

Hypergeometric and confluent hypergeometric functions admit integral representations for parame
ter values restricted by certain inequalities. Applying Gaussian quadrature to these integrals produces 
approximations valid in the whole complex plane, for the confluent hypergeometric function, and in 
the whole complex plane cut along the segment [1, oo] of the positive real axis, for the hyperge
ometric function. The former are studied in Section I. Numerical evidence, graphically displayed, 
demonstrates the effectiveness of these quadrature approximations. The error is analyzed both in 
terms of derivatives of the integrand (in the case of the confluent hypergeometric function) and in 
terms of derivative-free contour integral representations of the remainder term. Both approaches lead 
to a priori estimates of the number of Gauss points needed for given accuracy. Analogous analyses 
are given in Section 2 for the hypergeometric function. The paper ends with Section 3 containing 
some concluding remarks. 
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1. Confluent hypergeometric functions 

1.1. Quadrature approximation 

Our interest is in the confluent hypergeometric function M (a, b; z ), also known as Kummer's 
function, when a and b are positive parameters satisfying b > a > 0 and z is real or complex. One 
then has the well-known integral representation (see, e.g. [I, Eq. (13.2.1)]) 

where 

r(b) 1' zt M(a,b;z) = T(a)r(b _a) 0 e Wa,b(t)dt, ( 1.1) 

(1.2) 

is a Jacobi weight function on the interval [0, I] with Jacobi parameters o: = b - a - I, f3 = a - 1. 
We propose to approximate the integral in (1.1) by ann-point Gauss-Jacobi quadrature rule 

(1.3) 

where ti and wi are the Gauss-Jacobi nodes and weights for the interval [0, 1] (rather than the 
standard interval [- I, 1]). These quadrature rules, after the change of variables t ~ !O + t), are 
readily generated by the software provided in [6]. 

1.2. Numerical data 

Approximation ( 1.3) clearly converges as n ---+ oo for any complex z, since the integrand is 
continuous on [0, 1], in fact an entire function oft. With regard to the quality of convergence, we 
first describe some numerical tests. 

We experimentally determined the smallest value of n that, for given a, b, and z, yields a prescribed 
relative accuracy s (absolute accuracy s if the result is less than 1 in absolute value). The left fi·ame 
of Fig. 1 shows the maximum of this smallest n as a function of real z = x, -100 ~ x ~ I 00, 
where the maximum is taken over a=0.25(0.25)5, b=(a+0.25)(0.25)5 and s=! ·10-10• The right 
frame displays the analogous n as estimated below in (1.9), (1.24) (and modified as described in 
the last paragraph of Section 1.4 ). It is seen that for real z =x in [- 100, 1 00] and 1 0-digit accuracy, 
a Gauss rule of not more than 30 points will do, the case x < 0 being slightly more favorable than 
the case x > 0. Note also that for real z = x, the quadrature sum in (1.3) consists of positive terms 
only, so that its evaluation is perfectly stable. 

Analogous values of n---experimental and estimated via (1.9) below-for complex z = rei'P, 

0 < r ~ 100, 0 ~ ({) ~ n, are depicted in Fig. 2. Here, a 50-point Gauss rule will suffice. 

1.3. Error estimates in terms of derivatives 

If u(t) and v( t) denote the real and imaginary parts of ezt, one has from the well-known error 
f01mula for Gaussian quadrature [2, Theorem, p. 98], applied separately to the real and imaginary 
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Fig. I. Values of n of n-point quadrature rules ( 1.3) yielding I 0-digit accuracy for real arguments z; left: experimentally 
detennined, right: estimated. 
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Fig. 2. Values of n of n-point quadrature rules yielding 10-digit accuracy for complex arguments z; left: experimentally 
determined, right: estimated. 

part of ( 1.3 ), 

E (a b· z) = _I -[u<2"l(T ) + iv<2"l(T )]y (a b) n , , (ln)! u , n , , (1.4) 

where 

}'11 (a,b)= 11 
[n 11 (t;wa,b)]2wa,b(t)dt. 

Here, n11 ( ·; Wa,b) is the monic Jacobi polynomial relative to the interval [0, 1] (the polynomial 
Gn(b-l,a,t) in the notation of [1, Table 22.2]), and Tu,Tv are certain numbers between 0 and 1. 
From [1, Table 22.2] one has 

(a b)= n!r(n+a)T(n+h-1)T(n+b-a) 
Yn ' (2n + b - 1 )T2(2n + b - 1) · 
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For n = 0, the quantity y0 is just the reciprocal of the numerical factor multiplying the integral in 
( 1.1 ); thus, 

b ) 1 11 zt M(a, ;z =--b-) e Wa,b(t)dt. 
Yo(a, o 

(1.1') 

Using Stirling's fommla for the gamma function, one finds, after straightforward computation, 

( b) n -4n 
Yn a, "' 22b_3 2 , n ----+ oo. 

On the other hand, letting z = x + i y = rei'~', one has 

d2n 
-ezt = z2nezt = r2next+i(yt+2n<p) 
d~ ' 

so that 

lu(2n)(t)l ::::;; r2next, lv(2n)(t)l :( ,.znext. 

There follows from ( 1.4) that 

where 

IE ( h )I b(y)yn(a,b)l 12n x 
11 a,. ;z :( (2n)! z e+, 

{ 
1 if y = 0, 

b(y) = 2 
otherwise, 

~= { 
1 if X :( 0, 

ex otherwise, 

or, asymptotically for n----+ oo, with the help of (1.5) and Stirling's formula for (2n)!, 

ez 1 ( I 1)211 

IEn(a,b;z)l ;5 22b-3 8n' ~· 

(1.5) 

(1.6) 

(1.7) 

Actually, if y = 0, the bound on the right could be halved, but this is of little consequence. Tt is 
interesting to note that the error bound in ( 1. 7) does not depend on a, and could be made independent 
of b as well by letting b = 0. 

1.4. Estimate of n for prescribed accuracy 

In order to estimate the number n of Gauss points needed to achieve an error tolerance s > 0, we 
disregard the factor Vnfii in ( 1. 7) and note that lEn I :( s if 

(~)2n :( 22b-3 B 

8n ~ 

or, equivalently, 

8n 8n 4 { 1} 
~In~~~ x++(3-2b)ln2+ln-; , (1.8) 
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where x+ = x if x ~ 0 and x+ = 0 if x < 0. Denoting by t( s) the inverse function of s = tIn t, one 
has tInt ~ c, c ~ 0, if and only if t ~ t(c ). Hence, (1.8) can be given the form 

n ~ e~l t (e~l [x+ + (3- 2b)ln2 + ln ~]). (1.9) 

Low-accuracy approximations of the function t(s) are given in [5, pp. 51-52]. 
The analysis given here is aimed towards attaining a given absolute enor in ( 1.3 ), not relative 

enor. In practice, however, it is usually the relative enor that one wants to control, i.e., the relative 
en or 

M(a,b;z)- (l/y0(a,b)) 2:~= 1 wfcetl 
M(a,b;z) 

This is particularly so if IM(a,b;z)l > 1. (Otherwise, control of the absolute enor is often adequate.) 
Thus, we want 

IE11 (a,b;z)l ;:;:; c 111 
ez1wa,b(t)dtl if 111 

ez1Wa,b(t)dtl >'Yo 

and 

IE11 (a,b;z)l ;:;:; t:')'o if 111 
ez1Wa,b(t)dtl ;:;:; 'YO· 

While this would seem to require knowledge of the integral, a rough estimate of it suffices. Once 
in possession of such an estimate, one can simply apply the formula for n in (1.9), but replace 
t:, respectively, by t: multiplied by the absolute value of that estimate, or by cy0 . The estimate in 
question can be obtained, e.g., by applying a low-order Gaussian quadrature rule to the integral in 
(1.1 ). Extensive tests have shown that a 10-point rule should be adequate for this purpose. The solid 
graph in the right frame of Fig. 1 displays the estimate of n so obtained. 

1.5. Derivative-free error estimates 

The change of variables t ~---+ iO + t) transforms the integral in (1.1) into one over [- 1, 1], 

1 11 M(a b· z) = --- e(l/2)z(l+t)wJ (t) dt 
' ' J ( · b) a,b · 'Yo a, -1 

(1.10) 

Here, yb, and more generally, y~, are the normalization factors of the standard (monic) Jacobi 
polynomials, 

;!(a,b)=1
1 [n!(t;w~,b)fw~,b(t)dt, (1.11) 

-1 

where 

w!,b(t) = (1- t)h-a-1(1 + t)a-1. 

The enor term of the n-point Gauss-Jacobi quadrature rule applied to the integral in (1.10) will be 
denoted by E~(a,b;z), and the integrand by 

(1.12) 
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A derivative-free estimate of E~ is given by (see, e.g., [7]) 

E~(a,b;z) = 2~ j Kn(Of\(;z)d(, 
m lr 

(1.13) 

where for r one may take a circle r = CR of radius R > I centered at the origin. The "kernel" K11 

of the quadrature error can be represented, e.g., by 

K (r) = Pn(O (1.14) 
"., nn(O' 

where n11(0=n11 ((;w~.b) is the monic Jacobi polynomial belonging to the weight function w!,b, and 

( r)_ ("· J )-11 nn(t) J ( )d r "'\[ I Pn I, -Pn I,,Wab - -r-Wab t t, S E ~~_.., - ,1). 
' -1 (,- t ' 

The kernel tends to 0 as n----+ oo for any complex ( 1- [-I, 1], the faster the further away ( is from 
the interval [- 1, 1]. It is easily computed by recursion (see [7, Section 4]), provided ( is not too 
close to [- I, I]. From [7, Section 3] it follows, moreover, that 

{ 
K11 (R) if h ~ 2a, 

maxiKn(OI = 
(ECR K11 ( -R) if b > 2a. 

(1.15) 

Consequently, by ( 1.13 ), 

IE~(a,b;z)l ~ IRKn(±R)Imaxl.fJ((;z)l, 
(ECR 

(1.16) 

where the plus or minus sign holds according as b ~ 2a or b > 2a. The maximum on the right is 
easily found to be 

max If ( (; z) I = e(l/2)r(R+cos 'P)' 
(ECR 

where, as before, z = rei'~'. Thus, 

IE~(a,b;z)l ~ IRKn(±R)Ie(l/2)r(R+cos<p). 

This holds for any R > 1. Optimizing the bound then yields 

IE~(a,h;z)l ~ min{IRK11 (±R)Ie<112)r(R+cos<p)}, z =rei'~'. 
R>l 

(1.17) 

(1.18) 

(1.19) 

In the numerical work described below, the kernel K 11 has been computed by means of the double
precision routine dkern of [6]. (It calls for the additional routines d1mach, drecur, nuOjac, and 
dknum.) 

Table 1 illustrates this bound for a= 0.5 and b = 2.5. For each n and r = lzl, there are four entries. 
The two upper ones are bounds for the relative error when cp = 0 and absolute error when cp = n. 
The two lower ones are the optimal values of R that yield the minimum in ( 1.19) for these two 
values of cp. According to the discussion at the end of Section 1.4, bounds for the relative (resp. 
absolute) error are obtainedby dividing the bound in (1.19), respectively, by rbM(a,b;r) and by yb, 
since for cp = 0 and n one has, respectively, M( a, b, r) > 1 and M (a, b; -r) < 1. It is seen that the 
errors for cp = n are consistently smaller than those for cp = 0, confirming what was experimentally 
observed in the left frame of Fig. 1. Evidently, the reason for this is the presence of the term cos cp 
in the exponential on the right of ( 1.19 ). 
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Table I 
Optimized error bounds for a = 0.5, b = 2.5 

n 5 5 10 10 20 20 50 50 
r (p = 0 qJ=n (/)=0 qJ=n qJ=O qJ=n qJ=O qJ=n 

0.19e- II 0.87e- 12 0.35e- 29 0.16e- 29 0.13e- 70 0.60e- 71 0.13e- 216 0.61e-217 
20.2 20.2 40.1 40.1 80.1 80.0 200.0 200.0 

5 0.43e- 4 0.18e- 5 0.64e- 15 0.26e- 16 0.20e- 42 0.82e- 44 0.17e- 146 0.68e- 148 
4.26 4.26 8.14 8.14 16.1 16.1 40.0 40.0 

10 0.38e- I 0.33e- 3 0.40e- 9 0.34e- II O.lle- 30 0.92e- 33 0.90e- 117 0.77e-119 
2.37 2.37 4.20 4.20 8.10 8.10 20.0 20.0 

20 0.11e+2 0.21e-1 0.43e- 4 0.85e- 7 0.66e- 20 0.12e- 22 0.43e- 88 0.85e- 91 
1.51 1.51 2.30 2.30 4.16 4.16 10.1 I 0.1 

50 0.29e +4 0.88e + 0 0.46e +I 0.14e- 2 0.4Ie- 8 0.13e- II 0.24e- 53 0.75e- 57 
1.12 1.12 1.33 1.33 1.92 1.92 4.14 4.14 

100 0.65e + 5 0.50e +I 0.17e+4 0.13e + 0 0.92e- 2 0.70e- 6 0.23e- 31 0.17e- 35 
1.04 1.04 1.10 1.10 1.30 1.30 2.25 2.25 

Comparing the error bounds in Table I with error bounds derivable from ( 1.7), one finds general 
agreement within 1-2 orders of magnitude when r = 1,5, or 10. For larger values of r, however, 
the bounds in Table I become progressively better, by as much as 17 orders of magnitude (when 
r = 100 and n =50). 

1.6. Asymptotics for Kn(±R) 

If K~rt,fJ)(O=p~IX,/3)(0/n~a,/1)(0 denotes kernel (1.14) for the Jacobi weight function (1-tY(l +t)fl, 
it is known (see [4], [3, Appendix A. I]) that, for (away from [-I, 1], 

K (a,fJ)( ") rv ( {J) ( ( - 1 Y( ( + l)f3 
n (, C11 1X, ~ , ( ( + V (2 _ 1 )2n+cx+fJ+ I 

n--+ oo, (1.20) 

where -n < arg(( ±I)< nand 

c (r:x fJ) = 24n+2(a+fl+l)r(n + r:x + I )r(n + fJ + l)T(n +I )T(n + r:x + fJ + 1) 
n ' T(2n+r:x+fJ+2)r(2n+r:x+fJ+I) . 

Applying Stirling's formula to the gamma functions above yields 

C11 (r:x,fJ) rv 2n. ( 1.21) 

We need (1.20) for real (=Rand (=-R, R > 1. From the well-known property of Jacobi polynomials 
n~a,fJ)(-0=(-l)"n~fJ,ct)(O, which implies p~~.fJ)(-0=-/!·rt\0, one obtains from (1.20), (1.21), 
as n--+ oo, 

IK~rt,fJ)(±R)I rv 2n I ± R ~ R + Ijfl ' R > l. 
(R + R2 _ J)2n+a+fJ+l (1.22) 
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Inserting this into ( 1.19 ), with rx = b - a - I, f3 = a - 1, one gets 

IE\a,b;z)l ;5 min {2nRI ±R- Ilb-a-11 ±R + lla-1 e(l/2)r(R+cos<p)}, z =rei"'· 
11 R>l (R+JR2-J)2n+b-1 

( 1.23) 

Using this bound in place of the one in (1.19), we reproduced Table I and found almost per
fect agreement. (The largest discrepancy observed was 2 units in the second decimal digit of the 

mantissas.) 
It is also possible to estimate n such that IE~(a,b;z)l ~ s by combining (1.22) with (1.18). One 

finds 

n?:- 1- +mm . 1 ( b . (1/2)r(R +cos <P) + ln(2nRI ± R- lib-a-ll ± R + lla-l) + ln (1/e)) 
2 R>l ln(R + JR2- 1) 

(1.24) 

The minimum on the right is best obtained numerically, by evaluating the objective function at the 

zero of its derivative (and making sure that it is indeed a minimum). 
The dashed graph in the right frame of Fig. l shows the estimate of n as obtained from ( 1.24) 

with z = rei"', cp = 0 and n, when s is modified as discussed at the end of Section 1.4. 

2. Hypergeometric functions 

2.1. Quadrature approximation 

We now consider the hypergeometric function F( a, b; c; z ), for real parameters a and c > b > 0, 
and real or complex z in the complex plane cut along the line from I to oo. We will assume 
throughout that z -=f. 0, since otherwise one trivially has F(a, b; c; 0) = I. The integral representation 
then is (cf. [1, Eq. 15.3.1]) 

F(c) 1' -a 
F(a,b;c;z) = r(b)T(c- b) 0 (1- zt) Wb,c(t)dt, (2.1) 

where wh,c is the Jacobi weight (1.2) with a replaced by b, and b by c. The Gauss quadrature 
approximation of the integral in (2.1) is 

I n 1 (1-zt)-awb,c(t)dt= I:wi(l-ztk}-a+En{a,b;c;z), 
0 k=l 

(2.2) 

the Jacobi nodes ti and weights wi now referring to the Jacobi weight function wh,c· (The use of 
(2.2) was already suggested in 1955 by Karmazina [8], who provided tables of the Gauss nodes ti 

and weights wi for selected values of the parameters b and c, but gave no analysis of the error.) In 
analogy to ( 1.1' ), one has 

1 1' F(a,b;c;z)= -(b- {1- tz)-aWbc(t)dt. 
Yo , c) o ' 

(2.1') 
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80 

50 

40 

20 

10 

Fig. 3. Values of n of n-point quadrature rules (2.2) yielding 10-digit accuracy for real arguments z; left: a< 0, right: 
a> 0. 

2.2. Numerical data 

The Gauss quadrature approximation in (2.2) converges for any z in the complex plane cut along 
[1, oo], since the integrand then is a continuous function oft. However, the error analysis given for 
the confluent hypergeometric function in Sections 1.3 and 1.4 does not carry over. The reason is 
that the 2nth derivative of the integrand now is 

d2n 
-( l - zt)-a = (a) ( 1 - zt)-a-ZnzZn 
d~ ~ ' (2.3) 

with (a hn =a( a+ 1) ···(a+ 2n - 1) the Pochhammer symbol. The latter behaves like (2n )! for 
large n, which cancels the (2n)! in the denominator of the error formula analogous to (1.4). What 
remains, in spite of the rapid decrease of Yn( b, c), will no longer necessarily tend to zero as n -+ oo. 
The derivative-free error estimation of Section 1.5, on the other hand, applies also in the present 
context if appropriately modified. Before discussing this, it may be useful to make some preliminary 
remarks and describe numerical tests. 

A first observation that can be made is that the quadrature error En( a, b; c; z) will behave differently 
depending on whether a is negative or positive. In the former case, the integrand 

f(t;z) = (1 - zt)-a (2.4) 

of (2.1) is a "polynomial-like" function of t, and in fact an outright polynomial if a is a negative 
integer. Moreover, the Gauss formula (2.2) has zero error, En( a, b; c; z) = 0, if a is a nonpositive 
integer a ;::;:: -2n+ 1. If a is negative but not an integer, and z is on the cut [1, oo], then f(t;z) has a 
branch-point singularity for some t E (0, I], but remains bounded. None of this is true if a is positive. 
One therefore expects convergence of the Gauss formula (2.2) to be faster for negative values of a, 
and slower for positive values. This is home out in the graphs of Fig. 3 for real z=x, -100 ~ x < 1, 
and in the graphs of Fig. 4 for complex z = 1 + rei'P, 0 < r ~ 100, n ;::;:: cp ;::;:: in (note the slightly 
different notation compared to the one in Section 1 ). In both the figures the maximum values of 
n are shown that are required for 10-digit accuracy, the maximum being taken over a= -5(0.5)0 
(resp. a= 0.5(0.5)5). ln either case, one clearly needs considerably larger values of n to achieve a 
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250 250 

200 200 

150 150 

100 100 

50 50 

0 0 
100 100 y 

80 100 
80 100 

60 50 60 50 

-100 

Fig. 4. Values of n of n-point quadrature rules (2.2) yielding 10-digit accuracy for complex arguments z; left: a < 0, 

right: a> 0. 

prescribed accuracy than is the case for confluent hypergeometric functions, and the situation gets 

worse as z approaches the cut [1,oo]. (This is why we omitted cp-values between 0 and in.) 

2.3. Derivative-free error estimates 

We make the same change of variables as at the beginning of Section 1.5, thus writing 

F(a,b;c;z)= 1(b1 )11
[1-!z(l+t)]-awb,c(t)dt. (2.1") 

Yo ,c -1 

The integrand 

1 
f 1(t;z) = [1- 2z(l + t)ra, z E C \ [1, oo] (2.5) 

is holomorphic in the variable t in the whole complex plane cut along the line J,.jz - 1, ). ~ 2. 
We shall denote this cut plane by c;. The cut lies entirely outside the unit circle if and only if 

l),jz - 11 2 > 1 for all )_ ~ 2, which is easily seen to be equivalent to Rez < 1. In this case, the 
method used in Section 1.5 to estimate the quadrature error still applies provided one takes circular 

contours about the origin with radii R satisfying 1 < R < 12/z- 11. Otherwise, a family of confocal 
ellipses (with foci at ± 1) can be used that are sufficiently slim to leave the cut outside. These, of 
course, can also be used in the former case. We discuss the two cases separately. 

2.3.1. The case Rez < 1 
With E~(a,b;c;z) denoting the error term of Gauss-Jacobi quadrature applied to the integral in 

(2.1"), we have 

E~(a,b; c;z) = -2
1 . J Kn(Of1((;z)d(. (2.6) 
m Jr 

Here, Kn is the same kernel as in ( 1.14 ), but with the parameters a, b rep laced by b, c, respec
tively, and r is any contour encircling [- 1, I] and lying inside the cut plane c;. If r = CR with 
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1 < R < 12/z- 11, then, as in (1.16), 

IE~(a,b;c;z)l ~ IRKn(±R)Imaxlf1((;z)l, 
(ECR 

(2.7) 

with the plus or minus sign holding according as c ~ 2b or c > 2b. It remains to determine the 
maximum on the right. 

Writing z = x + iy, x < 1 and ( = Rei8, we have 

II- !z(l + 01 = h(O), 

h2(8)=1-x+ilzi2(R2 +1)-R[(x-!lzl2 )cos8-ysin8], 0 ~ 8<2n. 

If we let 

f.li(z) = minll- !z(l + 01, 
(ECR 

we have 

which simplifies to 

f.lt(z) =!liz- 21 ±Rizii

It follows from (2.5) that 

lj.J(y )I { [f.lt(z)ra if a< 0, 
max ~,;z = 
(ECR [f.li (z )ra if a > 0. 

Combining (2.7) and (2.10), and optimizing the error bound at the same time, we get 

IE~(a,b;c;z)l ~ R { 
miniRKn(±R) I [f.lt(z)ra if a< 0, 

miniRKn(±R) I [f.li(z)]-a if a> 0, 

where the minima are taken over all R with 1 < R < 12/z- 11. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

We illustrate (2.11) for real z = x and a = 1.5, b = 0.5, c = 2.5. In this case, the second line 
of (2.11) applies, and the kernel Kn is to be evaluated at -R, since c > 2b. Moreover, Jtfl(x) = 
1/2(2 -x-Rixl), and the admissible values of Rare 1 < R < 1 +2/lxl when x < 0, and 1 < R < 2/ 
x-I when 0 <x <I. Table 2 shows bounds (2.11) divided by r&(b,c)IF(a,b;c;x)l or by yb{b,c) 
(if IF(a,b;c;x)l is larger (resp. smaller) than 1) for selected values of x and n. 

As z approaches the imaginary axis, the radius R of the circle CR approaches 1 and the compu
tation of Kn(±R) becomes more difficult. The use of elliptic contours would alleviate this problem 
somewhat; cf. the discussion in the next subsection. 
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Table 2 
Optimized error bounds for a = 1.5, b = 0.5, c = 2.5 

X n=5 n = 10 n =20 n =50 n = 100 

0.9 0.22e + 1 0.70e- 2 0.36e- 7 O.lle- 23 0.11e-51 

0.6 0.63e- 4 0.52e- 10 0.15e- 22 0.83e- 61 0.41e- 125 

0.3 0.27e- 8 0.21e- 18 0.54e- 39 0.18e- 101 0.41e- 206 

-1 0.13e- 5 0.72e- 13 0.94e- 28 0.42e- 73 0.32e- 149 

-5 0.12e- 1 0.50e- 5 0.37e- 12 0.36e- 34 0.22e- 71 

-10 0.16e + 0 0.72e- 3 0.70e- 8 0.15e- 23 0.40e- 50 

-20 O.lle + 1 0.28e- 1 0.93e- 5 0.91e- 16 0.14e- 34 

-50 0.63e + 1 0.78e + 0 0.62e- 2 0.94e- 9 0.14e- 20 

-100 0.15e + 2 0.42e + 1 0.17e + 0 0.34e- 5 0.19e-13 

2.5 

0.5 

-0.5 

-1 

-1.5 

Fig. 5. The limiting ellipse Iff p*. 

2.3.2. The case Rez ~ 1 
Here, the cut of c; intrudes into the unit disc, and we can no longer use circular contours r in 

(2.6). We use instead elliptic contours r = <ffp, p > 1, i.e., ellipses with foci at ±1 and sum of the 
semiaxes equal to p ( cf. [7], Section 5 ). The parameter p must be selected sufficiently small for tf P 

to avoid the cut. The limiting ellipse tf p* is the one that passes through the end point z* = 2/ z - 1 
of the cut (see Fig. 5). 

To determine p*, let z* = x* + iy*. The ellipse tf P in parametric form is 

In order for z* to be on tf P• we must have 

(p + ~) cos e = 2x*' 

(p -~) sin e = 2 y* 
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Table 3 
Values of p* for selected values of r and <p 

r <p=n/2 

I 2.4142136 
5 1.7968705 

10 1.5395351 
20 1.3645232 
50 1.2197560 

100 1.1513638 

for some e, which implies 

4x*2 4y*2 
---~+ =l 
(p+l/p)2 (p-Ijp)2 . 

<p = 3n/8 

1.8708684 
1.5535565 
1.3923775 
1.2727733 
1.1680016 
1.1167928 

This amounts to an algebraic equation of degree 4 in p2 , namely 

l- 4(x*2 + y*2 )p6 + 2(4x*2 - 4y*2 - I )l- 4(x*2 + y*2 )p2 + I = 0. 

<p = n/4 

1.4966058 
1.3409415 
1.2506770 
1.1787546 
1.1123979 
1.0788811 

(2.12) 

On geometric grounds, there must be a unique real root larger than 1. This root is the desired critical 
value p* of the parameter p. The admissible elliptic contours r therefore are the confocal ellipses 
~P with 1 < p < p*. If, as above, we write z = 1 + rei'P, then z* = (1 - rei'P)/(1 + rei'P), i.e., 

r 2 - 1 * 2 sin <p 
x* = - r2 + 2 cos <p + 1 ' y = - r2 + 2 cos <p + 1 · 

The real root p* > 1 of (2.12) for these values of x* and y* is shown in Table 3 for selected values 
of rand <p. 

Evidently, as <p decreases to 0, that is, z approaches the cut [1,oo], the value of p* tends to 1, i.e., 
the ellipses ~ p• become progressively slimmer and degenerate to the interval [ - 1, 1] in the limit. 
As a consequence, convergence of the quadrature rule slows down, as was observed experimentally 
in Fig. 4. 

We now have from (2.6) that 

E~(a,b;c;z) = 2~ 1 Kn(Of1(,;z)d,, 1 < p < p*. (2.13) m!cp 

To avoid the determination of max~;EcpiJf(,;z)l, which is rather cumbersome, we estimate E~ as 
follows: 

IE~(a,b;c;z)l ~ -2
1 maxiKnCOI 1 lf1(,;z)lld'l, I < p < p*. 
7C I;ECp !cP (2.14) 

Here, the integral on the right can be approximated by applying the composite trapezoidal rule to 

i 112" lf1(Cz)lld'l = 2 lf1(,;z)IV p2 - 2cos28 + p-2 d8 
Cp 0 

(2.15) 

and the maximum of the kernel can be computed numerically. 
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Table 4 
Relative error bounds for the hypergeometric function F(a, b; c;z), a= 1.5, b=0.5, c=2.5 and z=rei<P, cp=n/2, 3n/8, n/4 

r n=25 n =50 n= 100 n =200 

0.24e- 15 0.89e- 32 0.12e- 64 0.22e- 130 
0.41e- 10 0.14e- 21 0.15e- 44 0.18e- 90 
0.16e- 5 0.85e- 13 0.25e- 27 0.22e- 56 

5 0.53e- 10 0.10e- 20 0.39e- 42 0.58e- 85 
0.55e- 7 0.61e- 15 0.73e- 31 O.!Oe- 62 
0.66e- 4 0.38e- 9 0.13e-19 0.14e- 40 

10 0.29e- 7 0.47e- 15 0.12e- 30 0.84e- 62 
0.37e- 5 0.44e- 11 0.61e- 23 0.12e- 46 
0.78e- 3 0.84e -7 0.96e- 15 0.13e- 30 

20 0.31e-5 0.86e- 11 0.66e- 22 0.39e- 44 
0.97e- 4 0.50e- 8 0.13e- 16 0.96e- 34 
0.48e- 2 0.60e- 5 0.93e- 11 0.23e- 22 

50 0.16e-3 0.50e -7 0.46e- 14 0.39e- 28 
0.15e- 2 0.28e- 5 0.94e- 11 O.lle- 21 
0.24e- 1 0.33e- 3 0.59e- 7 0.20e- 14 

100 0.95e- 3 0.31e-5 0.34e- 10 0.40e- 20 
0.48e- 2 0.56e- 4 0.74e- 8 0.13e- 15 
0.48e- 1 0.24e- 2 0.52e- 5 0.25e- 10 

As an illustration, we implemented this for a = 1.5, b = 0.5, c = 2.5, and for z = 1 + rei'P with 
the same values of r and cp as in Table 3. It is found, in this case, that the maximum of Kn(O 
in (2.14) is consistently attained at the left extreme point -(p + 1/p) of the ellipse lffp. Moreover, 
using a composite trapezoidal rule on (2.15) with 100 subintervals is found to yield at least 2-3 
correct decimal digits for all p not too close to p*, specifically for p = 1 + A(p*- 1 ), A= 0.1 (0.1 )0.8. 
Invariably, the bound in (2.14) is found to decrease as ,;, increases through these values. In Table 
4, we show the error bound in (2.14) for the p-value corresponding to A= 0.8. The three vertical 
entries for each r and n correspond to the three values n/2, 3n/8, and n/4 of cp. A true optimization 
of the bound over all 1 < p < p*, similarly as was done in ( 1.19 ), is not feasible in this case, since 
the optimum seems to occur at a value of p very close to p*, for which the numerical evaluation of 
integral (2.15) becomes unreliable. Table 4 actually shows the error bound for p = I + 0.8(p* - I) 
divided by l'b{b,c)IF(a,b;c;z)l if IF(a,b;c;z)l > 1, or divided by Yb(b,c) otherwise. This represents 
a bound on the relative (resp. absolute) error of the quadrature approximation to F(a, b; c; z ); cf. the 
discussion at the end of Section I.4. 

3. Concluding remarks 

It has been shown that Gaussian quadrature applied to the integral representation of confluent 
hypergeometric and hypergeometric functions is a powerful tool to evaluate these functions in large 
domains of the complex plane. An inherent limitation of this approach is the restriction of the 
parameters a, h, and c, if they are real, to satisfying the inequalities h >a > 0 (resp. c > b > 0). The 
evaluation of these functions for other real values of the parameters can be accomplished, in principle, 
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by using appropriate recurrence relations (see, e.g., [1, Eqs. 13.4.1-13.4.7 and 15.2.1 0-15.2.27]). 
Complex values of the parameters are also accessible to our approach, but would require complex 
Gauss-Jacobi quadrature mles; see, e.g., Nuttal and WheiTy [9], who use such mles in scattering 
theory, or Theocaris and Ioakimidis [10], who use them in elasticity theory. Further investigation of 
this would be interesting, but is beyond the scope of the present paper. 
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Abstract.

Procedures are described for the high-precision calculation of the modified Bessel func-
tion Kν(x), 0 < ν < 1, and the Airy function Ai(x), for positive arguments x, as pre-
requisites for generating Gaussian quadrature rules having these functions as weight
function.
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1 Introduction.

Integrals involving modified Bessel functions Kν for ν = 1
3 and the Airy func-

tion Ai occur naturally in some physics applications (see, e.g., Gordon [5, 6]); the
weight function K0 has also found use in the asymptotic estimation of oscillatory
integral transforms (see Wong [12], Gautschi [4, Example 6.1, p. 94]). Efficient
evaluation of such integrals calls for Gaussian quadrature rules having these func-
tions as weight function. Such rules (involving up to 10 points) were already given
in [6] for the modified Bessel function K 1

3
and in [5, 9] for the Airy function. It

appears, however, that the latter are in error because of an incorrect calculation
of the relevant moments. Here we develop Gaussian quadrature formulae for both
weight functions with up to n = 40 points. The main task is to find the first n
recursion coefficients in the three-term recurrence relation for the relevant orthog-
onal polynomials. These can be obtained to arbitrary precision from the known
moments by symbolic computation, or else, to standard machine precisions, by
general procedures developed earlier in [3]. To apply these procedures, it is im-
portant to have routines that calculate modified Bessel functions and the Airy
function to high accuracy. Such routines are described in Section 2 for Bessel
functions, and in Section 3 for the Airy function. Section 4 discusses the compu-
tation of the respective Gaussian quadrature rules. An appendix contains the first
40 of the requisite recursion coefficients to 28 decimals.

∗Received December 2000. Communicated by Kaj Madsen.
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BESSEL AND AIRY FUNCTIONS AND RELATED QUADRATURES 111

2 Modified Bessel functions.

Our interest is in generating values to high accuracy of the modified Bessel
function Kν(x), where 0 < ν < 1 and x > 0, as a preparation for generating the
Gaussian quadrature rules in Sections 4.1 and 4.2. A case of particular interest
is ν = 1

3 , but the procedure we develop is applicable also for other values of ν
except those close to 0 and 1. It is not our intention, here, to develop a general-
purpose production code. There are a number of such codes available in the
literature (see, e.g., [8, Sections 4.1, 5.1]), that—like ours—are suitable also for
high-accuracy work. What we find worth observing is the apparently novel use
of integral representations and related generalized Gauss–Laguerre quadratures to
compute modified Bessel functions for moderately large, and large, real arguments.
The approach, in fact, is potentially useful also for complex arguments.
When x is relatively small, say 0 < x ≤ 2, we use, as others have done before,

the representation (cf. [1, Eq. 9.6.2])

Kν(x) =
1
2π

I−ν(x) − Iν(x)

sinπν
,(2.1)

and evaluate I±ν(x) by Taylor expansion ([1, Eq. 9.6.10])

I±ν(x) = (12x)
±ν

∞∑

k=0

(14x
2)k

k!Γ(k + 1 ± ν)
.(2.2)

If ν is close to 0 or 1, considerable cancellation occurs in the numerator of (2.1).
This could be dealt with, if deemed necessary, by special additional procedures
(cf., e.g., [10, Section II]). Here we simply assume 0.05 ≤ ν ≤ 0.95, which limits
the loss of accuracy to at most two (or three, if x is near 2) decimal digits.
For x > 2, we use the integral representation ([1, Eq. 9.6.23])

Kν(x) =

√
π

2νΓ(ν + 1
2 )

e−x

√
x

∫ ∞

0

(
2 +

t

x

)ν− 1
2

· tν− 1
2 e−tdt,(2.3)

where the integral is conveniently evaluated by generalized Gauss–Laguerre quadra-
ture with parameter α = ν − 1

2 ,

∫ ∞

0

(
2 +

t

x

)ν− 1
2

· tν− 1
2 e−tdt �

n∑

k=1

wL
k

(
2 +

tLk
x

)ν− 1
2

, x > 2.(2.4)

Here, tLk , wL
k are the nodes and weights of the generalized Gauss–Laguerre quadra-

ture rule. (The dependence on n is suppressed in the notation.) These, for ν = 1
3 ,

were generated by double-precision resp. quadruple-precision analogues of the
procedures recur and gauss of [3]. While it would be unreasonable to expect
convergence to full machine precision as n → ∞, it was found that in double and
quadruple precision, “numerical convergence” occurs to an accuracy of 10×εdble
resp. 1000×εquad, where εdble � .111×10−15, εquad � .963×10−34 are respectively
the IEEE double- and quadruple-precision machine precisions. In other words, the
approximants stabilized to these accuracies at certain values of n, which are shown
in Table 2.1.
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Table 2.1: Number of Gauss points in (2.4), with ν = 1
3
, required for double- and

quadruple-precision accuracy.

ν 0 1/6 1/3 1/2 2/3 5/6 1

n double 23 23 22 1 21 22 22

n quadruple 87 85 83 1 82 82 82

(The data is for x = 2; as x increases, n decreases.)
In many applications (including the one in Section 4.1; cf. (4.7)), it is better to

compute exKν(x). This is also the function tabulated (for ν = 1
3 ) in [11, Table

III].
We remark that our evaluation procedure is also applicable for x in the complex

plane cut along the negative real axis, but we will not pursue this here any further.

3 The Airy function.

The Airy function is related to the modified Bessel function K 1
3
as follows (cf. [1,

Eq. 10.4.14]):

Ai(x) =
1

π

√
x

3
K 1

3
(ζ), ζ = 2

3x
3
2 .(3.1)

Using (2.1) with ν = 1
3 , one gets

Ai(x) =
1

3

√
x [I− 1

3
(ζ) − I 1

3
(ζ)].(3.2)

Here, for 0 < ζ ≤ 2, i.e., 0 < x ≤ 32/3 = 2.08008 . . . , both Bessel functions can be
evaluated by Taylor expansion as in (2.2) with ν = 1

3 .
For ζ > 2, we use the integral representation (2.3) for K 1

3
in conjunction with

(3.1) to obtain

Ai(x) =
1√
π

ζ− 1
6 e−ζ

(48)
1
6Γ(56 )

∫ ∞

0

(
2 +

t

ζ

)− 1
6

· t−
1
6 e−tdt,(3.3)

with ζ as defined in (3.1). Now generalized Gauss–Laguerre quadrature is appro-
priate with Laguerre parameter α = − 1

6 . According to Table 2.1 (ν = 1
3 ), a 22-

point formula yields double-precision accuracy and a 83-point formula quadruple-
precision accuracy.
This procedure can be used also for complex x, at least in the sector | arg x| < 2

3π.

4 Gauss quadratures.

4.1 Gauss quadrature with Bessel weight function.

We define the weight function

w(x) =
2

π
cos(12νπ)Kν(x), 0 < x < ∞.(4.1)
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Its moments can be calculated explicitly by (cf. [7, 6.561.16])

µk =

∫ ∞

0

xkw(x)dx =
1

π
cos(12νπ) · 2kΓ(12 (k + 1 + ν))Γ(12 (k + 1 − ν)).(4.2)

In particular, for k = 0,

µ0 =
1

π
cos(12νπ) · Γ(12 (1 + ν))Γ(12 (1 − ν)) = 1(4.3)

by virtue of the reflection formula ([1, 6.1.17]) for Γ(z)Γ(1 − z), z = 1
2 (1 + ν).

Thus, (4.1) is a normalized weight function.
In principle, the first 2n moments µk of w can be used to generate the n-point

Gauss formula for w. It is well known, however, that this becomes quickly unstable
as n increases. A way around this problem is to employ a symbolic computation
package combined with extended-precision arithmetic. A Maple script, named
cheb.mws1, has been developed for this purpose and has been used to produce the
required recursion coefficients αk, βk (cf. (4.4) below) for 0 ≤ k ≤ 39 to as many
as 100 decimal digits2. It can be accessed at
http://www.cs.purdue.edu/archives/2001/wxg/codes/cheb.mws.
(A text file cheb.txt can be found at the same URL.)
Here, we describe a stable numerical procedure—a four-pronged discretization

procedure (cf. [4, Section 6])—that discretizes the inner product for the weight
function w and generates the corresponding discrete orthogonal polynomials. If the
discretization is chosen judiciously, the discrete orthogonal polynomials converge
to the desired ones as the discretization is made increasingly finer. The first n
recursion coefficients αk, βk in the three-term recurrence relation

πk+1(x) = (x − αk)πk(x) − βkπk−1(x), k = 0, 1, . . . , n − 1,
π0(x) = 1, π−1(x) = 0,

(4.4)

for the monic orthogonal polynomials (where β0 =
∫ ∞
0 w(x)dx) are computed by

the Stieltjes procedure ([4, Section 6.3]).
The discretization we choose makes use of a composition of the positive real axis

into three subintervals, R+ = (0, x0] ∪ [x0, x1] ∪ [x1, ∞), with x0, x1 still to be
selected such that 0 < x0 ≤ 1, 1 < x1 < ∞. In the first subinterval, the behavior
of Kν(x) for small x must be properly accounted for. One has [1, Eqs. 9.6.2 and
9.6.10]

Kν(x) =
π

2 sin νπ

{
(12 x)−ν

Γ(1 − ν)
S−ν(x) − (12 x)ν

Γ(1 + ν)
Sν(x)

}
,(4.5)

where

S±ν(x) =

∞∑

k=0

(14 x2)kΓ(1 ± ν)

k!Γ(k + 1 ± ν)
.

1This is written for Maple.Release 5.
2The author is indebted to Oscar Chinellato at the Institute for Scientific Computing of the

ETH Zurich, Switzerland, for translating a slightly edited version of our ORTHPOL routine cheb
(cf. [3]) into a Maple script.
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The two distinct behaviors x−ν and xν as x → 0 need to be treated separately
for purposes of integration. Indeed, the following composition for integrals over
(0, x0] is suggested:

∫ x0

0

p(x)Kν(x)dx =
2ν−1π

sin νπ · Γ(1 − ν)

∫ x0

0

p(x)S−ν(x) · x−νdx

− π

2ν+1 sin νπ · Γ(1 + ν)

∫ x0

0

p(x)Sν(x) · xνdx.

(4.6)

The first integral on the right is approximated by an N -point Gauss–Jacobi quadra-
ture rule relative to the interval (0, x0] with Jacobi parameters α = 0, β = −ν,
the second by a similar N -point Gauss–Jacobi rule with parameters α = 0, β = ν.
In the second interval, we apply the ordinary N -point Gauss–Legendre rule trans-
formed to the interval [x0, x1]. For the last interval, we write

∫ ∞

x1

p(x)Kν(x)dx = e−x1

∫ ∞

0

p(x1 + t)[ex1+tKν(x1 + t)] · e−tdt(4.7)

and approximate the integral on the right by an N -point Gauss–Laguerre quadra-
ture rule, the function exKν(x), x ≥ x1, being computed from the integral repre-
sentation (2.3) as discussed in the text following (2.3).
We call this a “four-pronged” discretization procedure since four different quadra-

ture rules are employed to discretize the integral
∫ ∞
0

p(x)Kν(x)dx (and with it the
inner product relative to the weight function (4.1)): two Gauss–Jacobi rules for
approximating the two integrals on the right of (4.6), the Gauss rule over [x0, x1],
and the Gauss–Laguerre rule to deal with the integral on the right of (4.7).
The parameters x0, x1 are chosen in an attempt to reduce the number N of

quadrature terms required to achieve a given accuracy. Some limited experimen-
tation suggested the choice x0 = 1 and x1 = 10. When ν = 1

3 and n = 10, then
N = 41 will yield a relative accuracy of 1000 times the double machine precision
(about 12 decimal-digit accuracy), and N = 71 a relative accuracy of 105 times the
quadruple machine precision (about 29 decimal digits). For n = 40 the respective
numbers are both N = 81.
The values of the recursion coefficients αk, βk (for ν = 1

3 ) to 28 decimal digits
are given in the appendix, Table A1, for k = 0, 1, . . . , 39. These allow us to
generate the respective Gauss and Gauss–Radau quadrature rules for up to 40
points by well-known eigenvalue/eigenvector techniques [4, Section 4]. Double- and
quadruple-precision fortran programs producing these coefficients are accessible at
http://www.cs.purdue.edu/archives/2001/wxg/codes/ in the files dOPbess.f
and qOPbess.f. The coefficients themselves to 28 decimals can be found in the file
coeffbess at the same URL. The file ORTHPOLq contains the quadruple-precision
routines of the package ORTHPOL in [3].

4.2 Gauss quadrature with Airy weight function.

We define a weight function proportional to the one in Eq. (1.4) of [9],

w(x) =
2

2
3 π

3
5
6Γ(23 )

x− 2
3 e−xAi((32x)

2
3 ), 0 < x < ∞.(4.8)

485



BESSEL AND AIRY FUNCTIONS AND RELATED QUADRATURES 115

By (3.1), one has

w(x) =
2

1
3

3Γ(23 )
x− 1

3 e−xK 1
3
(x).(4.9)

As in [9], we use [7, 6.621.3] to obtain for the moments (correctly)

µk =

∫ ∞

0

xkw(x)dx =
2

2
3
√

π

Γ(23 )

k!Γ(k + 1
3 )

(6k + 1)2kΓ(k + 1
6 )

.(4.10)

In particular,

µ0 =
2

2
3
√

π

Γ(23 )

Γ(13 )

Γ(16 )
= 1(4.11)

by virtue of the duplication formula [1, 6.1.19] for Γ(2z), z = 1
6 . Thus, the weight

function (4.8) is normalized.
The three-term recurrence relation (4.4) for this weight function can again be

obtained by symbolic computation using the Maple script cheb.mws (cf. §4.1).
Numerically, on the other hand, we may use, similarly as in Section 4.1, a three-
pronged discretization method. First, integration against the weight function is
“regularized” by means of the change of variable x �→ x3/3; thus,

∫ ∞

0

p(x)w(x)dx =
2

2
3 π

3
1
6Γ(23 )

∫ ∞

0

p(13x
3)Ai(2− 2

3 x2) · e−x3/3dx.(4.12)

The discretization is effected by using the decomposition R+ = (0, 2]∪[2, 6]∪[6, ∞)
and N -point Gauss–Legendre quadrature on the first two intervals, and N -point
Gauss quadrature relative to the weight function e−x3/3, 0 < x < ∞, on the
last interval (after transforming the integral over [6, ∞) to one over [0, ∞)). The
latter quadrature rules have been generated by a “general-purpose” discretization
method [4, p. 95]; see also [2]. In this way, when n = 10, then N = 51 (in double
precision) yields about 12-digit accuracy, N = 91 (in quadruple precision) an
accuracy of about 29 digits. For n = 40, the respective numbers are N = 81 and
N = 161.
Values of the recursion coefficients αk, βk to 28 decimal digits are given in the

appendix, Table A2, for k = 0, 1, . . . , 39. These again permit the generation of
Gauss and Gauss–Radau quadrature rules with up to 40 points. Double- and
quadruple-precision fortran programs producing these coefficients are accessible
at
http://www.cs.purdue.edu/archives/2001/wxg/codes/ in the filesdOPairy.f
and qOPairy.f. The coefficients themselves to 28 decimals can be found in the
file coeffairy at the same URL.
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A Appendix.

Recursion coefficients αk and βk for the orthogonal polynomials relative to the

weight function
√
3

π K 1
3
(x), 0 < x < ∞, are given in Table A.1.

Table A.1: Recursion coefficients for orthogonal polynomials with Bessel weight function.

k dalpha(k) dbeta(k)

0 0.5773502691896257645091487805D+00 0.1000000000000000000000000000D+01

1 0.2540341184434353363840254634D+01 0.5555555555555555555555555556D+00

2 0.4530325099277556972940619392D+01 0.3080000000000000000000000000D+01

3 0.6525263205367024754584421146D+01 0.7597308896010194711493412792D+01

4 0.8522091681572316495410571818D+01 0.1411128895064359048476764685D+02

5 0.1051987069032579681709327397D+02 0.2262328375651997214118489043D+02

6 0.1251820534200411842698661310D+02 0.3313393449511827909015205175D+02

7 0.1451689745070847589982540347D+02 0.4564360198457644797420242203D+02

8 0.1651583533890971294501705203D+02 0.6015251169387165444574183086D+02

9 0.1851495070370021650146786956D+02 0.7666081512279027237029582199D+02

10 0.2051419913459637659996186934D+02 0.9516861964153151276420251970D+02

11 0.2251355035096639733155330055D+02 0.1156760045129536402241437743D+03

12 0.2451298290692544758973945221D+02 0.1381830301661429736830519992D+03

13 0.2651248113403138074584401742D+02 0.1626897438888321271102896829D+03

14 0.2851203328421788988619681952D+02 0.1891961834909268127004429781D+03

15 0.3051163035337998449498607362D+02 0.2177023797559084152522105542D+03

16 0.3251126530928971516451325688D+02 0.2482083581355438536773868170D+03

17 0.3451093256931540393887725062D+02 0.2807141399544099117867506745D+03

18 0.3651062763776024473491489160D+02 0.3152197432866833050342266185D+03

19 0.3851034684821817685385767070D+02 0.3517251836077464523819711369D+03

20 0.4051008717681441792603844069D+02 0.3902304742873398067597234709D+03

21 0.4250984610438625709490911393D+02 0.4307356269688528086704175367D+03

22 0.4450962151314044127608953558D+02 0.4732406518652590307625711171D+03

23 0.4650941160804019999493643228D+02 0.5177455579930047052041031595D+03

24 0.4850921485622134798647588526D+02 0.5642503533590167393634950613D+03

25 0.5050902993974754185328926380D+02 0.6127550451118075040591250302D+03

26 0.5250885571836803795271883128D+02 0.6632596396647438874918855282D+03

27 0.5450869119986848180007865562D+02 0.7157641427974924632092938047D+03

28 0.5650853551625092002779691310D+02 0.7702685597401779256832448017D+03

29 0.5850838790443559309423523307D+02 0.8267728952437190489066061745D+03

30 0.6050824769050409076746501085D+02 0.8852771536390157066778742762D+03

31 0.6250811427674077725581328007D+02 0.9457813388870707655384939225D+03

32 0.6450798713090365394190828550D+02 0.1008285454621685966632728510D+04

33 0.6650786577728518444594287897D+02 0.1072789504186032141840176389D+04

34 0.6850774978922060972058434023D+02 0.1139293490664133569567757833D+04

35 0.7050763878277471470954744945D+02 0.1207797416908104118798814682D+04

36 0.7250753241139409466091921010D+02 0.1278301285561814669842441005D+04

37 0.7450743036135516422801459683D+02 0.1350805099081546598221771377D+04

38 0.7650733234787168021992493344D+02 0.1425308859754087068026168299D+04

39 0.7850723811175176515929034805D+02 0.1501812569712642681574641394D+04
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Recursion coefficients αk and βk for the orthogonal polynomials relative to the

weight function 22/3π
35/6Γ(2/3)

x− 2
3 e−xAi

(
(32x)

2
3

)
, 0 < x < ∞, are given in Table A.2.

Table A.2: Recursion coefficients for orthogonal polynomials with Airy weight function.

k dalpha(k) dbeta(k)

0 0.1428571428571428571428571429D+00 0.1000000000000000000000000000D+01

1 0.1110508830215072565133764644D+01 0.6750392464678178963893249608D-01

2 0.2103923262303366469719046650D+01 0.6176435520631454946477366322D+00

3 0.3100612923619468060204041749D+01 0.1665222369579728763993598104D+01

4 0.4098522990053350300259677356D+01 0.3211665437933813301442673108D+01

5 0.5097048017912237952211191366D+01 0.5257439791428266998569894003D+01

6 0.6095934772142735289405067651D+01 0.7802762871816141245078916230D+01

7 0.7095055742615174969695761115D+01 0.1084775582766331463731785213D+02

8 0.8094338704979790304572522853D+01 0.1439249405127950300891982957D+02

9 0.9093739247462993136699966123D+01 0.1843702812922128928773098512D+02

10 0.1009322834609956529095674925D+02 0.2298139391050911313320103004D+02

11 0.1109278611899427796389513021D+02 0.2802561787656439530189513139D+02

12 0.1209239842573524183149667965D+02 0.3356972023701598312985079015D+02

13 0.1309205489613779605430552664D+02 0.3961371682566247092476763052D+02

14 0.1409174772819666777679886468D+02 0.4615762031917471854658917880D+02

15 0.1509147092378366705795857263D+02 0.5320144105213568478003200469D+02

16 0.1609121978528171983953788068D+02 0.6074518758045262957376738563D+02

17 0.1709099057396944013793558492D+02 0.6878886708190032036430935116D+02

18 0.1809078027208983877445351834D+02 0.7733248564781360694249859341D+02

19 0.1909058641334036072040544031D+02 0.8637604849999474726610235545D+02

20 0.2009040695967678119625359998D+02 0.9591956015498898485337591888D+02

21 0.2109024021017825188614733837D+02 0.1059630245505277814479273789D+03

22 0.2209008473255468030080111379D+02 0.1165064451442633467187277061D+03

23 0.2308993931093330244858796206D+02 0.1275498249918669408772461453D+03

24 0.2408980290553974280008571454D+02 0.1390931668095257606646414852D+03

25 0.2508967462119770022815575463D+02 0.1511364730244838704145147093D+03

26 0.2608955368245429586520635128D+02 0.1636797458163074470540297192D+03

27 0.2708943941374431823158236292D+02 0.1767229871508726145735111346D+03

28 0.2808933122342959521382761789D+02 0.1902661988085847580652764775D+03

29 0.2908922859084928131852207332D+02 0.2043093824079820406036281648D+03

30 0.3008913105573190129755639056D+02 0.2188525394256132521262541885D+03

31 0.3108903820947633067457385995D+02 0.2338956712128841886680652998D+03

32 0.3208894968792388105605120154D+02 0.2494387790104189467091905899D+03

33 0.3308886516532915095237870707D+02 0.2654818639603698571811680251D+03

34 0.3408878434930151025223927020D+02 0.2820249271170230956579194238D+03

35 0.3508870697653776378539261556D+02 0.2990679694559797076870358157D+03

36 0.3608863280920376927294370407D+02 0.3166109918821391090615739319D+03

37 0.3708856163185149561174724958D+02 0.3346539952366705633992391624D+03

38 0.3808849324878032081407976838D+02 0.3531969803031251160025604749D+03

39 0.3908842748176883766030660897D+02 0.3722399478128140407767669942D+03
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Abstract.

The use of Gaussian quadrature formulae is explored for the computation of the
Macdonald function (modified Bessel function) of complex orders and positive argu-
ments. It is shown that for arguments larger than one, Gaussian quadrature applied to
the integral representation of this function is a viable approach, provided the (nonclas-
sical) weight function is suitably chosen. In combination with Gauss–Legendre quadra-
ture the approach works also for arguments smaller than one. For very small argu-
ments, power series can be used. A Matlab routine is provided that implements this
approach.

AMS subject classification (2000): 33-04, 33C10, 65D15, 65D32.

Key words: Macdonald function, modified Bessel function, complex order, Gauss
quadrature approximation, Matlab software.

1 Introduction.

The Macdonald function (or modified Bessel function) Kν(x) with complex or-
der ν = α + iβ and positive argument x > 0 is of some importance in a number
of applied areas. Little attention, nevertheless, seems to have been paid to de-
veloping computational procedures and software for this function, except when
the order ν = iβ is purely imaginary. In this case a variety of methods have
been studied in [3] for extended domains of the (x, β)-plane; related software is
available in [6]. Generally, among the most prominent methods used to compute
special functions are power series expansions, asymptotic expansions, and con-
tinued fractions. Here we promote the use of numerical quadrature, a technique
often neglected in the literature; see, however, [9, Ch. IV, §6] and [5].

The point of departure is the pair of integral representations [1, Eq. 9.6.24]

(1.1)

Re Kα+iβ(x) =

∫ ∞

0

e−x cosh t cosh αt cosβt dt,

Im Kα+iβ(x) =

∫ ∞

0

e−x cosh t sinh αt sin βt dt.

� Received December 2004. Accepted April 2005. Communicated by Tom Lyche.
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Clearly, it suffices to consider α ≥ 0 and, in view of the recurrence relation for Kν

(which is stable in forward direction of ν), 0 ≤ α < 2. Large values of β give rise
to rapid oscillations and hence to numerical difficulties. A proper computational
treatment of this case, either by asymptotics or deformation of the path of inte-
gration, is beyond the scope of this paper. Instead we shall assume 0 ≤ |β| ≤ 10.
With α and β thus restricted, a numerical quadrature procedure will be devel-
oped which is effective for essentially all x > 0 of practical interest. A Matlab
implementation of the procedure yields at least 9, and usually more, correct
significant digits (except near zeros), and a quadruple-precision Fortran routine
about 26 digits or more. To make our routine applicable also when |β| > 10, we
rely, in this case, on the symbolic Matlab mfun-routine BesselK.

In trying to use numerical integration in (1.1), one has to be cognizant of the
extremely rapid decay of the first factor in the integrands as t → ∞. We shall
deal with this by employing Gaussian quadrature relative to the weight function
w(t) = exp(−et) on [0, ∞]. This turns out to be effective when x is not small,
say x ≥ 1. Naturally, these quadrature formulae are not classical and must be
generated numerically. Suitably decomposing the interval of integration into two
parts, [0, ∞] = [0, c] ∪ [c, ∞], and using Gauss–Legendre quadrature over the
first, and the newly generated Gaussian quadratures over the second interval,
allows us to deal also with considerably smaller values of x, say x ≥ .01. Power
series expansions can be used for values of x still smaller.

Parameter values of particular interest are α = 0 and α = 1
2 , which yield the

kernels in the ordinary and modified Kontorovich–Lebedev integral transforms,
respectively [2, Ch. 3, §3], [7]. These in turn have been used for the solution of
Dirichlet and other boundary value problems in wedge-shaped domains.

In §2 we discuss how the new Gaussian quadrature formulae can be generated.
In §3 we develop the computational procedure for x ≥ 1, in §5 for .01 < x < 1,
and in §7 for 0 < x ≤ .01. Numerical results will be presented in §§4 and 6, plots
of Kiβ and K1/2+iβ in §8.

All pieces of software referenced in this paper, including the Matlab package
OPQ, can be downloaded from the web site

http://www.cs.purdue.edu/archives/2002/wxg/codes/

2 Gauss quadrature with weight function w(t) = exp(−et) on [0, ∞].

We need to construct the orthogonal polynomials with respect to the weight
function w, that is, the coefficients αk, βk in the three-term recurrence relation

(2.1)
πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1,

satisfied by the orthogonal polynomials πk( · ) = πk( · ; w). Once these coefficients
are known, the n-point Gauss formula for w,

(2.2)

∫ ∞

0

f(t)w(t)dt =
n∑

ν=1

λG
ν f(τG

ν ) + RG
n (f),
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is readily obtained in terms of eigenvalues and eigenvectors of the n × n Jacobi
matrix

(2.3) Jn(w) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α0

√
β1 0

√
β1 α1

. . .

. . .
. . .

√
βn−1

0
√

βn−1 αn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Indeed (cf. [4, §3.1.1.1]), τG
ν are the eigenvalues of Jn and λG

ν = β0v
2
ν,1, where

β0 =
∫ ∞
0 w(t)dt and vν,1 is the first component of the normalized eigenvector vν

corresponding to the eigenvalue τG
ν .

To compute Jn(w) and β0, we apply a multiple-component discretization
method ([4, §2.2.4]) based on the decomposition [0, ∞] = [0, .75] ∪ [.75, 1.5] ∪
[1.5, 3]∪ [3, ∞] and the use of Fejér quadrature rules as a general-purpose means
of discretization. This is implemented in the following Matlab routine using the
package OPQ; the weight function w has to be properly identified at the end of
the file quadgp.m.

global mc mp iq idelta irout DM uv AB
N=100; eps0=.5e-12;
mc=4; mp=0; iq=0; idelta=2; Mmax=900;
AB=[[0 .75];[.75 1.5];[1.5 3];[3 Inf]];
[ab,Mcap,kount]=mcdis(N,eps0,@quadgp,Mmax);

The choices made of N and eps0 led to Mcap=801 and kount=6 iterations. The
results are stored in the N×2 array abmacdonald. The routine

load -ascii abmacdonald;
xw=gauss(n,abmacdonald);

then produces the n-point Gauss formula (n≤ N) with the nodes and weights
stored in the first resp. second column of the n×2 array xw.

More accurate values of the first 100 recurrence coefficients, produced by
a quadruple-precision Fortran program, are provided to 30 decimal digits in
the file qabmacdonald.

3 The function Kν(x) for x ≥ 1.

The rapidly decaying factor exp(−x cosh t) in (1.1), as already mentioned,
ought to be treated as a weight function. To avoid its dependence on x, we
write

(3.1) e−x cosh t = e− 1
2xet · e− 1

2xe−t

= e− 1
2x · e− 1

2 x(et−1) · e− 1
2xe−t
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and define a new variable u by

(3.2) 1
2x(et − 1) = eu − 1,

so that 0 ≤ u ≤ ∞ when 0 ≤ t ≤ ∞. Letting

(3.3) h(u) = 1 +
(

1
2x − 1

)
e−u,

one computes

(3.4)

e−x cosh t = e1− 1
2xe−eu

e− 1
4x2e−u/h,

coshαt = 1
2 (2h/x)αeαu

(
1 + (2h/x)−2αe−2αu

)
,

cosβt = cosβ(u + ln(2h/x)),

dt = du/h,

with a similar formula for sinh αt having a minus sign in place of the plus sign.
Consequently, from (1.1),

(3.5)

Re Kα+iβ(x) = 1
2 (2/x)αe1− 1

2x

∫ ∞

0

e−eu

f(u)du,

Im Kα+iβ(x) = 1
2 (2/x)αe1− 1

2x

∫ ∞

0

e−eu

g(u)du,

where

(3.6)
f(u) = eαu− 1

4x2e−u/hh−(α+1)
(
h2α + (xe−u/2)2α

)
cosβ(u + ln(2h/x)),

g(u) = eαu− 1
4x2e−u/hh−(α+1)

(
h2α − (xe−u/2)2α

)
sin β(u + ln(2h/x)),

with h = h(u) defined in (3.3). Thus, both integrals in (3.5) can be evaluated by
the Gauss formulae developed in §2.

4 Numerical results for x ≥ 1.

Given x ≥ 1 and (without restriction of generality) β ≥ 0, we need to de-
termine the smallest order n of the Gauss quadrature rule that yields results
to a prescribed relative accuracy ε0 when applied to (3.5). For ε0 = 1

2 × 10−9,
numerical experiments were conducted with α = 0 : 1

2 : 2, β = 0 : 10, and
selected values of x between 1 and 100. They revealed that relatively low-order
Gauss formulae suffice to achieve the desired accuracy. The number n of Gauss
points required has consistently been ≤ 29 and usually much smaller. This is
illustrated in Table 4.1 for a typical value of β and the two values α = 0, α = 1

2 .
The integers nr and ni refer to real and imaginary part, respectively.

It thus appears that in the range x ≥ 1, 0 ≤ α < 2, 0 ≤ β ≤ 10, a 30-point
Gauss formula will be adequate throughout. This formula is stored in the 30×2
array xwmacdonald.
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Table 4.1: Gauss quadrature for the integrals in (3.5).

β α x nr ni Re Kα+iβ(x) Im Kα+iβ(x)

5.00 0.00 1.00 19 2 3.80461828e–04 0.00000000e+00
5.00 14 2 3.18591025e–04 0.00000000e+00

10.00 14 2 5.27812177e–06 0.00000000e+00
20.00 14 2 3.11005908e–10 0.00000000e+00
50.00 16 2 2.66182488e–23 0.00000000e+00

100.00 21 2 4.11189777e–45 0.00000000e+00
0.50 1.00 19 18 6.75850406e–04 2.64552074e–04

5.00 14 14 2.85418288e–04 1.66486655e–04
10.00 13 14 5.18618578e–06 1.30924941e–06
20.00 14 15 3.10593229e–10 3.84530876e–11
50.00 16 18 2.66517386e–23 1.32270773e–24

100.00 21 22 4.11574681e–45 1.02447087e–46

The same cannot be said for smaller values of x. Indeed, the required order n
of Gauss quadrature increases rapidly with decreasing x. The difficulty is caused,
in part, by the behavior of the function 1/h in (3.6), which for small x exhibits
a steep boundary layer in the vicinity of u = 0.

In the next section we show how the difficulty can be resolved.

5 The function Kν(x) for x < 1.

The idea is to split the integral into two parts and use Gauss–Legendre quadra-
ture on one, and our special Gauss formula on the other. Thus, with c a fixed
constant (which will be determined presently), we write

(5.1) Re Kα+iβ(x) =

(∫ c

0

+

∫ ∞

c

)
e−x cosh t coshαt cosβt dt,

and similarly for the imaginary part. In the second integral, we change variables,
t �→ τ + c, so that

∫ ∞

c

e−x cosh t coshαt cosβt dt =

∫ ∞

0

e−x cosh(τ+c) coshα(τ + c) cos β(τ + c)dτ.

Similarly as in §3, we write the first factor on the right in the form

e−x cosh(τ+c) = e− 1
2xeτ (cosh c+sinh c)− 1

2xe−τ (cosh c−sinh c)

= e− 1
2xeceτ · e− 1

2xe−ce−τ

,

or, with

(5.2) ξ = xec,

in the form
e− 1

2 ξ · e− 1
2 ξ(eτ −1) · e− 1

2 ξe−2ce−τ

.
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This looks exactly like (3.1) and suggests the new variable u defined by

(5.3) 1
2 ξ(eτ − 1) = eu − 1.

Letting η(u) = 1 + (1
2 ξ − 1)e−u and carrying out a computation analogous to

that in (3.4) yields
∫ ∞

c

e−x cosh t coshαt cosβt dt = 1
2 (2/ξ)αe1− 1

2 ξ+αc

∫ ∞

0

e−eu

ϕ(u)du,

where

ϕ(u) =

eαu− 1
4 ξ2e−2ce−u/η η−(α+1)

(
η2α + (ξe−(u+c)/2)2α

)
cosβ(u + ln(2η/ξ) + c)du.

Likewise,
∫ ∞

c

e−x cosh t sinh αt sin βt dt = 1
2 (2/ξ)αe1− 1

2 ξ+αc

∫ ∞

0

e−eu

γ(u)du,

where

γ(u) =

eαu− 1
4 ξ2e−2ce−u/η η−(α+1)

(
η2α − (ξe−(u+c)/2)2α

)
sin β(u + ln(2η/ξ) + c)du.

This is very much like (3.5) and (3.6). Since x = 1 was an admissible value
before, we expect ξ = 1 to be admissible now. Therefore, we define c from (5.2)
to be c = ln(1/x) and obtain

∫ ∞

c

e−x cosh t coshαt cosβt dt = 1
2 (2/x)αe

1
2

∫ ∞

0

e−eu

ϕ1(u)du,

∫ ∞

c

e−x cosh t sinh αt sin βt dt = 1
2 (2/x)αe

1
2

∫ ∞

0

e−eu

γ1(u)du,

with

(5.4)
ϕ1(u) = eαu− 1

4 x2e−u/η1 η
−(α+1)
1

(
η2α
1 + (xe−u/2)2α

)
cosβ(u + ln(2η1/x)),

γ1(u) = eαu− 1
4 x2e−u/η1 η

−(α+1)
1

(
η2α
1 − (xe−u/2)2α

)
sin β(u + ln(2η1/x)),

and

(5.5) c = ln(1/x), η1 = 1 − 1
2e−u.

Eqs. (5.4) are the same as Eqs. (3.6), if in the latter h is replaced by η1.
The first integral in (5.1) is written as

∫ c

0

e−x cosh t coshαt cos βt dt = c

∫ 1

0

e−x cosh(τc) cosh(ατc) cos(βτc)dτ,
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and similarly for the imaginary part. Therefore, altogether,

(5.6)

Re Kα+iβ(x) = c

∫ 1

0

e−x cosh(τc) cosh(ατc) cos(βτc)dτ

+ 1
2 (2/x)αe

1
2

∫ ∞

0

e−eu

ϕ1(u)du,

Im Kα+iβ(x) = c

∫ 1

0

e−x cosh(τc) sinh(ατc) sin(βτc)dτ

+ 1
2 (2/x)αe

1
2

∫ ∞

0

e−eu

γ1(u)du,

with ϕ1, γ1 defined in (5.4) and c in (5.5). We now apply Gauss–Legendre quadra-
ture on [0, 1] to the first integrals in (5.6), and our Gauss formula of §2 to the
second.

6 Numerical results for .01 < x < 1.

Numerical experimentation for values of α and β as in §4 and selected values
of x between .01 and 1 revealed that 30-point Gauss rules of both types yield
the same, if not better, accuracy achieved earlier. It turns out, however, that the
two parts on the right of (5.6) have a tendency to cancel each other, more so the
larger β. We illustrate this in the typical case of β = 5 and α = 0, α = 1

2 . The
degree can of cancellation between two numbers is measured by the logarithm
(to base 10) of the ratio of the absolutely larger of the two numbers divided
by the absolute value of their (algebraic) sum. This measure roughly indicates
the number of decimal digits lost, owing to cancellation. Results are shown in
Table 6.1.

Table 6.1: Gauss quadrature for the integrals in (5.6).

β α x ReKα+iβ(x) ImKα+iβ(x) canr cani

5.00 0.00 1.0000 3.80461828e–04 0.00000000e+00 0.000 0.000
0.5000 –4.24117148e–04 0.00000000e+00 1.804 0.000
0.1000 –2.37141870e–05 0.00000000e+00 3.674 0.000
0.0500 –1.15770402e–04 0.00000000e+00 2.895 0.000
0.0100 –3.89483091e–04 0.00000000e+00 2.406 0.000

0.50 1.0000 6.75850406e–04 2.64552074e–04 0.000 0.000
0.5000 –8.39993536e–04 –5.72771511e–04 1.587 1.793
0.1000 1.47550860e–03 –1.57009337e–03 2.106 1.764
0.0500 –2.70500618e–03 1.43843540e–03 1.862 2.141
0.0100 –2.02652762e–03 –6.58012217e–03 2.424 1.682

Apart from cancellation, the Gauss rules with 30 points yield 12–14 correct
digits uniformly for .01 ≤ x ≤ 1 and 0 ≤ β ≤ 10. This higher accuracy of the
Gauss quadratures more than compensates for the loss of accuracy caused by
cancellation.
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7 The function Kν(x) for 0 < x ≤ .01.

To compute Kν(x) for small values of x, we combine

(7.1) Kν(x) =
π/2

sin νπ
(I−ν(x) − Iν(x)), ν �∈ N,

with the first three terms of the well-known power series expansion of I±ν . Mak-
ing use of the reflection formula for the gamma function,

Γ(ν)Γ(1 − ν) =
π

sin νπ
,

one obtains

(7.2)

Kν(x) =
1

2

(x

2

)−ν
{

Γ(ν)

[
1 +

x2

4(1 − ν)
+

x4

32(1 − ν)(2 − ν)

]
+ O(x6)

+
(x

2

)2ν

Γ(−ν)

[
1 +

x2

4(1 + ν)
+

x4

32(1 + ν)(2 + ν)
+ O(x6)

]}
.

Since we assume Re ν < 2, the second expression in curled brackets is significant.
When ν = 1, we compute K1(x) directly from [1, Eq. 9.6.11], using only the first
three terms in the power series involved,

(7.3)
K1(x) =

1

x
− x

2
ln(2/x)

[
1 + 1

8x2 + 1
192x4

]

−x

4

[
1 − 2γ + 1

8

(
5
2 − 2γ

)
x2 + 1

192

(
10
3 − 2γ

)
x4

]
+ O(x6 ln(1/x)),

where γ = .57721 . . . is Euler’s constant. When ν = 0, the analogous result
follows from [1, Eqs. 9.6.12 and 9.6.13],

(7.4) K0(x) = (ln(2/x) − γ)
(
1 + 1

4x2 + 1
64x4

)
+ 1

4x2 + 3
128x4 + O(x6 ln(1/x)).

Naturally, when ν is very close to 0, 1, or 2, and x not very small, some cancel-
lation must be expected to occur in (7.2).

A Matlab routine named macdonald.m for computing Kα+iβ(x) is provided on
the web site mentioned at the end of §1. It has been tested against selected 7-
digit values of the tables in [8] and [10], as well as against the Matlab (symbolic)
mfun-routine BesselK. The required 30-point Gauss–Legendre rule is stored in
the 30×2 array xwleg01. We also prepared a quadruple-precision Fortran rou-
tine qmacdonald.f which, for x ≥ .0001, provides answers to about 26 correct
decimal digits. It requires 55- resp. 60-point Gauss rules, which are provided in
the arrays xg, wg resp. xgl, wgl in the common statement of the program. They
must be read in from the file qxwmcdleg by the calling program. For an example,
see the program qmcd.f and its calling sequence qmcd.

8 Plots of Kiβ and K1/2+iβ.

While for large x the modified Bessel function Kν(x), for fixed (real or com-
plex) ν exhibits exponential decay [1, Eq. 9.7.2],
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(8.1) Kν(x) ∼
√

π

2x
e−x, x → ∞,

the behavior near x = 0 is more complicated, as follows from (7.2).

β = 1/2 β = 1

β = 2 β = 5

Closeups near x = 0 in the cases β = 2 and β = 5:

Figure 8.1: The function Kiβ(x).

The dense oscillations near x = 0, typical in all cases, pose interesting questions
as to good methods of calculating the Kontorovich–Lebedev integral transforms.
We hope to address this problem in future work.
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Re K1/2+iβ β = 1/2 Im K1/2+iβ

Re K1/2+iβ β = 1 Im K1/2+iβ

Re K1/2+iβ β = 2 Im K1/2+iβ

Re K1/2+iβ β = 5 Im K1/2+iβ

Figure 8.2: The function K1/2+iβ(x).
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Section 14.1]. Technical properties, especially inequalities, for these polyno
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spherical approximation. In this paper inequalities are studied related to the 
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The special Jacobi polynomials with f3 =a- I are considered in Section 2, 
with inequalities for the largest zeros being discussed in Section 2.1, and in
equalities for the scaled polynomials in Section 2.2. In Section 3, the analogous 
problems, and a variation thereof, for general Jacobi polynomials are taken up. 
Some special cases that can be proved rigorously are mentioned in Section 4. 

2 Special Jacobi polynomials 

2.1 Largest zeros 

Let x<al =cos 0)<al 0 < e<al < n: be the largest zero of the Jacobi polynomial 
n n ' n ' 

p~a,a-ll(x), a > 0. Our conjecture relates to the inequality 

neCal < (n + l)C~(al 
n n+l' (2.1) 

From the interlacing property of the zeros of orthogonal polynomials it is 
known that the sequence {0)~a)} is monotonically decreasing. Inequality (2.1), 
if true, places a limit on the relative decrement, (C~~aJ- 8~~ 1 )/8~~ 1 < 1jn. 

Conjecture 1 Given a > 0, there are two alternatives: either (2.1) holds for all 
n = 1, 2, 3, ... , or (2.1) is false for n = 1. In other words, the validity of (2J) for 
n = 1 implies the validity of(2.l) for all n :=:: 1. 

Numerical evidence for Conjecture 1 was obtained with the help of the 
Matlab package OPQ available on the web site http://www.cs.purdue.edu/ 
archivcs/2002/wxg/codes. The following routine is at the core of the verification 
effort: 

ab=r_jacobi(n+l,a,a-1); 
for k=l:n 
xw=gauss(k,ab); xwl=gauss(k+l,ab); 
theta=acos(xw(k,l)); thetal=acos(xwl(k+l,l)); 
if k*theta >= (k+l)*thetal 

[k*theta, (k+l) *thetal], a, k, error ('conjecture 1 false') 
end 

end 

The first command generates the recursion coefficients for the special Jacobi 
polynomials, which are used in the routine gauss to compute the nodes and 
weights of the respective Gaussian quadrature rules. Only the nodes, stored 
(in increasing order) in the first column of the array xw resp. xwl are of 
interest here. 

When the verification routine is run with n = 100 and a= [0.5: 0.01 : 
l, 1.1:0.1: 10, 10.5: 0.5: 20], the error statement is never invoked. On the 
other hand, when a= 0.5: -0.01 : 0.01, the error message appears with a= 
0.13, n =I, and likewise, when a= 0.14: -0.0001:0.13, it appears with 
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a = 0.1350, n = l. It thus appears that Conjecture 1 is true, and that inequality 
(2.1) holds for all n =:: 1 and for all a > a0 , where 0.1350 < a0 < 0.1351. In 
order to determine a0 more precisely, we examine the case n = 1. 

From the recurrence relation for Jacobi polynomials (see, e.g., [6, 
eqn ( 4.5.1)]) one finds 

Therefore, 

Pia.a-l)(x) = ~ ((2a + l)x + 1), 

4Pia.a-l)(x) =(a+ 1) ((2a + 3)x2 + 2x- 1). 

(a) 1 
x, =- 2a + 1' 

X (a)-
2 - -:---;:;:===:: ' 

1 + J2a +4 

1 

and (2.1) for n = 1 is equivalent to 

arccos (- - 1-) < 2 arccos 1 , 
2a + 1 I + J2a + 4 

or, using arccos( -t) = n -arccos(!), equivalent to 

1 1 
2 arccos + arccos -- - n > 0. 

1 + J2a + 4 2a + 1 

(2.2) 

(2.3) 

(2.4) 

The left-hand side is a strictly increasing function of a, negative for a= 0 and 
tending to tn as a~ oo. Therefore, if a0 is the unique root of 

I 
2 arccos + arccos -- - .JT = 0, 

1 + J2a + 4 2a + 1 
(2.5) 

then (2.4), and hence (2.1) for n = 1, holds exactly if a > a0 • Using the Matlab 
routine fzero, one finds 

ao = 0.13507978085964. (2.6) 

Thus, if Conjecture 1 is true, then (2.1) holds for all n =:: 1 precisely if a > a0 . 

2.2 Scaled polynomials 

For the remainder of this paper, we use the abbreviated notation 

_ p~a,fl) (x) 
P:_a./3) (x) ·- (2.7) 

n .- p~a,fl) (1) · 

The conjecture for the Jacobi polynomials themselves involves the in
equality 

j5<a.a-i) (cos~) < j5<a.a-i) (cos _e_) . 
n n n+i n + 1 

With notation as in Section 2.1 we consider two intervals fore, 

0 < () < e~a), and 0 < () < JT' 

(2.8) 

(2.9) 
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where 

1 cos e(O') = x(a) = ----
1 1 2a+ I 

(2.10) 

Conjecture 2 Given a > 0, there are two alternatives for each of the two in
tervals (2.9): either (2.8) holds for all n = 1, 2, 3, ... and all (J in the respective 
interval, or (2.8) is false for n = 1 and some (J in the respective interval. In other 
words, the validity of (2.8) for n = I implies the validity of (2.8) for all n ::: 1. 

The verification routine for Conjecture 2 is a bit more intricate than the one 
for Conjecture 1. Its core is shown below. 

ab=r_jacobi(n+l,a,a-1); 
thl=acos(-1/(2*a+l)); 
% thl=pi; 
for nu=l:N 

end 

th=nU*thl/(N+l); 
for k=l:n 

x0=1; X=COS(th/k); y=cos(th/(k+l)); 
pO=O; pOl=l; px=O; pxl=l; py=O; pyl=l; 
for r=l:k+l 

pOml=pO; pO=pOl; pxml=px; px=pxl; pyml=py; py=pyl; 
p0l=(x0-ab(r,l))*P0-ab(r,2)*P0ml; 
pxl=(x-ab(r,l))*px-ab(r,2)*pxml; 
pyl=(y-ab(r,l))*PY-ab(r,2)*pyml; 

end 
if px/pO >= pyl/pOl 

[px/pO, pyl/pOl] , a, k, nu, error(' conjecture 2 false') 
end 

end 

Run with n = 100, N = 1000, and a as in Section 2.1, the routine for the 
tlrst interval of (2.9) produces the same results as in Section 2.1, provided N 
is increased toN= 5000 for the last set of a-values. Conjecture 2 thus appears 
to be true, and inequality (2.8) valid for 0 < () < eial precisely if a > a0 . In 
the case of the second interval 0 < e < :rr, the tlrst set of a-values, when N = 
1000, again produces no error message, the second set, with N = 5000, an error 
message with a= 0.28, n = 1, and a 0.29: -0.001 : 0.28 an error message 
with a = 0.280, n = 1. Inequality (2.8) for the second interval thus seems to 
hold if a > a 1, where 0.280 < a1 < 0.290. 

To get more precise information, we analyze the case n = I, i.e., 

(2.11) 
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From (2.2), we have 

pia a-l) (2a + 1) cosO+ 1 
I , (cosO)= 2(a + 1) ' 

~(a,a-1) ( a)- (2a + 3) cos2 ~ + 2cos ~- 1 p2 cos- - ' 
2 2(a + 2) 

so that (2.11), using cos e = 2 cos2 ! - 1, becomes 

ry 2 a a 2 (1 + 5a + 2a•) cos 2 - 2(1 +a) cos 2 + (1 - 3a - 2a ) < 0, 

or, simplifying, 

a 
u :=cos-. 

Since u - 1 < 0 on either interval (2.9), this is the same as 

(1 + 5a + 2a2)u - (1 - 3a - 2a2 ) > 0, 

or, since 1 + 5a + 2a2 > 0, 

1- 3a- 2a2 

u > ? ' 1 + 5a + 2a-

e 
u :=cos 2' 

2 

Consider first the interval 0 < e < e~a). Then (2.13) holds precisely if 

(i:-)(a) 

COS-1- = 
2 

1 +cos (.<)~a) = J a . > I - 3a- 2a2 

2 2a + 1 1 + 5a + 2a2 · 

Using the Matlab routine fzero, one finds 

a> ao, 

where, interestingly, a0 is exactly the same as in (2.6). 
On the second interval 0 < e < n, we have (2.13) precisely if 

i.e., if 

n 1- 3a- 2a2 
cos- = 0 > -----:-

2 1 + 5a +2a2 ' 

l 
a > a1 = - ( .Jfi- 3) = .28077640640442. 

4 

221 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

In summary, ~f Conjecture 2 is true, then the inequality (2.8) holds for all n 2:: 1 
on the first interval (2. 9) precisely if a > a0, and on the second interval precisely 
if a > a 1, where a0, a 1 are given by (2.6) and (2.16), respectively. 

We remark that by squaring (2.14) and removing the root a= -1, one finds 
that a0 is the smallest positive root of the quartic equation 

(2.17) 
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The same equation can be obtained from (2.5), written in the form 

2arccos 1 =arccos (--1-). 
I + ,J2a + 4 2a + I 

(2.18) 

Indeed, observing that 2arccost = arccos(2t2 - 1), (2.1H) implies 

2 1 
~(J-+-Jr.2=a=+=4 )--;;-2 - 1 = - -2a_+_1 ' 

or 

a(1 + J2a +4)2 = 2a +I. 

By an elementary calculation, this yields (2.17). 

3 General Jacobi polynomials 

3.1 Largest zeros 

We now denote by x~~.fJ) =cos E<)i~·/Jl, 0 < e~a,fi) < n, the largest zero of the 
Jacobi polynomial P;~·fil(x), a> I, f3 > -1. We consider the inequality 
analogous to (2.1 ), 

(3.1) 

The case a = f3 = -I j2 of Chebyshev polynomials is exceptional here, since 
Gn = n j2n, and both sides of (3.1) are identically equal ton j2. 

Using an obvious extension of the Matlab routine in Section 2.1, we are led 
to conjecture: 

Conjecture 3 Given a > -I, f3 > -1, there are two alternatives: either (3.1) 
holds for all n = 1, 2, 3, ... , or (3.1) is false for n = 1. In other words, the 
validity of (3.1) for n = 1 implies the validity of (3.1) for all n :=::: I. 

It is known that 

lim ne(a.{J) = /a)' 
11---"00 n l 

(3.2) 

where Jial is the first positive zero of the Bessel function lex (cf. [6, Theorem 
8.1.2]). Conjecture 3, if true, then states that the validity of (3.1) for n = 1 
implies that convergence in (3.2) is monotone increasing. 

The following is our evidence for Conjecture 3. Running the (extended) ver
ification routine of Section 2.1 with n up to 100, and for each a= 1.01 : 0.01 : 
1.2, 1.3:0.1: 5.0, 6: 1:20 for f3 = -0.99:0.01: -0.80, -0.7:0.1: 0.0, I: 1: 
20, no error message was encountered, suggesting that the inequality (3.1) 
holds for all n :=::: 1 in the infinite domain a > 1, f3 > -1. When one 
takes a = 0.9 : -0.1 : -0.9, however, and for each of these a goes through 
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f3 = 20: -1 :0,-0.1: -0.1 : -0.9, -0.89: -0.01 : -0.99, -0.999, then an er
ror message appears, always with n = 1, for the following pairs of values (a, f3): 

aj 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

f3 l-0.999 -0.999 -0.99 -0.98 -0.97 -0.95 -0.92 -0.90 -0.9 -0.9 

a -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 
f3 -0.8 -0.8 -0.7 -0.6 -0.5 -0.5 -0.4 -0.3 -0.2 

The results suggest that in the strip -I < a < 1, f3 > -1, there exists a curve, 
monotonically decreasing from 0 to -1, above which (3.1) holds for all n :::: 1, 
and below which inequality (3.1) fails for n = 1. We will compute this curve 
more accurately when, as we now begin to do, the case n = 1 is examined. 

In analogy to (2.2), we find 

I 
Pia.fJ)(x) = 2 ((a+ f3 + 2)x +a- f3), 

SPia.fJ) (x) = (a + f3 + 3)(a + f3 + 4)x2 + 2(a + f3 + 3)(a f3)x 

+(a - f3) 2 - (a+ f3 + 4), (3.3) 

from which 

x(a,fJ) - - a - f3 
1 - a+f3+2' 

x~a.fJ) = 1 [-(a -f3) + 2 2 + af3 - 2 ] . (3.4) 
a+f3+4 a+f3+3 

Inequality (3.1 ), therefore, analogously to (2.5), can be given the form 

2arccos (, + ~ + 4 [-(a- fi)+2 2+ a~ fi-: 3 ]) 

a-f3 + arccos - rr > 0. 
a+f3+2 

(3.5) 

When a= f3 = -~, this gives 2~ + 1}- rr = 0, i.e., equality in (3.1), as was 
already noted above. The same is true for a = 1 and f3 ~ -1, and for a > 1 
and f3 ~ oo. When a > I is fixed, and f3 increases from -1 to oo, the graph of 
(3.5) sharply increases from a positive value to a maximum and then decreases 
monotonically to zero, so that (3.5) holds for all a > I, f3 > -1, in agreement 
with what was found numerically above. 

When -1 < a < 1 is fixed, the equation in f3 resulting from replacing 
inequality in (3.5) by equality, can be solved numerically by the Matlab routine 
fzero. This produces the curve shown in Fig 1. Inequality (3.1) for n = 1 
thus holds in the region above this curve, and, together with ( -1 < a < 1, f3 > 
0) U (1 <a < oo, f3 > -1), this is the region of validity of the inequality for all 
n :::: 1 if Conjecture 3 is true. 
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o~---.----.-----.----.-----.-----,----,,----.----.----, 

-o.1 

-o.2 

-o.3 

-0.4 

-o.s 

-o.6 

-0.7 

-o.a 

-o.9 
-1L_--~-----L----~--~----_L ____ J_ ____ L_ __ _I~===b--~ 

-1 -o.a -0.6 -o.4 -o.2 0 0.2 0.4 0.6 0.8 

Fig. 1 The boundary curve of the domain of validity for (3.1) 

The graph also sheds new light on the result found in Section 2.1: If the 
inequality is to be true for (a, f3 = a - 1 ), then the point of intersection of 
the line f3 = a - 1 with the boundary curve of Fig. 1 determines a0. Setting 
f3 =a - 1 in (3.5) and replacing the inequality sign with the equality sign 
indeed yields (2.5). Similarly, if f3 =a, the point of intersection of the line 
f3 =a with the curve yields a = -~, as is easily verified. Inequality (3.5) thus 
holds for f3 =a > -!,and therefore, if Conjecture 3 is true, inequality (3.1) 

in the ultraspherical case f3 =a holds for all a > -!. It is actually known to 
hold for-! <a< ! in the sharperform (n +a+ !)811 < (n +a+ ~)8n+I; cf. 
[6, Section 6.3(5), p. 127]. However, this sharper inequality ceases to hold 
when a::::~. 

3.2 Scaled polynomials 

The inequality to be studied here is 

j5<a,f3l (cos ~) < p<a.f3l (cos _e-.) , 
n n n+l n + 1 

with P defined by (2. 7), on either of the two intervals 

o < e < e~a,fll, o < e < n, 

where 

cos e<a./3) = x(a,fJ) = - a - f3 
I I a+f3+2 

(3.6) 

(3.7) 

(3.8) 

We note again the exceptional case a = f3 = -1/2, in which both sides of (3.6) 
are identically equal to cos e. 
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Conjecture 4 Given a > -1, f3 > -1, there are two alternatives for each of 
the two intervals (3.7): either (3.6) holds for all n = 1, 2, 3, ... and all e in the 
respective interval, or (3.6) is false for n = 1 and some() in the respective interval. 
In other words, the validity of (3.6) for n = I implies the validity of (3.6) for all 
n?;:l. 

Since 

p(a.fl)(l) = (n +a) "' . na as n ~ oo, 
11 n f(a +I) 

the result in [6, Theorem 8.1.1] can be rephrased in the form 

lim p~a.fll cos- = r(a + 1) - la(B), _ ( e) (e)-a 
n-+oo n 2 

(3.9) 

where la is the Bessel function of order a. Therefore, Conjecture 4, if true, 
states that the validity of (3.6) for n = I implies that convergence in (3.9) is 
monotone increasing. 

The Matlab script of Section 2.2 is easily adapted to deal with the conjecture 
(3.6) for general Jacobi polynomials. When run with the same data as used to 
verify Conjecture 3, with n = 100 and N = 1000, similar results were obtained 
as in Section 3.1, i.e., a strong indication that (3.6) holds on either interval 
(3.7) for all n ?: 1 whenever a > I and f3 > -I, while for a in the interval 
(-I, 1) the same is true for f3 above a certain curve that extends from the point 
(a, {3) = ( -1, 0) down to the point (a, {3) = (1, -1). For f3 below that curve, the 
conjecture fails consistently when n = 1. As will be seen, the initial part of this 
curve, for -1 < a < -4, is the straight line f3 = -a - 1. 

This all will become more clear by analyzing (3.6) in the case n = 1, 

P~a,/3) (COS()) < P~a.fl) (COS ~) . 

From (3.3) we first note that 

and 

where 

N(a, 0) 

P-(a,/3) (a + f3 + 2) cos e +a - f3 
I (cos 0) = ---'--2-(-'--a-+-1 )----'---

p(a./3) ( ()) N(a, 8) 
2 cos 2 = -4(_a_+_l )-(a_+_2_) ' 

e = (a+ f3 + 3)(a + f3 + 4) cos2 2 
() 

+ 2(a + f3 + 3)(a - {3) cos 2 +(a - {3) 2 - (a + f3 + 4). 

The inequality (3.10) then becomes, after simplification, 

(3.10) 

(u- I)[(3a2 + 2af3 + 9a- {3 2 + f3 + 4)u + a2 + 2af3 + {3 2 + 3a + 7 f3 + 4] < 0, 
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with u as in (2.13). Again, since u- 1 < 0 on either of the two intervals (3.7), 
the inequality to be studied is 

(3a2 + 2a{3 + 9a - {3 2 + f3 + 4)u + a 2 + 2af3 + {3 2 + 3a + 7{3 + 4 > 0, e . 
u :=cos-. (3.11) 

2 

Lemma 3.1 Let a, b be real numbers, and consider the inequality 

au + b > 0 on uo < u < 1, uo ~ 0. (3.12) 

If a+ b ~ 0, then (3.12) is always true except when a= b = 0 or a > 0, b < 0, 
and uo < -b ja. If a+ b < 0, then (3.12) is never true. 

Proof Immediate on geometric grounds. 

We now apply Lemma 3.1 to (3.11), i.e., to 

Here, one computes 

a = 3a2 + 2af3 + 9a - {32 +/3 + 4, 

b = a2 + 2af3 + {3 2 + 3a + 7 f3 + 4. 

a+ b = 4(a + 2)(a + {3 + 1). 

D 

(3.13) 

Since a+ 2 > 0, inequality (3.11) is false on either of the two intervals (3.7) if 
a + j3 + I < 0. In the case a + {3 + I ~ 0 it is false if a = b = 0, which implies 
a= {3 =-~,or if 

a> 0, b < 0, and uo < -b fa, 

with a, b as defined in (3.13). The curve b = 0 is given by 

7 1 
f3 = -a - - + - 116a + 33 -1 < a < 1. 2 2y --' 

(3.14) 

By plotting the respective curves in the (a, {3)-plane, one finds that b < 0 
combined with a + j3 + 1 ~ 0 and {3 ~ - 1, cuts out the domain D shown in 
Fig. 2. Inequality (3.11) thus holds for all (a, {3) located above the upper 
boundary curve of D and to the right of the line a + {3 + 1 = 0, and for those 
(a, {3) in the interior of D precisely if u0 > -b ja in (3.14). On the first interval 
(3.7), this will be true precisely if 

e<a.,B) 

uo = cos-1- = 
2 

a 2 + 2af3 + {3 2 + 3a + 7{3 + 4 
>--~-----~~----

3a2 + 2af3 + 9a - {3 2 + {3 + 4 · 
(3.15) 
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0.2 .------,----,---,------.---.---.------,.------,----,---, 

0 

-0.2 

a=O a+P+1=0 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

Fig. 2 The boundary curves for the domain of validity of (3.10) 

This is the curve plotted inside the domain D of Fig. 2, above which 
inequality (3.11) is true, and below which it is false. This, together with the 
discussion above, completely delineates the domain of validity of (3.10) on the 
first interval (3.7). On the second interval we have u0 =cos I = 0, and the third 
inequality in (3.14) is a consequence of the other two. Thus, (3.10) is false in 
all of D, and the domain of validity of (3.10) is the region above the upper 
boundary of D, to the right of the line a+ fJ + 1 = 0, and of course bounded 
by the lines a = -1 and fJ = -1. If Conjecture 4 is true, the same domains of 
validity hold for the inequality (3.6). 

We remark that the special case fJ =a- 1, a> 0, turns (3.15) into (2.14), 
and the inequality b > 0 into (2.16). Likewise, the line fJ =a, a> -1, passes 
through the point (-~, -4) where all the curves in Fig. 2 intersect. Conse
quently, (3.10), and if Conjecture 4 is valid, (3.6), is true for all fJ =a > -4· 
Koumandos (2005, personal communication), in fact, has shown that (3.6) is 
true whenever Ia I= lfJI = 4 except for a= fJ = -4. 

In order to lend still more credence to the validity of Conjecture 4, we ran 
the (extended) Matlab routine of Section 2.2 with (a, {3) slightly above and 
below (at a distance of .01 from) the boundary curves of the domain of validity 
for (3.10). As expected, no error message appeared when (a, {3) is above the 
boundary curve, and error messages consistently with n = 1 otherwise. {Only 
in the case of u0 = 0, the maximum value of n had to be lowered ton= 50 to 
obtain sufficient numerical resolution along the straight part of the boundary 
curve). 
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3.3 An alternative conjecture 

Examination of the graphs of P~a.Pl (cos*) for numerous values of a, f3 and 
n suggests that Conjectures 3 and 4 can be combined into the following 
conjecture. 

Conjecture 5 Given a > -1, f3 > -1, if (3.6) holds for n = 1 and 0 < () ~ 
eia,PJ, then (3.6) holds for 0 < (j ~ ne;:x·p) for all n = 1' 2, 3, .... 

If (3.6) holds for () = ne1a,p) then we have 

and therefore ne~a.P> < (n + I)e~:~>. In other words, if the premise of 
Conjecture 5 is true, then the conjecture implies (3.1). 

To gain confidence in Conjecture 5, the verification routine of Section 2.1 
was further modified. Following is the core of the Matlab routine used to verify 
Conjecture 5. 

~Springer 

ab=r_jacobi(n+l,a,b); 
thl=n*pi; Nn=N*n; 
negpx=zeros(l,n); 
pl=zeros(l,n+l); pO=O; p01=1; xO=l; 
for r=l:n+l 

pOml=pO; pO=pOl; 
p01=(x0-ab(r,l))*P0-ab(r,2)*P0ml; 
pl(r)=p01; 

end 
for nu=l:Nn 

th=nU*thl/(Nn+l); 
for k=l:n 

if negpx(k) == 0 
X=COS(th/k); Y=COS(th/(k+l)); 
px=O; pxl=l; py=O; pyl=l; 
for r=l:k+l 

pxml=px; px=pxl; pyml=py; py=pyl; 
pxl=(x-ab(r,l))*px-ab(r,2)*PXml; 
pyl=(y-ab(r,l))*PY-ab(r,2)*Pyml; 

end 
if px < 0 

negpx (k) nu; 
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else 
if px/pl(k) >= pyl/pl(k+l) 

[px/pl (k) ,pyl/pl (k+l)], a, b, k, th, ... 
error('conjecture 5 is false') 

end 
end 

end 
end 

end 

(To avoid overflow when a + f3 + 2 > 128, the statement defining mu in 
the routine r _jacobi . m was modified by evaluating the expression involving 
the gamma function by first taking its logarithm and then exponentiating the 
result). 

This routine was run with N = 15, n = 128 and the following values of a 
andb: 

1. a= 211 - 1,b = 2v -1, with J-L, v E {-1, -0.9, ... ,6}, 
2. aE {-0.95, -0.9, ... , -0.55}, b=2v- 1, withvE{-1, -0.9, ... , 6}, subject 

to a+ b + 1 > 0, 
3. bE {-0.95, -0.9, ... , -0.55}, a= 211 -1, with 1-i E {1, 1.1, ... , 6}, 
4. bE {-0.95, -0.9, ... , -0.55}, a= 21'- 1, with 1-i E {-1, -0.9, ... , 0.9}, 

subject to a = a, b = f3, such that a + f3 + 1 > 0, f3 < -a - ~ + 
1 ,JI6a + 33 and (3.15) holds. 

In all cases, the error message was not seen. 

4 Partial results 

Apart from the result of Szego [6, Section 6.3(5), p. 127] and Koumandos (2005, 
personal communication), referred to above, the inequalities (3.1) and (3.6) 
are so far known to hold.in only a few cases. 

For the case where (a, {3) lies in the square(-!, !)2, the inequality (3.1) 
can be proven for n ~ 2 either as a result of the inequalities of Gatteschi [1, 
Theorem 1.5, p. 1550], or directly using a version of the Sturm comparison 
theorem as formulated by Szego [5, p. 3]. 

The paper [2] uses a different formulation of the Sturm comparison theorem 
to show that (3.6) holds for n ~ I, a ;:?: f3 > -1,0 < e ~ I· 

References 

I. Gatteschi, L.: New inequalities for the zeros of Jacobi polynomials. SIAM J. Math. Anal. 18, 
1549-1562 (1987) 

2. Leopardi, P.: Positive weight quadrature on the sphere and monolonicities of Jacobi polynomi
als. Numer. Algor. doi:1 0.1 007/sll075-007-9073-7 (2007) 

~Springer 

515



230 Numer Algor (2007) 45:217-230 

3. Reimer, M.: Hyperinterpolation on the sphere at the minimal projection order. J. Approx. 
Theory 104, 272-286 (2000) 

4. Reimer, M.: Multivariate polynomial approximation. Internat. Ser. Numer. Math. 144, (2003) 
(Birkhiiuser, Basel) 

5. Szego, G.: Inequalities for the zeros of Legendre polynomials and related functions. Trans. 
Amer. Math. Soc. 39,1-17 (1936) 

6. Szego, G.: Orthogonal Polynomials, vol. 23, 4th edn. Colloquium Publications, Amer. Math. 
Soc., Providence, RI (1975) 

~Springer 

516



 
9.16. [190] “On a conjectured inequality for the largest zero of Jacobi 
polynomials” 
 
 
 
[190] “On a conjectured inequality for the largest zero of Jacobi polynomials,” Numer. 
Algorithms 49, 195–198 (2008). 
 
© 2008 Springer. Reprinted with kind permission of Springer Science and Business Media. 
All rights reserved. 
 

517



Numer Algor (2008) 49:195-198 
DOl 10.10071s11075-008-9207-6 

On a conjectured inequality for the largest zero 
of Jacobi polynomials 

Walter Gautschi 

Received: 18 March 2008 I Accepted: 9 April 2008 I 
Published online: 22 May 2008 
© Springer Science + Business Media, LLC 2008 

Abstract P. Leopardi and the author recently investigated, among other things, the 
validity of the inequality ne~a,fJ) < (n + 1 )e~~fl between the largest zero Xn =cos e~a,fJ) 

d e (a,fJ) f h J b' 1 · 1 p(a,fJ) (· ) p(a,fJ) ( ) 1 an Xn+1 =cos n+l o t e aco 1 po ynom1a n x resp. n+I x , a > - , 
f3 > -1. The domain in the parameter space (a, {3) in which the inequality holds 
for all n ~ 1, conjectured by us, is shown here to require a small adjustment-the 
deletionofaverynarrowlens-shapedregioninthesquare{-1 <a< -1/2, -1/2 < 
f3 < 0}. 

Keywords Jacobi polynomials· Zeros· Inequalities 
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1 Introduction 

Let x~a,fJ) = cos fJ~a,fJl be the largest zero of the Jacobi polynomial P~a,fJ) (x), where 
a > -1, f3 > -1. In (3, §3], the following inequality was considered, 

ne<a,fll < (n + 1 )O(a,fll 
n n+l • (1) 

where the case a = f3 = -1/2 is to be excluded, since both sides of (1) are then equal 
to rr/2. It was conjectured that the validity of (1) for n = 1 implies the validity of 
(1) for all n ~ 1. Using an asymptotic result of L. Gatteschi, we show here that the 
conjecture is false in a small subregion of the square -1 < a < -1 f2, - 1/2 < f3 < 0, 
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but believe it to remain valid in the rest of the parameter plane. A revised conjecture 
is formulated. 

2 The conjecture and its disproof 

Based on a fair amount of numerical testing, the following conjecture was formulated 
in [3, §3]. 

Conjecture Given a > -1, f3 > -1, there are two alternatives: either (1) holds for all 
n = 1, 2, 3, ... , or ( 1) is false for n = 1. In other words, the validity of ( 1) for n = 1 
implies the validity of ( 1) for all n :::: 1. 

In order to delineate the conjectured domain of validity of ( 1 ), we defined a curve 

!3: f3=f3(a), -1<a<l, (2) 

monotonically descending from the point (-I, 0) to the point (I, -1 ), above which 
(1) is true for n = 1 (and hence for all n :::: 1 if the conjecture is true), and on 
and below which (1) is false for n = l. Specifically, f3 = f3(a) is the solution of 
the equation 

2arccos ( I [-(a- {3) + 2 2 + af3- 2 ]) 
a+f3+4 a+f3+3 

a-{3 
+arccos - JT = 0. 

a+f3+2 
(3) 

The asymptotic behavior for large degree n of the zeros of Jacobi polynomials 
(ordered decreasingly) has been studied extensively by L. Gatteschi (see also the 
paper [2] in this issue). A particular result that is relevant to us holds for the kth 
zero, where k is fixed, and specialized to the case k = 1 reads as follows [1, Theorem 
4.1 ]: If a > -1 and f3 > -1 (actually, f3 could be arbitrary real), then 

n ___,. oo, 

where jet.! is the first positive zero of the Bessel function J a and 

[( 
a+ f3 + I)2 1 -a2- 3{32]1/2 

v = v(n) = n + 2 + 12 

From this, it follows that 

e(a,fl) 
1l 

e(a,fl) 
n+l 

Expanding the function 

[ 
2 . liP ( 1 a+{J+3) l-a 2-3fl1 

v(n + 1) + 2n + 12n2 

v(n) - (t + a+{!+ I ) 2 + l-a2-3,B2 
2n 12n2 

fJ Springer 

(4) 

(5) 
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in descending powers of n, using Maple V, one finds 

e (a,fi) 1 
- 11- = I + n-1 - -(a+ f3 + I)n-2 
(:)(a,f,) 2 

n+l 

Theorem If a+ f3 + 1 > 0, the inequality (l) is valid for n sufficiently large. If a+ 
f3 +I = 0, the same is true when (a, {3) is located on the open line segment from ( -1, 0) 
to ( -1/2, -1/2), but for large enough n is false on the half-open line segment from 
( -1/2, -1/2) (inclusive) to (0, -1). If a+ f3 + 1 < 0, the inequality (1) is false for n 
sufficiently large. 

Proof Inequality (l) can be written in the form 

(:)(a,p) 
n l + -1 
(a,p) < n . 

(:)n+l 
(7) 

From ( 6) it can be seen that the ratio on the left of (7), if a + f3 + I > 0, is less than 
I + n-1 if n is sufficiently large, so that (7), and thus also (1 ), is true for such values 
of n. This proves the first part of the theorem. To prove the second part, we have 
to examine the coefficient of n-3 on the right of (6) in the case that f3 =-a- I, i.e. 
the expression ~(2a + l)(a + 1). The latter, under the assumption that a> -1, is 
negative precisely if a < -1/2. This proves the second part of the theorem, while the 
last part follows by the same argument used in the first part. o 

In order to disprove the conjecture, all we need to show is that the domains a + 
f3 + l < 0 and f3(a) > 0 have a nonempty intersection S in the square { -1 <a < 
0, -1 < f3 < 0}. But this becomes evident if we look at the graph of f3 = -a - 1 -
f3(a) shown in Fig. l. Indeed, if we pick a point (indicated by a circle in Fig. 1) at the 
center of the positive bulge of this graph, which corresponds to the point a= -.75, 

Fig. 1 The graph of 
fi = -a - 1 - fJ(a) 

0.05 

-0.05 

-0.1 

-0.15 

-0.2 '----'---'---'---~---"---'----'--'---'-----' 
-1 -0.9 -0.8 -o. 7 -0.6 -0.5 -0.4 -0.3 -0.2 -o. 1 0 

a 
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fJ = !(fJ(a)- a - 1) ~ -.2638 inS, we find that the inequality (1) is true for n = 1 
and n = 2, but false for 3 ~ n ~ 100. In our earlier testing we somehow missed the 
intersectionS, which is so slim as to be barely visible by the naked eye; see [3, Fig.1]. 

3 A revised conjecture 

We conclude with formulating our new conjecture. 

Revised Conjecture With the exception of the point a = fJ = -1/2, the domain of 
validity in the (a, fJ)-plane of the inequality (1) for all n :=::: 1 is the subdomain Vof all 
admissible {(a, {J) : a > -1, fJ > -1} bounded below by the line segment c] from the 
point(-1,0) to (-1/2, -1/2), thepartC2 ={(a, {J): fJ = {J(a), -1/2 ~a < l} ofthe 
curve B, and the line C3 = {(a, {J) : 1 ~a < oo, fJ = -1 }. 

In effect, the only difference between the original and the revised conjecture is 
the replacement of the curved segment {(a, {J): fJ = {J(a), -1 <a< -1/2} in the 
original boundary of the domain of validity by the line segment from ( -1, 0) to 
( -1/2, -1/2). In particular, Conjecture 1 of [3] relating to the Jacobi polynomials 
p~a,a-1) remains unaffected by this change, and so does the conjecture for ultras
pherical polynomials p~a,a). 

It may be of interest to compare some of the statements in our theorem with actual 
computational results. On the line segment C1 (which forms part of the boundary 
of D), the inequality (1) according to the theorem holds for n sufficiently large. 
Computation suggests that it holds for all n ::::: 1. Likewise, on the continuation of 
the line segment, from (-1/2, -1/2) to (0, -1) (which is not part of the boundary 
of D), inequality (1) by our theorem is false for n sufficiently large. Computation 
suggests that it is false for all n ::::: 1. 

References 

l. Gatteschi, L.: On the zeros of Jacobi polynomials and Bessel functions. In: International confer
ence on special functions: theory and computation (Turin, 1984). Rend. Sem. Mat. Univ. Politec. 
Torino (Special Issue), pp. 149-177 (1985) 

2. Gautschi, W., Giordano, C.: Luigi Gatteschi's work on asymptotics of special functions and their 
zeros. Numer. Algorithms. doi:10.l007/s1l075-008-9208-5 

3. Gautschi, W., Leopardi, P.: Conjectured inequalities for Jacobi polynomials and their largest 
zeros. Numer. Algorithms 45(1-4), 217-230 (2007) 

~Springer 
521



9.17. [191] “On conjectured inequalities for zeros of Jacobi polynomials” 
 
 
 
[191] “On conjectured inequalities for zeros of Jacobi polynomials,” Numer. Algorithms 
50, 93–96 (2009). 
 
© 2009 Springer. Reprinted with kind permission of Springer Science and Business Media. 
All rights reserved. 
 

522



Numer Algor (2009) 50:93-96 
DOl 10.1007/sl1075-008-92l7-4 

On conjectured inequalities for zeros 
of Jacobi polynomials 

Walter Gautschi 

Received: 15 May 2008 I Accepted: 26 May 2008/ 
Published online: 27 June 2008 
© Springer Science + Business Media, LLC 2008 
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extensive computation. 
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1 Introduction 

Let x~;fi> = cos e~~/3>, r = 1, 2, ... , n, be the zeros in descending order of the 
Jacobi polynomial p~a./3), 

0 < e<a./3) < e<a./3) < ... < e<a./3) < Tl. 
n,l n,2 n,n (1) 

The object here is to determine (numerically) the domain of validity in the 
(a, fi)-plane of the inequalities 

n e<a./3) < (n + 1) e<a./31 ) r = 1, 2, ... , n. (2) n,r n+ ,r• 

For r = 1, this was done in [2] and slightly revised in [1]. Since in this case, i.e., 
for r fixed, the inequality (2) can be proven to hold for all sufficiently large 
values of n in the conjectured domain of validity, this domain does not in any 
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way depend on n. If we include all values of r, as in (2), this will no longer 
be true. On the contrary, the set of inequalities (2), especially the one for 
r = n, appears to be false for all n sufficiently large in extended portions of the 
(a, fi)-plane. Thus, if we assume 1 ::; n ::; N, the domain of validity of (2) will 
depend on N. We will consider the cases N =50, N = 100, and N = 200, and 
on the basis of the results obtained, conjecture that as N -+ oo there is a limit 
domain in the (a, fi)-plane in which the inequalities (2) hold unrestrictedly 
for all n. 

We begin in Section 2 with focusing on the smallest zero, r = n, in the case 
of ultraspherical polynomials, b~fore dealing with the general case and general 
Jacobi polynomials in Section 3. 

2 Ultraspherical polynomials 

We let a = fi = 'A - 1/2 and denote e,i~;fll = e~~). We may assume 'A > 0, since 
we know from [2] that this is necessary for (2) to hold when r = 1. Suppose 
now that r = n. By symmetry, 

gO-) = JT - g(A) and 
n,n n,l 

so that (2) for r = n takes the form 

1. (A) (A) (3) 
(n + ) en+l,2- n en, I <Jr. 

In the special case 'A= 1 one has en, I = nj(n +I), en+I.z = 2nj(n + 2), and the 
left-hand side of (3) becomes 

n2 + 2n + 2 
----- JT < JT. 
(n+ 1)(n+2) 

Here, (3) is valid for all n :::: 1. Numerical computation suggests that the same 
is true for 0 ::; 'A ::; 1. 

For each of the three cases N (= maxn) =50, 100,200, we now let 'A in
crease from 1 in steps of ~'A = .1 until a 'A = 'A* is found for which (3) is 
false for some n ::; N. Then a method of bisection is applied to the interval 
['A* - ~'A, 'A*] in order to zero-in to a more accurate value 'A = 'A0 and interval 
(0, 'Ao] in which (3) holds for all n ::; N. This is implemented in the Matlab 
routine uspconj . m, which uses uspineq. m. (These routines, as well as 
the others referenced in this note, can be downloaded from the web site 
http://www.cs.purdue.edu/archives/2002/wxg/codes by clicking on CIZJP.) For 
the values a0 = 'Ao - 1/2 it is found that 

a0 = 2.2009763331 if N = 50, 

a0 = 1.0605211988 if N = 100, 

ao = .7412587491 if N = 200. 

A set of 1000 points randomly selected in (0, 'Ao] was then successfully tested 
to add further credence for the desired property (3) to indeed hold in (0, 'A0 ]. 
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3 General Jacobi polynomials 

We adopt the following strategy to explore the general case of Jacobi polyno
mials P~a,fil, a > -1, {3 > -1, with 1 ::5 n ::5 N and N as in Section 1. We first 
determine, in a-steps !::.a = .02, that the inequalities (2) (always for n ::5 N) 
are valid on the horizontal line segment 1i ={(a, {3): -.5 <a ::55, {3 = -.5} 
as well as on the downward diagonal segment K = {(a, {3) : -1 < a < - .5, {3 = 
-a- 1}. Next, consider the vertical lines La with abscissae a= -.5 : D.a : 5 
and denote by Lt [L;_;-] the part of La above [below] IC resp. H. On each Lt 
we move upwards from K resp. 1i in steps of D.f3 = .I until a point (a, {3*) is 
encountered for which one of the inequalities is false. (Invariably, it turned 
out to be the one for r = n, n ::5 N.) Thereafter, similarly as in Section 2, 
we apply a method of bisection on the {3-interval [{3* - D.f:J, {3*] to determine 
a more precise value {30 so that on the vertical line segment L; bounded 
above by the point (a, {30 ) all inequalities (2) are valid for n ::5 N. This gives 
rise to the slightly concave curves BN shown in Fig. 1 for N =50, 100,200. 
(When N = 200, to avoid excessive computing times, we checked only the last 
inequality in (2) for r = n.) 

We know from [1] that vertically below K the inequality (2) for r = I is false 
for all n sufficiently large. Therefore, it remains to examine the line segments 
L;_;- for a > - .5. Here we do the same as for L;, but moving downwards in 
steps of D.f3 = .02. This gives rise to the curves eN, also shown in Fig. 1. 

All of this is implemented in the routine testconj . m, which uses 
j acconj . m and ineq. m. Some of the control commands in the second of 
these routines must be adapted, as indicated by commented-out statements, to 
whether the curves !3N or eN are to be computed, and in the former case also 
to whether or not -1 < a ::5 - .5. 

The domain of validity of (2) for I ::5 n ::5 N is thus the domain D N bounded 
above by !3N, on the left by the vertical segment at a = -1 between !3N and 
K, and below by K followed by eN. As seen in Fig. 1, the curves BN and eN 

Fig. 1 Domains of validity 
of (2) 4 
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________________ Cso-200 
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turn downward resp. upward with increasing N. Very likely they tend toward 
horizontal lines fJ = ±.5 as N ~ oo. If so, the inequalities (2) are expected to 
be valid for all n in the horizontal stripS= {(a, fJ) :a > -1, lfJI :::::; .5} cut off on 
the left by the line segment K, and, as always, with the point ( -.5, -.5) removed. 
This is consistent with the findings in Section 2 for ultraspherical polynomials, 
and in fact was partially (checking only the last inequality in (2)) reinforced 
for N = 500 on 100 points selected randomly in the strip {(a, fJ): -.5::::; a::::; 
20, ifJ I ::::: .5}. 
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tion) in considerably larger domains of the (a, ,B)-plane. 
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1 Introduction 

Inequalities for the largest zero of Jacobi polynomials, recently conjectured by 
Leopardi and the author [5], and slightly revised in [2], have been extended 
by us in (3] to all zeros of Jacobi polynomials. They state that for each 
r = 1, 2, ... , n the sequence {ne~~;fil} in an appropriate domain D of the (a, ,B)
plane is monotonically increasing, where cos e~~;.f!) = x~~/l are the zeros in 
descending order of the Jacobi polynomial P~a,fl\x). When r =:::: 1 is fixed, 
this sequence tends to the rth positive zero of the Bessel function la, and 
convergence is monotone increasing in D if the conjecture is true. In the 
theory of Jacobi polynomials and their zeros, it is often observed that the 
factor n + (a + ,8 + 1) /2 is more natural than n, and therefore Askey (Email 
of May 13, 2008) asked the author to examine computationally whether similar 
inequalities hold with the factor so modified, and in what domains D. Here we 
report on the results of these investigations. 

W. Gautschi (0) 
Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-2066, USA 
e-mail: wxg@cs.purdue.edu 
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2 A preliminary asymptotic result 

Explorative computations suggested that the inequalities to be studied should 
be 

(n +(a+ fJ + 1)/2)e1;~fil > (n +(a+ fJ + 3)/2)81;:~.~-· r = 1, 2, ... , n. (1) 

We first examine what to expect if r is fixed and n -+ oo. 
Using a result of Gatteschi [ 1, Thm. 4.1] (cf. also [ 4, Section 5.6]), we found 

in [2, eq (6)] that for r fixed, there holds, as n -+ oo, 

()(a./3) 1 
...!!:!.__ = 1 + n-1 - -(a+ f3 + 1 )n-2 e (a.{l) 2 

n+l.r 
I + 6 (2a2 + 3afJ + 3{J2 + 3a + 3fJ + I )n-3 + 0 (n-4) , (2) 

where a > 1 and fJ can be arbitrary real. The inequality in (1) can be written 
as 

eA~:m 1 +<a+ fJ + 3)/(2n) 
-- > ----'-----'---
e<a.fi) 1 +(a+ fJ + l)/(2n) 

n+l.r 

1 l = 1 + n-1 - 2(a + f3 + l)n-2 + 4(a + fJ + 1)2n-3 + O(n-4 ). (3) 

We have agreement of this expansion with the one in (2) up to, and including, 
the n-2 term, whereas the inequalities in [2] give agreement only up to the n-1 

term. Comparing (3) with (2), we see that the inequality (1) with r fixed holds 
for all sufficiently large n if 

I 7 I ( 2 ') ) 4(a + fJ + 1)- < 6 2a + 3a,B + 3{3- + 3a + 3,8 + I , 

that is, if a 2 + 3{32 > 1, and is false for all n sufficiently large if a 2 + 3,82 < 1. 
We conclude that, if (l) is to hold for all nand all r, then (a, {J) must be outside 
the ellipse 

(4) 

or possibly on the ellipse. Note, however, that the four points with Ia I= lfJI = 
1/2, which are all located on the circumference of £, are exceptional in that 
equality holds in ( 1) for all n and r. 

3 First conjectures 

When testing inequalities computationally, it is of course difficult to decide 
whether two real numbers x, y are almost equal, or exactly equal, if we only 
know their computed (in Matlab arithmetic) values x*, y*, respectively. In 
formulating our conjectures, we therefore adopted the following "working 
definition": For a small positive t: (close to machine precision), we say that 
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xis computationally equal toy (in formula, x ~ y) if lx* - y*l < c: regardless 
of whether x* < y* or x* ~ y*, that x is computationally less than y (x ~ y) if 
x* < y* and lx* - y*l ~ c:, and that xis computationally larger than y (x;. y) 
if x* > y* and lx* - y*l ~e. As for ordinary order relations, also their compu
tational analogues form a trichotomy. For our present computations in Matlab, 
We take 8 = 2 X 10-10• 

Our first conjectures relate to values of a and f3 for which the point (a, {3) is 
located in the interior of the ellipse £ of ( 4), 

(a, {3) E int(£). (5) 

For such points we know from Section 1 that the inequality (1) is false for n 
sufficiently large. We conjecture it to be false for all n ~ 1, at least in a large 
portion of £. 

Conjecture 1 For (a, {3) E R?12, where R?12 ={(a, {3): lal ~ 1/2, lf31 ~ 1/2, 
a 2 + {32 i- 1 /2} c int(£), the inequality (1) holds with > replaced by < for all 
n = 1, 2, 3, .... 

Conjecture 1 was tested, using the same software as in [2, 3, 5], for all n 
with 1 ~ n ~ 100 and was verified for all grid points a = ih, f3 = jh, i, j E N, 
h = .01 contained in R?12. We also note that Conjecture 1 is consistent with 
the "remarkable property" ([6, Section 6.3(5)]) that the inequality (1) with 
< instead of > holds for a = f3 = ).. - 1/2, 0 < ).. < 1, i.e., on the open line 
segment from the point (-1/2, -1/2) to the point (1/2, 1/2) lying entirely 
in R?12• The proof of this property, given in [6], is by a Sturm comparison 
theorem. 

Conjecture 2 In the parts of the ellipse £ adjoining R?12 on the left and on the 
right, including the boundaries, the inequality (1) holds for all n = 1, 2, 3, ... 
with > replaced by ~ . 

This conjecture was tested similarly as Conjecture 1. Occasionally, points 
(a, {3) and values of n and r were encountered for which the two sides of 
the inequality are computationally equal (in the sense defined above). We 
therefore cannot exclude the possible occurrence of equality, for which reason 
equality sign is included in the conjecture. 

In the remaining parts of £ (on top and bottom of R?12 ) either inequality 
sign in (1) was observed, and therefore no general statement can be made for 
these regions, except for the two boundaries of£, where (l) holds with~ sign. 

4 Main conjecture 

Our main conjecture, however, concerns the inequalities as stated in (1). 
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Main Conjecture The inequalities ( 1) hold in the four rectangular regions 
(shaded in Fig. 1 and extending to infinity in both the a- and {3-directions) having 
a vertex in one of the four points with Ia I = 1/31 = 1/2, including the boundaries 
lying in a > -1, f3 > -1, but excluding (as already mentioned in Section 2) the 
four vertices on the ellipse&. 

The conjecture was verified computationally for 1 :::; n :::; 100 and for a- and 
{3-valuesin [-.99: .01: -.50], [.50: .01: 1.00: .05: 2.00: .1: 5.0: .5: 10: 30]. 
The remaining regions were similarly investigated. It was found that the 
inequalities (I) also hold in the strips on top and at the bottom of the ellipse 
& (with base interval - J /2 < a < 1/2), possibly with equality holding near the 
ellipse. On the strip to the right of&, as well as in the small remaining pieces 
to the left of&, either inequality sign can occur in (1). 
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HOW SHARP IS BERNSTEIN'S INEQUALITY 
FOR JACOBI POLYNOMIALS?* 

WALTER GAUTSCHit 

Dedicated to RichardS. Varga on his 80th birthday 

Abstract. Bernstein's inequality for Jacobi polynomials P~cx,(J), established in 1987 by P. Baratella for the 
region R 1; 2 = {lal ::::; 1/2, 1.61 ::::; 1/2}, and subsequently supplied with an improved constant by Y. Chow, 
L. Gatteschi, and R. Wong, is analyzed here analytically and, above all, computationally with regard to validity and 
sharpness, not only in the original region R 1; 2 , but also in larger regions Rs = { -1/2 ::::; a ::::; s, -1/2 ::::; ,6 ::::; s }, 
s > 1/2. Computation suggests that the inequality holds with new, somewhat larger, constants in any region R 8 . 

Best constants are provided for s = I : .5:4 and s = 5: 1 : 10. Our work also sheds new light on the so-called 
Erdelyi-Magnus-Nevai conjecture for orthonormal Jacobi polynomials, adding further support for its validity and 
suggesting .66198126 ... as the best constant implied in the conjecture. 

Key words. Bernstein's inequality, Jacobi polynomials, sharpness, Erdelyi-Magnus-Nevai conjecture 

AMS subject classifications. 33C45, 41A17 

1. Introduction. Bernstein's inequality for Legendre polynomials Pn, slightly sharp
ened by Antonov and HolSevnikov [1] and Lorch [5], states that for n = 1, 2, 3, ... , 

(1.1) ( 2) 1/2 
(sin8) 1/ 21Pn(cos8)1 < ; (n + ~) - 1/ 2 , o::::;8::::;1r. 

According to Bernstein, the constant ( 2 j n) 112 is best possible. An extension of ( 1.1) to 
ultraspherical polynomials P~>.) = pp- 1; 2,>.- 1/ 2), 0 < A. < 1, is due to Lorch [6], and a 
further extension to Jacobi polynomials P~a,f3) with lal :::::; 1/2, I,BI :::::; 1/2 to Baratella [2]. 
Chow, Gatteschi, and Wong [3], by sharpening her constant, improved Baratella's result to 
read 

(1.2) 
(sin !8)o:+1/ 2(cos !8)!3+1/2IP(o:,f3l(cos8)1 < r(q + 1) (n + q)N-q-112 

2 2 n - r(1/2) n ' 

N=n+(a+,8+1)/2, 0::::;8::::;n, 

where q = max(a,,8) and lal:::::; 1/2, I,BI:::::; 1/2. Equality sign is included in (1.2), since in 
the case a= ,8 = =t=1/2 the inequality reduces to I cos(n8)1 :::::; 1 resp. I sin((n + 1)8)1 :::::; 1, 
and in the case a= ±1/2, ,8 = =t=1/2 to I sin(n + 1/2)81 :::::; 1 resp. I cos(n + 1/2)81 :::::; 1. It 
appears, though, that strict inequality holds in all other cases. 

Squaring both sides of the inequality (I .2) and writing the result in terms of x = cos 8 
and the orthonormal Jacobi polynomial P~a,f3) yields (if ,8 2:: a; cf. (4.1)) 

(1- x)o:+l/2 (1 + x)f3+ 1 1 2 [P~a,f3) (x)j2 
(1.3) 

< 2r(n+a+,8+1)r(n+,8+1) lal:::; 1; 2, l,81:::; 1; 2. 
- 7f r(n +a+ 1)n!(n +(a+ ,8 + 1)/2)2!3 ' 
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Since as n ---+ oo the right-hand side is "' 2/7r, it follows that the left-hand side is 0(1) for 
lxl ::; 1, which proves the Erdelyi-Magnus-Nevai conjecture 

(1.4) (1- x)'"'+l/2(1 + x)i3+1/2 [F~""'i3l(xW = 0 ( max[1, (a2 + ,B2)114J) 

[7, p. 604] (see also [4]) on the domain lal ::; 1/2, I,BI ::; 1/2. The constant on the right 
of (1.3) takes on the value 2/7r not only at n = oo, but also at n = 1 when ,B = 0 or 
Ia I = I,BI = 1/2. It is probably for n = 1 and ,B = 1/2 that the maximum is attained, near 
a= -.0691, its value being .64297807. 

Incidentally, if we denote the ratio of the left-hand side of (1.2) and the right-hand side 
(as in (3.2), (3.3)) by cnFn(x), we have 

(1.5) 

where 

(1.6) 'Yn 
2 r(n +a+ ,B + 1)f(n + ,B + 1) 

1f r(n +a+ 1)n!(n +(a+ ,B + 1)/2)2/3 . 

While the constant f(q + 1)/f(1/2) in (1.2), when a = ,B = 0, is best possible, it 
does not follow necessarily that the same is true in the general case, although asymptotic 
arguments will suggest that it is. In this note, the sharpness of the inequality is determined 
computationally, at least for n ::; 100, in the square lal ::; 1/2, I,BI ::; 1/2. Outside thereof, 
it is examined to what extent the inequality is an underestimation. We will also experiment 
with different choices of the parameter q, which, asymptotically, is irrelevant. 

All ofthis will be done by computing the infinity norm Pn = Pn(a, ,B, q) (on the interval 
0::; ()::; 1r) of the ratio of the left-hand side of(1.2) divided by the right-hand side. This 
is an important quantity inasmuch as it allows us to assess the quality of the inequality (1.2) 
on a domain V of the parameter space (n, a, ,B, q). In fact, let p:j; = max'D Pn(a, ,B, q) and 
p]j = min'D Pn(a, ,B, q). Then, if p:j; ::; 1, i.e., the inequality holds on V, on a scale from 0 
to 1, the best degree of sharpness of (1.2) on V is p:j;, and the worst degree of sharpness on V 
is p]j. If p:j; > 1, then the inequality on the domain V should be modified by multiplying the 
right-hand side by p:j;, to make it valid on V. The best and worst degrees of sharpness, p:j;, 
p]j of the modified inequality are then p:j; = 1, p]j = p]j/ p:j;. 

2. The constant in (1.2) is sharp. An elementary computation, using Stirling's for
mula, will show that the right-hand side of (1.2), as n ---+ oo, is asymptotically equivalent to 
(1rn)- 112, regardless of the values of the parameters a, ,B, and q. The inequality (1.2) thus 
says that the function on the left, multiplied by ( 1rn) 112, is less than, or equal to, a constant 
that tends to 1 as n ---+ oo. But Darboux's formula [8, Theorem 8.21.8] tells us that this same 
expression, at least on a compact subinterval of 0 < () < 1r, but for arbitrary real a and ,8, 
is ::; 1 + 0 ( 1/ n), where the constant 1 is best possible (bounding, as it does, a cosine func
tion). This not only shows that the constant f(q + 1)/f(1/2) in (1.2) is indeed best possible, 
but also that the inequality, with the constant somewhat enlarged, may well hold in larger 
domains of the (a, ,B)-plane. The purpose of this note is to explore this computationally in 
some detail. 

3. Bernstein's inequality for monic Jacobi polynomials. In what follows, we prefer 

to use the monic Jacobi polynomial7r~""',6), i. e., 
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and we shall write it as 

n 

(3.1) 1r~a,f3)(x) =IT (x- Xr) 
r=l 

in terms of the zeros Xr = x~~~) (in ascending order) of the Jacobi polynomial P~a,/3). If 
we divide both sides of (1.2) by the expression on its right-hand side, and let x = cos e, 
Bernstein's inequality takes the form 

(3.2) CniFn(x)l::::; 1, -1::::; X::::; 1, 

where 

(3.3) 

J1f(n +(a+ (3 + 1)/2)q+l/2(2n+:+f3) 
Cn =cn(a,f],q) = f(q+ 1 ) 2n+(a+,6+1)/2(n~q) ' 

Fn(x) = F~a,/3) (x) = (1- x)(2a+l)/4(1 + x)C2/3+1)/47r~a,/3) (x), 

where q = max( a, (3). Since we later consider q to be an independent parameter, we include 
it in the constant en as one of three parameters. Notice that 

Cn(a, (3, q) = Cn(/3, a, q), 

regardless of how q = q(a, (3) is defined so long as q(a, (3) = q((3, a). 

4. The infinity norm IIFnlloo of Fn. We now wish to compute IIFnlloo = max_l:Sx::;I 
IFn(x)l. Since by the reflection formula for Jacobi polynomials, 

IIF~a,/3) lloo = IIF~/3,a) lloo' 

it suffices to consider (3;:::: a, and since IIF~a,/3) lloo = oo if2a + 1 < 0, we may assume 

(4.1) (32:a2:-1/2. 

Computing IIFnlloo amounts to computing the local extrema of Fn in the interior of the 
interval [-1, 1] along with 1Fn(±1)1. With regard to the former, we have 

F~ (x) = !(1-x )(2a-3)/4(1 +x )(2/3-3)/4{[(3-a-( a+f3+ 1 )x]1r~a,/3) (x )+2(1-x2)7r~a,/3)' (x) }, 

so that the local extrema occur at those roots of the equation [(3-a- (a+f3+ 1)x]7r~a,/3) (x) + 
2(1- x2 )7r~a,/3)' (x) = 0 that are inside ( -1, 1), that is, dividing by 7r~a,/3) and noting (3.1), 
at the respective roots of 

(4.2) f(x) = 0, 
n 1 

f(x) = (3- a- (a+ (3 + 1)x + 2(1- x 2) L --. 
r=l X- Xr 

There can be at most n + 1 real roots. To discuss their location, we first observe that 

f( -1) = 2(3 + 1, f(1) = -(2a + 1). 

It is clear from from (4.2) that 

f(xr + 0) = +oo, f(xr - 0) = -oo, r = 1, 2, ... , n, 
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and on each interval (x, Xr+I), r = 1, 2, ... n- 1, the function f descends monotonically 
(cf. Section 5) from +oo to -oo. It therefore crosses the real line exactly once, accounting 
for n - 1 internal extrema. We distinguish three cases with regard to the parameter a. If, 
first, 2a + 1 > 0, and hence by (4.1) also 2,8 + 1 > 0, then f( -1) > 0 and f(1) < 0, so that 
there are two more roots, one each in ( -1, xi) and (xn, 1), accounting for two more internal 
extrema, and thus for a complete set of n + 1 extrema. If, secondly, 2a + 1 = 0, there are 
two subcases: 2,8 + 1 > 0 and 2,8 + 1 = 0. In the former, there is still a local extremum 
in ( -1, xi), but none in (xn, 1); in the latter, both these lateral intervals are devoid of local 
extrema (in fact, this is one ofthe trivial cases noted in Section 1, in which cniiFnlloo = 1.) 
Finally, in the third case, 2a + 1 < 0, as was already mentioned, IIFn lloo = oo. 

5. Computing IIFnlloo in terms oflocal extrema. To compute a local extremum of Fn, 
say in the interval (a, b), -1 ~a< b ~ 1, we use Newton's method applied to the equation 
(4.2), with the midpoint ofthe interval (a, b) as the initial approximation, 

(5.1) X(i+I) = x(i) _ f(x(i)) (o) 
...:.....:.,___,....(),:....' i=0,1,2, ... , x =(a+b)/2. 
f'(x i ) 

Since the interval (a, b) in our application is small and f rapidly descending from +oo to -oo 
(i.e., f' is large negative), Newton's iteration (5.1) converges very quickly. The derivative off 
is easily computed from ( 4.2), 

n 2 
1 ) """ X - 2XrX + 1 

f(x =-(a+,8+1)-2~ (x-xr) 2 . 

Since a+ ,8 + 1 ::::: 0 by (4.1), and the discriminants of the quadratics in the numerator on 
the right are -4(1 - x~) < 0, each temi of the sum is positive and f' (x) < 0 on (a, b), as 
already noted in the previous section. Thus we arrive at the following 

Computational procedure. 
If a> -1/2, apply(5.1)totheintervals (a, b)= (xr,Xr+I), r = 0, 1, 2, ... , n 
(where x0 = -1, Xn+I = 1), giving ~r = xC=l. Then, since Fn(±1) = 0, 

(5.2) IIFnlloo = max IFn(.;r)l, 2,8 + 1 2: 2a + 1 > 0. 
o::;r::;n 

If a= -1/2 and ,8 > -1/2, do the same, but in (5.2) let r run only up to 
n- 1, and compute 
(5.3) 

IIFnlloo =max {Fn(1),. max IFn(~r)l}, 2,8 + 1 > 0 = 2a + 1. 
o::;r::;n-I 

If a= ,8 = -1/2, put Cn IIFnlloo = 1. 

The Matlab script bernstein. m listed in the Appendix implements this procedure and 

for any given n, a, ,8, q outputs Pn(a,,8,q) = cn(a,,8,q)IIFA"'',B)IIoo· 

6. Numerical results. In this section we present numerical results for the square Ia I ~ 
1/2, I,BI ~ 1/2. We determine Pt and Pv (cf. Section l) on the domain 'D = { n = 
[510 20 50 100], a= -.5:.01: .5, ,8 =a: .01: .5, q}, where in tum q = q+ =max( a, ,8) = 
,8, q = q- = min( a, ,8) = a, q = -. 75 : .25 : I. The results are shown in Table 6.1. 

It was observed that the sequence {Pn(a,,8,q)} is monotone, either increasing or de
creasing. Therefore, if no ~ n ~ ni, it would suffice to compute Pn for n = no and 
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TABLE 6.1 
Sharpness oj(l.2) on the square lal ::; 1/2, 1.81 ::; 1/2, with selected values ofq. 

q-+ q+ q 0 .25 .5 .75 

Pv 1.0000 1.0000 1.0230 1.0169 1.0000 .9997 .9988 
Pv .9978 .9978 .9754 .9468 .9091 .8639 .8128 

q-+ -.25 -.5 -.75 

Pv 1.0174 1.0000 1.0000 

Pv .9532 .9167 .8707 

TABLE 6.2 
Sharpness of (the modified) Bernstein's inequality (1.2) with the right-hand side multiplied by Pi;, on the 

square -1/2::; a::; s, -1/2::; ,8::; s. 

s p:j; Pv 
1.0 1.038670463288 . 96063192097 5 
1.5 1.077936370739 .925639053930 
2.0 1.119905216638 .890950401502 
2.5 1.166112996124 .855646070084 
3.0 1.217697600829 .819398840672 
3.5 1.275581233437 .782215962616 
4.0 1.340588974513 .744284804200 
5.0 1.495211643984 .667316902208 
6.0 1.6884848507 43 .590932161440 
7.0 1.928648600010 .517346707121 
8.0 2.225950341336 .448248994544 
9.0 2.593289070919 .384754639811 

10.0 3.046949165887 .327468542495 

n = n1, since maxno<n<n1 Pn = max(Pno, Pn1 ) and minno<n<n1 Pn = min(Pno, Pn1 ). 

Consequently, p:j; = ~ax(maxv Pn0 , maxv PnJ and Pv = min(~inv Pn0 , minv Pn1 ). In 
other words, if monotonicity in fact holds true, V = {no :::; n :::; n1, ... } may be replaced 
by V = { n = { n0 , nl}, ... }. In all our experiments we have verified that indeed the results 
for p:j; and Pv are the same whether we restrict n to the smallest and largest value, or include 
intermediate values as well. 

It can be seen from Table 6. I that the choices q = q+ and q = q- yield by far the 
best degrees of sharpness, both choices being essentially identical in quality. Naturally, if we 
lower n0 = 5 to no = 1, the sharpness deteriorates (to Pv = .9406 for both choices of q), 
while increasing no to, say, no = 10 improves sharpness (to Pv = .9994 for both choices 
of q). 

7. Bernstein's inequality on larger domains. We now explore the sharpness resp. va
lidity of(I.2) in the larger regions Rs = { -1/2:::; a::::; s, -1/2 :::; f3:::; s }, where, to begin 
with, s = 1,2,5, and 10. We define V = V 8 = {n = [510 20 50 lOO],(o:,fJ) E R 8 }, 

s > 1/2. We found that p;.. = p;.. for all s > 1/2, and computations based on succes-- Vs L/1/2 

sively finer screenings near the minimum point (a:-, {3-) E R 1; 2 for p;.. yielded 
L/1/2 

(7.1) 
P- = .997780002408 (where q = q+), 

D1;2 

p;.. = .997804307519 (where q = q-). 
L/1/2 
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For Pts we found, when s = 1, 2, 5, 10, regardless of whether q = q+ or q = q-, that the 

maximum Pt. = maxvs Pn is always attained at the upper right-hand comer (a, (3) = ( s, s) 

of the square R 8 • Assuming this to be true in general, we computed Table 6.2 for Pts and 

( cf. Section I) p:;:., = p:;:., /pt. , where we used the first of the two values for Pv = Pv in 
Vs Vs Vs s 1/2 

(7 .I). (The other value, of course, gives very similar results.) 
It can be seen that the sharpness of the inequality, even for s = 10, is still well within 

one order of magnitude. What is remarkable is also that the results are exacly the same if we 
let n go up to 200, so that the results are likely to be valid for all n ;::: 5. 

As a final experiment, we recomputed the second column of Table 6.2 with V 8 = 

{n = [5 24 43 62 81100], {(a, (3)} c Rs}, where {(a,(3)} is a setofl,OOO randomly gen
erated pairs (a, (3) in Rs. We verified that the results are all strictly smaller than those in Ta
ble 6.2, the smallest and largest deviations being 3.0770 x w-5 (for s = 3.5) resp. 6.2961 x 
w-3 (for s = 9). 

We remark that the property of the maximum Pt. being attained at a= (3 = s has been 
verified also ifn =[1: 10, 20, 25, 50, 75, 100] in the definition ofV8 and also for maxn ,JY;,cn 
x IIFnlloo in (1.5). The property, therefore, is likely to hold for any n 2': 1 and any s ;::: 1/2; 
if so, it would allow to extend the upper bound for 

-~~Jh (1- x)<>+l/2(1 + x)i3+1/2[1')~a,,6)(x)]2, 

proved for a = (3 ;::: (1 + /2)/4 in [4, Equation (4)] to arbitrary a > -1/2, (3 > -1/2, 
lending added support for the validity of the Erdelyi-Magnus-Nevai conjecture. Indeed, 
further calculations along the lines reported on in Table 6.2, but for n ;::: 1, in particular the 
computation for a= (3 = s of the quantity 

m:XI'nc~IIFnll~/ max ( 1, (2s2 ) 114 ) 

for s = [.5: .01: I 2: 10 20 50] and s = .706:.0001:.708 reveals that it attains a global 
maximum .66198126 ... at s = 1/V2. This suggests that the best constant implied in the 
Erdelyi-Magnus-Nevai conjecture (1.4) is .66198126 .... 

Appendix. In the following Matlab script, the routines r _jacobi and gauss are part 
of a software package OPQ, which can be downloaded, along with the routine below, auxiliary 
routines, and a driver, from 

http://www.cs.purdue.edu/archives/2002/wxg/codes/BIJ.html 
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BERNSTEIN'S INEQUALITY FOR JACOBI POLYNOMIALS 

%BERNSTEIN Sharpness of Bernstein's inequality for 
% Jacobi polynomials PJl(a,b;·) with b>=a>=-1/2. 
% The output is CJl II FJl II . 

function rho=bernstein(n,a,b,q) 
if a<-1/2 I b<-1/2 I b<a 

disp('parameters a and/or b not in range') 
return 

end tol=1e2*eps; 
pnum=1; pden=1; p2=1; 
for nu=1:n 

pnum=(1+(n+a+b)/nu)*pnum; 
pden=(1+q/nu)*pden; 
p2={1-1/(2*nu))*p2; 

end 
c0=pnum/2A(n+(a+b+1)/2); 
c1=(n+(a+b+1)/2)A(q+1/2)/(gamma(1+q)*pden); 
c2=sqrt(pi)*c1*p2; 
c=sqrt(pi)*cO*c1; 
extr=zeros(n+1,1); 
% 
% When applying this routine for the same values 
% of a and b, but many different values of n, the 
% following command, for better efficiency, should 
% be called outside the n-loop with n set equal to 
% the largest n-value in the loop and the array ab 
% included among the input parameters of this routine. 
% 
ab=r_jacobi(n,a,b); 
xw=gauss(n,ab); 
X=XW (: 1 1) i 

x1=[-1 x' 1]'; 
k0=1; k1=n+1; 
if a==-1/2 

if b>-1/2 
k1=n; 

else 
rho=1; 
return 

end 
end 
for k=k0:k1 

tO=O; t1=(x1(k)+x1(k+1))/2; 
while abs(t1-t0)>tol 

t0=t1; 
t1=t0-fbern(tO,a,b,x)/f1bern(tO,a,b,x); 

end 
p=prod(t1-x); 
extr(k)={1-t1)A(a/2+1/4)*(1+t1)A(b/2+1/4)*abs(p); 

end 
rho=c*max(extr); 
if a==-1/2 

end 

if c2>rho 
rho=c2; 

end 

7 
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% FBERN A function f needed in Bernstein's inequality 
% for Jacobi polynomials 
% 
function y=fbern(t,a,b,x) 
y=b-a-(a+b+l)*t+2*(1-t~2)*sum(l./(t-x)) 

% FlBERN The function f' needed in Bernstein's inequality 
% for Jacobi polynomials 
% 
function y=flbern(t,a,b,x) 
y=- (a+b+l) -2*sum ( (t ~2-2*t*x+l) . I (t-x) . ~2); 
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Abstract The real-valued Lambert W-functions considered here are w0(y) and
w−1(y), solutions of wew = y, −1/e < y < 0, with values respectively in (−1, 0)

and (−∞, −1). A study is made of the numerical evaluation to high precision of
these functions and of the integrals

∫ ∞
1 [−w0(−xe−x)]αx−βdx, α > 0, β ∈ R, and

∫ 1
0 [−w−1(−xe−x)]αx−βdx, α > −1, β < 1. For the latter we use known integral

representations and their evaluation by nonstandard Gaussian quadrature, if
α �= β, and explicit formulae involving the trigamma function, if α = β.

Keywords Lambert W-functions · Integrals of Lambert W-functions ·
Nonstandard Gaussian quadrature · Variable-precision computation

Mathematics Subject Classifications (2010) 33B99 · 33F05 · 65D20 · 65D30

1 Introduction

The (real-valued) Lambert W-functions are solutions of the nonlinear
equation

wew = y, y ∈ R. (1.1)

If y > 0, there is a unique real solution, w(y), satisfying 0 < w(y) < ∞. If
−1/e ≤ y < 0, there are exactly two real solutions, w0(y) and w−1(y), satis-
fying respectively −1 ≤ w0(y) < 0 and −∞ < w−1(y) ≤ −1. Clearly, w(0+) =
0, w0(0−) = 0, and w−1(0−) = −∞, while w0(−1/e) = w−1(−1/e) = −1. For
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y < −1/e, there are no real solutions of (1.1). For a discussion of the various
branches of the Lambert W-functions, also in the complex plane, see [3].

We note that

−w0(−xe−x) ≡ x for 0 ≤ x ≤ 1, (1.2)

and likewise

−w−1(−xe−x) ≡ x for 1 ≤ x < ∞. (1.3)

Indeed, by definition,

−xe−x ≡ w0(−xe−x)ew0(−xe−x), 0 ≤ x ≤ 1.

This identity remains valid if w0(−xe−x) at both occurrences is replaced by −x,
which is in [−1, 0]. By uniqueness of w0, there follows (1.2). The identity (1.3)
is proved similarly.

Our interest here is in the computation (to high precision) of the three
Lambert functions and of the integrals

I0,[1,∞](α, β) =
∫ ∞

1
f0(x; α, β)dx and I1,[0,1](α, β) =

∫ 1

0
f1(x; α, β)dx,

(1.4)
where

f0(x; α, β) = [−w0(−xe−x)]αx−β, α > 0;
f1(x; α, β) = [−w−1(−xe−x)]αx−β, α > −1, β < 1. (1.5)

Both integrals present numerical difficulties because of singularities of the
integrands at the upper resp. lower end point of integration.

For α = β, the integrals are explicitly known [8],

I0,[1,∞](α, α) = αψ1(α) − 1, α > 0;
I1,[0,1](α, α) = αψ1(1 − α) + 1, |α| < 1, (1.6)

where ψ1 is the trigamma function. Their sum equals

α(ψ1(α) + ψ1(1 − α)) = α

[
π

sin(απ)

]2

, (1.7)

by the reflection formula for ψ1 (cf. [1, Eq. 6.4.7]). The Matlab rou-
tines1 sI01infaa.m2 and sI101aa.m2 implement (1.6) in variable-precision
arithmetic.

1All Matlab routines referred to in this paper can be downloaded from the web site
http://www.cs.purdue.edu/archives/2002/wxg/codes/LAMBERTW.html. They make use of addi-
tional routines in the packages OPQ, SOPQ found on the same web site.
2This routine requires Matlab Version 7.8 (R2009a) or later.
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If α �= β, then [8]

I0,[1,∞](α, β) = 1

α − β + 1

[

−1 + α

∫ 1

0
uα−1

(
ln(1/u)

1 − u

)α−β+1

du

]

, α > 0,

(1.8)
which for α = β reduces to (1.6) in view of [7, Eq. 4.251.4]. Similarly [8],

I1,[0,1](α, β)= 1

α − β + 1

[

1 + α

∫ ∞

1
uα−1

(
ln u

u − 1

)α−β+1

du

]

, α > −1, β < 1.

(1.9)
Both formulae lend themselves to numerical evaluation by appropriate (non-
standard) Gaussian quadrature; see Sections 3, 4 for details.

Although the Lambert functions will not be used explicitly in what follows,
it may be of interest to briefly consider computational methods for their
evaluation. This is done in Section 2.

2 Computing the Lambert W-functions

There are of course many possible ways of solving the equation (1.1).3 A
simple and generally reliable method is Newton’s method which, by choosing
the initial approximations judiciously, allows us to compute all three Lambert
functions defined in Section 1 (only the last two of them being of interest
here). For y near and above −1/e, Newton’s method, however, suffers from
loss of accuracy and consequent slow, or even lack of, convergence. In this
case a power series expansion method is proposed. For y near and below zero,
Newton’s method for w−1, while numerically stable, may take many iterations
(some 30 in Matlab double precision, when y = −10−10) to converge.

2.1 Newton’s method

The Newton iteration for (1.1) is

w[ν+1] = (w[ν])2 + ye−w[ν]

1 + w[ν] , ν = 0, 1, 2, . . . , (2.1)

where as initial value w[0] we take

w[0] =
{

y if 0 < y < e,
ln(y/ ln y) if y ≥ e

(2.2)

for w(y), and

w[0] =
{

0 for w0(y),

−2 for w−1(y).
(2.3)

3For a recent discussion of numerical methods, see [2].
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The choice in (2.2), when y ≥ e, is motivated by the asymptotic behavior of
w(y) as y → ∞, and the choice in (2.3) by our desire to have monotone
convergence. The latter, in theory, is guaranteed (cf. [5, Example 6.4, p. 233])
by the convexity/concavity properties of the function wew and the fact that
w = −2 is an inflection point of the curve y = wew.

Near the point (w, y) = (−1, −1/e), where the graph of y = wew has a
horizontal tangent, Newton’s method converges only linearly and may even
fail to converge because of cancellation errors in the denominator of (2.1).
Indeed, w[ν] comes arbitrarily close to −1 when y approaches −1/e from
above. To avoid this difficulty, we use an appropriate power series expansion
(cf. Section 2.2).

2.2 Power series solution

Let

y = −1

e
+ x2, x > 0. (2.4)

Then the solution w of (1.1) admits an expansion in powers of x,

w = −1 + c1x + c2x2 + c3x3 + · · · . (2.5)

Matching the power series of wew against the (finite) series (2.4), we find

c1 = ±√
2e, (2.6)

and, with the help of Maple, that

c2 = −1

3
c2

1,

c3 = −
(

c2c2
1 + 1

8
c4

1 + 1

2
c2

2

)

/c1,

c4 = −
(

c3c2 + c3c2
1 + c1c2

2 + 1

2
c2c3

1 + 1

30
c5

1

)

/c1,

c5 = −
(

c4c2 + c4c2
1 + 1

2
c3c3

1 + 3

4
c2

2c2
1 + 1

6
c2c4

1

+1

2
c2

3 + 1

3
c3

2 + 1

144
c6

1 + 2c1c2c3

)

/c1,

c6 = −
(

2c4c1c2 + 3

2
c3c2c2

1 + 1

840
c7

1 + c5c2 + c4c3

+ c5c2
1 + 1

2
c4c3

1 + c1c2
3 + c3c2

2 + 1

6
c3c4

1

+1

2
c1c3

2 + 1

3
c2

2c3
1 + 1

24
c2c5

1

)

/c1,

. . . . . . (2.7)
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Clearly, for w = w−1 we must select the minus sign in (2.6), and for w = w0 the
plus sign. Substituting (2.6) in (2.7), we then get, again with the help of Maple,

w−1(x) = −1 − √
2e x − 2

3
e x2 − 11

36

√
2e3 x3 − 43

135
e2 x4

− 769

4320

√
2e5 x5 − 1768

8505
e3 x6 + · · · (2.8)

and

w0(x) = −1 + √
2e x − 2

3
e x2 + 11

36

√
2e3 x3 − 43

135
e2 x4

+ 769

4320

√
2e5 x5 − 1768

8505
e3 x6 + · · · . (2.9)

A series expansion closely related to (2.8) is the power series expansion of
−w−1(− exp(−1 + z2/2)) in [4, Eq. (48)]; other related series can be found
in [4, Section 3.2]. Both expansions (2.8) and (2.9) are appropriate for, say,
x2 ≤ .5 × 10−4, while Newton’s method is adequate in all other cases. In
symbolic routines, using variable-precision artithmetic, only Newton’s method
needs to be used, together with appropriate precautions near the branch point
(w, y) = (−1, −1/e) (cf. Section 2.3).

2.3 Matlab implementation

The procedures described in Sections 2.1 and 2.2 are implemented in the Mat-
lab routines wofy.m, wofy0.m, wofy1.m. The respective symbolic analogues
are swofy.m, swofy0.m, swofy1.m. These use only Newton’s method; to
counteract the loss of accuracy in swofy0.m and swofy1.m when y is near
and above −1/e, the working precision in these two routines must be selected
sufficiently larger than the target precision. For wofy0.m one needs 4, 6, 10
more digits than in the target precision when the distance of y from −1/e is
respectively 10−5, 10−10, and 10−20; for swofy1.m the numbers are 4, 7, and 12
digits, respectively.

3 The integrals I0,[1,∞](α, β) and I0,[0,1](α, β)

For the evaluation of I0,[1,∞](α, β), α �= β, we use the integral representation
(1.8). In view of the logarithmic/algebraic singularity at the lower limit of the
integral in (1.8), and its regularity at the upper limit, we decompose the integral
into two parts: the first extended from 0 to 1/e, the second from 1/e to 1. The
former is written as

I[0,1/e] =
∫ 1/e

0
(1 − x)−(α−β+1) · xα−1[ln(1/x)]α−β+1dx, (3.1)

the second factor being treated as a weight function,

v(x; α, β) = xα−1[ln(1/x)]α−β+1, 0 < x ≤ 1/e, (3.2)
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with the intention of applying Gauss quadrature relative to this weight func-
tion. The second part,

I[1/e,1] =
∫ 1

1/e
uα−1

(
ln(1/u)

1 − u

)α−β+1

du,

after the change of variable u = 1 − x(1 − 1/e), becomes

I[1/e,1] = (1 − 1/e)
∫ 1

0
[1 − (1 − 1/e)x]α−1

(− ln(1 − (1 − 1/e)x)

(1 − 1/e)x

)α−β+1

dx

(3.3)
and is amenable to Gauss–Legendre quadrature on [0, 1].

With regard to Gauss quadrature for the (nonstandard) weight function
(3.2), we generate the relevant orthogonal polynomials (see [6] for details) by
the variable-precision Chebyshev algorithm from the moments

μk(v; α, β) =
∫ 1/e

0
xk+α−1[ln(1/x)]α−β+1dx =

∫ ∞

1
tα−β+1e−(k+α)tdt

= 1

(k + α)α−β+2
�(α − β + 2, k + α), k = 0, 1, 2, . . . .

These are generated (in variable-precision arithmetic) by the Matlab routine
smomvab.m2. The Matlab routine sr_vab.m then generates the first N
recurrence coefficients of the required orthogonal polynomials and stores
them in the N × 2 array abv. These in turn allow us to generate the desired
N-point Gaussian quadrature rule using the SOPQ routine sgauss.m. The
evaluation of I0,[1,∞](α, β) from (1.8), using (3.1) and (3.3), is implemented in
the Matlab routine sI01infab.m.

We ran this procedure in 32-digit arithmetic for α = 2, 1, 1
2 (α = 0 is triv-

ial), and for each of these values for β = 2, 1, 1
2 , 0, − 1

2 , −1, −2 (α = 1, β =
2 being trivial). The most time-consuming part of these calculations is the
generation of the N recurrence coefficients by the routine sr_vab, which,
when N = 50, took about 12 minutes or less on the Sun Ultra 5 workstation,
assuming a good estimate of dig0—the initial number of digits used in the
routine sr_vab. Tables of these coefficients can be found on the web site
http://www.cs.purdue.edu/archives/2001/wxg/tables in files whose names start
with “abv”.

A sample of results is shown in Table 1, where n denotes the number of
quadrature points needed for 32-digit accuracy and dig the number of digits
required in the routine sr_vab to obtain the recurrence coefficients accurate
to 32 digits. The number n is seen to be less than 30, which is remarkably
small for this type of accuracy. When α = β, there is agreement with the
32-digit results obtained by the routine sI01infaa.m except for an endfigure
discrepancy of one unit in the case α = β = 2.

The integral I0,[0,1](α, β), by (1.2), is equal to 1/(α − β + 1) if α − β + 1 > 0.
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Table 1 The integral
I0,[1,∞](α, β) for selected
values of α, β

α β n dig I0,[1,∞](α, β)

2 2 27 115 0.28986813369645287294483033329204

0 26 115 0.55242099404393096881202067693593

−2 25 110 1.5857382583390739261863136404274

1 1 29 115 0.64493406684822643647241516664603

0 26 115 1.144934066848226436472415166646

−1 28 110 2.5136576366744873885388199948242
1

2
2 27 110 0.56150165251555182684424279164016

0 28 110 2.3338359155089014467610187032541

−2 27 110 38.727633569979724008308403165634

4 The integrals I1,[0,1](α, β) and I1,[1,∞](α, β)

In order to evaluate I1,[0,1](α, β) from the integral representation (1.9), we first
make the change of variable u = 1/x in the integral of (1.9) to write it as

∫ 1

0
x−β

(
ln(1/x)

1 − x

)α−β+1

dx.

This has the same form as the integral in (1.8). Hence, we deal with it in
the same way as was done in Section 3, i.e., decompose it into two integrals
analogous to (3.1) and (3.3). The first is calculated by Gauss quadrature with
respect to the weight function

u(x; α, β) = x−β[ln(1/x)]α−β+1, 0 < x ≤ 1/e, (4.1)

the second by Gauss–Legendre quadrature of

(1 − 1/e)
∫ 1

0
[1 − (1 − 1/e)x]−β

(− ln(1 − (1 − 1/e)x)

(1 − 1/e)x

)α−β+1

dx.

The moments of the weight function (4.1) are given by

μk(u; α, β) = 1

(k − β + 1)α−β+2
�(α − β + 2, k − β + 1), k = 0, 1, 2, . . . ,

and are evaluated by the routine smomuab.m2. The Matlab routine sr_uab.m
then generates the recurrence coefficients for the required orthogonal poly-
nomials and stores them in the array abu. The integral I1,[0,1](α, β) itself is
computed by the routine sI101ab.m.

The procedure was run in 32-digit arithmetic for α = 2, 1, 1
2 , − 1

2 and for
each of these values for β = 1

2 , 0, − 1
2 , −1, −2 (the case α = − 1

2 , β = 1
2 being

trivial). The first 50 recurrence coefficients required in these computations,
generated by the routine sr_uab.m, are retrievable on the web site mentioned
in Section 3 from files whose names start with “abu”.

Selected results are shown in Table 2 in the same format as used in Table 1.

~Springer 
548



34 Numer Algor (2011) 57:27–34

Table 2 The integral
I1,[0,1](α, β) for selected
values of α, β

α β n dig I1,[0,1](α, β)

2
1

2
27 110 33.343927985540712124255844272507

0 27 110 6.0273152733489747770776399896483

−2 25 110 0.66470507420927905363933223999206
1

2

1

2
26 110 3.467401100272339654708622749969

0 26 115 1.4200196887885673611304689259528

−1 25 110 0.61417487418179378390030116175849

− 1

2
0 26 115 0.74291550121126488688927157124286

−1 25 115 0.41704512121160039084979057685156

−2 24 115 0.29216513963802369184942362241138

When α = β, the results are in complete agreement with those furnished by
the routine sI101aa.m with dig = 32.

The integral I1,[1,∞](α, β), by virtue of (1.3), exists only if β − α − 1 > 0, and
then equals 1/(β − α − 1).

Acknowledgements The computational problem in the case α = β was brought to the author’s
attention by Tony Tam. The author is indebted to Robert M. Corless for the References [2–4],
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G. Mastroianni, and Th. M. Rassias, eds.), 117–134, Springer Optim. Appl. 42

10

Papers on Interpolation and Approximation

553

k:

(2011)



10.1. [41] “Attenuation Factors in Practical Fourier Analysis” 
 
 
 
[41] “Attenuation Factors in Practical Fourier Analysis,” Numer. Math. 18, 373–400 (1972). 
 
© 1972 Springer. Reprinted with kind permission of Springer Science and Business Media. 
All rights reserved. 
 

554



Numer. Math. 18, 373-400 (1972) 
© by Springer-Verlag 1972 

Attenuation Factors in Practical Fourier Analysis* 

WALTER GAUTSCHI 

Department of Computer Sciences, Purdue University, Lafayette, Indiana 47907 

Received May 26, 1971 

Summary. Given a 2 n-periodic function f, it is desired to approximate its n-th 
Fourier coefficient c,. (/) in terms of function values fp at N equidistant abscisses 

xp=p,2n/N, p,=O, t, ... , N-1. 

A time-honored procedure consists in interpolating f at these points by some 2 n
periodic function rp and approximating c,. (f) by c,. ( tp). In a number of cases, where tp 
is piecewise polynomial, it has been known that c,. ( q;} = -r,. c,. (/), where c,. (f) is the 
trapezoidal rule approximation of c,.(f) and -r,. is independent of f. Our interest is in 
the factors -r,., called attenuation factors. We first clarify the conditions on the 
approximation process P: f- rp under which such attenuation factors arise. It turns 
out that a necessary and sufficient condition is linearity and translation invariance 
of P. The latter means that shifting the periodic data f ={f) one place to the right 
has the effect of shifting tp = P f by the same amount. An explicit formula for T8 
is obtained for any process P which is linear and translation invariant. For interpola
tion processes it suffices to obtain a factorization c,.(rp} =w(n)tp1(n), where w does 
not depend on f and tp1(n) has period N. This also implies existence of attenuation 
factors T,., which are expressible in terms of w. The results can be extended in two 
directions: First, the process P may also approximate successive derivative values 
f;l, " = o, t, ... , k - 1, of the function f, in which case formulas of the type c,. ( q;) = 
k-1 
I; T,.,,. c,. (f{"}) emerge. Secondly, P may be translation invariant over r subintervals, 

,._o r-1 

r > 1, in which case c,. (rp) = I; T,.,g c,.+QN!t·(f). All results are illustrated by a number 
fi=O 

of examples, in which rp are polynomial and nonpolynomial spline interpolants, in
cluding deficient splines, as well as other piecewise polynomial interpolants. These 
include approximants of low and medium continuity classes permitting arbitrarily 
high degree of approximation. 

1. Introduction 

The problem of practical Fourier analysis often presents itself in the following 
form. It is desired to calculate the Fourier coefficients 

(1.1) 

In 

cn=c,.(f)def 2~ J f(x)e-itudx, 
0 

n = 0, ± 1, ± 2, ... 

of a 2 :n-periodic real-valued function f which is known, or can be calculated, on 
a set of discrete points 

(1.2) 
211: 

x,.=f"N• p,=O,i, ... ,N-1. 

* This work was carried out while the author was Visiting Professor at the 
Mathematical Institute of the Technical University of Munich, Germany. The work 
was supported in part by a Fulbright research grant. 
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Derivative values, in addition to function values, may also be available at these 
points. 

If no information is known about 1. other than the values 

(1.3) 

a reasonable approximation to c .. (/) is given by 

(1.4) 
N-1 

~ = c~ (I) det_!_ "' I -inx,.. c,. n N £..J "e . 
p=O 

This may be justified by noting that for each integers 0, with 2s + 1 N, the 
trigonometric polynomial of order s, 

s 

(1.5) ~(x)= 2: c .. (f)ei"", 
n=-s 

formed with the coefficients {1.4), approximates f best among all polynomials of 

(

N-1 )l 
the same type in the sense of the discrete L 2-norm jlgll2 = "~0 lg(x11)1 2 • If 

2s 1 =N, then (1.5) in fact represents the unique interpolation polynomial 
belonging to the data (1.3). A more practical consideration in support of c .. is 
the fact that sums such as those in (1.4) can be calculated on binary digital 
computers very efficiently by the algorithm of Cooley and Tukey [4], now com
monly known as the "fast Fourier transform" [5, 9]. It may also be noted that 
the approximations en share with the exact Fourier coefficients c .. the symmetry 
property 

(1.6) c ,. = 2 .. , all n. 

In the presence of additional information about the function 1. however, 
the choice (1.4) may fall short in reflecting essential properties of Fourier co
efficients. If it is known, e.g., that f has an (r-1)-st derivative which is absolutely 
continuous on the real line, then en =o(n-r) as n-"'oo. The approximations c .. , 
on the other hand, have period N, 

(1.7} Cn+N =en, all n, 

and are thus unable to simulate the asymptotic behavior of c ... 
For this reason one often attempts to approximate I by some 'P which shares 

with I some of its smoothness properties, and then takes en ('J!) to approximate 
c .. (f). In many cases where 'P interpolates I at the points x

11
, and is made up of 

polynomial pieces over the subintervals (x", x11+1), it has been found that 

(1.8) c .. ('Jl) = t"n c,. (f), all n, 

where t"n are certain universal factors not depending on f. These are referred to 
as attenuation factors. By choosing 'P judiciously one can arrange these factors 
to go to zero at a rate comparable to that of the c,. {f). The fact that a relation of 
the type ( 1.8) still permits use of the fast Fourier transform is another attractive 
feature of {1.8). 
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An instance of ( 1.8), as pointed out by Yuskov [ 19], was already discovered in 
1898 by Oumoff [12]. He considers the broken line interpolant fTJ and states 
(without proof) that ( 1.8) is valid with 

(1.9) _ [sin ( :n:n/N) ]2 
t'n- :rtn/N ' 

The same result was rediscovered by Dallenbach [6] in 1921, based on calculations 
of H. Weyl, and again much later by Chao [3]. Dallenbach also considers a cubic 
interpolation scheme and determines the associated attenuation factors. Further 
instances of (1.8) are discussed by Eagle (7]. 

In the terminology of spline functions the broken line interpolant is a poly
nomial spline interpolation function of degree 1. It is interesting to note that 
Runge [ 14, p. 193 ff.] already in 1904 constructed periodic spline interpolants 
of degree 2 (without, of cour:>e, naming them as such) in connection with Fourier 
analysis, although he did not obtain the respective attenuation factors. Spline 
interpolants of higher degrees were used systematically by Eagle [7] in 1928, and 
ten years later, independently, by Quade and Collatz [13]. Eagle gives a remark
ably elegant derivation of the attenuation factors in the case of splines (which 
he calls "lath functions"}. A more lengthy derivation is given by Quade and 
Collatz, whose major concern, however, are the approximation-theoretic aspects 
of the problem. These are also discussed more recently by Ehlich [8] and Golomb 
[10]. Further short derivations of attenuation factors can be found in Bauer and 
Stetter [2], who also consider the generalization to Fourier transforms. 

In choosing rp it does not suffice, of course, to simulate the smoothness prop
erties of f. One also wants local accuracy, i.e., rp should approximate f as closely 
as possible on each subinterval (x,., x,.+l). In this respect, the splines have the 
(perhaps undesirable) feature of correlating accuracy and smoothness: increasing 
the degree of the spline also increases its degree of smoothness. It seems worthwhile 
to make available a repertoire of other approximants rp which are capable of 
fitting f to high accuracy and yet have low, or only moderate, degrees of smooth
ness. We will partially meet this need in Section 5 where examples are provided 
of piecewise polynomial approximants rp whose polynomial degrees are 2r-1, 
and whose degrees of smoothness are 1 (Example 5.2) and r (Example 5.3). We 
shall also give an example of a nonpolynomial approximant rp, viz., a generalized 
spline function belonging to a linear differential operator with constant coefficients 
(Example 5.4). In all cases, the respective attenuation factors will be specified 
explicitly. 

In view of the multitude of possible attenuation factors the question naturally 
arises as to the precise conditions on the approximation process P: f -+rp in 
order to yield a formula of the type ( 1.8). We shall give a complete answer to this 
question in Section 3, Theorems 3.1 and 3.2. We show, in essence, that for (1.8) 
to hold, it is necessary and sufficient that P be linear and translation invariant 
over an interval of length h = 2nfN. The latter means that by shifting the periodic 
data I {111} one place to the right, the (periodic) function rp =PI is shifted by 
the same amount. An explicit formula for the attenuation factor •n is also 
obtained for any linear process P which is translation invariant in this sense. 

26* 
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These results extend readily to Hermite-type approximation processes {in
volving any number of successive derivative values), where formulas of the type 

(1.1 0) Cn(<p) = L'fn,scn(f(sl) 
s 

emerge. This is again illustrated in Section 5 (Example 5.6), where <pis taken to 
be a periodic spline interpolant of degree 2r-1 and deficiency k (in a terminology 
of Ahlberg et al. [1]). As special cases this includes ordinary splines (k=1) and 
Hermite interpolation polynomials (k =r). 

For interpolation processes it will also be shown (Theorem 3.3) that for (1.8) 
to hold, it suffices to find a factorization 

(1.11) 

where tp1(n} is an arbitrary N-periodic function, and ro(n) is independent of f. The 
attenuation factor T11 can then be expressed in terms of ro. This result is often more 
convenient for deriving attenuation factors than the explicit formula provided 
in Theorem 3 .1. 

Besides ( 1.8}, formulas of a somewhat different character exist in the literature. 
For example, if N is even, and f is interpolated by quadratic polynomials over 
panels of two consecutive subintervals, then Yuskov [19] has shown that 

(1.12) cn(91) ='fn,oCn(/) +-rn,l C,.+N/2(/)' all n. 

There are now two attenuation factors associated with this interpolation process. 
Using cubic interpolation over three consecutive intervals gives rise to three 
attenuation factors (Yu5kov [20]). We prove in section 4 the considerably more 
general result that a formula of the type 

(1.13) 
r-1 

Cn(9'} = L 'fn,~C..+~N/r(l) 
e~-o 

is valid precisely when the process P: f_,.cp is linear and translation invariant 
over r subintervals. This is once more illustrated in Section 5 (Example 5.5), 
where the formulas of Yuskov (and more general formulas) are rederived in a 
particularly transparent manner. 

Section 2 contains some auxiliary results concerning the functions O'k(z) = 
00 

2: [zf(v +z)]k+1, which will find use in the subsequent sections. 
•=--00 

2. Mathematical Preliminaries 

In the following sections some properties of the functions 

(2.1} k =0, 1, 2, ... ; z+o (mod 1) 

will be needed. (If k =0, the summation is to be understood in the sense of a 
principal value.) The functions (2.1) have been introduced and studied by Ehlich 
[8], who also gives explicit expressions for 1 '5.k 11 and numerical tables. For 
k = 0, as is well known, 

(2.2) 0'0 {z) =nz cot nz. 
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Proposition 2.1. 

O"Ht {z} =G"{z}- k ~ 10'~ {z), k =0, 1, 2, •... 

Proof. From 
00 

z-(k+ll Gk(z} = L (v+z)-<Htl 
tt=-00 

one gets 

= - (k + 1) z-<kH) O"H1 (z). 

Solving for O"Ht• and carrying out the differentiation, gives the desired result. 

Proposition 2.2. 

k =1, 2, ... , 

where qk-l (t) is a polynomial of degree k -1. In fact, 

k=1,2,J, ... , 

so that q 11 (t) is even [odd] if k is even [odd]. 

Proof. By Proposition 2.1, and {2.2), 

( 
nsz ) ( :n.z )2 

G1 (z)=:rtzcotnz-z ncotnz- . 1 = -.-- . sm nz smnz 

The assertion is thus true for k = 1, with q0 (t) = 1. Proceeding by induction, 
assume that the proposition holds for some k. Then, by Proposition 2.1, after some 
elementary computation, 

( 
nz )k+t{ 1-cos2 nz , } 

= -.-- cos :rtz · qk-l (cos nz) + 
1 

qlt-t (cos nz} , s1n nz 

from which the assertion follows. 

Proposition 2.3. For z real and not an integer the matrix 

r·(·J 
O's+l (z) ... u,+,-t(<) ] 

(2.3} Hs,p(z}= ~s:l.(~} .. O's+ll(z) O's+f> (z) 
.. . . . . ...... 

O's+P-1 (z) <1s+p(z) O'sHP-2 (z) 

is positive definite if sis an odd integer >1 and pis any integer 2L In particular, 

(2.4) det Hs,p(z) >0, z *0 (mod 1). s(odd) 21, P > 1. 
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Proof!. Let xT = [E1 , E2 , ••• , Ep]. Then 

p -
xHHs,p(z)x = 2: (fs-2+i+i(z)EtE; 

i,i =1 

_ P 
00 (-z -)•-l+Hi-- i,t,l f'=~oo v+z Et Ei 

00 
( z )s+l P - ( z )i-l P, ( z )' i-1 

= L v+z .L Ei v+z .L E; v+z 
J>--oo '=1 t=l 

The last expression is nonnegative, if s is odd, and can only vanish if the poly
P 

nomial1p(t) = .L:E1ti-l vanishes at all points zf('v+z), v 0, 1, ±2, ... , i.e., 
if1p(t)=O. i=t 

Although not needed in the sequel, the following result is offered because of 
possible independent interest. 

Proposition 2.4. The sequence {ak+1 (z)}f_0 has the generating function 

(2.4) 

Proof. By (2.1), 

Therefore, using {2.2), 

which is the same as (2.4). 

3. Single Attenuation Factors 

We denote by N the set of integers, N ={0, ±1, ±2, ... }, and by R the set 
of reals. The set of periodic data will be denoted by 

F [{fm}mEN: fmER, fm+N =fm, all mEN]. 

Each member ofF may be thought of as the sequence of function values f m = f (xm), 
xm =m2nfN, m =0, ±1, ±2, ... , for some 2n-periodic function f(x). Evidently, 

1 The author is indebted to Professor W. B. Gragg for suggesting the idea for the 
proof. 
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F is an N-dimensionallinear vector space under the usual definitions of addition 
and scalar multiplication of sequences. As basis we take e0 , e1 , ••• , eN_1 , where 
the m-th component of el' is given by 

(3.1) 
e = {1 if m =p, (mod N), 

( ,..)m 0 otherwise. 

Each f EF then has the representation 

N-1 

(3.2) I= 1: f,.el" f ={fm}EF. 
p~O 

Besides F, we consider the linear space of 2 n-periodic continuous real-valued 
functions, which we denote by SF. Our approximation process is then thought 
of as an operator P: F __,..~ from F into SF. If t:p = P f satisfies t:p ( xl') =I w 
p, = 0, 1, ... , N -1, we call P an interpolation operator. 

We define the shift operator E in F as usual by (Ef)m=fm+I• all mEN, and 
in$'" by (Et:p)(x) =t:p(x+h), all xER, where h=2:rcfN. 

Definition. An operator P: F __,..$'" is called translation invariant if 

(3.3) P(Ef) =E(Pf), all /EF. 

Clearly, (3.3) implies the more general identity 

(3.4) 

Also note from (3 .1) that 

(3. 5) 

Theorem 3.1. Let P: F __,..$'" be a linear operator from F into !F. and q> = P f. 
If Pis translation invariant, thm 

(3.6) 

where 

(3.7) 

Proof. Let I ={fm} be an arbitrary element of F. From (3.2) we get by the 
linearity of P, and using (3.4), (3.5), 

N-1 N-1 

q> = Pf = 2: fPPe,. = L fPP(E-~'e0) 
p.~o p=O 

N-1 

= L fPE-~'(Pe0), 
~t=O 

that is, the following representation of q> as a discrete convolution, 

N-1 

r:p(x) = 1: lp.TJo(x -x,.). 
p=O 
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Therefore, 

~ 

1 N-1 N f =- "' f e-i.nxl'- 1'l (x-x )e-in(z-zl') dx 
N "-'

0 
lA 2 n ·10 14 

p= 0 

= c,.(j) · N c,.{rJ0), 

since 'flo• as an alement of§', is 2n-periodic. This proves (3.6), (3.7). 
Theorem 3.1 admits the following converse. 

Theorem 3.2. Suppose each element of ~ ( :F has an uniformly convergent 
Fourier series. Let P: li' __,.. ~ be an operator such that 

(3.8} c,.(Pf) =-r,J,.(f), all nEN, all /Eli'. 

Then the operator P is necessarily linear and translation invariant. 

Proof. By assumption, 

00 00 

q;(x) =(Pj}(x) = ~ c,.(q;)e'u = ~ -r,.c,.(f)eiu, 
n=-oo n==-oo 

from which the linearity of P is evident. Moreover, 

00 

P(Ef) (x) = ~ -r,.c,. (Ef)eitu 
n==-oo 

00 00 

= ~ T,. einli c,. (f) eiu = ~ T,. c,. (/) ein(x+lil 
•~-® n=-oo 

= [E(Pj)J(x), 

i.e., P is translation invariant. 
Both theorems can readily be extended to include approximation processes 

which involve not only function values, but also any number of successive deriv
ative values. 

The data space li' then consists of elements I which are k-tuples of N-periodic 
sequences, 

[ 

fm ] 
I= I~ . 

/
(k:_l) 
m mEN 

(3.9) 

li' has thus dimension kN. Defining :F to be the linear space of 2 n-periodic 
(k -1 )-times continuously differentiable functions, an interpolation process P 
is an operator from F into :F such that f!J=Pf satisfies q;<"l(xp) =/1"1, u=O, 
i, ... ,k-1, p,=O,t, ... ,N-1. 
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The definition of translation invariance of an operator P: F~:i!' remains as 
before, if the shift operator E in F is understood to act simultaneously on all 
sequences {f~l} in (3.9). 

Theorem ).1 now extends as follows. I/ the operator P: F~:i!' is linear and 
translation invariant, and q; =Pf, then 

i-1 

(J.10) cn(P)= ~ •n,scn(flsl), all nEN, 
S=O 

where 

(3.11) ~ .. ,~P [lJ~•.,~P m• ... ,rJ,,H~ P[i] · 
The proof is virtually the same as before. Also the analogue of Theorem 3.2 is 
immediate. 

Eq. (3.7), in principle, can be used to calculate the attenuation factors for 
any linear process P which is translation invariant. In simple cases this approach 
has already been taken by Eagle [7]. In more complicated situations the theorem 
which follows may be more convenient. 

For the purpose of this theorem we define §' to be the linear space of 2n
periodic continuous functions q; whose Fourier series converge at each x,., 

eo 

(3.12) p(xp.)= ~ cm(q;)eimx,., p,=O, 1, ... ,N-1. 
m=-oo 

(The summation in (3.12) and in similar formulas in the sequel is always to be 
understood in the sense of a principal value.) 

If q;E/i!', then by (1.4), (3.12}, for every nEN, 

Since for any pEN, 

(3.13) _1 ~ ei1>x,.= N-1 {1 
N p-o 0 

it follows, as is well known, that 
00 

if p =0 (mod N) 

if p :4:0 (modN}, 

(3.14) cn(q>) ~ c.,N+n(q;), all nEN, all q;E:F. 
p:=:o-00 

Theorem 3.3. Let P: F ~§' be an arbitrary interpolation operator, and q; = P f. 
Then for 

(3.15) c,.(q;) =T:ncn(f), all nEN, all /Eli' 

to hold with some T:n not depending on f it is necessary and sufficient that two functions 
w (n), 1p1{n) exist having the following properties: 
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(i} ru(n} is defined for all nEN\N0 and is independent off, where N0 is either 
the empty set, or a subset of N with the property that n E N0 implies n + v N tt N 0 , all 
vEN\{0}; 

(ii) tp1(n +N) =tp1(n), all nEN, all /EF; 

(iio) tp1(n) =0, all nEN0 , all fEF; 

(iii) cn('P) =ru(n)tp1(n), all nEN\N0 , all /EF. 

If ru(n), tp1(n) with the stated properties exist, then in fact 

(3.16) 

where the series in the denominator converges and has sum =f=O. Moreover, 

Tn =1, all nEN0 , 

Tn+ .. N =0, all nEN0 , vEN\ {o}. 

Remarks. 1. The function ru (n) in (iii) is not uniquely determined, but only 
up to an arbitrary N-periodic {nonvanishing) factor. Such a factor, of course, 
does not affect the value of Tn in (3 .16). 

2. If {3.15) holds for an interpolation process P which carries f 1 into rp 1, 
then (3.160) necessarily holds with N 0 ={0}. To see this, simply apply (3.15) with 
rp - 1, f = 1, and observe that for this choice 

{
1 if n=O 

c -
n- 0 if n=FO, 

~ {1 if n 0 (mod N) 
en= 0 if n=FO (modN). 

). If (3.15) holds for an interpolation process P which preserves symmetry 
about :n, i.e., for which 

(3.17) fm=fN-m implies tp(x) =tp(2:n-x), 

then Tn is necessarily real-valued. This follows from the fact that both C.. (f) and 
cn(tp) are real for any f, cp =Pf satisfying (3.17). All examples considered later 
will meet the condition in (3.17). It is not difficult, however, to construct inter
polation processes which violate (3.17). For example, if the restriction of rp to 
[x,.., x,..+l], p, 0, 1, ... , N -1, is taken to be the quadratic polynomial inter
polating f at x,.., x,..+I, x,..H, then symmetry is clearly destroyed. Accordingly, 
one finds in this case that 

N-1 

'Pt(n) = L LJ3f,..-1e-inx,.' 
p=O 

and ru(n) is indeed complex-valued. 

Proof of Theorem 3.3. (a) Sufficiency. Assume that ru(n), tpt{n) with the 
properties (i)-(iii) exist. According to (iii) we have that 

cn(r) =ru(n)tp1(n}, cp =Pf, 

2 If N 0 is empty, the quantifier is to be interpreted as "all neN", otherwise 
"all n =I= n0 (mod N)" where n0 is an arbitrary integer in N0 • 
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holds for all fEF and all nEN\N0 • Consequently, by (3.14), noting that C.,(q;) = 
c .. (f) and using (ii), we get 

00 00 

c,.(f) L c,.N+n(q;) = L w(vN n)w,(vN +n) 

(3.18) 
~=-ro v=-oo 

00 

= L [w(vN+n)tp1(n)], all nEtN0 (modN), all /EF, 
'Jl=-00 

where the last series converges (possibly trivially, if tp1(n) =0). 

vVe show that in fact 
00 

(3 .19) L OJ(vN +n) 
1'=-00 

converges and has a nonzero sum. For this it suffices to exhibit an /EF for which 
c,.(f) 0. Because then, w1(n) =I=O for this particular/, by virtue of (3.18), and the 
assertion follows, again from (3.18). The choice /EF, however, such that 

I 0 = 1, f"' = 0 for ft = 1, 2, ... , N -1 , 

will do, since then c,.(f) =1/N =1=0. 

Convergence of (3.19) being assured, we now conclude from (3.18) that 

c,.(f) = [ .. =~oo w(vN +n)l 1p1(n), all nEtN0 (modN), all /EF. 

Multiplying through by OJ (n), we get 

c,.(/)OJ(n)= L=~OQ OJ(vN +n)10J(n)tp,(n) 

= [v=~oo w(vN +n)1c .. (q;), 

proving (3.15) for nEtN0 (mod N), with r,. as defined in (3.16). 

Assuming now nEN0 , we have by (ii0} that tpAn) =0, all /EF, and by (ii) 
that w1(n +vN) =0, all /EF, vEN. Since by assumption n +vNEtN0 for v=!=O, 
it follows from (iii) that c,.+,N(g;) =0, all /EF, nEN0 , vEN\ {0}. This proves 
(3.15) for integers of the form n+vN, nEN0 , v 0, with 'in+vN 0. From this, 
and (3.14), noting again that c,.(g;) =c .. (f), it follows further that c,.(f) =c,.(g;), 
nEN0 , proving (3.15) for nEN0 , with • .. =1. 

(b) The necessity of (i)-(iii) is trivial, since we may take OJ (n) T,., tp1(n) = c,. {f), 
and N0 the empty set. Theorem 3.3 is proved. 

4. Several Attenuation Factors 

The concept of translation invariance introduced in the previous section will 
be generalized as follows. 

Definition. An operator P: F ->;>/#' is called r-translation invariant (r an in~ 
teger), if 

(4.1) P(E'f) =E'(Pf), all /EF. 
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Translation invariance in the previous sense thus coincides with 1-translation 
invariance. It implies r-translation invariance for each integer r. On the other 
hand, P may be r-translation invariant, for some fixed r > 1, without being 
1-translation invariant. Note that (4.1) implies 

Theorem 4.1. Let r 1 be an integer and N be divisible by r, 

(4.)) N =rq. 

Let P: F..-+§ be a linear operator from F into~ and qy = Pf. If Pis r-translation 
invariant, then 

r-1 

(4.4) c,.(<p} = L T,.,~/n+aq(/), all nEN, all /EP, 
(1=0 

where 

(4.5) 

Remarks. 1. If P is 1-translation invariant, and thus also r-translation 
invariant for any r;;:;::: 1, then (4.4) reduces to ().6). In fact, observing that 

and thus 
1/u =Pea =E-" Pe0 , rJa(x) =rJ0 (x -xa), 

In 

c~~,('I'J.,) = 
2

1
"' J 1J0 (x-xu)e-•"~dx=e-iu,.c,.(n0), 

0 

we find from (4.5), 

r: ~ c (1'1 ) "" e'~1 '1 ~ .. = 
N ,_1

. {Nc,.(n0) if (!=0 

... 11 1' n •tO a~O 0 if O<e<r-1. 

2. The result (4.4) may be given a slightly different form by breaking up the 
r-1 [r/ll] r-1 

sum on the right of (4.4) into two pieces, according to 2: = 2: + 2: , and 
t>~O t>=O 11= [r/ll]+l 

introducing the new variable of summation e' =e -r in the second piece. Using 
(1.7), one gets 

(4.4') 

where 

(4.5') 

Proof of Theorem 4.1. Using the representation (3.2) we have for each /EF, 

N-1 ,._1 q-1 

f = L fP.el' = L L ffl+A,erl+A' 
p.-0 Q=O 1-0 

,.-1q-l 

= L L ffi+A,E-A' e11 • 
11"'01-0 
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By linearity of P, and (4.2), 

i.e., 

Therefore, 

Letting 

we thus have 

(4.6) 

r-1 q-1 

rp=Pf= L; L; /0+J.,.P(E-A'e0) 
Q=O A=O 

r-1 q-1 

= L; L; f(!+ArE-"'(Pe(!). 
11=0A=O 

r-1 q-1 

rp(x)= L; L; f11+J.rrJ12 (X-xl,). 
(1=0 .1.=0 

e -.:o, 1, ... , r-1, 

r-1 

c,.(rp) = L; c,.(rJe)e'""~'d,r 
Q=O 

Now observe that 

c,.(t) 

More generally, 
r-1 q-1 

(4.7) CA (/)=~~ ~~ e->(n+aq)zp+"-• a 01 r 1 
n+aq N £...J £...J 12+ Ar • = • • • · · • - • 

Since 
e=O A-o 

2n 
(n +aq) x11+Ar =nxeHr +aq(e +.A.r) ---;q 

=nx12+A,. +aqx11 +a .A.· 2n, 

Eq. (4.7) simplifies to 

i.e., to 

(4.8) 

" 
1 

r-1 q-1 

C U) ~ e-iaq lfp ~ I e-inxP+M 
n+aq = £...J £...J e1+A, • 

Q=O A=O 

r-1 

Ncn+a 11 (f)=L;e-iae'1.nfrdf!, a=0,1, ... ,r-1. 
1!=0 

385 

We have obtained a system of r linear equations in r "unknowns" de. The 
coefficient matrix is the V andermonde matrix 
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in the r-th roots of unity. Since the inverse of Vis readily found to be 

one obtains from (4.8), 

and thus from (4.6), 
r-1 

c,. ( fjJ) = L c., (rJa) einx, do 
<1=0 

r-1 r-1 

~ 2: c,. (rJa)einx,. L e<tl}2ni{r Cn+qq (f) 
<r=O q=O 

~~( ~ ~
1 

c,. (rJ,.) einx,.+oq2:.ifr) cn+eq (f). 
q=O <J=O 

This proves (4.4) and (4.5). 
The following converse of Theorem 4.1 is proved in the same manner as 

Theorem 3 .2. 

Theorem 4.2. Suppose each element of ~ ( .fF has an uniformly convergent 
Fourier series. Let P: F---?-~ be an operator such that 

{4.9) 
r-1 

c,.(Pf)= 2: -r:,.,ecn+(!q(/), all nEN, all fEF. 
q=O 

Then the operator P is necessarily linear and r-translation invariant. 

It is clear that in analogy to the discussion in Section 3 we could also treat 
Hermite approximation processes which are r-translation invariant. However, 
we shall not pursue this here any further. 

5. Examples 

We begin by recalling a well-known representation for Fourier coefficients. 
Suppose g is a 2 n-periodic function which, together with all derivatives of orders 
up to and including the (k + 1)-st, is piecewise continuous. Let ~~l denote the 
points of discontinuity of gls) in the half-open interval [0,2n), and bg~l the 
respective jumps 

(5.1) 

Then, for n 0, 

(5.2) In 

. 1 J glk+tl(x)e-in~dx (zn)k+l · 
0 

The proof follows directly from a repeated application of integration by parts. 
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Eq. (5.2), applied tog= cp, will be useful in deriving the factorization in (iii) 
of Theorem 3. 3. 

We note that the validity of (5.2) is not restricted to integer values of n. The 
result holds for arbitrary real n, provided the "jumps" at ~0 = 0 are defined by 

(5.3) 

regardless of whether g(s) is continuous at 0 or not. 

5.1. Single Attenuation Factors 

For completeness we include as first example the well-known case where 
cp = Pf is a polynomial spline function (Eagle [7], Quade and Collatz [13], Bauer 
and Stetter [2], Ehlich [8), Golomb [10]). 

Example 5.1. Given /EF, let cp = Pf denote the periodic spline interpolant of 
degree 2r 1, i.e., 

cp EC2r-2(- oo, oo), 

cp(x+2n) cp(x), all xER, 

cp(xp.)=f,.., p,=0,1, ... ,N-1, 
(5.4) 

cp(llr) (x) = 0, X x,... 

It is known that cp exists uniquely. 

We first illustrate the use of Theorem 3.3. Applying (5.2) to cp, with k =2r 2, 
we get 

2n 

2nc (m)= -. -1-J m12Y-l) (x)e-inxdx 
n • (1n)2r-1 -r 

0 

N-l 
_ 1 '\' (2r-l) ( 
- (in)2' 1 L...J cp x,.. 

p.-0 

cp(2•-Il being piecewise constant. Thus, 

with 

%$'+1 

in .r e-•"~dx e-•n~,.. -e-in~,..+l 
~,. 

n=FO, 

shows that tp1(n) has period N. All conditions (i)-(ili) of Theorem 3.3, with 
No ={0}, being verified, we conclude that 

c,.(cp) =-r:,.c,.(f). all nEN, all /EF, 
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with <0 =1,r.,N=O forv::j=O, and 

1 
00 

W. Gautschi: 

for n ::j=O (mod N). 
nll' ~ (vN +n)-2' 

tt--oo 

In terms of the functions ak(z) defined in (2.1), we can write more briefly 

(5.5) 
n 

z=N· 'It 0 (modN). 

The S?ffie result can also be derived from Theorem ).1 3• Let, in fact, 

( ) _ [ sin (u/2) Jll" 
'P u - u/2 ' 

00 

tf>(u)= L 1p(u+2nv). 

Schoenberg [ 16] has shown that 
00 

(5.6) L (t) = -
1
- J y(u) e1" 1du 

' 2:n: ~(u} 
-oo 

is a cardinal spline interpolant of degree 2r 1, i.e., of continuity class 
C2'-2 (-oo, oo),a polynomial of degree 2r-1 on each open interval (m,m+1), 
mEN, and satisfying the unit interpolation conditions 

{
1 if m=O 

L,.(m} = 'f mEN. 0 1 m ::j=O, 
It follows from this that 

00 

?Jo(x} = L L,.(Z +xN), 
"'=-00 

so that (3.7) gives 
In 

T,. ~ J ?Jo(x)e-•udx 
0 

In 00 

= _!_J L L,.(!:. +xN) e-itudx 
h o :oe--oo h 

00 In 

=! L J L,.(~ +xN)e-•udx 
:oe--oo 0 

00 ~+~N oo 

= L J L,.(t)e-inhldt = J L,(t)e-inhldt. 
:oe--oo:o<N -oo 

Inverting the Fourier transform in (5.6), on the other hand, shows that 

so that 
y(2 :n:z) 1 1 

00 

L tp(2 :n:(z +v)) , __ 00 

in agreement with (5.S). 

3 The derivation whiQb. follows is due to Dr. Christian H. Reinsch. 
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Example 5.2. Let /EF, and p(x) =P"'(x) be the polynomial of degree 2r-1 
interpolating fat the 2r points xp+A• ll=-r+t, -r+2, ... , r-1, r. Define 
q;(x) =Pp(x) on [x", x"'+l], ,a =0, ±1, ±2, .... 

Clearly, q;EC(-oo, oo). All derivatives q;<s>, s=1, 2, ... , 2r 1, are con
tinuous on each open interval (x,., xp+l), but will have jumps at the points x,.. 
Since q;<2rl(x) =0, a.e., we have from (5.2), applied to <p, 

(5.7) 
2r-l N-1 

2 C ( ) ~ 1 " .s (s)e-inx,. n -1-0 
n n <p = sfi. (in)s+l f::io u (/Jp • -r . 

We proceed to calculate the jumps 6q;~l. Let 

P(t) =P"(x" +th), 

By Newton's interpolation formula we have 

Therefore, 
2r-l (t +r -1)(s) 

(5.8o) p!sJ (0) = ~;;s k t=O A~fl'- r+l• 

s=1,2, ... ,2r-1. 

We obtain h5 (j q;~l by subtracting from (5 .80) the relation (5 .Bt) with p replaced 
by ,a -1, 

2r-l{(t+r-1)(s) (t+r-t)(s) } 
hs6<p~)= L k Akfl'-f'+l- k Akfl'-r • 

k=s t=O t=l 

As a result, 

(5.9) s = 1, 2, ... , 2r -1. 

Since 

e~r_/) = (2r~1)1 [tZ-(r-1)2] ••• (t2-f]t 

is an odd function, all derivatives of even order at t =0 vanish in (5.9). Letting 

(
t +r -1)(2s-l) 

y,.=(-i)"+s 
2 1 

, S=1,2, ... ,r, 
r- t=o 

27 Numer. Math., Bd. !8 
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we thus obtain from (5.7) 
r N-1 

2nc,.(ff!)= ithL (:hJlls L (.1 27 /,.-r)e-inx,., n 0. 
s=l p=O 

This is the desired factorization c,Jp) =w(n)1p1(n), with 

" 
w(n) = s~l (J;j2s, n=l=O, 

It is indeed evident that 1p1(n) has period N. Moreover, since with f also all dif
ferences jjsf have period N, one has with g~' =L1 2"-1 f

11
_, that 

i.e., 1p1(0) =0. Theorem 3.3 is thus applicable with N0 ={0}, giving 

c,.(ff!) =T,,2,.{f), all nEN, all /EF, 
with 

T:0 = 1 , Tv N = 0 for v =l= 0, 
and , 

~ 'Yrs (2 :ttz)llr-lls 

(5.10) s=l n 
n 0 (mod N). T,. = -,-----~--- Z= 

~ 'Yn(2 :ttz)llr-lsrrh-1 (z) 
s=l 

A short table of the coefficients y, s follows. 

2 

3 
4 

Table 5.1. The coefficients Yrs in (5.10) 

1 
1/6 
1/30 
1/140 

1 

1/4 
7/120 

1 

1/3 

Using Proposition 2.2 on obtains from (5.10}, after some computation, 

(5.101) T =(sin nzr 
n nz (r =1), 

(5.10:~) (sin M)' [ 2 J T,.= --nz -- 1 + 3- (nz)2 (r =2), 

(5.10a) (sin nzr[ 8 l 1: = --- 1 + {nz)2 + (nz) 4 
n nz 15 (r 3), 

{5.10,) (sin nzr [ T= -- 1 n :ttZ 
4 ( )2 14 ( )' 
3 nz + 15 nz ;~ (nz)s] (r =4). 
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The first of these, (5.101}, of course, agrees with the attenuation factor for spline 
interpolants of degree one; the second, for r=2, is due to Dallenbach [6]. 

Comparing (5.101)-(5.104) with the corresponding attenuation factors for 
splines, 

[cf. (5.5} and Proposition 2.2], one notes that the polynomial factors in the 
brackets of (5.101)-(5.104) are precisely the beginning terms of the power series 
expansion of 1/q2 ,_ 2 (cos nz). Thus, for small z=nfN, the interpolation polynomials 
of Example 5.2 give only slightly different Fourier coefficients compared to the 
spline interpolants of Example 5.1. For large z, however, the attenuation factors 
show different behavior, as they should, the two approximants belonging to dif
ferent continuity classes. 

Example 5.3. Let {j denote the central difference operator, fiy,. = Y,.H-y,.._1, 
and (52k-1y,..=j(b2k-tYp-l (j2k-tY,..H) the mean odd differences. There are 
unique finite difference expressions 

r-1 

(5.11) (Lt.sY),. = L,: ask(j2ky,., 
k=s 

such that 

(5.12) 

r-1 

(L2s-tY},.. = L bsklJik-ly,.. 
k=s 

is valid for any polynomial y of degree 2r -2. The coefficients ask and bsk in 
(5.11) indeed [11, p. 136] are the coefficients in the power series expansions 

[
2 sinh-1 !_lis-t 

00 
2 - ~ b z2k-l 

-=---:~v=1 +=z~8/:;=4-- -
1
/::!s s k • 

Given jEF, let now p(x) P,.(x) be the unique polynomial of degree 2r-1 
satisfying 

hsp<sl(x,.) (Ls f)~', hsp(sl (xp+t) = (Lsf)p+t• s =0, 1, . .. , r -1, 

where h=2:rr{N, and let q;(x) =P,.(x) on [xl', x,..+t], p,=O, 1, ±2, .... Clearly, 
q; E cr-1 

(- oo, oo), so that q; has now a degree of smoothness which is about midway 
between those in Examples 5.1 and 5.2. 

Letting P(t) =Pp(x,. th), the well-known formula for Hermite interpolation 
gives 

r-1 r-1 

(5.13) P(t) L hs(t){L5 /}p+ L {-1Yhs(1-t}(Lsf)p+1• 
s=O s=O 

where 

r-s-1 ('+a 1) 
h5 (t}= : t5 {1 -t)' 

11

f:
0 

0'- ~. s=O, 1, ... , r-1. 

Similarly as in the previous example, we may now calculate the jumps {j rp~al for 
r<:::::e<2r-1, and then use {5.2) to find a factorization for c,.(rp). We omit the 
somewhat lengthy calculations and content ourselves in stating the final result. 
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One finds that 

where 
N-1 

(5.14) "Pt(n) = 2: f,.e-•u,. 
p=O 

and 

(5 .15) 

Here, 

{ 

[(r-1)/2] 

A 11 (z) = 2 ( -1 }" sin 2 :nz .~o h~~~~l ( 1) ex.. (sin :n:z) 
(5.16) 

[r/2) } 
+cos :nz 2: [h~~~ 1 (1) cos 2nz h~~~ 1 (0)] {J.{sin :n:z} , 

S=1 

(5.17) 

where 
r-1 r-1 

(5.18) oc.(z) = 2: (-1)8 a.k(2z)1u, {J.(z) 2: ( -1)kbsk(2z)2k-l. 
k-s k-s 

It is evident that 1p1(n) =Ncn(f) in (5.14) has period N. Also, A11 (z) and B11 (z) 
both have a factor sin2 :n:z. This follows for A

11 
from the identity 

which implies 

and for B 11 from 

which implies 

h0 (t) = ~ (t) - ~ ( 1 - t) + 1 - t, 4 

h0 (t) = 1 - h0 { 1 - t) , 4 

h~211+ 1l(O}=h~!!+ll(1), all (! 0. 

The common factor sin2 (:n:n/N} (which is N-periodic and vanishes at n =0) 
can be transferred from w (n) to "Pt(n), with the result that Theorem 3.3 becomes 
applicable with N0 ={0}. The first few attenuation factors, which follow from 
(3.16) and (5.15)-(5.18) are listed below: 

{5.191) - (sin nzr Tn- nz (r =1), 

(5.19a) _ (sin nz )' 
Tn- nz [3- 2:nz cot :nz] (r =2), 

(5.19a) -(sin nz r T,.,- nz [25 -7(:n:z}2 -24:n:zcot :nz] (r =3), 

(5.19.} Tn=(si:;zt[623-
7~4 (:n:z) 2 (622:nz-

1 ~6 (:n:z)8)cot:n:z] (r=4). 

4 This is most quickly seen by checking that the function on the right-hand 
side has the same interpolatory properties as h0 {t), viz., h~l(O)=d80 , h~l(1)=0, 
s =0, 1, ... , r-1. 
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The first of these is again the attenuation factor for broken line approximants; 
the second is due to Eagle [7]. 

Interestingly enough, the expressions in brackets in {5.191 _ 4) have power 
series expansions whose initial terms are precisely those given in the brackets 
of (5.101_ 4). 

Example 5.4. Given /EF, we now take for rp a generalized periodic spline 
interpolant corresponding to the linear differential operator 

(5.20) 

where af! are real constants. This means that 

rpEC2'-2 (-oo, oo), 

rp(x +2:n:) = rp(x), all xER, 
(5.21) 

rp(x1.J p, =0, 1, ... , N -1, 

(L*Lrp)(x) =0, x=t=xp, 

where L* denotes the formal adjoint of L, 

(5.20*) a,. 

The existence of such a spline interpolant is assured if L has the property that 

Ly =0, y(x,.) =0 (p, =0, 1, ... , N) implies y =0 

(Ahlberg et al. [1], p. 199). This is the case, e.g., if N >rand if we assume that the 
characteristic polynomial of L, 

r.x.(t) =f ~r-1 + ... +a,, 
has distinct zeros tf!, (! = 1, 2, ... , r, such that 

(5.22) 

The fundamental solution set yf! =exp (t
11

x), e = 1, 2, ... , r, of Ly =0 is then 
indeed unisolvent on any interval. We also assume that none of the nonvanishing 
zeros tfl is an integer multiple of i. This implies that 

(5.23} 

which (apart from the sign} is the characteristic polynomial of L * L, does not 
vanish at an integer multiple of i, except possibly at zero. 

Applying now (5.2) to rp<"el, (! =0, 1, ... , r 1, we get for n 0, 

N-1 ~ 

2'"C (ml211l) = . 1 ~ .~: m(2r-l)e-ins14 + 1 J (2r) ( ) -inxd 
·~ n T (zn)2r-2(1 LJ U rp (in)llr-1{1 fP X e X, 

J.I=O 0 

e = 0, 1, ... ' r -1 . 

Using the last relation in (5.21) and the fact that ).(t) in (5.23) is the characteristic 
polynomial of L * L, we can write 

(5.24) 
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where 

(5.25) 

llln: 

(5.26) y,.= 21n J [ll p(llr-2)(x) + ... +l,q;(x)]e-inxdx 
0 

r-1 

,l: l,_ec,.(q-;<2!!)). 
Q=O 

Multiplying (5.24) by 1,_ 11 , e=O, 1, ... , r-1, and adding up the results, we get 

y,.= r:~ (i~);:/ ... ,ll] (V't(n) -y,.)=[(in)-2
' l(in) 1] (tp1(n) -yn), 

i.e., since by assumption A.(in} 0, 

y,.= [ 1- ~~;;;] V't(n). 

Now (5.24), with e =0, gives the desired relation 

(5.27) c,.(p) =w(n)tp,(n), n 9=0, 

with 

(5.28) 
1 

w(n)= J.(in) . 

Clearly, tp1(n) in (5.25) has period N. If A.{o) 9=0~ Theorem 3.3 applies with the 
empty set for N 0 • (Eq. (5.27) then also holds for n =0, as can be concluded 
from (5 .27') below by letting n -+0.) Whether or not this case has any practical 
merits is questionable, since the interpolation process P in this case does not 
reproduce the function f 1, since L* Lp =0 has no nontrivial constants among 
its solutions. 

If, on the other hand, A.(o) =0, then tp1(o) =0, all /EF, as we now proceed 
to show. We have noted earlier that the result (5.2) holds for arbitrary real n, if 
one observes the definition (5.3). The preceding derivation, therefore, can be 
carried through under this more general assumption on n, giving in place of (5.27) 

(5.27') c,.(p) -i(~n) { 
1 --;_:~:nin [A.(in)F;,-:~l,_ 11 F;,] +tp1(n)}, n(real) 0, 

where 

F;, = tp(2a) (0) i~ tp(21l+1) (0} {in)2r1_2g-2 tp(2r-2) (0), {! =0, 1, ... 'r -1~ 

and the definition (5.25) of tp1(n) is to be adapted in accordance with (5.3). Since 
fore =0, 1, ... , r-1, 

we see that 
l,_!!F;, = l,_ 11 (in) 211 l'o +O (n), as n -+0, 

r-1 

l(in)J'o- ,L; l,_ 11 F;, 
e=O 

=A. (in) Fo- [l (in) (in) 2'] Fo +0 (n) 

(in)2
' Fo +0 (n) =0 (n) I as ?t -+0 I 

proving indeed that 'ljl1(n) -+0 as n-+0, all /EF. Thus, Theorem 3.3 applies with 
N 0 ={0}. 
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In summary, then, 

(5.29) 

with 

(5.)0) 
1 

't"" = -""~--1-(z-.n-)--

v=~oo A(i(vN +n)} 

395 

for all nEN, if ).(0) 0, and for all n *0 (mod N), if J,.(o) =0. In the latter case, 
7:0 =1, and T,N=O, 1' 0. 

For the "splines in tension", considered by Schweikert [17], we have 
L=D(D a), and thus L*L=D4 -q2 D2, i.e., tp(x) =c1 ea% c2e-n c3 +c,x 
on each subinterval (xw xwt-1). In this case, J,.(in) =n' +o2n2• 

5.2. Several Attenuation Factors 

The following example generalizes constructions and results due to Yuskov [ 20]. 

Example li.li. Let r 2 be an integer, and assume N divisible by r, say, N =rq. 
Letting p(x) =P,.(x) be the unique polynomial of degree r satisfying 

(5.)1) p(xpr+s) =fpr+s> s =0, 1, ... , r, 

we define <p (x) =P,. (x) on [xp,. x(11+l)rL p. =0, 1, ... , q -1. 

The interpolation process <p =Pf of Example 5.5 is clearly linear and r-trans
lation invariant. Hence, by Theorem 4. t, 

r-1 

(5.)2) c,.(<p) = L i,., 1/,.+flq(f), all nEN, all /EF. 
l!-0 

In order to calculate the attenuation factors -r .. ,fl' we denote by 

, ( t . 
l,, 0 (t) = [[ a-=.~), 

(/=0 
f/*a 

a =0, 1, ... , r 

the fundamental Lagrange interpolation polynomials belonging to the set of 
abscissas {0, 1, ... , r}. Then, with h =2n/N, 

so that 

r ,(t). 
'lo(x) ~ ~:,(-1), 

x=th, 

x=2n+th, 

2n 

cn(r;0) = 
2
1
n J r;0 (x)e-i.udx 

0 

for 

for 

for 

0 t r, 

-r 

x, X X(q-l)f• 

= :n J jt,,o(t)e-inhtdt + j l .. ,o( -t)e-in(2n+th)dt) 
lo -r 

r :n J l;,o(t)[e-inht+einht]dt, 
0 
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W. Gautschi: 

, 
c,.(l]0) = ~ J l,, 0 (t} cos nht dt. 

0 

x=th, for 0 t r, 

for x, x 2n, 
giving , 

c,.(na) = 
2
hn J l~,a(t)e-inhldt, O<a r-1. 

0 

Therefore, applying (4.5), 

(5.}3) '•·•- ! (2 jt,, 0 (t) cosnht 

Observing that 

(5.34) l,,a(t) =l,,,_a(r-t), a=O, 1, ... , r, 

we can transform the sum in (5.3)) as follows, 
r-1 r 
L e1eo2n/r J l,,o(t)e-inh(t-a)dt 

<1=1 0 
r-1 r 

= L: e'l/(1'-a)bfr J z,,,_a(t)e-•""tt-r+a>dt 
a=l 0 
r-1 r 

= L e-iea2nJr J l,,,_o(r -T)e-in1s(-7+a)d7: 
a=l 0 
r-1 1' 

= L: e-•~~abJ• J t,,a(t)e•nll.(t-a>dt. 
o=l o 

This shows that the sum in (5.33) is real, so that (5.)3) simplifies to 

•n,e = ! 2 J l,, 0 (t) cos nht ~ J l,,,y(t) cos [nh(t -a) -ea2nfr]dt . l 1' 1 , l 
o a-lo 

Again using {5.)4), we can further write 

or, since symmetric terms (with indices a and r -a) are equal, 

2 (r-1)/2!' 
(5.35) T,.,o= r L l,,a(t) cos [nh(t -a) ea2nfr]dt if r is odd, 

a=O 0 

{5.)5') 

'•·•- ! { ( -1)'/1,,,1, (f) cos [nh(t -r/2)]dt 

(1'/2)-1 , l 
+2 L J l,,a(t) cos [nh(t-a) -ea2n/r]dt 

a=O 0 

if r is even. 
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For r=2, e.g., one obtains from (5.35') by an elementary computation, 

(
sin :rr;z)3 

-r = -- [cos {nz 
n,l} :rr;z Q n/2) nz sin (nz en/2)] (r=2; e=0,1}, 

where, as before, z njN. Similarly, (5.)5) for r =3 gives 

Tn, 11 - 36 (~z)2 [2 cos 6nz-9 cos (4nz -e2n/3) 

18 cos (2nz +e2n/3} -H] 

(5.)53) 12 (~z)3 [sin 6nz -4sin (4nz -e2n/3) 5 sin {2nz +!.>2:rt/3)] 

+ 24 (~zr (cos6nz -)cos (4nz -e2n/3) 

+Jcos{2nz+e2n/3)-1] (r 3;e=0,1,2). 

Both results (5.}5;) and (5.)53), in a somewhat different form, were already 
obtained by Yuskov [20]. 

The case r = N = 8 is considered by Salzer [ 15] who has numerical tables for 
0 24. 

5.3. Attenuation Factors Associated with Derivatives 

Example 5.6. Let k and r be integers with 1 k Define q; as follows: 

q;EC2r-1-k oc, oo)' 

q;(x 2n) = q;(x), all .xER, 
(5. 36) 

q;!"'1(.x,..)=/t;1, ;~t=O, 1, ... ,k-1; Jl-=0, 1, ... ,N -1, 

q;('Jr) (x) =0, X x,_.. 

In the terminology of spline functions, q; is a periodic spline interpolant of degree 
2r -1 and deficiency k. It exists and is uniquely determined (Ahlberg et al. 
[ 1, pp. 167-168]). The special case k = 1 gives ordinary splines, considered in 
Example 5 .1. If k = r, we are dealing with Hermite interpolation of order r -1 

on each subinterval [ .x,.., .x~'+l]. 

Applying (5.2) to <p{sl, s =0, 1, ..• , k-1, we get for n 0, 

s=O, 1, ... , k-1. 

For n 0 (mod N) one computes 

z k 0, 1, 2, .... 

Moreover, by construction, 
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Applying {}.14) to rp<s>, we thus obtain 

00 

c,.(/(s)) = L c,N+n(rp<s>) 
Jl=-00 

(5.}8} k-1 N-1 
- _1~ " O'ir+oc-s-k (z) " (J (2r+oc-k) e-inx,.. 
- 2 n LJ (in)llr+l+oc-s-k LJ f/Jp. , 

>e=O p=O 
s =0, 1, ... , k-1. 

Defining 
N-1 

d = _1_ 1 " .1: m!~r+oc-k) e-inx,..' 0 1 k 1 
u 2n (in)2r+l+oc-k LJ u r.- X= 1 1 • • ·, - , 

p.=O 
we can write 

k-1 
(5.}9} c,.(rp) = L d,., 

>e=O 

by virtue of (5.}7) with s =0. On the other hand, (5.}8) represents a system of k 
linear equations in the k unknowns dx, 

k-1 
(5.40) L (in) 50'2r+><-s-k(z)d,.=cn(f1•>), s=0,1, ... ,k-1. 

><=0 

Inverting this system, and substituting the result in (5.}9) gives c"(rp) as a linear 
combination of the c,. (!<•>), 

k-1 

(5.41) " Tft, s A (/(s)) 
LJ (in)• c,. ' 

S=O 
n =1=0 (mod N). 

The coefficient matrix of the system (5.40) is given by 

0'2r-1] 
0'2r-2 

0'2r-k 

Except for the ordering of the rows, the second factor of A is identical with the 
matrix Hs,p of Proposition 2.} 1 if we define s=2r-2k+1 and P=k. Since 
s:;;;::.: 1 is odd, and p > 1, it follows from (2.4) that det A =1=0 for n 0 (mod N). 
One checks easily that the attenuation factors Tn,s in (5.41), s =0, 1, ... 1 k -1, 
are just the column sums of H;.;_ 2k+t,k(z), taken in the order from right to left. 

A slightly more explicit expression for Tn,s may be obtained from Proposi
tion 2.2. In fact, if we let 

[

q2r-k-1 q2r-k 

Q (z) = :2r~k~2. :2~-~-~ . 
q2r-2k q2r-2k+l 

q2r-2 ] 

q2r-a , Q-1 (z) [w,.J!;;~ 0 , 

q~r~k~l 
where q. =q. (cos :n:z) 1 then an elementary calculation yields 

k~l (sin nz)2r+><-k-s+l 
L..J nz W,. 5 (cos nz), 

oc=O 
(5.42) s=0,1, ... ,k-1. 
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For r =k =2, e.g., one finds 

sin nz ( sin nz 
Tn,o = - cos nz - nz , 

3 ( 2 1 sin nz ) -r = -- - cos2 nz +------cos nz 
n,l (nz)2 3 3 nz ' 

(5.43) (r=k=2). 

This corresponds to cubic Hermite interpolation on each subinterval. The proce
dure has already been discussed by Serebrennikov [18], who expresses the result 
in the form of an additive correction term to Dallenbach's result, but does not 
note the connection with attenuation factors. 

The following limiting relations are worth noting, 

{in)-1 -rn,c~O as n-+0, 
(5.44) 

( . )-1 3 (' N)-1 Tn,o-+0, ~n Tn,1 -+ (nv)•- tv as n-+vN, v 0. 

It can be verified that with these limiting values Eq. (5.41) (for r=k=2) 
holds true when n =0 (mod N). 

For r=J, k=2, Eq. (5.42) gives 

also 

(5.45) 

sin nz ] 
nz q2 (cos :rtz) , 

sin nz ] 
(r =3, k =2), 

_n_z __ q3 (cos n z) , 

where again limit relations similar to those in (5.44) are valid. 

For r=k=), finally, 

1 5 [ . sin nz ( sin nz )2j 
1: = ---- sm2 nz 3---cosnz-3 ----

n,o (nz)' nz nz ' 

(5.46) r,., 1 (n
3
zya(4sin nzcos nz + ;z (1 + 14 cos2 nz)- (~;f2sin nz cos nz], 

3 [ . sinnz (sinnz)'2] 
1"n, 2 (nz)2 1 sm2 nz +4 nz cos nz- 5 ·---;u- . 

One checks that 

as n-+0, 

which is in agreement with the relation 

c0 (qJ) =c0 (/) + :o h2 c0 (f") 

obtained by 5-th degree Hermite interpolation. 

Acknowledgment. The author is greatly indebted to Dr. Christian H. Reinsch for 
many valuable discussions which helped clarify and simplify the exposition at several 
places. In particular, the present version of Theorem 3.1, as well as Theorem 3.2, are 
due to Dr. Reinsch. He clearly recognized the role of translation invariance for the 
existence of attenuation factors, which the author had expressed only implicitly in a 
preliminary version of Theorem 3.1. 
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ON PAD£ APPROXIMANTS ASSOCIATED WITH 
HAMBURGER SERIES (1) 

Dedicated to Professor Aldo Ghizzetti on his 15th birthday 

W. GAUTSCHl (l) 

ABSTRACT - We discuss three (only loosely connected) aspects of Pade approximant& 
associated with Hamburger series: (i) Normality criteria, expressed in terms of 
orthogonal polynomials (ii) Inequalities for expansion coefficients (iii) Compu· 
tational methods. 

1. bltroduedon. 

A formal power series 

(1.1) I <z>=Jio+.a• z+pz r+ ... 
is called a Hamburger series if its coefficients are moments 

(1.2) . Pic-J t" dl(t) 

R 

of a bounded nondecreasing function l(t) having infinitely many points of increase; 
(1.1) is called a Stielties series if ( 1.2) holds with a distribution dl supported on 
the nonnegative real axis R+. There is a well-known connection between Pad6 
approximants associated with a Stieltjes or Hamburger series and polynomials 
orthogonal with respect to the distribution dl. (For a recent exposition, emphasiz
ing this point of view, see [ 1 ]). The Pad6 approximants on the first subdiagonal 
of the Pade table (l)~ indeed, are 

( 1) Sponsored in part by the National Science Foundation under grant MCS. 
7927158A1. 

(2) Department of Computer Sciences. Purdue University, West Lafayette, U.S.A .. 
(3) We arrange the Pad~ table so that fractions with constant denominator degree 

'appear in tho same row. 
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112 W. GAUTSCHI: On Pade approximants 

(1.3o) 
" A (n) 

f[n-l,n] (z)= .E 1 '<n> , n=1,2,3, •.• , 
.... , -'t', z 

where -r~<n> are the zeros of the n-th degree orthogonal polynomial Trn (t; dA.) and 
A,,<n> the corresponding Christoffel numbers. More generally, given any integer 
j~O, we have for Stieltjes series, and also for Hamburger series if i is even, 

(1.3;) 
" l (n) 

f[n-1+j.n] (z)=Po+.UtZ+ ... +PJ-tZ1- 1+z1 .E 1 v,/ (11) I 
,,..1 -T.,,J Z 

where -r.,,J'"> are the zeros of Trn,J ( ·):::: n, ( ·; dlt) and l,,/<n>. the associated 
Christoffel numbers, dl1 now being ·the measure 

(1.4) 

The integer n in (1.3/) may be any nonnegative integer, if i>O, assuming the 
usual convention that empty sums are zero. Since for Stieltjes series the sup
port of dl is in R+, the measure d).l is positive definite, hence defines a unique set 
of (monic) orthogonal polynomials Tt:n,f, n=O, 1, 2, ... (cf., e. g., [7, § 2.2]). The 
same is· true for Hamburger series, if j is even. 

Pade tables associated with Stieltjes series are known to be always normal. 
This, of course, is no longer true for Hamburger series, an extreme example 
being furnished by a symmetric distri~ution d). on a symmetric interval, in 
which case the formal power series (1.1) proceeds in even powers of z and no 
entry of the Pade table is normal. (The Pade table, however, is seminormal 
in a sense defined by Gragg; see [9, p. 16 and Theorem 7 .3]). In 
Section 2 we formulate and prove a condition, in terms of orthogonal 
polynomials, for all entries I [n-1 +i. n], n> 1, j>O, of ·the Pade table associa
ted with a Hamburger series to be normal (Corollary to Theorem 2.1). 

Expanding the rational part of (1.3i) in powers of z, one gets 

00 

(1.5) I [n-t+i, n] (z)=.uo+.utz+ ... +PZn-l+irn-t+l + E lltc}"> zk+i, 
k=2tt 

where 
,. 

(1.6) /Jk}n> = Z lu,/'1) [ 'r11,/"l]k, k=O, l, 2, ... , 
-1 

We have used the fact that 

(1.7) 
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The expansion coefticients p.~ci">, when. (1.1) is a Stieltjes series,. satisfy the 
following interesting inequalities, · · · 

(1.8) p.icj"+1>~p.Tci">>O for all k~2n,. n=1,2,3, ..• , {-0,.1.·2, ••• ; 

see the proof of Theorem 5.2.7 in· Baker & ·Graves-Morris [2]. This means that 
the coefficients of some fixed power zl'+i -in the expansion of .the Pade approxi· 
mants down a diagonal [n·-1 + j, n ], n= t, 2, ... , j~O. are monotonically increas
ing until they beconie, and stay,. equal to an exact moment. 

We show in Section 3 (see Corollary to Theorem 3.2) that (1.8) remains 
· trile (or Pade apprQximants asscX:iated with a large class of Hamburger series, 
. provided j is ·restricted to an even integer. Our tool, which prod~s the assertion 
rather quickly, is a recent result of Hunter [tO] on orthogonal polynomials. for 
which we also give • slightly simplified proof.· 

Finally, in Section 4, we discuss several methods, all based on flhe represen
tation (1.3:J), of computing Pade approximants 1 [n-1+2j, n]. Numerical stabil
ity being of particular concent to us, we ayoid methods that depart from the 
moments. We assume, instead, othat we are given ·the me~sure dl(t), or equi-

.. valently, the recursion coefficients of the assoeiated orthogonal polynomials, and 
use these as input to our procedures for generating the moments p.~c and Gaus&.- · 
Christoffel data· -r,.21<">, l~.1r> req\lired in (l.3z;). 

2. NormaUty criteria-. 

An entry of the. Pade table is said to be normid if the- same entry does 
not occur in any oflber location of the · Pade tabie. The Pade table is normal if 
each of its entries is normal. Every Pade. table associated with a Stieltjes series 
is known to be normal [13, P~ 390]. We_now formulate necessary and sufficient 
conditions for normality in the case of a Pade table associated with a Hamburger 
series. 

The measure dl1{t) of (1.4), when j?!:.O is· ·even, gives rise to (monic) 
orthOgOnal polynomials n~./ and · polynom~als of the second kind_, 

(2.1) (1, • <z>=J n .. 1 <~>-n-.1 (t> d.t <t> 
,.,1 z-t I ' 

R 

where 1fri.J and f.l:rt,J are of exact degree n ·and ·n-1, respectively. We also need 
*:function · · · 

(2.2) Prt.J (z) . J "';~:) dl1 (t), 
R. 
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114 W. GAUTSCHI: On .Patie approximants. 

where z is assumed outside the support of dA.;. We write fin and Pn for t7,.,o and 

Pn.o. Clearly, 

(2.3) . . ( ) r dlr(t) rr,., z .t . z-
a,.,i (z) + Pn,J (z). 

R 

Also, as is well-known (see, e. g., [ 4, § 1.4 ]), 

(2.4) 
(f, i ·(Z) ~ l J<n.> .. 

11, _ :X . _c·_v.:;.., __,.....,... 

1rn.J (z) .~ v=l <z--rv,/"}' 

where 't.,,r> are the zeros of nn,i and lv)"> the corresponding Christoffel numbers. 
Note that the limit p,.,1 (0) =limp,.,/ (z), if i>O, formally exists, since by (2.3) ,_u . 
and (2.4), 

. (dl; (t) .. 
-Pn,f (O)=n'n,j(O) t +f7n,J (0} 

(2.5) R 

if T&n,i (O)=J=O, and similarly, with an expression involving n'n,J (0), if trn,J (0)=0. 

THEOREM 2.1. The entry f [n-1 +i. n], n~ l, j (even)>o, in the Pade 
table associated with the Hamburger series (1.1), (1.2) is normal if and only if 

(2.6) 

and 

(2.7) 

T&n (0) t7n (0) =I= 0 in the case j _;_ 0, 

n'n,f (0) Pn.l (O)=f=O in the case j>O. 

Proof. Assume first i>O. Then, by (1.31) and (2.4), 

n'n,J* (z)[.UO+Pt z+ ... +JL1-1 zi-I] +zi f7n.i* (z) 
1tn,J* (z) · ' f [n-1 +i. n] (z) 

where n'n,J* (z) =z" Trn,; (1/z) and t7n,J* (z) =z"-1 f7.1.J(1/z); From (2.4) it can be 
seen that the zeros of t7n,f are real and alternate with the zeros of trn,f (if n> 1). · 
It follows that n'n,J and CFn,J have no common zeros, hence· neither do Trn.;* and 
crn,i*· Consequently, the fraction in (2.8;) is irreducible, if n> 1. The same is 
trivially true (since t7t,1* (z)·-.a;>O) if n= 1. A well-known theorem [12, S~.J,tz 

5.3] then tells us that the entry (2.8J) is normal if and only if its numerator. and 
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denominator polynomials are of exact degree n- 1 + j and n, respectively. and 
f.llll+J-Jl2n.l") =FO [cf. (1.5)]. · 

The last condition · is always satisfied, since. Markov's formula for the 
remainder term R, ( ·) in Gaussian integration (with measure dl1) yields 

(2.9) f.l7n+J-f.llni">=Rn (J2")= J nl,,J(t) dAj (t)>O. 
R 

Now the coefficient of the power z" in 'lrn,/ is TCn,f (0), while the coefficient 
of the power zn-1+/ in the numerator polynomial of (2.81) is n,,1 (0) f.lJ-t +.a •. 1 (0), 
or, by (2.3>, 

r dl, (t) . 
·nn,j (0) Jl;-l-1tn,j (0). - 1 - - Pr~,J (0) = - Pn./ (0). 

R 

Therefore, the degrees of the numerator and denominator polynomials in 
(2.8/) are .exactly n-1 + j and n, respectively, if and only if 1tn.i (0) PM (0) =fO. 
This proves (2.7). 

· The proof in the case i=O follows similarly from 

(2.8o) IT,*·(z) . 
/[n-l,n]= 1tn* (z)' 

·the degree condition (for the numerator polynomial) now· reading cr,. (0) =fO . in 
place of Pn,f (0)=4=0. 0 

REMARKs • 

. l. Theorem 2.1 holds also for n=O, i>O, if the condition in (2.7) is replaced 
by /lj-1 =F 0. . 

2. _By virtue of (2.4), (2.5), the conditions (2.6) and (2.7) can also be 
written in the form 

(2.6') 

(2.1') t ,. A.·/") l . 
n,,t(O) llJ-1- X ~ =4=0, j(even)>O . 

. -1 'rv;J · 

3. The condition 1tn,f (0)9=0, j(even);;::O, implies the existence of n,,/+1; 
·indeed, 
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116 W. GAUTSCHI: On Pade approximants 

·. • ·r Tlll+1./ (0) . . ( ) 1 Tln,/+1 (t) = -t- Tln+l,j (t)- Tln,/ (O) · Tlll,/ t • 

The representation (1.3/+1) therefore ·holds for f [n+j, n], j (even) >0, provided 
1rn,J+I has n distinct zeros. · 

4. The usual criterion for normality of f [n-l +i. n], j(even) ~ 0, in 
terms of determinants, is [12, Satz 5.4] · 

(2.10) . .d,.-t,j.dll,j ..1n-1,i+1 An,j-1 =f=O, 

where 

(2.11) [

{lie . /lk+1 . 

An,k = det ~~:1 ~~~ 
/-llc+n 1-'.lr.+n+l 

• • • /lk+n ] 

•. • • fl.lc+tl+ 1 , k '2:. .....;.. 1 . . . . .. 
• • • /-lk+'1n -

(with the understanding that .U-x=O). The· conditions implied by (2.10) · can. 
easily be recovered from (2.6), (2.7). It suffices, first of all, to show .dn-1,/+1 A,.,/-1 

=1=0, since from the theory of the Hamburger moment ·problem, .dn:-t,1>0, 
An.1>0 if j~o is even (cf., e. g., [13~ p. 325]). The representation of orthogonal 
polynomials in determinant form, · 

r 
lli+n-1 

~.' l (2.12) . Tln,J (z) . -:f-idet PJ+t /li+n 

n-1,/ • • • 

. Pi+n fJJ+in.-1 z" 

(see, e. g., [7, Eq. (2.2.7)]), yields 

{ -1)" TCn,J (0) =An-t,J+tf .dn-l,j, j '2:.0, 

and, for i > 0, 

- Pn,j (0) = J 1rn,j (t) p-I dl(t) 

R 

[

{lJ 

=__!_ fdet lli+t 
An-1,/ • • • 

R . . . · .U/+fl /J/+74-1 

p-1 ]' . . 

:.. .· dl (t) = ( -1)" Aa.1-i/ An-l,J • 

tl+a-1 . ·. . . 
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The condition n:11,1 (O)=f=O thus is equivalent to An-1,/+t=I=O, while PnJ (0)=1=0 
(for j>O) is equivalent to An,;-•9=0. Finally; if j;::O, 

O'n (0) f 1tn (t)t-1Cn (0) dl (I)= 

. R 

. l [~ = __!__ L det Pt . A.-··1 t ' .. 
· Pn 

J.ln-l 
p, 

Pn-l 
= _1_ fdet /.lt • • • J.ln [

flo ••• 

.dn-1,0 • • • • • • • 

. R p,··· J.lln-1 

= ( -1 )" An,-I/ .dn-1,0, 

0 ]. 
~.. dl(t) 

t"-1 

so that u, (0)9=0 is equivalent to An,-t=I=O. 

/ln-1 

/ln . 
... 

As a consequence of Remark 4, note that O'n (O)=J=O. all n~ 1, is equivalent 
to .d,.,_1=f=O, all n> 1, while 1tn,i (O)=f=O, all.n~ 1, allj (even)~O. is equivalent 
to Ll,,k=J=O, all n~O. all k (odd)~ 1. Since .Ll,.,;>O whenever i is even, it follows 
that the conditions 

(2.13) 

and 

(2.14) 

O'a (O)=f=O, all n~ 1. 

n,.,j(O)=!=O, all n~ 1, all j(even)~O. 

together are sufficient, and also necessary, for (2.10) to hold for all n~ 1 and 
all j~O. This establishes: 

COROLLARY TO THEOREM 2.1. Every entry f [n-l+j, n], n~l, in the PadS 
table associated with the Hamburger series (1.1), (1.2), regardless of whether 
j~O is even or odd, is normal if and only if (2.13) and (2.14) hold. 

3. Inequalities for Pade expansion coefficients. 

We assume in this section that 

(3.1) dl(t)=w(t) dt, 
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118 W. GAuTsCHI: On Pade approximants 

. where w (t) is a nonnegative weight function on a symmetric interval I: 
- oo::;; -aSt:5:a< oo, a>O, continuous on the open interval (-a, a), ·and 
such that all moments /LTr. in (1.2) exist and p.o>O. We denote the associated 
(monic) orthogonal polynomial of degree n by trn (· )=n,. ( ·; dl), its zeros by 7:v<n>; 
and the Christoffel numbers by lv<n>. Note that zn trn (1/z) is a polynomial of 
degree S n, equal to 1 at z = 0. Let 

(3.2) 

be the Maclaurin expansion . of its reciprocal. 

THEOREM 3.1. (Hunter [10]) (a) If w (t)/w ( -t) is strictly increasing on 
I, then 

(3.3) CTc(n)>O. k=0,1,2, ... ; n==l,2,3 ..... 

(b) If w (t)=w (-t) on I, and n~2, then 

(3.4) 

. (c) If w (t)/w ( -t) is strictly decreasing on I, then 

. (3.5) (-l)k .ck<n>>O, k-:-0,1,2, .•. ; n=1,2,3, ... • 

PROOF (cf. Hunter [10]). Let 

. w (t, u)=u w (t)+(l ~0') w ( -t). o::;;as l, 

and let 7:1{0') > -r2 (u) > ... > T" (a). be the zeros of nn ( ·; w (t, u) dt). Consider 

1 ~ ~ . 1 
n [..!.., (t ) dt 1· _.1 1-'rv (0') Z Z 1rn . , W , 0' · . z . . 

(3.6) . 

. fn/2} f . . . 1 ·} =q (z) n . . . , 
. ,._1 [1--r.,(a)z] [1-'f.n+t-v(O')Z] 

where 

1, nev~ 

q (z)= 1 
:-----:--:--• 
1- 't(.n+l)/2 (0') z 

nodd. 
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(a) We prove that q (z) (if n is odd) and each product in curled. brackets 
in (3.6) (if n2!::2) has a Maclaurin expansion with all coefficients positive if 
lf2<a.:Sl. Since w(t,l)=w(t), hence t'vcn>='Z"v(l), v=1,2, ... ,n, the assertion 
(3.3) then follows immediately .from (3.6) with a= 1. 

Wrjte, for short, -r,.=-rv (a), l'v*='Z"n+t-u (a}. Since w (t, 112) is an even func
tion, the zeros t'v (a) for a= V2 are symmetric with respect to the origin. Furw 
thennore, each zero -r., (a), under the assumption of (a), increases monotonically 
on lh .:Sa:S 1 (see, e. g., [tO]). If all .. ,. (a) are positive, the assertion is obvious 
in view of 

It suffices, therefore, to consider pairs of zeros t',., -r,."' (if n>2) such that 

-a <-r.,*:SO<-r., <a, 1-r,.*l<-r". 

Write T,.*=- Yv 'Z'11, O:S Yv< 1. Then 

1 - ~--1.,...· ~----, 
(1-TvZ) (1-'Z"v* z) - (1--r"z) (t+r" -r,'z) 

(3.7) 

= 1 [ (1 \ + ' 2-2]·=1+( ... ]+[ .•. ]2+ ... , - 'Z'v - Yv Z Y11 "rv ~-

where the content of the brackets on the right is the same. as in the denominator 
immediately to the left. Since 'Z"v>O and O.:Sy,.< 1, the coefficients of z and 
z2 in these brackets are positive and nonnegative, respectively, hence (3.7), 
when fully expanded in powers of z, can produce only positive coefficients. The 
same is true for q (z) if n is odd, since by the monotonicity of the zeros, 
'~'<n+t>ll (a) >0 for lf2 < a.:S 1. 

(b) In this case of symmetry, w (t, a)=w (t) is even and y.= 1 in (3.7); 
the expansion of (3.6) contains only even powers of z, each, as before, with 
a positive coefficient, and q (z) s 1. 

(c) Applying part (a) to the weight function w (- t) and its associated 
(monic) orthogonal polynomials ( -1),. 7rn ( ,....z) yields positive coefficients in 
the expansion· of [( -z)n 7rra ( -1/z)]-1, ·hence alternating coefficients in the 
expansion of [z" .7ra (1/z)]-1• 0 

We are now in a position to prove the following theorem for the expansion 
coefficients P.k(n)==P.k,o<"> in (1.5). 
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120 W. GAUTSCH!: On Pade approximants 

THEOREM 3.2. Let 

n 

(3.8) J.'k(n)= :E A"(n) [ Tv(n)]k, k= 1, 2, 3, ... ; n= 1, 2, 3, .... 
.. =1 . 

(a) If w (t)/w (-t) is strictly increasing on I, then 

(3.9) 

(b) If w (t)=w ( -t) on I, then 

(3.10) 

(while, trivially, O=p.~r.<1>=p~r.t:J.>= ... ;_J.Lk if k is odd). 

(3.11) 

and 

(c) If w (t)/w ( -t) is strictly decreasing on I, then 

PROOF. By (1.5), (1.6), with i=O, we have 

(3.13) 
00 

f [n-1, n] (z)=J.Lo+JLt z+ ... + P2n-1 .z2"-1+ :E /Lkcn> zk. 
i=2tl 

With hn=.f nn2 (t) d.A.(t) denoting the normalization factor for the orthogonal 
I 

polynomial n,., it is known (see, e. g., [ 11], where - z is used in place of 
our z), and easily verified, that 

hr. 
f [n, n+ 1] (z)-f [n~ 1, n] (z)= (1/ ) (1/ >" 

. ZTfn Z 1rn+t Z 

By (3.13), this can be rewritten in the form 

(3.14) X (.aCn+l) p(n) ) 1- h, 
z-o 2n-H- 2n+l Z-:- z"-n-~~-(-1/..,-z..;.;)_z"....,.+""t--1rn_+_t_(1-/,....z)- • 

Now in the case (a) we apply Theorem 3.1 (a) to the expansion of both 
[z"nn (1/z)]-1 and [z"+1 nn+t (1/z)]-1 on the right of (3.14) and conclude that 
the product expansion has all. coefficients positive, hence .p~~tY -p ~+1 > 0 for 

alll?::.O. This proves all «inner» inequalities in (3.9). The outer irtequality on the 
left, 
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P~c(l>=.Ul) [ "Z't<1>]k>O, 

follows from the positivity of the Christoffel number ,uu and from "Z'P>>o, 
which in tum· is a consequence of tlhe monotonicity property for the root 't't (u) 
(used in the proof of Theorem 3.1). The· equalities on the right of (3.9) follow 
from (1.7). Parts (b) and (c) of Theorem 3.2 follow similarly from Theorem 3.1 
(b) and (c). 0 

COROLLARY TO THEOREM 3.2. The inequalities (3.9) • (3.12) of Theorem 3.2, 
under the appropriate assumption on w, hold also for the quantities /Ltc,pt·> defined 
in (1.6), provided j is even. 

PROOF. If w satisfies one of the assumptions (a), (b), (c) of Theorem 3.2, 
then w1 (t)=t1 w (t), j even, satisfies the saine assumption. 0 

EXAMPLE 3.1. Jacobi distribution w (t)=(l-t}" (1 +t)l on [ -1, 1]. 
Here, 

w (t) 
w(-t) 

which is strictly increasing if a<P, equal to 1 if a=P, and strictly decreasing 
if a>P. Accordingly, we have (3.9) if a<P. (3.10) if a=P. and (3.11), (3.12) 
if.a>P. · 

ExAMPLE 3.2. The special cases a=± V2, P= + V2 of Example 3.1 yield 
interesting trigonometric inequalities, the simplest of which (for a=P=- \12} 
are 

(3.15) 1. (n/2] [ (211- 1 )}2" 1 [fn+ ll/2][ (211- 1 )]2k . - E cos - 2-11: < +l E cos 2n+2 n , n -• n n ~~ 

k=2, 3, 4, ... ; n=2, 3, ... , k. 

·EXAMPLE. 3.3. A translate of the logistic distribution: 

1 r<t-P>N 
w <t>=T [l+r<t-p>'"]2, - oo <t< oo, rJ>O. 

An elementary computation will show that we are in the case (a), (b), (c) of 
Theorem 3.2 depending on whether .Jl>O, p=O, or p<O, respectively. 

4. Computational methods. 

Instead of considering as input data ·the moments I'Tr. in (1.2). which, as is 
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well-known, give usually rise to ill-conditioned problems, we assume here that we 
are given the measure dA.(t), and that it be required to ·generate from it the · 
desired Pade approximant. We concentrate on the approximant f [n- 1.+2j, n], 
n~ 1, j~O, referring to Remark 3 of Section .2 for the case of f [n+2j, n]. 

· The measure dl, being positive definite, generates a set of (monic) orthogonal 
polynomials nk( ·) =nk( ·; dA.) satisfying 

trk+t (z)=(z-a~:) #.~: (z)- P~r. trk~l (z}, k=O, 1, 2, ... ;. 

(4.1) 
1t-t (z) =0, no (z)::= 1, 

where a~c. /J.~: are real numbers and P~:>O. Although Po is arbitrary, we find it 

convenient to define Po= f dl(t). 

R. 

Given the measure dA., a number of (usually stable) methods are known 
for generating the coefficients a~c, P~:. k::=O, 1, 2, ... ; see Gautschi [6]. We assume, 
therefore, that we are given the first n+i of these coefficients: a~:, {J~c, 

. k=O, 1, 2, ... , n+i-1. (For «classical» measures they are known explicitly). 
Prom these, it will be possible to compute not only the moments f.lo, Jl1 , ••• , /lzt-~> 

but also the Gauss-Christoffel data A.,..2/"1, -r~.2/",, all in a stable·manner. Together, 
they determine the desired Pade · approximant I [n-1 +2i. n] according to 
(t.:n;). Our motivation to proceed in this manner derives mainly from. two 
considerations: First, we wish to maintain a high degree of numerical stability 
in generating the approximant in question, and also obtain it in a form condu
cive to stable evaluation. Secondly, it is desirable to employ mathematical soft· 

·ware which, by now, ought to be part of the standard computing repertoire. 
Basically, the problem is to compute the recursion coefficients au;. P~c.ai 

associated with the measure dA.21 (t)=f.; dA.(t), given the recursion coefficients 
.a.~c= rx~c.o, P1c=P~c.o. There are several methods of accomplishing this; we discuss 
thiee of them based, respectively, on Christoffel's theorem, Chebyshev's algorithm, 
and the QR algorithm. It suffices to consider ; = 1, since the general case can 
be treated by repeated application of the special one. 

4.1. An algorithm· derived from ChristofJel·s theorem. Our first algorithm 
obtains from mUltiplying the measure cU(t) twice by t, each time employing 
Galant's algorithmic version [3] of Christoffel's theorem to generate the new 
recursion coefficients. The result is (cf. also Eq. (4.1) in Gautschi [5], where 
z=O): 
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associated with Hamburger series 123 

A 

B-t=O, qo=ao 

e~c=P1c+al q~c 
A A 

q~c=q~c+e~c-erc-t 
A 

k=O, l, 2, ... , n-1, (4.2) 
A A A 

P•=q~:e~c-1 

qk+t = a~c+t- e~c 
A A 

e~c=q~c+t e~c/ q~c 

A A 

where ;,fc, p~ dell9te the recursion coefficients for the measure dJ..:: (t)=tldl(t). 
A 

A ~ 
A In ( 4.2), Po is set equal to zero. If we wish to adhere to our convention Po= 

rdlz (t).. we must redefine bo. as 
·a 

(4.2o) 

This is obtained by representing tl in terms of the orthogonal polynomials 1t1c, 

(4.3) 

comparing coefficients of equal powers on the right and left, and making use of 
1r1 (t)=t-ao, nz (t)=(t-at) (t-ao)-fit. One finds · 

(4.4) 

from which, by orthogonality, Po If dJ..(t) = eo.f dJ..(t)=<Pt+ao'-> flo, as claim-
. R R 

ed in (4.2o). 
The algorithm (4.2), (4.2o) produces the first n of the desired recursion 

coefficients in terms of the first n + 1 given coefficients. In the general case of 
dA.21, one needs vhe first n+i recursion coefficients a.~c,'{J~c, k=O, 1, ... , n+j-1, in 
or~ to produce a~c.21, P~c~J, k=O, 1, •.. , n-1, by ;.fold repetition of (4.2), (4.2o). 

A serious deficiency of this algorithm is the fact that it breaks down when
ever ao=O (division by zero in eo=Ptfqo), which happens, for example, if dl is 
a symmetric measure. Also, considerable loss of accuracy is observed in cases 
where d). is «nearly syminetric», i. e., the coefficients a~c are relatively small. 
The two algorithms that follow are mo.re robust in this respect. 
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4.2. Modified Chebyshev algorithm. Another implementation of Christoffel's 
theorem, using modified moments, has been described in Gautschi [4, p. 123]. 
The «modified moments» of ·dl2 (t) = f d.A. (t) with respect to· the polynomials 
1r1c ( • )=n• ( ·; d.A.), in view of (4.3), are 

V.t= I 1rk (t) d.A.:z (t) =I 1rk (t) f- d.A. (t) 

R. R 

= (c• ['"' (t) dl(t) if k:S2, 

lo if k>2. 

Since J 1rkz dl(t)=PoPt··· pk, and taking note of (4.4), one finds 

R 

(4.5) 
Vk=O for k>2. 

Given these modified moments of d.A.2, the modified Chebyshev algorithm prcr 
duces the desired recursion coefficients · for d.A.2 in terms of certain quantities 
Uk,l generated recursively from the Vk (cf., e. g., Gautschi [6, § 2.4 ]). The algo
rithm, in fact, simplifies considerably, since v.~:=O, k>2, which implies O'k,k+l=O, 

all k;::::o. Using the notation Uk=O'k,k' """ = uk,k+S.. w~c = Uk,k+2. the algorithm can 
be written in the form· 

Initialization: 

(4.6o) 

Uo=/Jo·<Pt+~~ 

'Vo= Po Pt (ao+at) 

. Wo=/Jo p. P:zl if n> 1 
W-.a=O . ! 
A 

A f.To 
ao=.ao+-
A 
A 

Po=Uo 

Uo 

Continuation: for k= 1, 2, ... , n-1: 
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A A 
A . A 

Uk = W.t-1- (tz~c-J-.tz.t) 111-1-P.t-1 W~c-z+ P~c Ui-l 

A 
A 

11~c=- (tz.t-t-«i+l) W.t-1 + Pk+l ··-· 

125' 

Given the recursion coefli~ients «k~ Pkl O:Sk:Sn, for dA, this determines uniquely 
"' "' A ·A 

and unequivocally (since U.t=D"u>O) the. recursion coefticients a.t, Ptr.t 0 :S k 
:S n -1, for dlz. As before, the coeflicients a. .. ~. Pk.21 can be obtained by repeating 
the process /-times. . 

4.3 QR algorithm. Golub &Kautsky [8, .Corollary. 1 to Lemma 4] recently 
observed that the recursion· CC?tfficlents for dl2 (t)=P dl(t) can be obtained 
from those for dl(t) by applying one step 'ot the QR algorithm (with zero 
shift) to a symmetric tridiagonal matrix. Mo~ precisely, if the first n recursion 

A A 
A A 

coeJiicients «.t. P~c, k=O, 1, ... , n-l, of dA2 are de8ired, one applies the OR. 
step to the (symmetric, tridiagonal) Jacobi matrix of order n+2 belonging to 
dl [with. diagonal elements tz.t, k=O, l I ... , n + 11 and first side-diagonal elements 
;p;, k= l1 2, .•. In+ 1] and discards the last two rows and columns in the result. 

· The matrix of order n so obtained is the Jacobi matrix for dAz. Using the square 
root free impl~entation of the QR algorithm, described in Wilkinson [14, p. 
567], one is led to the following algorithm (in the notations of [14], except that 
a1 is replaced by «i-t and b1 by Y fh-1>: 

(4.7) 

YJ:=«~c-t-Uk-1 

2 {yi/c.t-t2 if C~c-x+O . . 
p~c= 2Q if C.t-2 pic-x C~c-t=O 
A . 

Pk-t=s.,.:}(p~c2 +P~c> if k>t 
S~c2= P.t/ (p~c2 + /l~c) 
ci=p~cz/(p .. 2+JltJ 
u,~c=s~cz (y~c+a.~c) 
A 
A 

a~c-t=Y•+u~c 

k= l~ 21 ••• , n. 
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As before, j-fold repetition of this algorithm, with n suitably increased, yields 
the recursion coefficients for dl2i (t) =fi dl(t). 

Numerically, Algorithm (4.7) appears to produce slightly more accurate 
results than the algorithm in (4.6), but otherwise they are comparable. Alg~ 
ritbm .(4.2), as already observed, looses accuracy in nearly symmetric situations. 

A A 
1\ A 

This is illustrated in Table 4.1, where the maximum relative errors in ak. pk, 
k=O, 1, ... , n-1, are shown in the case dl(t) =(1 +W dt on [ -1, 1], with 
e=.l, .01, ... , .00001, n=20, using Algorithms (4.7), (4.6) and (4.2) based, 
respectively, on the QR algorithm, Chebyshev's algorithm and Christoffel's 
trbeorem. (Numbers in parentheses indicate decimal exponents. The computa
tions were performed on the CDC 6500 computer, which has a machine precision 
of approx. 3.55 X to-ts in single precision). 

QR Chebyshev Christoffel 

I! err a errp err a errp err a errp 

.1 7.49(-14) 2.48(-14) 1.05(-12) 9.38(-14) 1.28(-11) 1.24(-12) 

.01 8.18(-14) 1.67(-14) 7.00(-13) 7.03(-14) 1.89(·9) 1.88(-10) 

.001 6.82(-14) 2.25(-14) 4.47(-13) 6.60(-14) 2.97(-7) 2.89(-8) 

.0001 8.79(-14) 1.74(-14) 9.07(-13) 6.92(-14) 1.05(-5) 1.02(-6) 

.00001 9.30(-14) 157(-14) 7.80{-13) 6.97(-14) 3.39(-4) 4.90(-5) 

TABLE 4.1. Numerical performance of the algorithms (4.7), (4.6) and (4.2) 
in the case dl(t)=(l+W dt on [-1, 1], n=20. 

Once the recursion coefficients a~r.,2J, Pu; have been obtained, it is a simple 
matter to produce from the corresponding Jacobi matrix the Christoffel numbers 
lv.2r> and the nodes Tv.2/"> required in (1.32;). For appropriate methods see, 
e. g., Gautschi ( 4, § 5.1]. Likewise, the moments p.~c, k=O, 1, ... , 2j-l, can 
be computed by applying the j-point Gauss-Christoffel quadrature rule (asso
ciated with the measure dl) to the integrals in (1.2). 

For Stieltjes series the appropriate algorithm is the Cholesky LR algorithm, 
Golub & Kautsky [8, Theorem 3]. or tJhe closely related algorithms in Galant [3] 
and Gautschi [ 5]. 
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On the Convergence Behavior of Continued 
Fractions with Real Elements* 

By Walter Gautschi 

Abstract. We define the notion of transient (geometric) convergence rate for infinite series and 
continued fractions. For a class of continued fractions with real elements we prove a 
monotonicity property for such convergence rates which helps explain the effectiveness of 
certain continued fractions known to converge "only" sublinearly. This is illustrated in the 
case of Legendre's continued fraction for the incomplete gamma function. 

I. Introduction. Continued fractions, as is well known, can be viewed in terms of 
infinite series. To describe the convergence behavior of a series it is useful to 
consider the notion of transient (geometric) convergence rate. Given a convergent 
series ~:'=o tn, the nth transient convergence rate is the quantity I Pn I , n = I, 2, ... , 
where tn = Pntn-l (assuming tn-l =I= 0). If limn-co I Pn 1= r, 0.;;; r.;;; l, convergence 
is linear (geometric) with convergence rater, if 0 < r < l, superlinear, if r = 0, and 
sublinear if r = 1. It is important to note, however, that these concepts are asymp
totic in nature, hence not necessarily relevant for numerical (finite!) computation. 
Thus, a series need not be dismissed as useless, simply because it converges only 
sublinearly. The approach of I Pn I to the limit I indeed may be so slow that the series 
has "converged to machine precision" long before I Pn I reaches the neighborhood of 
I. For this reason, convergence of a series ought to be judged on the basis of the 
complete sequence {Pn} of convergence rates, and not just on the basis of asymptotic 
properties of Pn· In this connection, properties of monotone behavior significantly 
add to the understanding of the quality of convergence. 

The purpose of this note is to prove a criterion for the sequence {I Pn I} to be 
(ultimately) monotonically increasing, in the case where the partial sums of the series 
are convergents of a continued fraction with real elements. We illustrate the result 
with Legendre's continued fraction for the incomplete gamma function, which, 
though sublinearly convergent, provides an effective tool of numerical computation. 

2. Continued Fractions and Infinite Series. We consider continued fractions of the 
form 

(2.1) 
I a1 a2 c=------··· 

I+ I+ I+ 
where, for some integer k 0 ;;;;.. I, 

ak > 0 for I .;;; k.;;; k0 - I, 
(2.2) 

ak<O and lakl.;;;1 fork;;;ok 0 • 
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Key words and phrases. Convergence of real continued fractions, Legendre's continued fraction for the 
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338 WALTER GAUTSCHI 

It can be seen from Worpitzky's theorem (Henrici [3, p. 506]) that the tail of the 
continued fraction (2.1) beginning with the element ako• hence also the complete 
continued fraction, converges. The infinite series 

(2.3) 
00 

s = ~ tk 
k=O 

( t0 = I) 

is equivalent to the continued fraction (2.1) if its nth partial sum 

(2.4) 
n-1 

sn = I + ~ tk 
k=l 

is equal to the nth convergent of c, for each n = I, 2, 3, .... According to Euler, 

(2.5) k=l,2,3, ... , 

where 

(2.6) k= 1,2,3, .... 

This represents a convenient algorithm for evaluating the continued fraction c, and 
is also useful for analyzing qualitative properties of convergence. Note indeed that 
the quantities Pn in (2.6) yield the transient convergence rates I Pn I of the series (2.3). 

Slightly more convenient for analytical purposes are the quantities ak = I + Pk• 
which satisfy 

(2.7) k = 1,2,3, .... 

3. Convergence Behavior. Some first insights into the convergence behavior of the 
continued fraction (2.1) can be gained from the following lemma. 

LEMMA 3.1. If the partial numerators a k in (2.1) satisfy (2.2), then the quantities a k in 
(2. 7) satisfy 

(3.1) O<ak< 1 for1.;;;.k.;;;.k 0 -1, 

and 

(3.2) 
2(k-k0 +2) 

I < ak.;;;. k _ k + 3 fork;;;. k 0 • 
0 

Proof. The inequalities (3.1) follow immediately from the positivity of a k and (2. 7). 
To prove (3.2), we use induction. Since - ~ .;;;. ako < 0 and 0 < ako-l .;;;. I, we have 
I < ako.;;;. 4j3, so that (3.2) is true fork= k 0 • Assuming its truth for some k;;;. k 0 , 

we obtain 

I 
I < (Jk+ I = .;;;. --------

1 + ak+lak I 2(k- k 0 + 2) 
1 - 4 k- k 0 + 3 

which is (3.2) with k replaced by k + 1. 0 

2(k- k 0 + 3) 
k- k 0 + 4 ' 
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CONVERGENCE OF CONTINUED FRACTIONS 339 

Lemma 3.1, in particular, implies 0 < ak < 2, hence -1 < Pk < 1, for all k;;,. 1. 
The series (2.3), therefore, has terms that are strictly decreasing in absolute value. 
Furthermore, by(3.1) and (3.2), 

(3.3) -1 <pk<O for1.o;ko;;;;;k0 - I, and O<pk< 1 fork"k 0 , 

so that the series initially (if k 0 > 1) behaves like an alternating series and subse
quently turns into a monotone series. 

A more detailed description of convergence is provided by the following theorem. 

THEOREM 3.1. If the partial numerators ak in (2.1) satisfy (2.2), and in addition 
- ! .;;;; ak+ 1 < ak < 0 fork ;;,. k0 , then 

(3.4) -1 <pk<O fori o;;;;;ko;;;;;k0 -l and Pk+t >pk>O fork,.k 0 • 

In particular, 

(3.5) lim Pk = p, 
k-ooo 

1- Jt + 4a 
P = -1 -+-/;::::1 =+=4==a ' 

where a= limk .... oo ak; the continued fraction (2.1) converSf!S linearly, with convergence 
rate p, if a> -1, and sublinearly if a=- 1. 

Proof. The first inequalities in (3.4) have already been noted in (3.3). The others 
are equivalent to ak+ 1 > ak > 1 for k;;,. k0• Since ak >I, by (3.2), it suffices to 
prove 

(3.6) 

We first show 

(3.7) 

This is true fork= k0 , since by (3.1) (and (2.7), if k0 = l) ako-t.;;;; I, while the 
expression on the right of (3.7) is greater than 1. Using induction, assume that (3.7) 
holds for some k ;;,. k0 • Then 

I I ak = < -------::----
1 + akak-t I - I a I 2 

k I + Jt - 41 ak I (3.8) 

o;;;;;---~:-----::---
2lak+tl I - ---;:::===::::::::== 

I+Jt-4laHtl 

where in the last inequality we have used I ak+tl;;.l ak I· Now observe that, for any 
a.;;;; t, 

I+ Jt- 4a ---.,---- = ----;:::==---
1 _ 2a I + VI - 4a - 2a 

I+ Jt- 4a 

I -(I - 4a) = --:----~~---'--;==::"\ 
I - (I - 4a) - 2a( I - Jt - 4a) 

2 

I+ /I- 4a 
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340 WALTER GAUTSCHI 

Using this in (3.8), with a =I ak+ 1 I , yields (3.7) with k replaced by k + 1, and thus 

establishes (3.7) for all k ;;.. k 0 . 

Now (3.6), in view of (2.7), is equivalent to 

which in tum, since l + ak+ 1ak > 0 and ak+ 1 < 0 fork ;;.. k 0 , is equivalent to 

lak+llaf- ak + 1 >0. 

The quadratic function I ak+ 1 1 t 2 - t + 1 is convex and has two real zeros t1,k+l < 
t 2.k + 1, the smaller of which is 

2 
tl,k+l = --;====== 

l + .ji - 41 ak+ 1 I 

By (3.7), ak < t 1,k+l• hence I ak+ll af- ak + 1 > 0, which implies ak+ 1 > ak. This 

proves (3.6). 
Since the sequence { ak} is monotonically decreasing for k;;.. k0, and bounded 

below by - ~. the limit fimk-oo ak =a exists, and - i ,.;;; a< 0, since ako < 0. 

Similarly, limk-ooPk = p, 0 < p,.;;; 1, and limk-oo ak =a with a= 1 + p. Going to 

the limit k .... oo in (2.7) then gives 

1 2 
a= 1 + aa' 

Since a ,.;;; 2 and - ~ ,.;;; a < 0, the minus sign in the last equation for a cannot hold 

(unless a = - i), and we conclude that 

2 
a=----===::::-

1 +VI+ 4a' 

1- /1 + 4a 
p=a-1= , 

1 + /1 + 4a 

which is (3.5). The last statement of the theorem is an immediate consequence of 

(3.5). This completes the proof of Theorem 3.1. 

4. Truncation. In practice, the continued fraction (2.1) is evaluated by carrying out 

(2.5) and (2.6) fork= 1, 2, ... ,nand taking sn+ 1 to approximate the value of s (or c) 

of the continued fraction. It is important, then, to be able to choose n in such a way 

that sn+ 1 approximates s to any prescribed accuracy. 

Assuming first k 0 = 1, hence 0 < Pk < 1 by (3.3) and 0 < tk < 1, it follows from a 

result of Merkes (4, Eq. (12)] that 

(4.1) 

This suggests the following stopping rule: Given a prescribed (relative) accuracy e, 

stop the recursion (2.6) at the first integer k = n for which 

(4.2) {1 + Pn)tn,.;;; (1- Pn}sn+IE. 

By (4.1), this implies Is - sn+ I I..;; sn+ IE, hence 

Is- sn+ I I Is - sn+ I I 
--''---7--.!!...!...!...!......,.- ,.;;; ,.;;; E' 

s + lsn+l- sl sn+l 
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CONVERGENCE OF CONTINUED FRACTIONS 341 

from which Is- s,.+ 1 1..;;; se +I s,.+ 1 - s I e, that is, 

(4.3) Is- s,+•l..;;;-"-. 
s 1- e 

Our stopping rule therefore achieves the desired accuracy, at least asymptotically for 
"~o. 

To avail oneself of this simple stopping rule, when k0 > 1, one ought to first 
evaluate the "tail" 

(4.4) 

of the continued fraction (2.1), to which Merkes' result applies, and then compute 

(4.5) 
1 

ck = fork = k0 - 1, k0 - 2, ... , 1, 
1 + akck+ 1 

to get the complete continued fraction c = c1• Since cko > 0 and ak > 0 fork< k0 , 

the computation in (4.5) involves the addition of positive numbers and division, 
hence only numerically stable operations. 

5. An Example. Theorem 3.1 is applicable to Legendre's continued fraction for the 
incomplete gamma function, 

1 a 1 a 2 (X -a + l)x-aexr(a x) =---· · · • 1+1+1+' 
(5.1) k(a- k) 

k = 1,2,3, ... , ak= (x-a+2k-l)(x-a+2k+ 1}' 

which is used in [1, p. 475], [2] to compute the incomplete gamma function in the 
domain D: x > 1.5, -oo <a..;;; x +!.Assuming a not a positive integer (otherwise, 
the continued fraction (5.1) would terminate and our assumption (2.2) would be 
violated), we have for (x, a) ED 

(5.2) 
if a< 1, 
if a> 1. 

If k > k0 , the condition I ak I._~ is equivalent to (x- a)2 + 4kx > 1, hence satis
fied if x >! (since k > 1). An elementary calculation furthermore shows that 
I ak+ 1 1>1 ak I fork> k0 whenever x > t. It follows, in particular, that all assump
tions of Theorem 3.1 are satisfied when (x, a) E D. Since clearly a = limk-oo ak = 
- ! , we are in a case of sublinear convergence. (This is also noted by Henrici [3, p. 
629] by way of a different analysis.) Nevertheless, the continued fraction is known to 
be quite useful as a computational tool, at least in a domain such as D. The reason 
for this is readily understood on the basis of Theorem 3.1: Although the transient 
convergence rates Pk eventually increase monotonically to 1, the limit is approached 
quite slowly. We can see this from Table 5.1 which, in the case of the continued 
fraction (4.4), and for selected x and a, displays the values of 

, = 1,2,3. 
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TABLE 5.1 

Convergence behavior of the continued fraction ( 5 .1) 

(Numbers in parentheses indicate decimal exponents.) 

X a nt Et n2 £2 nJ £3 

1.5 1.75 3 1.9(-3) 13 2.9(-7) 75 6.7(-18) 

.875 3 9.2(-4) 13 1.2(-7) 75 2.7(-18) 

0.0 3 6.8(-3) 13 1.4(-6) 75 3.7(-17) 

-3.5 3 7.3(-3) 13 1.4(-6) 75 3.5(-17) 

-7.0 4 8.9(-4) 15 5.8(-8) 79 5.5( -19) 

5.0 5.25 9 1.9(-8) 41 5.4(-21) 243 2.9(-56) 

2.625 10 1.0( -9) 41 7.3(-22) 243 3.0(-57) 

0.0 10 9.8(-10) 42 2.9(-22) 244 1.6(-57) 

-10.5 9 1.9(-8) 42 1.6(-21) 244 8.5(-57) 

-21.0 12 2.7(-11) 48 1.2(-25) 254 8.8(-62) 

10.0 10.25 18 1.1( -16) 81 1.2( -41) 483 3.0(-112) 

5.125 18 8.6(-17) 81 7.1(-42) 483 1.5( -112) 

0.0 20 8.0(-20) 83 8.1(-45) 485 1.9(-115) 

-20.5 19 1.7(-17) 83 6.9(-43) 485 1.6(-113) 

-41.0 24 1.5(-22) 95 5.0(-51) 504 4.2(-123) 

20.0 20.25 36 3.0(-33) 161 4.8(-83) 963 2.9(-224) 

10.125 36 1.2(-33) 162 5.2(-84) 964 3.1(-225) 

0.0 40 2.9(-40) 165 3.4(-90) 967 1.6(-231) 

-40.5 38 4.3(-35) 165 8.8(-86) 968 3.4(-227) 

-81.0 48 3.1(-45) 188 1.2( -101) 1004 6.8(-246) 

Note that by virtue of (4.1), and the fact that 1 < s = cko.;;;; 2 (cf. [3, Theorem 

12.3c]), 

(5.3) ~s-sn+ll 
s' .,.;Is- sn,+tl.;;;; "•• v=1,2,3. 

Thus, for example, if x = 5, a = 0, by the time the transient convergence rate has 

risen to!. the continued fraction has already converged to within a (relative) error 

of about 3 X 10-22. 
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Dedicated to Fritz Bauer on the occasion of his 60th birthday 

Walter Gautschi 

Purdue University, Department of Computer Sciences, Mathematical Sciences Building, 
Room 442, West Lafayette, Indiana 47907, USA 

Summary. We consider the approximation of spherically symmetric distri
butions in 'R" by linear combinations of Heaviside step functions or Dirac 
delta functions. The approximations are required to faithfully reproduce as 
many moments as possible. We discuss stable methods of computing such 
approximations, taking advantage of the close connection with Gauss
Christoffel quadrature. Numerical results are presented for the distributions 
of Maxwell, Bose-Einstein, and Fermi-Dirac. 

Subject Classifications: AMS(MOS): 65D15 CR: 5.13. 

l. Introduction 

There is some interest among physicists in approximating the distribution 
functions of statistical mechanics by discrete functions either linear com
binations of Dirac delta functions or linear combinations of Heaviside step 
functions. For the Maxwell velocity distribution, Laframboise and Stauffer [9] 
and Calder, Laframboise and Stauffer [1] construct such approximations 
which are optimal in the sense of matching as many moments as possible. The 
resulting equations are solved in [9] by what amounts to Prony's method and 
in [1] by a reduction to an eigenvalue problem involving Hankel matrices. 
Both methods are classical; for the former, see, e.g. Hildebrand [8, §9.4], for 
the latter, Szego [10, Eq. (2.2.9)]. They are subject to severe ill~conditioning, 
however, as is well-known. Here we point out that both approximation prob
lems can be formulated in terms of Gauss-Christoffel quadrature, and can 
therefore be brought into the realm of stable modern methods of constructing 
orthogonal polynomials; see Gautschi [5]. In particular, algorithmic imple
mentations of Christoffel's theorem (Galant [3], Gautschi [6]) find application 
here. We use these methods to generate numerical data for the distributions of 
Maxwell, Bose-Einstein, and Fermi-Dirac. 

* Work supported in part by the National Science Foundation under Grant MCS-7927158A1 
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54 W. Gautschi 

2. Approximation by Step Functions 

We consider a function f which is spherically symmetric in 1Rd, hence a 
function only of the radial distance, f=f(r), O~r<oo. We impose the follow
ing conditions on f: 

(i) fe C1 [0, oo] and f'(r)~O on [0, oo]. 
00 00 

(ii) The integrals J f(r)rmdr, J f'(r)rmdr, m=O, 1,2, ... , all exist and are 
finite. o o 

In particular, f has to be nonnegative on [0, oo]. This will not be required 
in this section. 

Noting that 

00 1 1 00 J f(r)rmdr=--f(r)rm+ll~--- J f'(r)rm+l dr, m=:O, 1,2, ... , 
o m+1 m+l 0 

it follows from (ii) that rm+ 1 f (r) has a limit as r-+ oo, which of course must be 
equal to zero. Likewise, f(r)-+0 as r_.. oo, as follows from (i) and (ii). Thus, 

lim rm f(r) 0, m=O, 1, 2, .... (2.1) 

We wish to approximate f by a linear combination of Heaviside step 
functions, 

" f(r);:::;J(r), f(r)= L avH(rv-r), (2.2) 
V= 1 

where H(t)=O if t~O, H(t)= 1 if t>O. Defining the moments of a function g(r), 
00 

as in [1], [9], by J g(r)ridV, j=O, 1,2, ... ,where dV=[2nd12 jF(d/2)]rd-tdr is 
0 

the volume element of the spherical shell in 1R d, d > 1, and d V = d r if d = 1, we 
require that f and J have the same moments of orders up to 2n 1, i.e., 

00 " 00 J L avH(rv-r)ri+d-ldr= s f(r)ri+d-ldr, j=0,1, ... ,2n-l, 
0 V= 1 0 

or, which is the same, 

n rv 00 

La, J ri+d- 1 dr= J f(r)ri+d- 1 dr, j=0,1, ... ,2n-1. 
V= 1 0 0 

Carrying out the integration on the left, and integrating by parts on the right, 
we get, upon using (2.1 ), 

n oo 

L (avr~)r~ = J [- rdf'(r)] rj dr, j =0, 1, ... , 2n -1. (2.3) 
V= 1 0 

These are precisely the equations for n-point Gauss-Christoffel quadrature 
relative to the (nonnegative) integration measure 

dJ.(r)= -rdf'(r)dr on [0, oo]. (2.4) 
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Hence, rv in (2.2) are the Gaussian abscissas relative to the measure d),(r) in (2.4) 
and ),, a.r~ are the corresponding Christoffel numbers. Once the nodes rv and 
weights )," have been computed, the coefficients av in (2.2) are simply obtained 
by a.=A."r;d, v= 1, 2, ... , n. 

If d = 1, the functions f(r) and /(r) are to be extended to negative values of 
r symmetrically with respect to the origin. 

To compute the n-point Gauss-Christoffel formula in question, it suffices to 
generate the coefficients ak, pk, k=O, 1, ... ,n-1, in the recursion formula 

nk+ 1 (t)=(t-ak)nk(t)- Pknk-l (t), k=O, 1, ... , n-1, 

n_ 1 (t)=0, n:0 (t)=l, 
(2.5) 

for the respective (monic) orthogonal polynomials nk( • nk( ·; dA.). The desired 
nodes r, are then the eigenvalues of the Jacobi matrix 

0 

.. V Pn- 1 ' 

0 ~ an-1 

00 

and the weights A.. are expressible as A.,= Po v;, 1 , Po= J d ).(r), in terms of the 
0 

first components v,, 1 of the corresponding normalized eigenvectors. They all 
can be readily computed using standard software of linear algebra; see, e.g., 
Gautschi [4, §5.1]. 

3. Examples 

Example 3.1. The Maxwell distribution (cf. [9, 1]) f(r)= n-d/Z e-'2 on [0, oo]. 

In this case, (2.4} yields 

dA(r) 
2 

rd+l e-'1 dr on [0, oo]. (3.1) 

The recursion coefficients ak, Pk in (2.5) that correspond to this measure can be 
computed in two different ways. We can start with the recursion coefficients a2, 
p~ for the measure d),0 (r)= 

2
_ e-'

2 
dr on [0, oo], which are available in vn 

Galant [2] for O~k~ 19 to 20 significant decimal digits, and then keep mul
tiplying the measure by r (d + l times), each time generating the corresponding 
recursion coefficients by the algorithms described in Galant [3] or Gautschi 
[6]. The coefficient p0 , at the end, is then adjusted to conform to the normal
ization adopted in (3.1). Alternatively, we may compute the ak, pk directly from 
(3.1), using the discretized Stieltjes procedure as described in Gautschi [5, 
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56 W. Gautschi 

Example 4.6]. We have used both these approaches, at the same time extend
ing Galant's table up to k=49 and recomputing it to 25 decimal places. Using 
double precision on the CDC 6500 (ca. 29 significant decimal digits) we ob
served agreement to 25 decimal places. The results are listed in Table 1 of the 
Appendix. They can be used, as described at the end of Sect. 2, to produce 
Gauss-Christoffel formulae with as many as 50 terms. For reasons of space, we 
refrain from tabulating any of them. 

Example 3.2. The Bose-Einsteindistributionf(r)= ({Je' -1)- 1 on [0, oo ],{J;?; l,d ~ 2. 
The measure of interest now is 

dJc(r)= Rrd- 2 ( r )
2 

e-r dr on [0, oo]. 
f' {J-e-r (3.2) 

Since for large r the distribution behaves like d },(r),...., p- 1 rd e- 'd r, we generated 
the recursion coefficients by the discretized Stieltjes procedure, using the 
Gauss-Laguerre quadrature rule to carry out the discretization (see [7] for a 
similar application). As a check, we also used a discretization based on the 
Fejer quadrature rule applied to each subinterval of the decomposition 
[O,oo]=[0,10]u[10,100]u[l00,500]u[500,oo] (cf. [5, §2.2]). In the case 
fJ = 1, d = 3 that we computed, the largest discrepancy observed was 1 unit in 
the 25th decimal place. The results are shown in Table 2 of the Appendix. 

Example 3.3. The Fermi-Dirac distribution f(r)=(f3er 2 + 1)- 1 on [0, oo], fJ>O. 
Here, 

For large r, this measure behaves similarly as the one in Example 3.1. There
fore, we used the same method as in Example 3.1 (the second one described 
there) to generate the recursion coefficients or:k, pk. The results for P= l, d=3, 
are shown in Table 3 of the Appendix. 

4. Approximation by Dirac Delta Functions 

We now assume that fEC[O, oo], f(r)~O on [0, oo], and that the integrals 
00 X 

J f(r) r"' dr, m=O, 1, 2, ... , all exist and are finite, with J f(r) dr>O. 
0 0 

Approximating f by a linear combination of Dirac delta functions, 

n 

f(r)-;:;;;](r), ](r)= L av<5(r r,), (4.1) 
V= 1 

and using the same moment-matching procedure as in Sect. 2, one is led 
immediately to the equations 

n oo 

L: (a.~- 1)r{= f [f(r)rd- 1]r1dr, j=O,l, ... ,2n-1. (4.2) 
•= 1 0 
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Thus, r, are the Gaussian abscissas relative to the (nonnegative) measure dp,(r) 
=1JJ-

1f(r)dr, and a,=p,,r;-d, v=1,2, ... ,n, where flv are the corresponding 
Christoffel numbers. 

For the Maxwell distribution of Example 3.1 this yields dp,(r) 
=n-df2 rd- 1 e-'

2
dr, so that, when d=3, we can use the results of Example 3.1 

relative to the case d = 1, with an obvious modification of fl 0 . For the Bose~ 
Einstein distribution, one has dp,(r) = rd-l (fle' -1)- 1 dr, to which the numerical 
results of [7] apply, if d = 2 and p = 1. In other cases, one can easily adapt the 
methods used in Example 3.2. The same holds for the Fermi~Dirac distribution 
of Example 3.3. 

Appendix (Tables 1-3) 
see pages 58-60 
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Table 3. Recursion coefficients ak, {Jk, O;;i k ;;i 49, for the orthogonal 
polynomials relative to d2(r) =2rd+ 1 (1 +e-'')- 2 e-'' dr on [0, oo), d =3 

k alpha ( k) 

0 1.617213661810882277572788d+OO 
1 1.757139949507955389133067d+OO 
2 1.898408764402056547633246d+OO 
3 2.041134371333846899177683d+OO 
4 2.181751262965031806300164d+OO 
5 2.31809160387917701666790ld+OO 
6 2.449451129282912145563729d+OO 
7 2.57580201354362564799287Sd+OO 
8 2.697380515952780694519683d+OO 
9 2.814514071819260273453430d+OO 

10 2.927547167444442846696113d+OO 
ll 3.03681027583l549820916197d+OO 
12 3.142608052231356550054678d+OO 
13 3.245216162555661054497552d+OO 
14 J,344881909068099807569857d+OO 
15 3.441826407646647404232735d+OO 
16 J,536247268538693967953825d+OO 
17 3.628321300230647645677472d+OO 
18 J,718207029037601196907129d+OO 
l9 J,806046958555969l39798752d+OO 
20 3.891969555459873677426360d+OO 
21 3.976090976234336229700605d+OO 
22 4.0585l6560620191747866885d+OO 
23 4.l39342120479719630327919d+OO 
24 4.218655051872635873402733d+OO 
25 4.296535295581157195414337d+OO 
26 4.373056168248086497210523d+OO 
27 4.44828508322623740310737ld+OO 
28 4.522284177417908473564197d+OO 
29 4.595ll085789S870693171456d+OO 
30 4.666818279954530069944700d+OO 
31 4.737455766419341096493730d+OO 
32 4.807069176508291897201524d+OO 
33 4.87570123125222526371275ld+OO 
34 4.943391801403485928558374d+OO 
35 5.010178162861303581692607d+OO 
36 5.076095223888311900211495d+OO 
37 5,141175727760937382866456d+OO 
38 5.205450433966335237049510d+OO 
39 5.26B948280612856326950717d+OO 
40 5.331696530345419601974532d+OO 
41 5.393720901739845499670955d+OO 
42 5.455045687881448707134684d+OO 
43 5.515693863604967685312938d+OO 
44 5.575687182678598176762808d+OO 
45 5.635046266049022425863557d+OO 
46 5.693790682122351456672988d+OO 
47 5.751939019934064028630916d+OO 
48 5.809508955956207087132942d+OO 
49 5.866517315199714644433583d+OO 

beta(k) 

1.017140842729651510968463d+OO 
2.180619809156256lll001996d-Ol 
4.39919994187263242640967ld-Ol 
6.494612489201885176886624d-Ol 
8.474964172785778347424904d-Ol 
1.037389440529462652394653d+OO 
1.22176280892065268078985ld~OO 
1.402298907440357843782526d+OO 
1.58008496105517196863829ld+OO 
1.755844170010468776l8805ld+OO 
1.93007183052557567559l720d+OO 
2.103116748737763378147514d+OO 
2.275230827556721406829778d+OO 
2.446600101267943733457538d+OO 
2.617364708849905482416114d+OO 
2.78763208930883983057032ld+QO 
2.95748591173815234200027Sd+OO 
3.126992252839545796457159d+OO 
3.296203956219451993399445d+OO 
3.465163764661596200982224d+OO 
3.633906607979691223064766d+OO 
3.802461299257397945473114d+OO 
3.370851809746932159108674d+OO 
4.139098239146696876215796d+OO 
4.307217562578989936652568d+OO 
4.475224211780811859346953d+OO 
4.643130531750316590730772d+OO 
4.81094714280589844867247Dd+OO 
4.978683230078342036305503d+OO 
S.l46346776802992147848634d+OO 
5.313944753703286093136497d+OO 
S.481483273785841471264833d+OO 
5.648967719676533648006070d+OO 
5.81640284901471483ll22142d+OO 
5.98379288214419228ll03549d+OO 
6.151141575525702074249337d+OO 
6.318452283448654151466S8ld+OO 
6.4857280l0187945543639646d+OO 
6.652971454274007940058957d+OO 
6.82018504623ll94236021558d+OO 
6.987370980879108634908205d+OO 
7.154531245087151844343283d+OO 
7.3216676417l0081395978898d+OO 
7,488781Sl0302474179560458d+OO 
7.655875245105542643019483d+OO 
7,822949310715372390308183d+OO 
7.990005255773134496563188d+OO 
8.157044224961937052830140d+OO 
8.324067269549187385358168d+OO 
8.491075356675655214483800d+OO 
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Spline Approximations to Spherically Symmetric 
Distributions* 

Walter Gautschi1 and Gradimir V. Milovanovic 
1 Department of Computer Sciences, Computer Science Building, Room 164C, Purdue University, 

West Lafayette, Indiana 47907, USA 
2 Faculty of Electronic Engineering, Department of Mathematics, University of Nis, 

P.O. Box 73,18000 Nis, Yugoslavia 

Summary. We discuss the problem of approximating a function f of the 
radial distance r in lR a on 0 ~ r < oo by a spline function of degree m with n 
(variable) knots. The spline is to be constructed so as to match the first 2n 
moments of f. We show that if a solution exists, it can be obtained from an 
n-point Gauss-Christoffel quadrature formula relative to an appropriate 
moment functional or, iff is suitably restricted, relative to a measure, both 
depending on f. The moment functional and the measure may or may not 
be positive definite. Pointwise convergence is discussed as n-+ oo. Examples 
are given including distributions from statistical mechanics. 

Subject Classifications: AMS (MOS): 41A15, 65D32; 33A65; CR: G1.2. 

1. Introduction 

Following earlier work of Laframboise and Stauffer [10] and Calder, Lafram
boise and Stauffer [1], one of us in [8] considered the problem of approximat
ing a functionf(r) of the radial distance r=llxll, O~r<oo, in JRd, d~;l, by a 
piecewise constant function of r (and also by a linear combination of Dirac 
delta functions). The approximation was to preserve as many moments off as 
possible. It was found that the problem can be solved by means of Gauss
Christoffel quadrature. Here we extend this work to spline approximation of 
arbitrary degree. Under suitable assumptions on f it will be shown that the 
problem has a unique solution if and only if certain Gaussian quadrature rules 
exist corresponding to a (possibly nonpositive) moment functional or weight 
distribution depending on f. Existence and uniqueness is assured iff is complete
ly monotonic on [0, oo ). Pointwise convergence of our approximation process 
depends on a convergence property of the Gauss-Christoffel quadrature rule. A 
number of examples are presented illustrating the quality of approximation. 

* The work of the first author was supported in part by the National Science Foundation under 
grant DCR-8320561 
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112 W. Gautschi and G.V. Milovanovic 

2. Moment-Preserving Approximation by Spline Functions 

A spline function of degree m ~ 0 on the interval 0 ~ r < oo, vanishing at r = oo, 
with n ~ 1 positive knots r., v = 1, 2, ... , n, can be written in the form 

n 

sn(r)= L a.(rv-r)~, O~r<oo, (2.1) 
V= 1 

where av are real numbers and the plus sign on the right is the cutoff symbol, 
t+ =t if t>O and t+ =0 if t~O. Given a function f(r) on O~r < oo, we wish to 
determine sn(r) such that 

ro oo 

JrJsn(r)dV=JrJf(r)dV, j=0,1, ... ,2n-1, (2.2) 
0 0 

where dV=[2Jt12 jF(dj2)]r"- 1 dr is the volume element of the spherical shell in 
1R d if d > 1, and d V = dr if d = 1. In other words, we want sn to faithfully 
reproduce the first 2n spherical moments off 

A first approach to this problem can be based on the moment functional 

flJ U+d+m)! frl+d lf(r)dr, j=0,1,2, .... 
m!U+d-1)! 0 

(2.3) 

The functional !l', by virtue of (2.3), and being linear, is well defined for any 
polynomial, and therefore gives rise to the concept of orthogonality with 
respect to the functional !l': Two polynomials p and q are orthogonal with 
respect to !l' if !l'(p · q) =0 (cf. [2, Chapter 1, Sect. 2]). 

00 

Theorem 2.1. Given f with J rl+d-l f(r)dr, j =0, 1, ... , 2n -1, finite, there exists a 
0 

unique spline function sn of the form (2.1) with distinct positive knots rv and 
satisfying (2.2) if and only if there exists a unique (monic) polynomial n,( ·; !l') of 
degree n orthogonal with respect to !l' to all lower-degree polynomials and 
having zeros r!n>, v = 1, 2, ... , n, that are all simple and positive. In that event, the 
knots rv and weights av in (2.1) are given by 

r =r(n) a =r-<m+d)w v 1 2 n 
v v ' v v v> = • > • • ·' ' 

(2.4) 

where {w.} is the (unique) solution of the Vandermonde system 

n 

L w.r~=fli' j=O, 1, ... , n 1. (2.5) 
V= 1 

Proof Substituting (2.1) in (2.2) yields, since rv > 0, 

n ~ oo 

2:: avJri+d-l(rv-r)mdr=Jri+d-lf<r)dr, j 1, ... , 2n -1. (2.6) 
V= 1 0 0 
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Introducing on the left the new variable of integration t through r =tr" gives 

n 1 oo 

L: avrt+d+m Jtl+d-l(t-trdt= f rl+d-1J(r)dr. 
11= 1 0 0 

The integral on the left is the well-known beta integral which can be expressed 
in terms of factorials. There results 

n 

L wvr~=Jlj, j=O, 1, ... ,2n-1, (2.7) 
v= 1 

where 
(2.8) 

and p1 is given by (2.3). By virtue of the first relation in (2.3), the system of 
nonlinear equations (2.7) can be written in the form 

n 

L W 11 p(r11)= !i'p, all pElP2n-1> (2.9) 
V= 1 

which identifies r11 and W
11 

as the nodes and weights of the "Gaussian quadrature 
formula" for the functional !i'. It is well known (see, e.g., [6, § 1.3]) that (2.9) is 
equivalent to the following two conditions: 

(i) The formula (2.9) is interpolatory, i.e., valid for every pE lP,_ 1 ; 
n 

(ii) The node polynomial w(r) D (r -r11 ) is orthogonal with respect to !i' 
V= 1 

to all polynomials of degree < n. 
The second condition identifies w as w( ·) =nn( ·; 2) and the knots r. as the 

zeros of nn( • ; 2). The first condition is equivalent to (2.5). D 

It is well known that nn( ·; 2) exists uniquely if and only if 

[

flo /11 ... f-ln ] 

det ~-~ .. f~ ...... ::: .. ~~.:.~ 
f-ln f-ln + 1 · · · f12n 

(2.10) 

While Theorem 2.1 is of some theoretical interest, it does not lend itself to 
constructive purposes because of the well-known ill-conditioning associated 
with power moments. 

By further restricting the class of functions f, it is possible, however, to 
relate our problem to Gauss-Christoffel quadrature relative to an absolutely 
continuous measure supported on [0, co] (and depending of f). Therefore, 
recently developed stable methods of constructing orthogonal polynomials (see, 
e.g., [7]) can be brought to bear upon the problem. 

00 

Theorem 2.2. Letfbe such that the integrals Jri+d- 1f(r)dr,j=0,1, ... ,2n-1, 
converge and, in addition, that 0 

fEC"'+ 1 [0, CXJ], lim r2n-l+d+ 11 j(")(r) =0, p=O, 1, ... , m. (2.11) 
r~oc:. 
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Then a spline function sn of the form (2.1) with positive knots rv, that satisfies 
(2.2), exists and is unique if and only if the measure 

-1r+1 
d).(r)=~---r"'+df(m+ll(r)dr on [0, oo) 

m! 

admits ann-point Gauss-Christoffel quadrature formula 

oo n 

J p(r) dA.(r) = L A~n) p(r~"l), pE IP2, 1, 
0 V= 1 

(2.12) 

(2.13) 

with distinct positive nodes r!">. In that event, the knots r, and weights av in (2.1) 
are given by 

v 1, 2, ... , n. (2.14) 

Remark. The case m =0 of Theorem 2.2 has been obtained in [8]. 

Proof of Theorem 2.2. The left-hand side in (2.6), through m integrations by 
parts, can be seen to be equal to 

n rv 

m![U+d)U+d+l) .. ·U+d+m 1)]- 1 L: a" Jri+d+m- 1 dr 
V= 1 0 

n 

=m![U+d)U+d+ l)· .. U+d+m)]- 1 L avr;+d+m. (2.15) 
V= 1 

The integral on the right of {2.6) is transformed similarly by m + 1 integrations 
by parts. We carry out the first of these in detail to exhibit the reasonings 
involved. We have, for any b>O, 

b b 

J rHd-t f(r)dr =U +d)- 1 yi+d f(r) It -U +d)- 1 J ri+d f'(r) dr. 
0 0 

The integrated term clearly vanishes at r =0 and tends to zero as r =b-7 oo by 
the second assumption in (2.11) with Jl=O. Sincej~2n-1 and the integral on 
the left converges by assumption, we conclude the convergence of the integral 
on the right as b-7 oo. Therefore, 

00 00 

f ri+d- 1j(r)dr= -U+d)- 1 f ri+df'(r)dr. 
0 0 

Continuing in this manner, using the second assumption in (2.11) to show 
convergence to zero of the integrated term at the upper limit (its value at r =0 

00 

always being zero) and the existence of J ri+d-l+Pj!l-ll(r)dr already established 
0 

00 

to infer the existence of J ri+d-t-1-1 j<P+ 1l(r) dr, Jl = 1, 2, ... , m, we arrive at 
0 

00 00 

J yi+d-1 f(r) dr =( -l)m+ 1 [U +d)U +d + 1)· .. U+d +m)] -1 J yi+d+m f<m+ 1l(r)dr. 
0 0 

(2.16) 
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Comparing (2.16) with (2.15), we see that Eqs. (2.6), and hence Eqs. (2.2), are 
equivalent to 

j=0,1, ... ,2n-l. 

These are precisely the conditions for rv to be the nodes of the Gauss
Christoffel formula (2.12), (2.13) and a,.r;'+d their weights. 

The nodes r~">, being the zeros of the orthogonal polynomial 1t11 ( • ; dA.) (if it 
exists), are uniquely determined, hence also the weights),~"'· 0 

Iff is completely monotonic on [0, co) (see, e.g., Widder [12, p. 145fT.]) then 
dA.(r) in (2.12) is a positive measure for every m. Moreover, the first 2n 
moments exist by virtue of the assumptions made on f in Theorem 2.2. The 
Gauss-Christoffel quadrature rule (2.13) therefore exists uniquely, all nodes r!"' 
being distinct and positive and all weights A.~> positive. The latter implies 
av>O, v = 1, 2, ... , n, in (2.1). 

Theorem 2.3. Given f as in Theorem 2.2, assume that the measure dA. in (2.12) 
admits an n-point Gauss-Christoffel quadrature formula (2.13) with distinct 
positive nodes rv =r~" 1 • Define 

(2.17) 

Then, for any r > 0, we have for the error of the approximation (2.1 ), (2.2), 

(2.18) 

where R
11
(g; dA.) is the remainder term in the Gauss-Christoffel quadrature formula 

(2.12), (2.13), 
00 " J g(t)dA.(t)= L A~111 g(r!"')+R11 (g;dA.). (2.19) 
0 V= 1 

Proof By Taylor's formula, one has for any b > 0, 

pm)(b) 1 r 
f(r)= f(b)+ f'(b)(r -b)+··· +--(r-bt +- f(r -ttf<m+ll(t)dt. (2.20) 

m! m! b 

Since by (2.11), lim t.up~t>(t) for J..t =0, 1, ... , m, we obtain from (2.20), letting 
b-->oo, 

f(r) 
l)m+l ro -1)'"+1 r£ 

- J(t-rrf<m+ll(t)dt=--- J(t-r)'!f(m+ll(t)dt, 
m! r m! 0 

hence, by (2.12) and (2.17), 
r£ 

f(r) = J ar(t)dA.(t). (2.21) 
0 

On the other hand, by (2.1) and (2.14), 
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n n 

sn(r) = L A,,rv-lm+d>(rv -r)~ = L 2, o)rv). (2.22) 
V= 1 V= 1 

Subtracting (2.22) from (2.21) yields (2.18). 0 

To discuss convergence as n-+ oo (for fixed m), we assume f to satisfy the 
assumptions of Theorem 2.2 for all n = 1, 2, 3, .... Then, by Theorem 2.3, our 
approximation process converges pointwise (at r), as n-+oo, if and only if the 
Gauss-Christoffel quadrature formula (2.19) converges when applied to the 
special function g(t) =o-.(t) in (2.17). Since 0', is uniformly bounded on R, this is 
true, for example, if d2 is a positive measure and the moment problem for d2 
on [- oo, oo] (with dJ,(t)=O for t<O) is determined (cf. [4, Chapter 3, Theo
rem 1.1]). 

3. Examples 

We begin with, perhaps, the simplest example - the exponential distribution 
in Rd. All computations reported in this section were done on the CDC 6500 
computer in single precision (machine precision ~ 3.55 x 10- 15

), except for 
Table 2, which was computed in double precision. 

Example3.1.f(r)=cde-r on [O,oo), where c1 =1, cd=r(df2)/(2r(d)nd12 ) if d>L 

For this distribution the measure (2.12) becomes the generalized Laguerre 
measure 

d2(r) O~r<oo. (3.1) 

The knots rv, therefore, are the zeros of the generalized Laguerre polynomial 
L~> with parameter a =m +d, and the weights av follow readily from (2.14) in 
terms of the corresponding Christoffel numbers 2~n>. It is a straightforward 
matter to calculate the desired spline (2.1) for any value of m, d and n. 

Table 1 shows approximate values of the resulting maximum absolute 
errors max lsn(r)-f(r)l, for m=1,2,3; d=1,2,3; and n=5,10,20,40. (Num-

o~r;;?rn 

bers in parentheses indicate decimal exponents.) Clearly, lsn(r)-f(r)l = f(r) for 
r~rn. Since the moment problem for the measure d).. in (3.1) is determined (see, 
e.g., [ 4, Chapter 2, Theorem 5.2]), it follows from the remark at the end of Sect. 2 
that sn(r)-+ f(r) as n-+ oo, for any fixed r > 0. 

It is likely that convergence also takes place if n is fixed and m-+ oo. When 
n = 1, for example, 

(m+ 1) .. ·(m+d) ( r )m 
sl(r)=cd (m+d+1)d 1-m+d+1 / (3.2) 

which implies s1 (r)=cde-'+0(m- 1) as m-+oo. For other values of n, and 
selected values of r (with d = 1), the convergence behavior as m-+ oo is illustrat
ed in Table 2, which shows the respective absolute errors. 

Our next example is the Bose-Einstein distribution; for simplicity we do 
not normalize it to have unit integral over space. 

Example 3.2.f(r) =(ae" -1)- \ ex> 1 if d = 1 and a~ 1 if d ~ 2. 
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Table 1. Accuracy of the spline approximation for Example 3.1 

n d 1 d=2 d=3 

m=l m=2 m=3 m 1 m=2 m=3 m=l m=2 m=3 

5 5.9 (-2) 1.8 (-2) 7.9 ( -3) 2.4 (-2) l.l (-2) 5.9 (-3) 1.2 (-2) 6.5 ( -3) 3.9 (-3) 
10 1.8 (-2) 3.5 (-3) 1.0 (-3) 8.9 (-3) 2.7 (-3) 9.4 (-4) 5.0 (-3) 1.9 (-3) 7.6 (-4) 
20 1.5(-2) 1.2(-3) 1.9 (-4) 2.8 (-3) 4.9(-4) 1.0(-4) 1.7 ( -3) 3.9 (-4) 9.8 (-5) 
40 7.5 (-3) 4.2 (-4) 4.7 (-5) 1.2 (-3) 7.6 (-5) 8.8 (-6) 5.1 (-4) 6.5 ( -5) 9.2 (-6) 

Table 2. Convergence behavior as m-+oo of the spline approximation for Example 3.1 

m r=5 r=l.O r=5.0 

n=5 n=10 n=20 n=5 n=10 n=20 n=5 n=lO n=20 

5 7.3 (-4) 3.2 (-5) 3.3 (-7) 5.1 (-4) 1.6 (-5) 3.5 (-6) L2 (-4) 2.5 (-5) 1.3 (-6) 
10 6.7 (-5) 6.3 (-7) 7.3(-10) 4.4 (-5) 2.1 (-7) 3.3 (-9) 8.3 (-7) 
20 4.0 (-6) 4.6 (-9) 2.4 (-13) 2.6(-6) 1.5 (-9) 6.3 (-13) 2.1 (-7) 
40 1.8 (-7) 1.5 (-11) 1.1 (-17) 1.2 (-7) 4.9 (-12) 2.2 (-17) 9.9 (-9) 
80 7.0 (-9) 3.0 (-14) 1.0 (-22) 4.6 (-9) 9.5 (-15) 1.8 (-22) 3.7(-10) 

It can be shown by induction that 

where 

m+l 
J<m+ll(r)=( -1r+lj(r) L qm+t,k[f(r)]k, 

qt,o=q1,1=l, 

q!l+ 1,0 =q/).,0' 

k= 0 

1.8 (-8) 
7.0 (-10} 
1.8(-12) 
2.8(-15) 

qp.+l,K Kq/).,K-1 +(K+1)q1J.,K' 

qp.+1,!l+1 =(,u+l)qll·ll 

K= 1, ... , ,u} ,u= 1, ... , m. 

The measure (2.12) thus becomes 

1.3 (-9) 
4.6(-13) 
6.1 (-18) 
2.8 (-23) 

(3.3) 

and is clearly positive. All moments of d). exist, if rx> 1, for arbitrary m~O and 
d ~ 1. The same is true for o: = 1, if d ~ 2, since dA.(r),...., (m + 1) rd- 2 [r/(e' -l)]m+ 2 

as r~o. In these cases, the moment problem for d). is determined, since 
dA.(r)-(o:m!)- 1 rm+drrdr as r~oo (cf. [4, Chapter 2, Theorem 5.2]), and 
therefore sn(r) ~ f(r) as n ~ oo. 

The function f (r), however, is unbounded near the origin, when o: = 1, which 
renders approximation by low-degree splines difficult. In the range where f is 
significant, and not too close to r =0, the accuracy attainable is typically about 
1-10 percent. 

624



118 W. Gautschi and G.V. Milovanovic 

Table 3. Relative accuracy of the spline approximation for Example 3.2 

n m=1 m=2 m=3 

v r, rei. err. v rv rei. err. v r. rei. err. 

5 1 1.272 1 1.468 1 1.646 
2 3.771 5.5 (-1) 2 4.333 2.7 (-1) 2 4.885 1.4(-1) 
3 7.152 7.5(-1) 3 7.992 4.8(-1) 3 8.821 2.9 (-1) 

10 1 0.597 1 0.664 1 0.724 
2 1.910 3.6(-1) 2 2.142 1.7 (-1) 2 2.350 6.6(-2) 
3 3.757 3.2(-1) 3 4.199 1.0 (-1) 3 4.625 3.9 (-2) 
4 6.057 4.3(-l) 4 6.677 1.6 (-1) 4 7.286 6.4 (-2) 

20 1 0.271 1 0.293 1 0.313 
2 0.895 3.1 (-1) 2 0.971 1.4 (-1) 2 1.037 5.5 (-2) 
3 1.837 1.7 (-1) 3 2.002 4.1 (-2) 3 2.146 1.4(-2) 
4 3.049 1.6(-1) 4 3.328 3.2 (-2) 4 3.584 9.1 (-3) 
5 4.500 1.9(-1) 5 4.890 4.1 (-2) 5 5.264 1.1 (-2) 
6 6.187 2.4(-1) 6 6.675 5.8 (-2) 6 7.151 1.6 (-2) 

40 1 0.123 1 0.131 1 0.137 
2 0.412 2.9 (-1) 2 0.436 1.3(-1) 2 0.458 5.1 (-2) 
3 0.859 1.3(-1) 3 0.912 3.2 (-2) 3 0.958 9.6 (-3) 
4 1.458 8.8 (-2) 4 1.551 1.2 (-2) 4 1.631 4.4 (-3) 
5 2.197 7.3 (-2) 5 2.343 1.0 (-2) 5 2.469 2.7 (-3) 
6 3.065 8.0 ( -2) 6 3.271 1.0(-2) 6 3.456 2.2(-3) 
7 4.055 9.3 (-2) 7 4.321 1.2 (-2) 7 4.569 2.3 (-3) 
8 5.164 1.1 (-1) 8 5.487 1.6 (-2) 8 5.796 3.0(-3) 
9 6.393 1.3(-1) 9 6.770 2.0(-2) 9 7.134 4.1 (-3) 

Maximum relative errors in some of the early intervals [r", rV+ 1], 

v=1,2,3, ... ,are shown in Table 3 for oc= 1, d=3, 1 ~m~3, and n=5, 10, 20, 40. 
The Gauss-Christoffel quadrature formula for the measure (3.3) was obtained 
by first computing the recursion coefficients of the respective orthogonal poly
nomials by a discretized Stieltjes procedure, similarly as in [8, Example 3.2], 
and then using well-known methods to compute the Gauss-Christoffel formula 
in terms of the eigensystem of the associated Jacobi matrix; see, e.g., [5, 9]. 

Our last example deals with the Maxwell velocity distribution treated 
previously in [8] form =0. 

Example 3.3. f(r) =rc-d12 e-r2 on [0, oo]. 
The measure (2.12) here becomes 

(3.4) 

where Hm+l is the Hermite polynomial of degree m+ 1. If m>O, as we assume, 
Hm+ 1 changes sign at least once on (0, oo ), so that dlo is no longer a positive 
measure. The existence of the Gauss-Christoffel quadrature formula (2.13) is 
therefore in doubt, and even if it exits, we cannot be sure that its nodes are all 
simple and positive as in the previous examples. The matter depends on 
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whether the nth degree orthogonal polynomial n,.( ·;d),) relative to d). exists, 
and in addition whether its zeros the nodes r!"l in (2.13) are distinct and 
positive. If so, the solution of our approximation problem is given by (2.14), 
where the )~~") are uniquely determined by the nodes r!"l; if not, the problem 
has no solution. 

To resolve these issues computationally, we try to generate the recurrence 
relation (i.e., the coefficients ak, fh) for the (monic) orthogonal polynomials 
nk( • )= nk( ·;d),), 

nk+ 1 (r)=(r-ct.k)nk(r)-Pknk_ 1(r), k=O, 1, ... ,n-1, 

rc_ 1 (r}=O, n0 (r)= 1, 
(3.5) 

by a discretized Stieltjes procedure; cf. [7, Example 4.6]. If the procedure does 
not break down, that is, Pk=t=O for k=0,1, ... ,n-1, then rc,.( ·;dA.) exists 
uniquely. Its zeros r~"l are the eigenvalues of the (nonsymmetric) Jacobi matrix 

ct. a 1 0 

pl ct.l 1 
J,.(d2)= p2 rx2 (3.6) 

1 

0 Pn-1 rx,._ 1 

Since some of the P's are expected to be negative, we are not attempting to 
symmetrize the matrix J,., as is customary, and possible, in the classical case of 
positive measures. From (3.5) it follows easily that the columns of the matrix 

(3.7) 

are the eigenvectors of J,.(dA.), normalized to have the first component equal to 
1. Putting in turn p(r) ~_ 1 (r;d}.), 11 1,2, ... ,n, in (2.13), and observing that 
00 00 

J ~- 1 (r)d2(r)=Jl0 «511 , 1 , where Jlo= J dA.(r) and <511, 1 is the Kronecker delta, one 
0 0 
obtains for the vector ;,T = [J.\"l, A.~l, ... , A.~"l] the system of linear algebraic 
equations 

(3.8) 

We have carried out the computation for the cases m=1,2,3; d=1,2,3; 
and n= 1(1)20. All coefficients Pk were found to be different from zero, but 
quite a few of them negative; see Table 4. Interestingly, the negative P's seem 
to occur in pairs of two. 

With the a's and P's at hand, we used the EISPACK routine HQR2 [11, p. 
248] to compute the eigenvalues and eigenvectors of Jn(dl) and, if all eigenval
ues are positive, the UNPACK routines SGECO, SGESL [3, Chapter 1] to 
solve the system (3.8). A summary of the results is presented in Table 5. A dash 
indicates the presence of a negative eigenvalue and an asterisk the presence of 
a pair of conjugate complex eigenvalues. In all cases computed, there were 
never more than one negative eigenvalue or more than one pair of complex 
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Table 4. The sign of the coefficients pk in (3.5) for Example 3.3 

d 

2 

3 

m 

l 
2 
3 
1 
2 
3 
1 
2 
3 

2-3, 6-7, 10-11, 15-16 
1-2, 4-5, 7-8, 11-12, 14-15, 18-19 
1-2, 4-5, 9-10, 16-17 
3-4,7-8, 12-13, 17-18 
2-3, 5-6, 8-9, 12-13, 15-16, 19 
1-2,4-5, 10-11, 16-17 
4-5, 8-9, 13-14, 18-19 
2-3, 6-7, 9-10, 13-14, 17-18 
2-3, 5-6, 10-11, 17-18 

W. Gautschi and G.V. Milovanovic 

Table 5. Existence and accuracy of the spline approximation for Example 3.3 

n d=1 d=2 d=3 

m=l m=2 m=3 m=l m=2 m=3 m=1 m=2 m=3 

1 3.9 (-2) 1.0(-1) 1.4(-1) 3.8 (-2) 7.1 (-2) 1.3 (-1) 4.4 (-2) 2.8 (-2) 8.2 (-2) 
2 4.6 (-2} 1.3(-1) 3.5 (-2) 8.2 (-2) 1.4 (-2) 5.7 (-2) 8.8 (-2) 
3 6.2 (-3) 1.4 (-3) 3.8 (-2) 1.3(-1) 5.9 (-3) 2.5 (-2) 4.0 (-2) 
4 2.1 (-2) 3.8 (-3) 1.2 (-3) 4.5 (-3) 9.6 (-4) 2.5 (-2) 8.3 (-3) 1.4 (-3) 
5 1.5 (-2) 8.8 (-4) 8.9 ( -3) 5.9 (-3) 5.9 (-3) 1.8(-3) 
6 1.4 (-2) 1.8 (-3) * 6.4 (-3) 8.6 (-4) 7.3(-3) 6.0 (-3) 3.2 (-3) 
7 1.3(-3) * 6.9 (-3) 7.2 (-4) 6.8 (-4) 5.3 (-3) 4.9 (-2) 6.5 (-4) 
8 9.1(-3) 2.0 (-4) 8.1 (-4) * 6.1 (-3) 7.7 (-4) 5.7 (-4) 
9 7.2 (-3) 9.5 (-4) 1.5 (-4) 3.9 (-2) 8.1 (-5) 1.0(-3) * 

10 6.8 (-3) 6.4 (-4) 3. 7 (-3) 4.2 (-4) 1.4 ( -4) 2.3(-1) 
11 6.3 (-4) 6.4 (-5) 3.4 (-3) 2.9 (-4) * 1.9(-3) 1.9 (-4) 
12 * 3.4 (-3) 2.9 (-4) 5.0 ( -5) 2.0 (-3) 2.3 (-4) * 
13 5.4 (-3) 3.8 (-4) * 4.3 ( -5) 2.1 (-3) 2.3 (-4) 5.9 (-5) 
14 4.8 (-3) 3.5 (-4) 4.9 (-5) 2.8 (-3) 1.9 (-4) * 5.0 (-5) 
15 4.8 (-3) 4.5 (-5) 2.5 (-3) 1.7 (-4) 2.5 ( -5) 9.4 (-5) * 
16 3.0(-4) 4.5 (-5) 2.3 (-3) 2.5 ( -5) 1.3 (-3) 8.2 (-5) 
17 2.2 (-4) 2.4 (-5) 2.3 (-3) l.1 (-3) 8.2 (-5) 
18 3.6 (-3) 2.2 (-4) * 1.1 (-4) L5 (-5) 1.1 (-3) * 
19 3.3 (-3) * 1.9 (-3) 1.1 (-4) 1.2 (-5) 5.8 (-5) 1.2 (-5) 
20 3.2 (-3) 1.8 (-4) * 1.7 (-3) * 5.4 (-5) 8.5 (-6) 

eigenvalues. The numbers shown in Table 5 represent (approximately) the 
maximum absolute errors, max lsn(r)-f(r)l; they are usually (but not always) 

O;iir~rn 

attained at one of the early knots rv of the spline. 
Unlike in the previous examples, the weights rxv in (2.1) are no longer 

necessarily positive, the solution of (3.8) having components of either sign, in 
general. 

Acknowledgment. The authors are indebted to the referee for pointing out that the approximation 
problem (2.1), (2.2) is equivalent to the system of nonlinear equations (2.7). 
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Summary. Continuing previous wotk, we discuss the problem of approx
imating a function f on the interval [0, 1] by a spline function of degree 
m, with n (variable) knots, matching as many of the initial moments off as 
possible. Additional constraints on the derivatives of the approximation at 
one endpoint of [0, 1] may also be imposed. We show that, if the approxi
mations exist, they can be represented in terms of generalized Gauss
Lobatto and Gauss-Radau quadrature rules relative to appropriate moment 
functionals or measures (depending on f). Pointwise convergence as lt---"CC, 

for fixed m > 0, is shown for functions f that are completely monotonic on 
[0, 1 ], among others. Numerical examples conclude the paper. 

Subject Classifications: AMS: Primary 41 A 15, 65D32; Secondary 33A65; 
CR: G1.2, Gl.4. 

t. Introduction 

In previous papers [4, 6] two of us dealt with the problem of approximating a 
given function f on [0, cc] by a spline function of fixed degree (with variable 
knots) in such a way as to reproduce as many moments of f as possible. 
Having had in mind applications to physics, our functions f = f(r) were consid
ered functions of the radial distance r= !lxll of a vector xERd, and accordingly 
the moments were "spherical moments". We now wish to consider the anal
ogous problem on an arbitrary finite interval. In this case, the interpretation of 
the independent variable as a radial distance is no longer meaningful, and our 
functions f = f(t), therefore, are now simply functions of a real variable t on 
some given interval [a, b]. The case of a semi-infinite interval having been 
treated in our previous work, we restrict attention here to the case of a finite 

* The work of the first author was supported by the Ministero della Pubblica Istruzione and by 
the Consiglio Nazionale delle Ricerche. The work of the second author was supported, in part, by 
the National Science Foundation under grant DCR-8320561 
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interval, which can be standardized to [a, b] = [0, 1]. The case of the whole real 
line, [a, b] = JR, is also of interest, as is the case of periodic splines. Both, 
however, appear to be less amenable to the type of analysis we are going to 
give, and will not be considered here. 

2. Spline Approximation on [0, 1] 

A spline function of degree m ~ 0, with n (distinct) knots r 1, r 2 , .•. , rn in the 
interior of [0, 1], can be written in terms of truncated powers in the form 

n 

sn,m(t)=pm(t)+ L a)r,-t)~, O~t~1, (2.1} 
V=l 

where av are real numbers and p,. is a polynomial of degree~ m. (Our choice of 
truncated powers distinguishes the right endpoint of [0, 1] in the sense that 
sn.m(t)=pm(t), t~ 1.) We consider two related problems: 

Problem I. Determine sn,m in (2.1) such that 

1 1 

J ti sn,m(t) dt = J ti f(t) dt, j =0, 1, ... , 2n + m. (2.2) 
0 0 

Problem I*. Determine sn, m in (2.1) such that 

s~~>,.(t)=f<k>(t), k=O, l, ... ,m, (2.3) 

and such that (2.2) holds for j =0, 1, ... , 2n 1. Here we must assume that f has 
m derivatives at t = 1, all being known. 

Both problems will be solved in two ways: first in terms of moment 
functionals, then in terms of Gauss-Christoffel quadrature. The former ap
proach requires only the existence and knowledge of the moments of f in
volved; the latter requires additional regularity off, but lends itself better to 
stable implementations. 

2.1. Solution of Problems I and I* by Moment Functionals 

We first consider Problem I. Let 

(m+j+l)! 1 
. 

Jl.j= 
1 

•
1 

J t1f(t)dt, j 0, 1, ... , 2n+m, 
m.J. o 

(2.4) 

where the moments off on the right are assumed to exist. (They do, of course, 
iff is integrable on [0, 1].) We define a linear functional !!! on the set of 
polynomials of the form t"'+ 1 p(t), peiP2n+m' by 

!l!(t"'+ 1 . ti)= Jl.p j =0, 1, ... , 2n +m. (2.5) 
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Then the inner product 

(2.6) 

is well defined for any polynomials p, q for which p · qE IP2 n_ 1 • In particular, we 
can define (if it exists) the monic polynomial rr,( ·) = rr .. ( ·; 2") of degree n 
orthogonal with respect to the inner product (2.6) to all polynomials of lower 
degree, 

deg rr, = n, rr,.(t) = t" + ... , 
(2.7) 

(rr
11

, q)=O, ali qEIP,_ 1 . 

Theorem 2.1. There exists a unique spline function on [0, 1], 

n 

sn.m(t)=pm(t)+ L av(rv-t)";_, 0<-rv<l, rv=l=<,u for V=l=ft, (2.8) 
v= 1 

satisfying the 2n +m + 1 moment equations (2.2) of Problem 1 if and only if the 
orthogonal polynomial rr11 ( ·) = rr,( ·; 2") in (2.7) exists uniquely and has n distinct 
real zeros r~"1, v = 1, 2, ... , n, all contained in the open interval (0, 1 ). The knots tv 

in (2.8) are then precisely these zeros, 

T =,.(n) V } 2 n v .,, ' . = ' ' ... , , (2.9) 

while the coefficients a" and the quantities 

b =(-lt (kl(J) 
k ! Pm ' m. 

k=O, 1, ... ,m, (2.10) 

(which uniquely determine Pm in (2.8)) are obtained uniquely from the linear 
system 

where 
m n 

2"o(g)= Lbkg(m-k)(l)+ I:avg(rv), 
k=O V= I 

"'"=,.(II) 
1,.\J !," . 

Proof Substituting (2.1) in (2.2), and observing that 0 < r v < 1, gives 

1 n tv 1 

Jtipm(t)dt+ I:avJti(rv-trdt J ti f(t)dt, 
0 v=l 0 0 

j=O, 1, ... , 2n+m. 

(2.11) 

(2.12) 

(2.13) 

Changing variables, t = r rv, in the v-th integral of the summation, one obtains 

tv 1 

J ti(rv- t)m dt = 't~+ j+ Is 'tj(}- rr dt 
0 0 

., ' 
= J.m. rm+j+l. 

(m+j+l)l " 

(2.14) 
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Using m integrations by parts in the first integral of (2.13) yields 

1 j ! m! m [dm-k m+l+j] 
Jtp,.(t)dt ( +'+l)l Lbk dtm-kt ' 
o m J · k=O t=1 

(2.15) 

where bk is defined in (2.10). Inserting {2.14) and {2.15) in (2.13) and dividing 
through by j! m !/(m + j + 1)! gives 

~0(t"'+ 1 ·ti)=f.J1 , j=0,1, ... ,2n+m, 

where flJ is defined by (2.4) and ~0 by (2.12). Therefore, using (2.5) and the 
linearity of ~0 and ~. 

~o(tm+l p) ~(tm+l p), all pelP2n+m' (2.16) 

Thus, the moment equations (2.2) and Eqs. (2.16) are equivalent. 
Let now nn denote the "knot polynomial" 

n 

nn(t) = fl (t r.,) (2.17) 
v= 1 

having the knots r. of the spline (2.8) as zeros. Then, by the definition of the 
inner product (2.6) we have, for any qelPn-t> 

(nn, q) ~(t"'+ 1(1- t)"'+ 1 nn · q)= ~0(t"'+ 1(1- t)"'+ 1 nn · q), (2.18) 

by (2.16), since (1 t)"'+ 1 nn·qelP2n+m' Therefore, (nn,q) 0 by the definition 
(2.12) of ~0 and the fact that nn(rv)=O, v 1,2, ... ,n. It follows that the knots 
r. must be the zeros of the orthogonal polynomial nn( ·; ~) of (2. 7). This proves 
the necessity of the condition asserted in Theorem 2.1. Furthermore, the system 
(2.11) is a trivial consequence of (2.16); with r.=r~nl determined, (2.11) is 
essentially a confluent Vandermonde system, hence nonsingular. 

To prove the sufficiency of the condition, together with (2.11), we must 
show that they imply (2.16). Thus, let pelP2 n+m be an arbitrary polynomial of 
degree~ 2n + m. Let q and r be the quotient and remainder of p upon division 
by ( 1 - t)"'+ 1 nn(t), where nn(.) = nn(.; ~). 

p(t)=(l-t)"'+l nn(t)q(t)+r(t), qeiPn_ 1 , rEIPn+m' (2.19) 
Then, 

~(tm+l p)= ~(t"'+l(l-t)"'+1 nn. q) + ~(t"'+ 1 r) 

= ~(t"'+ 1 r) [by (2.7)] 

=~0(t"'+lr) [by (2.11)] 

= ~o(tm+1 p)- ~o(tm+ 1(1- t)"'+ 1 nn. q) [by (2.19)] 

=~0(t"'+ 1 p) [since nnCrv)=O]. 

This proves (2.16). 0 

The solution of Problem I* can be effected similarly, if one observes, in 
view of 0 < r, < 1, that 

s~~~(l)=p~l(l), k=O, 1, ... ,m. (2.20) 
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By (2.3), therefore, p~1 (1)=f(kl(l), k=O, 1, ... ,m, so that the moment equations 
in question can now be written as 

n tv . 1 . [ m f(k) ( 1) ] 
v~1 a,!fl(r.-trdt=!t

1 f(t)-k~O k! (t-l)k dt, 

j 0, 1, ... ,2n-1. 
(2.21) 

In analogy to (2.4) we define 

Jlj=(m+~~ 1)! jtj[f(t)- f pk>;n(t-l)k]dt, 
m.J. o k=o k. 

j=O, 1, ... ,2n-1, 
(2.22) 

which gives rise to the linear functional !!:'* on polynomials of the form 
~+ 1 p(t), pE IP2 ,_ 1, defined by 

!f:'*(t"'+l · ti)= Jlj, j=O, 1, ... , 2n -1, 

and the inner product 

(p,q)* !f:'*(t"'+tp·q), p·qEIP2n-t· 

The orthogonal polynomial n: ( ·) = n" (-; !!:'*) is now defined by 

degn:=n, 

(n:, q)* =0, 

n:(t)=t"+ ... , 

all qEIP
11

_ 1 . 

(2.23) 

(2.24) 

(2.25) 

Then the result for Problem I*, analogous to Theorem 2.1, is given by the 
following 

Theorem 2.2. There exists a unique spline function on [0, 1 ], 

n 

s:,m(t)=p!(t)+ L a:(r:-t)~, O<c:<l, t"~:f:r! for V:f=)l, (2.26) 
V= 1 

satisfying (2.3) and the 2n moment equations of Problem I* if and only if the 
orthogonal polynomial n:(·)=n,(·; !!:'*) in (2.25) exists uniquely and has n dis
tinct real zeros r~"l*, v = 1, 2, ... , n, all contained in the open interval (0, 1). The 
knots '~ in (2.26) are then precise/ y these zeros, 

.-* =.,.(n)* v-1 2 n 
'v "v ' - ' '···' ' (2.27) 

the polynomial P! is given by 
m {(kl(1) 

P!(t) L _. -,-(t-1)\ 
k=O k. 

(2.28) 

and the coefficients a~ are obtained uniquely from the linear system 

!f:'t (t"'+ 1 p) = !!:'* (t"'+ 1 p), all pe IP,_ P (2.29) 
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where 
n 

f£'6 (g)= I a~ g( r~), 
V= l 

""*=,.(II)* 
l- y LV • 

M. Frontini et aL 

(2.30) 

The proof is entirely analogous to the proof of Theorem 2.1 and is omitted. 
The functions sn,m and s:,m of Theorems 2.1 and 2.2 may be thought of as 

solutions of finite moment problems in terms of spline functions. 

2.2. Solution of Problems I and I* by Gauss-Christoffel Quadrature 

While the solution of Problems I, I* given in the previous subsection has some 
intrinsic mathematical interest, it is suspect, computationally, because of its 
reliance on the "moments" (2.4) and (2.22), which are likely to create ill
conditioning. For constructive purposes, it is better to reduce these problems 
to Gauss-Christoffel quadrature with respect to an absolutely continuous mea
sure, as was similarly done in [4, 6]. This requires more regularity off; we 
shall assume, in fact, that fECm+ 1 [0, 1]. (This hypothesis could be slightly 
weakened.) We also assume that f(l'l(l), k l, ... ,m, are known, and that 
f¢1Pm (otherwise, trivially, sn,m =f). 

Again, we first consider Problem I. Applying (2.14), (2.15) and m + 1 in
tegrations by parts to the last integral in the moment equations (2.13) now 
results in 

m [ dm-k ] 11 "b --tm+l+j +"a rm+l+i 
L.. k d m-k L.. v v 

k=O t t=l v=l 

(2.31) 

where 

k 0, 1, ... ,m. (2.32) 

Defining the measure 
( 1)"'+ 1 

d), (t)= pm+ll(t)dt on [0, 1], 
m m! 

(2.33) 

we can rewrite (2.31 ), similarly as in (2.16), in the form 

fi'o(t"'+l p)=fi'(t"'+l p), all pEIPzn+m' (2.34) 

where f£'0 is defined in (2.12), but ft' is now defined by 

m 1 

fi'(g)= I </Jkg(m-k)(l) + J g(t)dAm(t). (2.35) 
k=O 0 

The resolution of (2.34) is now verbatim the same as in the proof of 
Theorem 2.1, the inner product again being defined as in (2.6), but now with ft' 
given in (2.35). This yields 
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Theorem 2.3. Assume that fECm+ 1 [0, 1]. There exists a unique spline function 
(2.8) on [0, I] satisfying the 2n+m+ 1 moment equations (2.2) of Problem I if 
and only if the orthogonal polynomial n11(·)=n11 (·; 2) in (2.7) relative to the 
inner product (2.6), (2.35) exists uniquely and has n distinct real zeros r~nl, 
v = 1, 2, ... , n, all contained in the open interval (0, 1 ). The knots r" in (2.8) are then 
precisely these zeros, 

"' =,.(n) 1 2 'v 'v• v=,, ... ,n, (2.36) 

while the coefficients av, and the quantities bk in (2.32) (which uniquely determine 
Pm in (2.8)), are obtained uniquely from the linear system 

2 0 (tm+l p)=2(tm+l p), all pEIPn+m• (2.37) 

where 2 0 , 2 are defined, respectively, by (2.12) and (2.35). 

The result of Theorem 2.3 has been announced without proof in [5, § 3.3]. 
It can also be interpreted in terms of the generalized Gauss-Lobatto quadra
ture formula (relative to the measure dlm in (2.33)), 

1 m 

J g(t}dlm(t)= L [Akg(k)(O)+Bkg(k)(l)J 
0 k=O 

n 
(2.38) 

+ L },~> g(r~n)) + Rn,m(g; dlm), 
V= 1 

where 
(2.39) 

This quadrature formula, in turn, is known to be related to the Gauss
Christoffel quadrature formula 

1 n 

Jg(t)dam(t) LO"~n)g(r~n))+Rn(g;dam), Rn(IPzn-l;dam)=O, (2.40) 
0 v= 1 

with respect to the measure 

dam(t)=tm+l(l-t)m+l dlm(t) on [0, 1]. (2.41) 

Indeed, the nodes r~nl in (2.38) and (2.40) are the same (equal to the zeros of 
tt

11
( ·;dam)), while the weights l~nJ in (2.38) are expressible in terms of those in 

(2.40) by 
(2.42) 

Furthermore, the coefficients Ak, Bk in (2.38) can be obtained from the linear 
system 

(2.43) 

Now we note that the inner product (2.6), in view of (2.35), can be written 
in the form 

l 1 

(p, q) = J tm+ 1(1- tr+ 1 p(t) q(t)dlm(t) = J p(t) q(t)dam(t). (2.6') 
0 0 
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Therefore, the knots tv in (2.36) are precisely the nodes in (2.40), hence those in 
(2.38). Putting g(t)=t"'+ 1 p(t), pE1P2 n+m' in (2.38) and noting (2.39) yields 

1 

= j tm+l p(t)dA,.(t), all pE1P2 n+m' 
0 

which is identical to (2.34), if we identify 

- 1(n) a,-Av, v=1,2, ... ,n. 

Since under the assumptions of Theorem 2.3 the solution of (2.34) is unique, we 
have shown the following 

Corollary 1 to Theorem 2.3. If the conditions of Theorem 2.3 are satisfied, then 
the spline function (2.8) solving Problem I is given by 

.,. = o-(n) a = 1 (n) v - 1 2 n 
~v "v ' v Av ' - ' "· · ·,. ' (2.44) 

where r~"> are the interior nodes of the generalized Gauss-Lobatto quadrature 
formula (2.38) [or the nodes of the Gauss-Christoffel formula (2.40)] and A.~") the 
corresponding weights in (2.38) [or (2.42)], while 

(2.45) 

where B,._k is the coefficient of g(m-kl(t) in the Gauss-Lobatto formula (2.38). 

We remark that the conditions of Theorem 2.3 are satisfied for each 
m = 0, 1, 2, ... iff is completely monotonic on [0, 1] ( cf. [8, p. 145 ff. ]), since d).,., 
and hence also d(),., is then a positive measure. We have, moreover, the 
following 

Corollary 2 to Theorem 2.3. Iff is completely monotonic on [0, 1] and for some 
m~O, 

m! B,._p. +( -lY' f1~'>(t)>O, Jl=O, 1, ... ,m, 

then so is sn,m for each n~ 1; more precisely, 

if k=O, 1, ... ,m, 
if k>m, 

for each tE[O, 1] for which s~~~(t) is defined. 

(2.46) 

(2.47) 

Proof The assumption (2.46) implies (- 1 y• p~> (1) > 0, Jl = 0, 1, ... , m, hence the 

[ 

m ](k) 
positivity on [0,1] of (-ltp~>(t)=(-l)k ~'~0 (-l)~'fl!-

1 p~>(t)(l-t)IL for 

k=O,l, ... ,m. Since av>O, by (2.44), and (-l)k[(rv-t)':J<k>~o, k=O,l, ... ,m, 
whenever the derivative exists, the assertion (2.47) follows. 0 
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We note that (2.46) restricts only those B0 , B1 , ... , Bm that are negative. In 
the case of the infinite interval [0, oo], considered in [6], the property (2.47) 
(with ~ in place of >) follows directly from (2.8), since Pm(t) = 0. 

Turning now to Problem I*, we note that (2.20) again implies p~l(l) 
= f<kl(l), hence bk = </Jk, k =0, 1, ... , m. The moment equations in question thus 
simplify to 

.fl'i}(tm+lp)=!l'*(tm+lp), all pElPzn-l' (2.48) 

where !l'i) is given by (2.30) and !l'* by 

1 

!l'*(g) = J g(t) d).m(t). (2.49) 
0 

The analogue of Theorem 2.2, therefore, is as follows. 

Theorem 2.4. Assume that f E em+ 1 [0, 1]. There exists a unique spline function 
(2.26) on [0, 1] satisfying (2.3) and the 2n moment equations of Problem I* if and 
only if the orthogonal polynomial n:( ·) nn( ·; 2*) in (2.25) relative to the inner 
product (2.24), (2.49) exists uniquely and has n distinct real zeros T~n1 *, 
v 1, 2, ... , n, all contained in the open interval (0, 1 ). The knots ·~ in (2.26) are 
then precisely these zeros, 

"'* = ,.(n)* ,, 1 2 n 
'v 'v ' '= ' ' ... , ' (2.50) 

the polynomial P! is given by 

m J(kl(l) 
P!(t)= k~okl(t-lt, (2.51) 

and the coefficients a~ are obtained uniquely from the linear system 

.!l'i)(tm+1 p) .!l'*(tm+l p), all pEIPn-1> (2.52) 

where .!l'i), !l'* are defined, respectively, by (2.30) and (2.49). 

Underlying Theorem 2.4 is now the generalized Gauss-Radau quadrature 
formula, 

m n 

I Atg(k)(O)+ I A~n)*g(T~n)*)+R:,m(g;dlm), 
k=O V= 1 (2.53) 
R:,m(g; dlm)=O, all gEIP2 n+m' 

or the related Gauss-Christoffel formula 

1 n 

Jg(t)da!(t)= I a~nl*g(T~nl*)+R:(g;da!), R:(IP2 n_ 1;da!)=O (2.54) 
0 V=l 

for the measure 
da!(t)=tm+ 1d),m(t) on [0, 1]. (2.55) 

Again, the nodes T~nJ* in (2.53) and (2.54) are identical, whereas 

(2.56) 

638



512 M. Frontini et al. 

One has, in fact, 

Corollary l to Theorem 2.4. If the conditions of Theorem 2.4 are satisfied, then 
the spline function (2.26) solving Problem I* is given by P! as in (2.51) and by 

r*="'("J* a*= 1("l* v 1 2 n 
v 'v ' v "'-v ' = ' ' · · •' ' (2.57) 

where r~"l* are the interior nodes of the generalized Gauss-Radau formula (2.53) 
[or the nodes of the Gauss-Christoffel formula (2.54)] and .A.~")* the corresponding 
weights in (2.53) [or (2.56)]. 

Corollary 2 to Theorem 2.4. Iff is completely monotonic on [0, I] then so is s:,m 
for each n~ 1, m~O; more precisely, 

ifk=O,l, ... ,m, 
if k>m, 

(2.58) 

for each tE[O, 1] for which s:,<;;l(t) is defined. 

The proofs are analogous to the proofs of Corollaries 1 and 2 to Theorem 
2.3 and are omitted. 

To obtain the Gauss-Christoffel formulae in question, one must be able to 
generate the orthogonal polynomials relative to the measures d(J'm and d(J'! in 
(2.41) and (2.55), respectively. For this, the methods discussed in [2] and [3] 
(see also [1, § 5]) are often helpful. 

3. Error and Convergence of Approximation 

Similarly as in [6], the error of the spline approximants sn,m and s:,m con
structed in Sect. 2 can be expressed in terms of the quadrature error of the 
generalized Gauss-Lobatto and Gauss-Radau formulae (2.38) and (2.53), re
spectively, when applied to a special function. This is the content of the next 
two theorems. 

Theorem 3.1. Assume the conditions of Theorem 2.3 are satisfied. Then, for any x 
with O<x < 1, the spline function s,,m in (2.8), solving Problem I, approximates f 
with an error given by 

(3.1) 

where R,.,m( ·; d.A.m) is the remainder term in the generalized Gauss-Lobatto 
quadrature formula (2.38) (relative to the measure d.A.m in (2.33)) and Px is given 
by 

Px(t)=(t x)':, (3.2) 

Alternatively, we have 

(3.3) 

where R
11

( ·; d(J'm) is the remainder term in the Gauss-Christoffel quadrature for
mula (2.40) (relative to the measure d(J'm in (2.41)) and (J'x is given by 

(3.4) 
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q2m+1(px; ·) being the polynomial of degree~2m+ 1 interpolating to Px and its 
first m derivatives p~>, k = 1, 2, ... , m, at t =0 and t = 1. 

Proof By Taylor's theorem, 

m 1 1 x 

f(x)= I f 1k1(l)(x l)k+ 
1 
J(x t)"'f<m+li(t)dt 

k=O k! 11L 1 

m 1 ( 1)"'+ 1 1 I f 1k1(l)(x-l)k+- f(t-x)"'j!m+ll(t)dt 
k=ok! m! x 

m 1 1 

= k~o k! flkl(l)(x-l)k+ lpAt)dJ. ... (t). 

By (2.44), 

Subtracting this from the preceding equation gives 

n 

_ "Jlnl(ri•J -x)"' 
'-' v v +' 

v= l 

which, by virtue of (2.45) and (3.2), yields 

1 m 1 n 

f(x)-sn,m(x)= J Px(t)dJ.m(t)- I :; Bm-k(l-x)k- I A~n} Px(t~"1). 
0 k=O • V= 1 

But 

p~1 (0)=0, 
ml 

plkl(J)= · (1 x)m-k, k=O, 1, ... ,m, 
x (m-k)! 

so that 
1 m n 

f(x) s.,,..(x)= J PAt)d2,..(t)- I Bm-kP~m-ki(l)- I A~n1 pJr~"l) 
0 k=O V=l 

=R.,,,(Px; dAm), 

as claimed in (3.1 ). 
To prove (3.3), it suffices to observe that for any function h that has zeros 

of multiplicity m+ l at t=O and t= l one obtains from (2.38), (2.40) and (2.42), 
by putting g(t)=t-lm+ 11 (1-t)-(m+ 11 h(t) in (2.40), that 

R (t-lm+ll(l-t)-lm+llh·da .)=R (h·d).) 
n ' m n,m ' m • (3.5) 

In particular, for h(t)=px(t)-q2 m+l(px; t), since Rn,m(q 2m+ 1;dlm)=0, one gets 
Rn,rn<Px; dAm)= Rn,m(Px -q2m+ I; dlm) = Rn(ax; dam), with (jx given by (3.4). 

Theorem 3.2. Assume the conditions of Theorem 2.4 are satisfied. Then, for any x 
with O<x< 1, the spline function s:.m in (2.26), solving Problem I*, approximates 
f with an error given by 
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(3.6) 

where R:.m( ·; dl.m) is the remainder term in the generalized Gauss-Radau quadra
ture formula (2.53) (relative to the measure d).m in (2.33)) and Px is given by (3.2). 
Alternatively, we have 

(3.7) 

where R:(·; d<J!) is the remainder term in the Gauss-Christoj(el quadrature 
formula (2.54) (relative to the measure d<J! in (2.55)) and <J: is given by 

t~(m+ l)(t- x)m 
·+' (3.8) 

Proof Equation (3.6) is proved similarly as Eq. (3.1) in Theorem 3.1. The 
alternative formula (3.7) follows readily from R:,.,.(px; dJ.m) = R:(<J:; d<J~). 

IffEC"'+ 1 [0, 1] is such that d).m in (2.33) is a positive measure (for example, 
iff is completely monotonic on [0, 1]), then the approximations sn.m and s:,m 
exist uniquely by Theorems 2.3 and 2.4, respectively. Moreover, for fixed m >0 
and x, with O<x< 1, we have 

since <Jx is continuous on [0, 1] and d<Jm is also a positive measure. Therefore, 
by (3.3), we have pointwise convergence sn,m-+f as n-+oo. The analogous fact 
for s:.m follows likewise from (3.7) and the continuity of <J.!' on [0, 1]. Thus, we 
have 

Theorem 3.3. If fEC"'+ 1 [0, 1] and dl.m in (2.33) is a positive measure, then the 
approximations sn.m and s:.m constructed in Sect. 2 converge pointwise to f in 
(0, 1 ), as n--+ oo for fixed m > 0. 

We finally note that the formulas (3.1) and (3.3), resp. (3.6) and (3. 7), by 
differentiating them repeatedly with respect to x, yield representations for the 
errors f(k) -s(k) and f(k) -s*(k) in the derivatives respectivelv n.m n,m ' J• 

4. Examples 

We illustrate the spline approximations of Theorems 2.3 and 2.4 (or their 
corollaries) in the case of exponential and trigonometric functions. All com
putations reported on were carried out on the CDC 6500 computer in single 
precision (machine precision :::::::3.55 x 10~ 15

). 

Example4.1. f(t)=e~ct, O~t~l, c>O. 

This is an example of a completely monotonic function, for which the 
associated measure (2.33) is thus positive; indeed, 

(4.1) 
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Problems I, I* therefore have unique solutions by Theorems 2.3 and 2.4. In 
terms of the generalized Gauss-Lobatto formula 

1 m n 

J g(t) e-ct dt = I [Ak g<k'(O) + Bk g(k)(l )] + I I~") g(rt")) + R,,m(g; e-ct dt) (4.2) 
0 k=O v=l 

and the generalized Gauss-Radau formula 

1 m n 

Jg(t)e-c1 dt= I Atg(k\(0)+ I X~" 1 *g(r~"l*)+R:.m(g;e-c1 dt), (4.3) 
0 k=O V=l 

we have from Corollary 1 to Theorem 2.3, 

v = 1, 2, ... , n, 

(4.4) 

for the spline s,,m in (2.8), solving Problem I, and from Corollary 1 to Theorem 
2.4, 

v 1, 2, ... , n, 

(4.5) 

for the spline s: m in (2.26), solving Problem I*. 
The Gaussian nodes and weights in (4.2) and (4.3) were obtained in the 

usual way (see, e.g., [2, p. 290]) in terms of the eigensystems of the Jacobi 
matrices J,(tm+ 1(1-tr+te-c 1 dt) and J,(tm-rte-c 1dt), respectively. The latter 
were generated from the Jacobi matrix Jn+Zm+ 2 (e··crdt), resp. Jn+m+l(e-c1dt), 
by repeated application of the algorithms in [3, § 4.1] corresponding to multi
plication of a measure by t(l- t) and t, respectively. (Alternatively, algorithms 
based on the Q R algorithm, as in [7], could be used for the same purpose.) 
Finally, J,+ Zm+ 2 (e-ct dt) was computed by the discretized Stieltjes algorithm 
(see [2, § 2.2]), the Fejer quadrature rule having been used as the modus of 
discretization. 

As to the coefficients Ak, Bk in the boundary terms of (4.2), they were 
computed from the linear system of equations 

(4.6) 

where the first 2m+2 orthogonal polynomials {nk(·; e-ctdt)h?!o (whose Jacobi 
matrix J,+zm+Z has already been generated!) were used as basis in the poly
nomial space IP2 m+ 1 of (4.6). The coefficients At in (4.3) are not needed. 

The accuracy of the spline approximations s,,m and s!,m thus obtained is 
shown in Table4.1 for n=5, 10, 20, 40; m=0(1)3; and c=1,2,4. Displayed are 
(two-digit approximations to) the respective maximum absolute errors on 
[0, 1]. 
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Table 4.1. Accuracy of the spline approximations s..... and s:... for Example 4.1. (Numbers in 
parentheses denote decimal exponents). 

c n max ls .... (t) e-ctl max ls! ... (t) 
O~t~ l O~t;;il 

m=O m=l m=2 m=3 m=O m=l m=2 m=3 

5 8.0 ( -2) 2.4 (- 3) 4.0 ( -5) 9.7(-7) 8.8 ( -2) 3.3 (- 3) 6.8 ( -5) 2.4 ( -6) 
10 4.6 ( -2) 8.6 ( -4) 8.6 ( -6) 1.4(-7) 4.8 ( -2) 1.0 (- 3) 1.2 ( -5) 2.5 ( -7) 
20 2.5 ( -2) 2.6 ( -4) 1.5(-6) 1.5 (- 8) 2.5 (-2) 2.9 ( -4) 1.9 (-6) 2. I (- 8) 
40 1.3 ( -2) 7.3 ( -5) 2.4 ( -7) 1.4 l -9) 1.3 ( -2) 7.7 ( 5) 2.7 (-7) 1.6(-9) 

2 5 1.3 I) 7.0 (-3) 2.1 ( -4) 9.8 ( -6) !.3(-1) 9.1(-3) 3.8 (-4) 2.4 ( -5) 
10 7.1 (-2) 2.4 ( -3) 4.6 ( -5) 1.5 ( -6) 7.5 ( -2) 2.8 3) 6.5 ( -5) 2.6 ( -6) 
20 3.9 ( -2) 7.4 ( -4) 8.4 ( -6) 1.6 (- 7) 4.0 ( -2) 8.1 (-4) 1.0 (- 5) 2.3 (-7) 
40 2.0 ( -2) 2.1 ( -4) 1.3(-6) 1.4 (- 8) 2.0 ( -2) 2.2 ( -4) 1.4 (-6) 1.7 (- 8) 

4 5 1.7(-1) 1.6 ( -2) 8.7 ( -4) 7.8 ( -5) 1.7(-l) 1.9 (- 2) 1.5 ( -3) 2.5 ( -4) 
10 1.0 ( -l) 5.7 (- 3) 2.0 ( -4) 1.1 ( -5) 1.1 (-1) 6.7(-3) 2.7 (-4) 2.0 ( -5) 
20 5.7 ( -2) 1.8 (- 3) 3.6 ( -5) 1.3 (- 6) 5.8( -2) 2.0 ( -3) 4.3 ( -5) 1.8 ( -6) 
40 3.0 ( -2) 5.1 (-4) 5.7 ( -6) 1.2 ( -7) 3.0 ( -2) 5.3 ( -4) 6.2 ( -6) 1.4 ( -7) 

For m =0, 1, and 3, the maxima are almost always attained at a knot of the 
spline, about half-way (or somewhat less) through the interval. The only 
exception observed was for s:,m, n=5, m 3, c=4, where the maximum occurs 
at t = 0. When m = 2, the maxima are usually attained between two such knots. 
The linear system (4.6) (in the orthogonal basis mentioned) was found to be 
relatively well-conditioned, the worst condition number (occurring for m=3) 
being approx. 2.5 x 103• 

It is seen that the approximation error is more easily reduced by increasing 
m rather than n. Also, the spline sn,m is only marginally more accurate than the 
spline s!,m· The additional ~ffort required in computing sn,m• therefore, seems 
hardly justified, if uniform approximation is indeed the main objective. If 
moment-matching is more important, however, the spline sn,m would be prefer
able, as it matches m + 1 additional moments. 

The coefficients of Pm' i.e., the expressions in the brackets of (4.4), turned 
out to be positive for all values of m, n and c tried, so that the computed 
splines sn,m are completely monotonic in the sense of (2.47). The analogous 
property for s:,m follows from Corollary 2 to Theorem 2.4. 

Example 4.2. f(t) =sin~ t, 0 ~ t ~ 1. 

Here, the function f, though not completely monotonic, still has derivatives 
that are all of constant sign on [0, 1]. Therefore, the measure d).m in (2.33), i.e., 

{ 

n } _(-l)[m/21+1 (n)m+l cos2t 
dJ.m(t)- I -

2 
dt 

m. . n 
sm 2 t 

on [0, 1], (4.7) 
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where the cosine or sine is taken according as m is even or odd, admits a 
unique system of (monic) orthogonal polynomials, and Problems I and I* both 
have unique solutions for each m and n. Observing that the substitution t ~ 
1 - t carries the cosine into the sine, and vice versa, it suffices to generate the 
orthogonal polynomials for one of the trigonometric measures only, say 
cos((n/2) t) dt. If a~, fJ~, are the coefficients in the corresponding recurrence 
relation 

rrk+ 1(t)=(t-ak)rrk(t)-fJknk_ 1(t), k 0, 1,2, ... , 

n_ 1(t)=O, n0 (t)=l, 
(4.8) 

then the coefficients aL fJ~ for the sine-measure are 

fJ~=m, k o, 1.2, .... (4.9) 

A similar remark applies to the generalized Lobatto measures (2.41) [but not 
to the generalized Radau measures (2.55)]. The constants multiplying the 
trigonometric measures in (4.7), of course, simply give rise to analogous multi
plicative constants in the quadrature rules (2.38) and (2.53). 

Techniques similar to those in Example 4.1 were used to compute the 
desired spline approximants in the present example. 

Table 4.2. Accuracy of the spline approximations s"·"' and s:,,. for Example 4.2. 

n max lsn,,.(t)-sin~) max ls:,,(t)-sin n tl 
O~t~l 2 i O:"t;"l 2 

m=O m 1 m=2 m=3 m=O m I m=2 m=3 

5 1.4 (- 1) 6.5 (- 3) 1.7 ( -4) 6.2 ( -6) 1.5(-1) 8.8 ( -3) 2.7 ( -4) 1.5 (- 5) 
10 8.4 ( -2) 2.4 (- 3) 3.7 ( -5) 9.4 ( -7) 8.8 (-2) 2.8 (-3) 5.0 ( -5) 1.6 (-6) 
20 4.6 ( -2) 7.6 ( -4) 6.8 ( -6) 1.1 (-7) 4.7 ( -2) 8.2 (-4) 8.2 (-6) 1.4 ( -7) 
40 2.4 (- 2) 2.1 ( -4) 1.1 ( -6) 9.6 ( -9) 2.4 ( -2) 2.2 (-4) 1.2 ( -6) 1.1 ( -8) 

Their accuracy is shown in Table 4.2; the error behaves rather similarly as the 
error in Example 4.1 for c = 2. 
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Abstract 

Gautschi, W., On mean convergence of extended Lagrange interpolation, Journal of Computational and 
Applied Mathematics 43 (1992) 19-35. 

Lagrange interpolation to any continuous function on [- 1, 1] at the zeros of orthogonal polynomials is known 
to converge in the mean. Here. fo!!owing Bcllcn, we study mean convergence of Lagrange interpolation on an 
extended set of nodes that includes, in addition to the n zeros of the orthogonal (relative to some positive 
weight function w) polynomial 11'11 of degree 11, other n +I nodes, which in tum arc zeros of an orthogonal 
polynomial i-, + 1 of degree n +I corresponding to the weight function wn = 1r,;w. A sufficient criterion of 
Bellen for mean convergence (as n--+oc) of such extended Lagrange interpolation, for arbitrary continuous 
functions, is shown to fail for Chebyshev weight functions of the first, third and fourth kind. (It holds trivially 
for Chebyshev weights of the secqn!J kind.) Based on extensive computations, it is conjectured, on the other 
hand, that the criterion is sati,.fied fur i:I.':JI.ain Jacobi weights with parameters £r and p suitably restricted. 
Necessary CClndilions for mean convergence, due to Erdos and Turan, are shown to be violated for the three 
kinds of Chebyshev weights mentioned a:bovc. For smooth functions, a comparison is made of the speed of 
convergence of simple vs. extended La~rangc interpolation. 

Keywords: Extended Lagrange interpolation; convergence in the mean; orthogonal polynomials. 

l. Introduction 

Let TT,( ·; w), n ~ 1, denote the nth-degree orthogonal polynomial on ( -1, 1) with respect to 
a positive weight function· w. It is well known [6] that the Lagrange polynomial (L,f)( ·) of 
degree ~ n - 1 interpolating f at the n zeros T; = T:") of 7T, converges to f in the mean 
whenever f is a continuous function on [ -1, 1], 

lim 11/-L,/IIw=O, ail /EC[-1, 1). ( 1.1) 
11-+0C 

Correspondence to: Prof. W. Gautschi, Department of Computer Sciences, Purdue University, West Lafayette, IN 
47907, United States. e-mail: wxg@;cs.purduc.cdu. 
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20 W. Galltsclri 1 Extended Lagrange illlerpolatioll 

Here the norm is the weighted L2-norm, 

!lull w = {f 1u~(t )w(t) dt }'
12 

Suppose we adjoin to the n zeros T; an additional n + 1 nodes i'i = 7?1, j = 1~ 2, ... , n + 1, 
distinct among themselves and from the T;, and form the Lagrange polynomial (L2,+ .f)(·) of 
degree ~ 2n interpolating f on the union of the nodes, h;} U {1;). Is it still true that 

lim II!- izn+tfllw = 0, all /E C[ -1, 1)? (1.2) 
IJ-Io:X: 

The answer can no longer be expected to be an unqualified ''yes", since the behavior of L2,+.f 
will strongly depend on the kind of additional nodes introduced. A natural choice for these 
nodes would be the zeros of v,+ 1( ·; w). Unfortunately, no criteria are known that would be 
applicable to prove mean convergence for all C[ -1, 1] in this case. An interesting choice, 
however. has recently been discussed by Bellen [2], who takes the nodes ii to be the zeros of 
the polynomial if-,+ 1( ·) = v, + 1( ·; v;w) of degree n + 1 orthogonal to all lower-degree polyno
mials with respect to the (positive) weight function w, = v;w. He proves, in this case, that (1.2) 

indeed is true provided that the ratio 

llv, n:. 
M(n; w} := • . :::(,;.) 

mm v, 'i 
l.;,j<;,n+ I 

remains uniformly bounded, 

M(n; w) = 0(1), as n .~ oo. 

(1.3) 

(1.4) 

Note that ( 1.4) precludes any of the ii from becoming equal, or too close, to any of the T;, and 
like the T;. they, too, are distinct from one another. (Clearly, it is irrelevant how one normalizes 
the polynomial r., in ( 1.3).) Other types of extended Lagrange interpolation are studied in [1] 
for Lipschitz-continuo~s functions f e Lip 'Y, 'Y > 4, and in [3-5] with a view toward uniform 
convergence. 

We say that the nodes ii interlace with the nodes T;, if they satisfy, when ordered 
decreasingly, 

T1>T1>r2>T2> ··· >i,>T,>Tn+l' (1.5) 

lfthe leading coefficient of if-,+ 1 is positive, then ( 1.5) is equivalent to 

sgnf.,.,_ 1(T,)=(-1);, i=l,2, ... ,n. (1.5') 

The only weight function w for which (1.4) (and also (1.5)) is known to be true is 

w(t)=(l-t~)l/2, -l<t<l. (1.6) 

In this case, Tr11 = U, is the Chebyshev polynomial of the second kind, and 7T" + 1 = T,, + 1 the 
(n + 1 )st-degree Chebyshev polynomial of the first (cf. [2]). In Section 2 we show that (1.4) is 
false for any of the other three Chebyshev weights, even though the respective nodes T; and ii 
interlace. In Section 5 we discuss the validity of (1.4) numerically, based on methods described 
in Section 4, when w is a Jacobi weight function, 

(1.7) 

648



W. Gautschi I Extended Lagrange interpolation 21 

in particular, a Gegenbauer weight w<a.al, with the parameters a, p suitably restricted. It 
suffices, in (1.7), to consider p;;:;.: a, since 

M(n; w<a.l3l) =M(n; wUJ,a>). (1.8) 

This follows easily from the identity PJa·l3l(t) = ( -l)"PJI3,al( -t) for Jacobi polynomials. We 
conjecture that (1.4) is valid for Jacobi weights w<a./3l with 0 ~a~ 1.6, a~ p < p0, where 
1.55 < Po < 1.65, and for Jacobi-Gegenbauer weights w<a,al in the sharper form 
lim, ..... "'M(n, w<a.al) = tTr, provided 0 ~a< a 0, where 1.6 < a 0 < 1.7. The case of negative a 
seems more subtle, and we dare not conjecture (1.4) except for Gegenbauer weights w<a.al with 
-a0 <a ~ 0 for some a0 near and slightly larger than 0.31. 

It should be borne in mind, however, that (1.4) is merely a sufficient condition for 
convergence in the mean (cf. (1.2)), and its failure to be satisfied does not necessarily invalidate 
(1.2). A condition that does invalidate (1.2) has been given by Erd5s and Turan [6, Theorem 
III] in terms of the function 

1 ( n n+ I ) · 
L(n; w) == /_ 1 ;~ll{t) + i~ IJ(t) w(t) dt, (1.9) 

where I; and ~ are the elementary Lagrange interpolation polynomials for the point set 
{T;} U {f), 

i= 1, 2, ... ,n, 

(1.10) 
j = 1, 2, ... , n + 1. 

Indeed, if 

lim L(n; w) = +oo, (1.11) 

it was shown 1 in [6] that there exists an /E C[ -1, 1] such that 

lim llt-£2,+dllw= +oo. (1.12) 
n--+oc 

In Section 3 it will be shown that (1.11) is true for all Chebyshev weight functions other than 
the one of second kind, which establishes that mean convergence (1.2) does no longer hold in 
these cases. It should be stressed, nevertheless, that this ·negative result is not so much a 
critique of the special choice of interpolation nodes, as it is a reflection of the very large class of 
functions considered. Adding only a slight amount of regularity, for example, Lipschitz 
continuity with parameter larger than ~. would already restore conver!tence. Indeed, for 
Chebyshev weights w, the referee has kindly pointed out that II f- L 2,+ tf II ... ~ const. · 
n 112£,(f), where £,(/) is the error of best uniform approximation of f by polynomials of 
degree ~ n. For still more regularity, in particular analyticity, see also Section 6. 

1 [6, Theorem III], valid for an arbitrary triangular matrix of interpolation nodes, assumes w{t) = I, but the proof 
goes through for an arbitrary weight function w. 
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l. The ratio M{ n; w) for Chebyshev weiabts 

2.1. First-kind Chebyshet weight function 

In this subsection we take the weight functit.., w to be 
2 -1/2 w=w1, w1(t)=(1-t) , -1<t<l. 

The corresponding orthogonal polynomial is the Chebyshev polynomial of the first kind, 

vn(t)=Tn(t), T,(cos B)=cos n8. 

As in Section 1. we assume n ~ 1. We claim that 

tTn+l(l) = Tn+l(t)- -lTn~l(t). 
Indeed, using repeatedly the well-known identity 

we have for any p E Pn• 

f l I ? 1 fl [ 1 ] _
1(Tn+l- 2T,,_ 1)pTn-wl dt= 2 -I (T2n+l + T1)- 2(Tzn-l + T1) pTnwl dt 

1 fl I I ) · = -2 {T2n+l- ~T2n-l + 2T1 pTnwl dt 
-I 

1 /I I 3 = -4 (~,n+l- 2T3,-I + 2T,1+t)pwl dt = 0, 
-I 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

the last equality, since peP,, on account of the orthogonality of the Chebyshev polynomials. 
This proves (2.3). 

With 

T;=COS8;, 8;=cos{ 2i2: 1 '1T), i=l,2, ... ,n, 

denoting the zeros ofT,, it follows easily from (2.3) and (2.2) that 

i-,+ 1(T;) = 1( -1); sin 8;, i = 1, 2, ... ,n, 
so that (1.5'), and hence the interlacing property (1.5), holds for the zeros Ti of 'li-,+ 1• 

(2.5) 

Letting t =cos 9 in (2.3), we can write the equation 7T,+ 1(t} = 0 in trigonometric form 
cos(n + 1)8- { cos{"- 1)8 = 0, or, with the help of the addition theorem for the cosine, in the 
form 

tan n8 tan 8 = i, 0 < 8 < 'IT. (2.6) 

Since with v, also i-, + 1 is an even polynomial, its zeros :;i are symmetric with respect to the 
origin; it suffices therefore to consider (2.6) in 0 < 8 <~'IT. Using 

2 1 
tan 8 = -- - 1 and t =cos 8, 

cos28 
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we ~~n write (2.6), when squared, in the form 

or, equivalently, in the form 

9(1 - t 2) 

T;(t) = 9- 8t2 

23 

(2.7) 

The rational function on the right decreases monotonically on (0, 1); therefore, by the 
symmetry of the .;i, 

• 2 " - 9(1- ff) 
~m T11 (Ti)- 9 8 ... 2 • 

l.;;;J.;;;n+l - T 1 

Since II T,, 11;. = t,. for n ;;.. 1, we get from the definition in (1.3) that 

I 9- s-r: 
M(n; w1} = lii",.-1~. 

-Tl 

Writing (2.6) in the form 

1 
tan n6 = 3 , 

tan 6 

and examining the graphs of the two functions on the left and right, immediately yields 

" 'IT 
0<6, <-

2n 

for the smallest positive root, 6 = 6,, of (2.6'). Consequently, 

1i " 
cos 2n <f1 =cos 61 < 1, 

and by (2.8), 

I 1 
M(n; w,) >Iii'~'~" . 2( 2 ) . sm ,.; n 

This shows that M(n; w1) grows to oo as n ~ oo, at least like O(n2 ). 

2.2. Second-kind Chebyshev weight function 

(2.8) 

(2.6') 

(2.9) 

For completeness, we include here the Chebyshev weight function of the second kind, 

w=w2 , 
1/2 

w2(t)=(1-t 2 ) , -1<t<l, (2.10) 

for which 

sin(n + 1)6 
U11(cos 6) = . . 

sm 6 
(2.11) 
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Since T,+ 1U, = !Uzn+ 1, we have, for any p e IP',, 

/1 ~ 1 /1 T,+ 1pU,-w2 dt= -2 U211 + 1pUr.w2 dt=O, 
-1 -1 

by orthogonality, since pU,1 e 1P'211• Therefore (as already observed in [2]), 

11-n+l(t) = Tn+i(t). (2.12) 

The zeros -Ti of Tn+t clearly interlace with those of 1T,1 = U,,. Furthermore, with 

" " 2j-1 
-Ti =cos 8i, 8i = 2,1 + 2 v, 

we have 
" . -I 

.. sin( n + 1 )8j ( -1 Y 
Un(Ti) = sin 8. = sin((2j-1)1T/(2n +2))' 

J 

from which 

{ 
1, 

min U 2(-F.) = 1 1 
t~..-;n+l" 1 sin2(!'tl'n/(n+1)) = cos2(v/(2n+2))' 

n even, 

n odd. 

Therefore. since II u" u;: = ~v. 

M(n; w2 ) = {:v, 2 'tl' 

?'il' cos 2 2' - n+ 

n even, 

tl odd. 
(2.13) 

We see that M(n; w?) now indeed satisfies (1.4); specifically, M{n; w2) ~ tv for all n ~ 1, and 

lim M(n; w2 ) = t'tl'. (2.14) 
n-x 

2.3. Third- and fourth-kind Chebyshev weight functions 

These-are the Jacobi weights (1.7) with a= - !. f3 =! and a= t. /3 = -!,respectively. As 
remarked in ( 1.8), it suffices to consider the first of these, 

(2.15) 

The corresponding orthogonal polynomial is 

cos(n + t)o 
1Tn( () = V,( (), V,( COS 8) = 1 

cos -zO 
(2.16) 

Here we have 

(2.17) 
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Indeed, noting that 

TnVn = HVzn + 1), 

we compute, for any p E l?n, 

W. Gautschi I Extended Lagrange interpolatioll 

f 1(Tn+l- ~Tn)P~2W3 dt = ~ f 1[(V2n+l + 1)- ~(Vzn + 1)]pV,,w3 dt 

1 it r· , . 1 = -2 Vzn~ 1- 2t V~,- 1) pV,,w3 dt 
-1 . 

An elementary calculation shows that 

j' V}(t)w3(t)dt='tT, forn~l. 
-t 

Therefore, letting p = ~ in (2.18) gives 

i t 2 i1 2 i1 2 (1 - V2n)V,, w3 dt = ~ w3 dt- V2n~ w3 dt 
-1 -1 -1 

= { ~2w3 dt - j' V2~w3 dt = 0, 
-1 -1 

25 

(2.18) 

(2.19) 

since V,,2 differs from V2n by a polynomial of degree < 2n and the last two integrals are the 
same by (2.19). Letting p = Vm, m < n, in (2.18) gives 

j' (1- V2n)Vm~w3 dt = j' Vm~w3 dt- j' V2nVmV,,w3 dt = 0, 
-1 -1 -1 

by orthogonality. Thus, the integral on the far right of (2.18), hence the one on the left, 
vanishes for every p E l?n, which proves (2.17). 

It is again a simple matter to compute 

A 3 i • ( 2i - 1 I ) 
'trn+ ,( T;) = 2( -1) SID 2n + 1 I'TT ' i = 1, 2, ~ .. , n, (2.20) 

for the zeros T; of ~. and hence to verify the interlacing property (1.5). 
The equation i-n+t(t) = 0 in trigonometric form (t =cos 0) is cos(n + l)O- t cos n8 = 0, 

which, by writing (n + 1)8 = (n + t>o +to and n(J = (n + t>8- to and using the addition 
theorem for the cosine, becomes 

tan(n + !)o tan to= t, 0 < 0 < 'TT. (2.21) 

By manipulations similar to those in Section 2.1, this can be written as 

9(1- t) 
V:Z(t)- t =cos 0. 

n -(1+t)(5-4t)' 
(2.22) 
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The rational function on the right decreases monotonically on ( -1, 1), implying that 

0 
., A 9(1-f.) 

mm v,,-(-ri) = ( A)( .. )" 
l.;;j.s;n+l 1+T1 5-4-r1 

Combining this with II V, 11;3 = 1r (cf. (2.19)), we get 

I (1 + -r.)(S- 4-T,) 
M(n; w3) = 91r 1 " . (2.23) 

--r. 
Similarly as in Section 2.1, we find that 0 < 81 < 1r/(2n + 1), hence 71 =cos 81 >cos( 1r/(2n + 

1)), and thus. again by the monotonicity of the rational function in (2.22), 

1 [ 1 +cos( 1r/(2n + 1 ))][5-4 cos( 1r/(2n + 1))] 

M(n;w3)>q'n' 1-cos(1r/(2n+1)) · 

Thus. finally, 

• I 2 1i' 
M(n, w~) > 91r cot 2(2n + l) 

Again, M(n; w3) grows to oo as n - oo, at least like O(n2). 

3. The function L(n; w) for Chebyshev weights 

3.1. First-kind Chebyshel' weight function 

We begin with the case w1(t) = (1- t 2)- 112• Since 
I n 

L(n; wd> J Etf(t)w1(t) dt, 
-1 i= I 

(2.24) 

(3.1) 

it suffices, for showing ( 1.11), th::.t the right-hand side of (3.1) is 1.101bounded as n - oo. We may 
choose in ( 1.10) 

(cf. (2.3)). Letting, as in (2.5), T; =cos 8;, one easily computes 

(-ti-1n 
r.~(T;)= . 7rn+l(T;)=i(-l);sin8;, 

SID 8; 

so that 

r.~(T;)7i-n+l(r;) = -~n. 

Furthermore, using (2.4), 

"2 ( ) - T2 T I 2 
1T11+ll- 11+1- n+JT,•-1+4Tn-1 

= H(T2,+: + 1)- (Tzn + T2) + i{Tzn-2 + l)] 

= t(T2n+2- Tz, + tT211-2- T2 + ~), 

(3.2) 

(3.3) 

{3.4) 
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hence, by orthogonality, 

( )

2 2 
l 1T11(t) ,.. 2 1 I Tn j -- 1T11 + 1(t)w1(t) dt = -8 j {-) [T211 _ 2 - 4T2 + 5]w1 dt. 

- 1 t - T; - I \ f - T; 
(3.5) 

Now for the first term on the right we use the fact that (J:.J(t -T;)}2 = 2T211 _ 2 modulo P211 _ 3, 

if n > 1, so that, again by orthogonality, 

( )
2 

1 T,, 1 2 J -- T211 _ 2w1 dt = 2 J T211 _ 2w1 dt ='IT, n > 1. 
-1 t- T; -1 

(3.6) 

The remaining part of the integral on th~ right of (3.5) can be evaluated by the n-point 
Gauss-Chebyshev quadrature rule with remainder term. Since 

_1_ f(_:s_)2( -4T2 + 5))(2n) = -22" 
(2n)! t t - T; 

and T11( Tk) = 0, k = 1, 2, ... , n, we get, upon using (3.3), 

((,~·TJ(-4T2 +S)w1 dl 
'IT 1 [ 1 12 

= ;{T;(T;)]2[ -4T2(T;) + 5)- 22"/_1 zn-t T11(t)J wl(t) dt 

'IT nz I 'ITn 
= - -- [5 - 4 cos 26.] - 4. -'IT> -- - 2'1T. 

n sin28. 1 2 sin2o. I I 

Inserting (3.6) and (3.7) into (3.5) gives 

11 (~)2 
-n-;+lwt dt > k'IT( . nza -1). 

-1 t -T; SID U; 

Therefore, by (1.10) and (3.4), 

1 II 'IT ( II 1 ) 7T ( II 1 ) 1 E. tr(t)w1 dt> 8 . .?. 2 nE~-n =-18 E~-t 
-1;= 1 4 n i=l SID u; n i= 1 SID u; 

>- ---1 >-'IT -n--'IT( 1 ) I (4 }' 
18n sin20 1 18 1r2 n ) ' 

(3.7) 

since sin 81 =sin( 'IT/2n) < '1Tj2n. This shows that the right-hand side uf (3.1), hence also the 
left-hand side, is unbounded as n .__. oo. 

3.2. Second-kind Chebyshev weight function 

Since here we know that M(n; w2 ) satisfies (1.4) (cf. (2.14)), we must necessarily have 
uniform boundedness of L(n; w2). We show, in fact, that 

L(n; w2 ) = t'IT, for all n ~ 1. (3.8) 
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Indeed. since 1r, = U,, 'iT,+ 1 = T,+ 1 (cf. (2.11), (2.12)), and the set {T;} u H) consists precisely of 
the zeros of U2,+ 1, we have 

:!n+ I I 
L(n; w2 ) = E yf2"+ 1)(w2 ) = j w2(t) dt, 

i-1 -1 

where yf2n+n(w2) are the weights in the (2n + 1}-point Gauss formula for w2 • From this, (3.8) 
follows immediately. 

3.3. 1hird- and fourth-kind Chebyshev weight functions 

As in ( 1.8), one easil} shows that 

L( n; wta./3)) = L( n; wtl:l. al). (3.9) 

It suffices therefore to assume a= - !, f3 =!.that is, 

w(t) = w3(t), w3(t) = (1-t)- 112(1 + t)112• 

We will show that /~ 1 Ei= 1/'f(t)w3(t)dt is unbounded as n -+oo, which, as in (3.1), will prove 
the same for L(n; w3). Since 1r, = V, and 7T,+ 1 = T,+>- iT, (cf. (2.16), (2.17)), we have 

. . 2 I v. )2 
/

1 ( 1T, J "2 . /1 n 1 2 W3 
-. 1Tr.+lw3 dt = (1 + t)\- (Tn+l- 2Tn) -1 - dt 

- 1 t - T; - 1 t - T; + t 

= / 1 (1 +t)(~)\T,2+ 1 - T,+ 1T, + ~T,2)w1 dt 
-1 t- T; 

= -2
1 / 1 (1 + t){ : )2

((T2n+2 + 1)- (Tzn+l + T,) 
-1 t T; 

By orthogonality, this simplifies to 

1 /' (' v,. )2 
1 J' ( v,. )2 -8 (l+t)-:- [-4T1 +5)w1 dt=-8 -:- [-4T1 +5)w3 dt. 

-1 I T; -1 t T; 

Now, with 'Y; = yJ")(w3) denoting the Christoffel numbers for then-point Gauss formula for 
w = w3, we get, noting that the integrand in the last integral is a polynomial of degree 2n- 1, 
and V,.( T k) = 0, that 

t (~)2.;r;+ 1w3 dt= hJ~r~(-r;)] 2 [5 -4-r;). 
-I t- T; 

Since furthermore, by (2.20), 

2i -1 
T;=cos 9;, 9;= 2n + 11r, 
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we obtain from (1.10) 

1 n 1 n 5- 4T· J E /f(t)w3(t) dt = -8 E 'Y; 2. • 218' 
-1 i= 1 i= 1 4 SID 2 i 

::;: .: t '}'· 5 - 4T; > .: ___!:_ 
9i=l 1 1-T; 91-T1 ' 

(3.10) 

Noting that 1- T 1 == 2 sin.z~8 1 and, as is well known, 

4'TI' I 

1'1 = 2n + 1 cos228t, 

we see that the lower bound in (3.10) is 

2'TI' 2'1T 
----:---::-:-- - - 0( n) n -+ co 
9(2n + 1) tan2~8 1 - 9(2n + 1) tan2('1T/(2(2n + 1))) - ' ' 

which proves the as~;crtion. 

4. Computational methods 

For Chebyshev weight functions w, the polynomials .fi-n+t (cf. (2.3), (2.12) and (2.17)) are 
easily computed, as they are· all orthogonal with respect to either the Chebyshev weight 
function of the first kind, as in the case of (2.12), or with respect to this same weight function 
divided by a quadratic or linear polynomial, as in the other two cases (cf., e.g., [8, §5]). In 
particular, the three-term recurrence relation for these polynomials is explicitly known. This is 
no longer true for other weight functions, where computational methods have to be employed 
to generate the desired polynomials. 

The key constituents of any computation involving orthogonal polynomials relative to a 
weight function w ~ 0 are the recursion coeffidents ak = ak(w), f3k = f3k(w) in the basic 
three-term recurrence relation satisfied by the (monic) polynomials ?Tk( ·) = ?Tk( ·; w), 

7Tk+ 1( t) = ( t- ak )7Tk( t)- f3k7Tk-t( t ), k = 0, 1, 2, ... , 

77'_ 1(t)=O, 7T0(t)=1 
(4.1) 

(cf. [7]). The Jacobi matrix J(w) of tht': weight function w is the infinite symmetric tridiagonal 
matrix 

(4.2) 

having the a's on the main diagonal, and the square roots of the {3's on the two side diagonals. 
Its le~ding principal minor matrix of order m will be denoted by 

Jm =Jm(w) =J(w)mxm· (4.3) 
In terms of the matrix J,, the zeros TIL= T:._m> of 77',( ·; w) are best computed as eigenvalues of 
J,, 

det{J,- TILl,)= 0, IL == 1, 2, ... , m, (4.4) 

using the Q~ algorithm with judiciously selected shifts. 
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The following observation, due to [9], will be the basis for our computational method. Given 
the Jacobi matrix Jm+ 1(w) of order m + 1 for the weight function w(t), one can obtain the 
Jacobi matrix of order m, Jm(( ·- T)2w), for the weight function (t- T)2w(t). T E IR, by one step 
of the QR algorithm with shift T: from the QR decomposition 

Jm+ 1(ru)-Tim+J =QR, Q orthogonal, R upper triangular, diag R~O. (4.5) 

one obtains 

(4.6) 

discarding, as indicated by the subscript, the last row and last column of the transformed 
matrix. An efficient and stable algorithm for carrying out this transformation can be found, e.g., 
in [1 0, p.56 7]. 

If we denote {:J0(w) = fw(t) dt, where the integral extends over the support of w, then we 
can also get (:J0(( • - T ) 2w) by the simple formula 

f:Jo( ( · - T ) 2 w) = /30( Cd >[ (:J1( w) + ( T - a0( ru ))2]. ( 4. 7) 

Indeed, if a 0 • (:J0 , (:J1 are the quantities appearing on the right of (4.7), we have, as is well 
known, 

Jtw(t) dt =a0fl0 , 

Expanding the square in the second formula, and using the first, we find 

Jt 2w(t) dt=2a0 ·a;;.B0 -a~(:J0 +{:J0/J 1 :-=;30(/31 +a~). 

and hence 

j(t- T)2(t){t) dt = Po(/31 +a~)- 2Ta0{:J0 + T2(:J0 = f:Jo(/3 1 +a5- 2Ta0 + T 2 ), 

which is (4.7). 
Now let w = W, and write wn in the form 

n 

Wn(t) = w(t)1T,;(t; w) = W{t) n (t- T;)2, 
i= I 

where T; = Tfn) are the zeros of 1Tn( ·; w ). Define 
k 

w( t; k) = w( () n ( t - T; ) 2, 
i= I 

so that 

w(t; 0) =w(t), 

(4.8) 

(4.9) 

Let Jm.k denote the Jacobi matrix of order m of the .. intermediate" weight function w( ·; k), 

Jm.k =Jm("w(·; k)), k =0, l, ... ,n. (4.10) 

Since 

w(t;k)=(t-Td2w(t;k-1), k=1,2, ... ,n, (4.11) 
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it is clear that In+ l,n can be obtained from J 211 + 1,0 by n successive transformations of the type 
(4.5), (4.6) with shifts Tk: 

J2n-k+ l,k = (RQ + 'Tk/2n-k+2hn-k+ I x2n-k+ I' 

(4.12) 

Upon completion of (4.12) for k = 1, 2, ... , n, we will have the desired Jacobi matrix 

ln+l,n =Jn+l(wn)· (4.13) 

The zeros 'Tk of 7T11 required in (4.12), as well as those of 7Tn+ 1, are computed as eigenvalues of 
111(w) and Jn+ 1(w11), respectively (cf. (4.4)). Also, since in our implementation we successively 
update (30 by means of (4.7), the numerator in (1.3) will simply be 

117Tn u; = f 7T;(t)w(t) dt = f "'~~<~> dt =Po. 
-1 -1 

the final (30-coefficient. 
Our experience has indicated that this procedure is quite stable, even for values of n as large 

as n = 320. The results reported in the next section are all obtained in this manner. 

5. Numerical study for Jacobi weight functions 

The reason why in Sections 2.1-2.3 the polynomials 7Tn+l for the four Chebyshev weights 
could be obtained analytically is the fact that in all these cases, 7Tk,n( ·) = 7Tk( ·; 7T;w> is one of 
the Chebyshev polynomials for each k ~ n. This is no longer true for general Jacobi weights, 
not even in the simple case a= t. (3 = ~. Hc::re, the Jacobi matrix l 11 + 1(w!112.312>), computed by 
the methods of Section 4, turns out to be a nontrivial perturbation of the Jacobi matnx 
J ( ",<1/2.1/2>) ( = J ( w< -l/2.- 1/ 2>)] showing that the 7T are no longer pure Cheb·1shev 

n+l n n+l ' k,n 
polynomials in the range k ~ n. This also suggests expanding 7T11 + 1 in Chebyshev polynomials of 
the first kind. In doing so, one finds by computation that all expansion coefficients are different 
from zero (and alternating in sign). It appears unlikely, therefore, that analytic methods will be 
successful in this case, let alone in the case of general Jacobi weight functions. We therefore 
undertake to explore the problem computationally. 

It is, o( course, intrinsically impossible to demonstrate the validity of (1.4) by (a finite number 
of) com.fiutations. Nevertheless, extensive and well-targeted computations can be carried out to 
come rtp with certain conjectures, which we now formulate. Each conjecture will be followed by 
num.;;rical (and other) evjdence supporting it. 

¢o.Uecture 5.1. For the Jacobi-Gegenbauer weight function w = w<a,a>, there holds 

iimM(n;w<a,a>)=i'IT, ifO~a<a0 , 
n-+oo 

where a 0 is some number between 1.6 and l.i. (For a= 0, this was conjectured in [2].) 

Numerical evidence. Let the minimum in the denominator of (1.3) be attained for j = j", 

(5.1) 

(5.2) 
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We say that the minimum is attained "in the middle", if 

. (Hn+2), 
J -
"- Hn+t)or~(n+3), 

11 even, 

n odd. 
(5.3) 

This t~rminology is justified by virtue of the n + 1 nodes ii being symmetric with respect to the 
origin. Note, in particular, that (5.3), for n even, implies ii. = 0. 

Now for w = w<a.a), a > -1, one easily computes 

as n -+ oo, w = w<a.a). (5.4) 

Therefore, if (5.3) holds, then the limit relation in Conjecture 5.1 is valid when restricted to 
even n (and very likely for unrestricted 11 as well). By computation we have found that for 
a = 0, 0.5, 1.0, 1.5, 1.6, the minimum (5.2) is consistently attain\!.d in the middle, whenever 
n = !, ... , 80 and ,. = 159, 160, 239, 240. 319, 320. In each case computed, the interlacing 
property (1.5) also ho1<ls. Moreover. M(240; w) and M(320; w) agree with i1r to at least 5 
decimal digits. When a= 1.7, this pattern changes significantly: the minimum is still attained in 
the middle for n == 1, ... , 117, but no longer so for n = 118, ... , 130, in which cases it is attained 
"near the ends" (jn = 7 or 8). The interlacing property, while true for 1 ~ n ~ 130, breaks down 
at n = 131. As n is further increased, the ratio M(n; w) takes on larger and larger values, for 
example, M(l60; w) = 45.964 and M(320; w) = 223.78. 

Figure 5.1 shows the behavior of M(n; w<a.a)) for 1 ~ n ~ 160; Fig. 5.1(a) is for a= 1.6, Fig. 
5.1(b) for a= 1.7 (in a logarithmic scale!). 

Thus, it appears that the proven behavior of M(n; w<a.a>) in the case a= t (cf. (2.14)) is 
typical for all 0 ~a~ 1.6, but certainly not for a= 1.7. 

CoiQecttJre 5.2. The limit relation (5.1) holds for -a0 <a~ 0, where a 0 is some number between 
0.31 and 0.3125. 

M(n) j 
•.s-r------
·~ 
~i 

~-..-~.--~ . .--..--
40 80 120 160 n 40 80 120 160 n 

(a) (b) 

Fig. 5.1. M(n; w<a.al) for l ~ n ~ 160; (a) at= 1.6; (b) at= 1.7. 

660



M(n) 

1.58 

1.56 

1.54 

1.52 

W. Gautschi I Extended Lagrange interpolation 

20 40 60 son 
(a) 

M(n) 

1.6 

1.59 

1.58 

1.56 

40 so 120 160 n 
(b) 

Fig. 5.2. M(n; w!a.a>) for (a) a= -0.31, 1.;; n.;; 80; (b) a= -0.3125, I.;; n.;; 160. 
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Numerical evidence. Verification of Conjecture 5.2 is made more difficult by the apparent fact 
that in the range under consideration, the interlacing property holds regardless of whether ( 1.4) 
is valid or not. We have found, however, that for a= -0.1, -0.2, -0.3, -0.31, the minimum 
in (5.2) is consistently attained in the middle for the same values of n ( ~ 320) as used in the 
discussion of Conjecture 5.1. This pattern changes when a= -0.3125, in which case the 
rninimum is attained in the middle for I ~ n ~ 53, but near the ends (jn = 1 or 2) for 
54 ~ n ~ 80. Along with this abrupt change in pattern goes a change in the behavior of the 
function M(n; w ); see Fig. 5.2. While the magnitude of M(n; w) remains relatively small, even 
for n as larger as 320, the sudden development of distinct "vaults" raises some legitimate 
doubts as to uniform boundedness. (For still smaller values of a > - -!, the vaults seem to 
spread out over larger n-domains, making a determination of boundedness even more problem
atic.) 

Conjecture S.3. For the Jacobi weight w = w<a,J3>, the relation (1.4) is valid if 0 ~a ~ 1.6, 
a~ f3 < {30 , where {30 is some number (depending on a) between 1.55 and 1.65. 

Numerical evidence. For each a = 0(0.5)1.5 we computed M(n; w<a,J3>) for f3 = 0(0.1)1.5 and 
n = 20, 41, 60, 79, 80 and found the results to approach a limit to within 3-4 decimal digits. For 
the same values of a, we further scrutinized the case f3 = 1.5 by computing M(n; w<a.P>) for 
n = 40, 81, 160, 241, 320. The last two values (for n = 241 and n = 320) consistently agreed to 
2-4 decimal digits. The same was observed for f3 = 1.55. In all cases, the interlacing property 
was found to hold. Vo'hen f3 = 1.6, however, M(n; w<a.J3>) takes on values of the order 103-105 

when n = 320, and the interlacing property consistently breaks down for some n ~ 320, for each 
of the above a's, except a= 1.5. In the cases a= 1.5(0.05)1.6, f3 = 1.6, we still seem to have 
convergence as n 4' co, but no longer so if f3 = 1.65 for the same three values of a. 

For a < 0 and f3 >a, the numerical results seem inconclusive, as they do not permit a 
distinction between (slow) divergence and convergence. We are not prepared to make any 
conjecture in this range. 
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6. Simple vs. extended interpolation for smooth 1\mc:tions 

Extended interpolation can be used, in practice, to check the accuracy of (simple) interpola
tion at the zeros of orthogonal polynomials. Thus, one would compare the (simple) interpolant 
Lnf with the extended interpolant Lzn+ .f (as defined in Section 1) to see how well they agree. 
This can be done at a cost of 2n + 1 function values. If we were to do the same with simple 
interpolation alone, and insisted on equal cost, we would have to compare Lnf with Ln+.f, 
since all nodes change going from n to ll + 1. This has the serious disadvantage that the 
reference interpolant we are comparing with, i.e., Ln+ 1f, is only modestly more accurate than 
the interpolant to be checked, Lnf· In extended interpolation, on the other hand, the reference 
interpolant can be expected to be substantially more accurate, at least when f is sufficiently 
smooth. 

To analyze the matter further, assume that fe C 2n+ 1[ -1, 1], and let the scaled kth 
derivative off be bounded on [ -1, 1] by Mk, 

1 
k! IIPk,II,.,~Mk• k=0,1, ... ,2n+l. (6.1) 

Then it follows from interpolation theory that 

llf-Ln+dii:;~M!+ 1 J1 v;+l(t; w)w(t) dt, 
-I 

while 

llf-L2n+dii:~Mfn+lt 7T;+1(t)7l';(t; w)w(t) dt, 
-1 

the polynomials rrn, 'll'n+ 1 and i-n+ 1 all being assumed monic. Since 

!1 2 
iTn ,..,w dt = /3o/31 · · · f3n/3n +I' 

-I 

(6.2) 

(6.3) 

where the f3's are the recursion coefficients f3k(w) for the orthogonal polynomials {1Tk( ·; w)} 
(cf. (4.1)), and similarly 

/
I A 2 2 A A A A 

'll'n+ 11Tn W dt = f3o/31 · · · Pn/3n+ 1• 
-1 

where {ik = f3k(wn) (cf. (4.13)), the ratio Pn of the upper bounds in (6.3) and (6.2) is 

a. A ..-, A 2 

_ Po/31 · · · /3n/3n+1 ( M2n+1) 
Pn- ---- • 

/3o/31 ···f3n/3n+l Mn+l 

Since Po= f ~ 1v;w dt = /30 /3 1 • • • f3n, this simplifies to 

_ ( Mzn+l ) 2 
_ P1P2 · · · Pn+l 

Pn - liJ,. M • (l}n - Q • 

n+l 1-'n+l 
(6.4) 

Although conceivably M2n+ 1 is considerably larger than Mn+I• the quantity liJ goes to zero 
rather quickJy. so that the L2-error of Lzn+d is typically much smaller than that of Ln+d· 
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Table 6.1 
The qua'ltities w,, n = 5(5)40, for Gegenbauer weights w«a,al, a= 0, 1, 2, 5, 10 

II a=O a= I a=2 a=5 a=lO 

5 1.(}92. 10- 3 9.'.123·10 " 1.075·10-.l 7.987·10- 4 2.930·10- 4 

10 1.082·10-6 1.024·10-6 1.373·10-6 9.282·10- 7 2.686·10- 7 

15 1.063·10-9 1.033·10-9 1.548·10- 9 9.113·10- 10 3.922·10- 10 

20 1.041·10- 12 t.o3o· w- 12 1.642·10- 12 9.295·10- 13 4.524·10- 13 

25 1.018·10- 15 1.021·10- 15 1.688·10- 15 9.805·10- 16 4.548·10- 16 

30 9.952 ·10- 19 1.009·10- 18 1.705 ·10- 18 1.046·10- 18 4.779 ·10- 19 

35 9.726·10- 22 9.939·10- 22 1.705·10- 21 1.111·10- 21 5.361·10- 22 

40 9.505 ·to-25 9.778·10- 25 1.693 ·10- 24 l.168·10- 24 6.136·10- 25 

Some numerical values of w,, for Gegenbauer weights w<a.al, a = 0, 1, 2, 5, 10, are shown in 
Table 6.1. 

... For w = w1 (Chebyshev weiJiht of the first kind) we know from [8] that {i, = (3 1 = !. 
{Jk = f3k = t for 2 ~ k ~ n- 1, (3, = i and {J,+ I= k. so that w, = 3. z-<ln+ 1). Similarly, for 
w = w2 , we get w 11 = z- 2". If, then, f is analytic in the disk I z I ~ r with r > 1, one finds 
pll = 0(2-2"(r- n- 2") as n--+ oo, hence pll = o(l) if r > ~-
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ON QUADRATURE CONVERGENCE OF EXTENDED 
LAGRANGE INTERPOLATION 

WALTER GAUTSCHI AND SHIKANG LI 

ABSTRACT. Quadrature convergence of the extended Lagrange interpolant 
L2n+1 f for any continuous function f is studied, where the interpolation nodes 
are the n zeros Ti of an orthogonal polynomial of degree n and the n + 1 zeros 
fj of the corresponding "induced" orthogonal polynomial of degree n + 1. It 
is found that, unlike convergence in the mean, quadrature convergence does 
hold for all four Chebyshev weight functions. This is shown by establishing 
the positivity of the underlying quadrature rule, whose weights are obtained 
explicitly. Necessary and sufficient conditions for positivity are also obtained 
in cases where the nodes Ti and fj interlace, and the conditions are checked 
numerically for the Jacobi weight function with parameters a and (3. It is con
jectured, in this case, that quadrature convergence holds for lal ::::: ~, 1!31 ::::: l 

1. INTRODUCTION 

If 1r n ( · ; w), n > 1, denotes the nth-degree orthogonal polynomial on 
[-1,1] with respect to a positive weight function w, and (Lnf)(·) the Lagrange 
interpolation polynomial of degree < n interpolating f at the zeros { Ti} of 1r n, it 
is a well-known result of Erdos and Turan [2] that Lnf converges in the mean to f 
for any continuous function f. That is, 

(1.1) lim II f- Lnf llw= 0, all f E C[-1, 1], 
n--->oo 

where II g llw = (!~ 1 g2(t)w(t)dt f 12
. Attempts have been made in the past to 

obtain an analogous result for the extended Lagrange interpolant (L2n+rf)(·) in
terpolating f at 2n + 1 points ~ the n points { Ti} and n + 1 additional points 
{ f 1} suitably chosen. A particularly interesting choice of the f1 , first suggested by 
Bellen [1], is given by the zeros of 1f n+ 1, the polynomial7f n+l ( ·) = 1r n+l ( · ; 1r; w) of 
degree n + 1 "induced by 7rn", i.e., orthogonal relative to the weight function 1r;w 
( cf. [5]). Concrete results have only been obtained in the case of Chebyshev weight 
functions. The one of the second kind, w(t) = (1- t 2 ) 112 , is particularly easy, since 
in this case {Ti} U {f1} are precisely the zeros of UnTn+l = U2n+l (cf. [1]), and 
one is led back to the Erdos-Turan result. For all other three Chebyshev weight 
functions, however, one of us [3] has shown that mean convergence cannot hold for 
all continuous functions. 

Received by the editor April 20,1995. 
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1250 WALTER GAUTSCHI AND SHIKANG LI 

It may be interesting to ask the same question for what Erdos and Thnin called 
quadrature convergence. In their scenario, that would mean 

(1.2) nl~~ 11
1 [f(t)- (Lnf)(t)]w(t)dt = 0, all f E C[-1, 1], 

which is obviously true, since the integral over Lnf is just then-point Gauss quad
rature sum relative to the weight function w. Is it true that the same holds for 
extended interpolation, 

(1.3) }~~ 11
1 [f(t)- (i2n+lf)(t)]w(t)dt = 0, all f E C[-1, 1]? 

The answer is yes, if the underlying quadrature rule has all weights positive, as 
follows from a classical result of P6lya [6]. We will show in §2 of this note that this 
is indeed the case, for all four Chebyshev weight functions, and in the process also 
determine explicitly the weights of the quadrature rules involved. Moreover, it will 
be shown in §3 that positivity also holds if the nodes Ti and fj interlace, provided 
the Gauss weights for the weight function w satisfy certain inequalities. The latter 
are checked numerically for the Jacobi weight function w(<>,/3) (t) = (1- t)<>(1 + t)f3, 
and evidence is produced suggesting that the quadrature weights in question are 
indeed positive if lad::::;!, 1!11::::; !· 

One could be tempted to take the zeros of 7rn+l as the additional nodes fj since 
interlacing is then guaranteed. However, the quadrature rule implied by (1.3) is 
then simply the (n+ 1)-point Gaussian rule for w (all nodes Ti receive weight zero), 
and we are back again to the Erdos-Thn1n result! 

2. CHEBYSHEV WEIGHT FUNCTIONS 

The weights of the interpolatory quadrature rule implied by (1.3) are given by 

(2.1) 

(2.2) 

Ai = 11 
-1 

f.-tj = 11 
-1 

i = 1,2, ... ,n; 

j = 1, 2, ... , n + 1, 

where 7rn(·) = 7rn( ·; w) and 7rn+1(·) = 7rn+1( ·; 1r;;,w). The rule has degree of exact
ness equal to 2n. For reasons indicated in the Introduction, it suffices to look at 
Chebyshev weights of the first, third, and fourth kind. 

2.1. Chebyshev weight of the first kind. Here the weight function is w1(t) = 
(1- t 2)-112 , and 7rn is the Chebyshev polynomial of the first kind, 

(2.3) 7rn(t) = Tn(t), Tn(cosB) = cosnB, 

whereas 7rn+1 is given by [3] 

(2.4) 

Theorem 2.1. For wl(t) = (1-t2)-112 , the quadrature weights Ai and PJ in (2.1), 
(2.2) are given by 

(2.5) 
7r 

,\---
•- 3n' i = 1, 2, ... , n; 

666



(2.6) 

QUADRATURE CONVERGENCE OF EXTENDED LAGRANGE INTERPOLATION 1251 

27r 1 
/-lj = 3 3 

n + 9- 8f2 
J 

j = 1, 2, ... , n + 1, 

where fj are the zeros of 7Tn+1 • All weights are positive. 

Proof It follows easily from (2.3) and (2.4) that 1r~(ri) n(-1)i- 1/sinBi and 
?Tn+l(ri) = ~ ( -1)i sinBi, where ei = (2i ~ 1)1rj2n, so that 

(2.7) 

It remains, for .>.i, to evaluate the integral 

11 Tn(t)[Tn+l(t)- ~ Tn-l(t)] () -------=---- W1 t dt. 
-1 t- Ti 

Since Ti is a zero of Tn, the integral, by orthogonality of the Tm, reduces to 

1 11 Tn(t) - - -- Tn-1(t)w1(t)dt, 
2 -1 t- Ti 

which in turn is equal to - ~· This follows by observing, if n > 1, that 

Tn(t) = 2Tn_ 1 (t) + lower-degree terms, 
t- Ti 

by orthogonality, and by using 

11 
T!(t)w1(t)dt = ~' 

-1 2 
m:::':l. 

For n = 1, the reasoning is the same except for the factor and divisor 2 in the 
last two formulae, which must be replaced by 1. The result (2.5) now follows 
immediately. 

To evaluate the constant in the denominator of (2.2), we let 

Tj = cosBj 

and obtain from 

71-n+l(cosB) = cos(n + 1)8- ~ cos(n -1)8 

by differentiation and the addition formula for the sine 

I 1 ' A A A 

(2.8) *n+l (fj) = -.-A {(n + 3) sin nBj cos Bj + (3n + 1) cos nBj sinBj}· 
2smei 

Since 

cos(n + 1)Bj - ~ cos(n- 1)Bj = 0, 

and using here the addition formula for the cosine, we find 

. eA 1 cos nej cos ej 
smn j =-

3 sinBj 

Together with (2.8), this yields after a simple computation 

( 
A ) A 1 ( , ) 1 T 2 ( A ) { n + 3 f] } 

1T n Tj 1T n+ 1 Tj = 2 n Tj -3- 1 - f] + 3n + 1 . 
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1252 WALTER GAUTSCHI AND SHIKANG LI 

It is known from [3, Eq. (2.7)] that r;(t) = 9(1-t2)/(9-8t2) fort= fJ· Therefore, 

A A I A 3(9n + 3 - 8nf]) 3 ( 3 ) 
(2.9) 7rn(7j)?rn+1(7j) = 2(9- 8f]) = 2 n + 9- 8fJ . 

For the integral in (2.2), we proceed as follows: 

11 'T (t) ['T (t) - 1. 'T (t)] 11 
(2.10) _

1 
n n+\ _ Tj 2 n- 1 w1(t)dt = 2 _

1 
T~(t)w1(t)dt = ?r. 

The first equality is a result of the orthogonality of the T m and the fact that 

Tn+l(t)- ~ Tn-1(t) ( ) 
_.:.._;c....:_~A __ _:_:.. = 2Tn t + lower-degree terms. 

t- Tj 

Combining (2.10) and (2.9) yields (2.6). 
The positivity of the quadrature weights is an immediate consequence of -1 < 

Tj < 1 for the /-lj, and trivial for the Ai· D 

Since 2::~= 1 Ai + 2:7:ti flJ = n, it follows from Theorem 2.1 that the nodes TJ 

must satisfy 

(2.11) 
n+l 1 
I: ----;3~ = 1· 
j=1 n + A 2 

9- 87j 

2.2. Chebyshev weights of the third and fourth kind. Because of the remark 
at the beginning of §3.2 below, it suffices to examine the Chebyshev weight function 
of the third kind, w 3 (t) = (1-t)-112 (1 +t) 112 , for which the relevant polynomials 
are 

(2.12) ?rn(t) = Vn(t), ( ) cos(n+~)e 
Vn cosO = 1 

cos2 e 
and [3, Eq. (2.17)] 

(2.13) 1fn+l(t) = Tn+1(t)- ~ Tn(t), 

Theorem 2.2. Forw3 (t) = (1-t)-112 (1+t) 112 , the quadrature weights Ai andf.LJ 
in (2.1), (2.2) are given by 

(2.14) 

(2.15) 

A - 2?r 1 + Ti 

'- 3 2n + 1 ' 

2n 1 + fJ 
/-lj=-3 4- 2fj ' 

n+-5 4A 
- Tj 

i = 1,2, ... ,n; 

j = 1, 2, ... , n + 1, 

where Ti and Tj are the zeros of ?rn and 1fn+1, respectively. All weights are positive. 

Proof. From (2.12) and (2.13), one obtains by an elementary computation that 
n~(Ti) = (n+ ~) (-l)i-1 / (cos~eisinei) and 1fn+lh) = ~ (-1)isin~ei, where 
ei = (2i - 1 )n 1 (2n + 1 ), so that the constant in the integral of (2.1) is 

(2.16) I ( ) A ( ) 3 2n + 1 
1r n Ti 1r n+ 1 Ti = - 4 1 + Ti . 
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The integral itself is 

In= Jl Vn(t) [Tn+l(t)- ~ Tn(t)]w3(t)dt 
-1 t- Ti 2 

= Jl Vn(t) (1 + t)[Tn+l(t)- ~ Tn(t)]wl(t)dt. 
-1 t- Ti 2 

Since, by the recurrence relation for the Tm, we have 

(1 + t)[Tn+l(t)- ~ Tn(t)] = ~ Tn+2(t) + ~ Tn+l(t)- ~ Tn-l(t), 
we can use the orthogonality of the T m with respect to w1 to simplify: 

In= --4
1 Jl Vn(t) Tn-l(t)wl(t)dt. 

-1 t- Ti 

Now Vn ( t) has leading coefficient 2n, if n ::::>: 2, so that 

In= -[1

1 
TL 1(t)wl(t)dt = -~, n ::::>: 2. 

The same result holds also for n = 1. Combining it with (2.16) yields (2.14). 
Letting as before fj = cosBj, putting t = cosB in (2.13), and differentiating with 

respect to B gives 

, I ( , ) n + 2 Sin ( n + ~) B j 3n + 2 COS ( n + ~) B j 
7rn+l Tj = -4- 1 ' + -4- 1 ' 

sin 2 Bj cos 2 BJ 

Since 
' 1 ' cos(n + 1)B·-- cosnB·- 0 J 2 J - ' 

this simplifies to 

, 1 (, . ) = Vn ( Tj) ( n + 2 1 + Tj + 3 + 2) 
7rn+l r, . 4 3 1 - f· n . 

J 

From [3, Eq. (2.22)] it is known that 

v:2( ) 9(1 - t) £ 
nt =(l+t)(5 _ 4t) ort=fj, 

so that the constant in the integral of (2.2) becomes 

4- 2fj 
3 n+ 5 ~ 4f· c rl c) ' 1fn Tj Tn+l Tj = 2 --1-+-f-:-j---"-(2.17) 

The integral, on the other hand, is 

n+l - 2 n V, (t) (t)dt /
1 'T (t) 1 'T (t) 

t , n W3 , 
-1 - Tj 

which, since 

Tn+l(t)- ~ Tn(t) ( ) _..:...__;_..:.._----:,"---..:...__...:... = Vn t + lower-degree terms, 
t- Tj 

reduces to 

lll v;(t)w3(t)dt = n, 

Together with (2.17), this yields (2.15). 
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The positivity of the weights is evident from (2.14), (2.15). D 

Analogously to (2.11) one finds, after an elementary calculation, that 

(2.18) 
n+l 

2: 
j=l 

__ 1__,+,..---fJ"-::. ,...,..-- = 1. 
4- 2f· n+ J 
5- 4fj 

3. JACOBI WEIGHT FUNCTIONS 

For more general weight functions, in particular the Jacobi weight function 
w(t) = wCa,f3)(t), where wCa,f3)(t) = (1 - t)a(1 + t)f3, we have only conjectural 
results based on numerical experimentation. We are especially interested in cases 
where the nodes { ri} and { Tj} interlace, 

(3.1) 

We shall assume in this section (in slight contrast to §2) that the polynomials ?Tn 

and 1!-n+l are monic. 

3.1. Quadrature weights for interlacing nodes. We assume, as in §2, that n 
is given and fixed. Our computations are based on the following theorem. 

Theorem 3.1. Let w be any (positive) weight function for which the nodes {ri}, 
{fj} (defined in §2) interlace. Then the quadrature weights .Xi and f..Lj in (2.1), (2.2) 
are all positive if and only if 

(3.2) ..x.r >I (II )n II~( )I , i = 1,2, ... ,n, 
1T~ Ti 1fn+l Ti 

where .Af are the Christoffel numbers of the n-point Gaussian quadrature rule for 

the weight function w, and II?Tn II~= j~ 1 1r';(t)w(t)dt. 

Proof. We first show that the interlacing property implies f..Lj > 0. It is clear from 
(3.1) that 

(3.3) 1Tn(fj)1!-~+ 1 (fj)>O, j=1,2, ... ,n+l. 

Thus the constant in the denominator of (2.2) is positive. In the integral that 
remains, the integrand is a monic polynomial of degree 2n. Its (2n)th derivative 
divided by (2n)! is therefore constant equal to 1, and the n-point Gauss formula 
with remainder term yields 

since 1T n ( Tk) = 0 for all k. Therefore, 

( ) ll1rn II~ 
3.4 f..Lj = (A ) A f ( ) l 

1Tn Tj 1Tn+l Tj 
j=1,2, ... ,n+1, 

and the positivity of the f..Lj follows from (3.3). 
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Similarly, for the Ai we have 

11 7rn(t) Hn+l(t)w(t)dt = .A?7r~h)frn+1(Ti)+ ll1rn II~, 
-1 t- Ti 

so that from (2.1) 

(3.5) II 7rn II~ 

Now, however, interlacing implies 

7r~(ri)1rn+1(Ti) < 0, 

i = 1, 2, ... , n. 

i = 1,2, ... ,n, 
so that Ai > 0 for all i if and only if (3.2) holds. D 

3.2. Numerical results for the Jacobi weight function. For w(t) = w(a,f3)(t) 
it suffices to consider (3 2 a > -1, since an interchange of a and (3 only changes 
the sign of the argument t in 1r n ( t) and fr n+ 1 ( t), hence the signs of the zeros Ti and 
Tj, and the weights Ai and /-lj in (2.1), (2.2) remain the same, as is easily seen. 

In order to check the positivity of the weights Ai and /-lj numerically, we used 
Theorem 3.1 and examined, first of all, whether interlacing of the zeros holds, and 
if so, whether or not the inequalities (3.2) are valid for all n up to some large limit 
(below we take n ::; 160). For computational purposes we found it convenient to 
write these inequalities in the form 

(3.2') 
n n+l i = 1,2, ... ,n, 
ITiri -Tkl IT h -fjl 
k=l j=l 
k,Pi 

where the (3's are the coefficients in the recurrence relation 

(3.6) 
1fv+l(t) = (t- a 17 )7rv(t)- f3v1rv-l(t), V = 0, 1, 2, ... , 

7ro(t) = 1, L1(t) = 0 

for the polynomials 7rv( ·) = 7rv( ·; w(a,/3)). To generate these coefficients, and with 
them the polynomial 7rn and its zeros Ti, we used the routines recur and gauss in 
[4]. Similarly for the polynomial1rn+l, where we used the routines indp and gauss. 
All calculations were done in double precision on a Sun SPARCstation IPX, using 
Fortran Version 2.0, for n = 1(1)160. We found that interlacing and/or positivity 
fails for a < - ~ and a > 1, and also for - ~ ::; a ::; 1 and (3 > 1. On the other 
hand, there is strong evidence for both interlacing and positivity to hold if lad ::; ~, 
1!31 ::; ~- Both may even hold for somewhat larger values of a and (3, as suggested 
in Fig. 3.1, where they seem to hold in the triangular-like region, and its reflection 
with respect to the diagonal a = (3, bounded on the left by the line a= -~, below 
by a = (3, and on top by the dashdotted line (for 1 ::; n ::; 40), the dashed line 
(for 1 ::; n ::; 80), and the solid line (for 1 ::; n ::; 160). We say "seem to hold" 
since interlacing and the inequality (3.2') were verified numerically only for discrete 
points in the (a, (3)-plane spaced apart by .1 in most of the region, and by .001 (in 
the (3-values) near the top of the region. We also verified the failure (for some n) 
of either interlacing or (3.2') for a = -~ - .01 and (3 = -~(.1)1, as well as for 
a= (3 = 1(.1)2. It seems safe, therefore, to state the following conjecture. 
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--·-· -·-·-
-·-·-·-·-·-·-:~-~---- -----.--·-· -----------

0.5 

0 

~~.5~----------~0------------~0.5~----------~ 
alplla 

FIGURE 3.1. Positivity of quadrature weights for the Jacobi weight 
function w(<>,f3) 

Conjecture 3.1. For the Jacobi weight function w(t) = w(<>,f3)(t) the quadrature 
weights Ai and J..lJ in (2.1), (2.2) are all positive if (a,/3) is in the square lal ::; ~~ 

l/31 ::; ~. 

The positivity expressed in Conjecture 3.1 has been proved in §2 at the four 
corner points of the square. 
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As is well known, the (symmetrically truncated) cardinal series of a function
f ,

(1) CN (f, h)(x) =

N∑

k=−N

f(kh) sinc

(
x − kh

h

)
,

where sinc(u) = (sinπu)/πu if u �= 0 and sinc(u) = 1 if u = 0, can be
written as

(2) CN (f, h)(x) =
h

π
sin

πx

h

N∑

k=−N

(−1)k

x − kh
f(kh).

This formula has the advantage of requiring only one value of the sine
function to be evaluated, but, as observed in [1, p. 707], the drawback of
being unstable when x is very close to one of the interpolation abscissae
kh. In that case, one of the terms in the summation of (2) is extremely large
in absolute value and “overshadows”, i.e., reduces or even eliminates the
influence of, all the other terms. As a result, the sum is obtained with low
relative accuracy, and even an accurate evaluation of the sine factor cannot
salvage the accuracy.
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We wish to point out here that the difficulty can be avoided by a simple
rearrangement of the computation. Let the integer k0 and the real number t
be such that

(3) x = (k0 + t)h, |t| ≤ 1
2 .

Assume for simplicity that |k0| ≤ N .When x is close to one of the abscissae
kh, then |t| is very small. Since

sin
πx

h
= sinπ(k0 + t) = (−1)k0 sinπt,

one obtains

CN (f, h)(x) = (−1)k0
sinπt

πt

∑

|k|≤N

(−1)kt

t + k0 − k
f(kh).

Introducing the new index of summation κ = k −k0, and separating out the
term with κ = 0 (which occurs under the assumption |k0| ≤ N ), one finds

(4) CN (f, h)(x) =
sinπt

πt

{
f(k0h) +

∑

κ

(−1)κt

t − κ
f((k0 + κ)h)

}
,

where the summation is from −N − k0 to N − k0 with κ = 0 omitted.
Provided that the factor in front of the braced expression is evaluated

accurately (and set to 1 if t = 0), the formula (4), with k0 and t as in
(3), yields accurate results even if x is very close (or equal!) to one of the
abscissae kh.

If |k0| > N , the same formula holds with the first term within braces
omitted.

To illustrate (4) numerically, we reproduce the example in [1, p. 707],
where f(x) = x exp(−x2),N = 190, and h = .1. The formula (4) in IEEE
double precision then yields (absolute) errors as shown below for the values

x |Error|
1/6 2.8 × 10−17

.5 + 10−5 0.0

.5 + 10−10 2.8 × 10−16

.5 + 10−15 5.6 × 10−17

of x indicated. This should be compared with the errors of (2) quoted in [1]
to be, respectively, 2.8 × 10−17, 4.9 × 10−6, 1.8 × 10−10, and 3.6 × 10−4.
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Dedicated to Gmdimir V. Milowmuvic.' on his 60th hirtlulay 
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I Introduction 

In Wikipcdia 1201. the term "experimental mathematics" is defined as follows: 

"Experimented mathemalic.1· is an approach lo mathematics in which 111/lllerica/ COIII

fltttation is 11sed to invesligole llllllhemalical ol~jects and identij)l properties wtd pat

terns." The ultimate goal or experimental mathematics is to encourage, and provide 

direclinn rnr. purely mathematical rcscurch. in the hope or thereby extending the 

boundaries of mathematical knowledge. II is in this spirit that we arc going to deal 

here with a rcw special topics that involve orthogonal polynomials. 

A key to experimental malhcm:itics is 111111/erica/ co11tp11tation, and that pre

supposes the cxisll!ncc or a body or reliable t:lllllpUlalional tools that allows us 

Ill generate numerically all entities or interest. In the realm or orthogonal poly

nomials , we arc in the rortunate position or having al disposal a number or 

wcll-lcstcd computational techniques ror this purpose, supported by a package 

of software in Mat lab, OPQ (Qrthogonal fulynomials and Quadrature), in the public 

duma in (http://www. cs. purdue. edu/ archi ves/2002/wxg/ codes). 

This not only enables but also encourages experimentation in this area or mathe

matics. 
The lllllthematicalo/~jects we want to investigate arc, on the one hand Jacobi 

polynomials and, on the other hand, quadrature formulae . The properties and 
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118 Waller Gautschi 

patterns 10 he iclcnlifictl arc, in lhc former case, inequalilies and respective domains 
of validity-inequalilics for wros of Jacobi polynomials anti Bernstein 's inequalily 
for Jacobi polynomials-and positivity in the Iauer casc-posilivily of New10n- Co1es 
formulae onz.eros of Jacobi polynomials and posilivily of generalized Ciauss-Radau 
and Gauss-Lohauo formulae. We will also reporl on experimenls with Gaussian 
quadrature formulae corresponding to exotic weigh! functions , for example weight 
functions exhibiting super-exponenlial decay al infinity or densely oscillatory be 
lwvior at zero. Both arc of inlercst in computing integral lransfnrms that involve 
modified Bessel funclions Kv of complex order v = a+ i/3 . 

2 Inequalities for Zeros of .Jacobi Polynomials 

We dcnole the i'.eros of the Jacobi polynomial ~~~ci.fl) (x), (X > - I, {3 > - I. by 

( I ) 

and assume !hem, as is customary, in decreasing order, 

(2) 

We write x}/x,fl} = cos eYl. /l ) for lhe largesl i'.Cro x}/x ,fJ) = .r~,~, . /J ) 
It is well known (cf., e.g., (24, Theorem R.I.2J) that for r lixed, r 2: I . there holds 

I. f)(tl ,/l ) . 
111111 ·n.r = ./a,r, 

11 - •00 
(]) 

where ja ,r is lhc rth positive zero of the Bessel function la . (The speed of conver
gence is O(n ···1) , as follows from a result of Gaueschi 1'61 ; cr. also 118, Sect. 5.61.) 
The experiments in this section have to do with the pallern of convergence. specifi
cally with monotonicity. 

2.1 Inequalities for the Largest Zero 

In l191. we considered the case r = I of the largest zero .r~,~~ . /ll of the Jacobi poly
nomial and tried to computationally determine for which values of a and f3 conver
gence in (3) is monotone increasing, 

11 (:)(rt,fl ) < (II + I) (:) (ci,fl ) 
" JJ + I , 11 = 1,2,3 , .... (4) 

'1'1 · · · · r· 1 · · () (ex.{)) - I (ex /l ) . 11s requtrcs an accurate computatton o Ill! quanttttes 11 = cos .r11 ' • 111 
particular of the largest zero x!/x.(J} of du,/l ), for arbitrary values of the parameters 
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a > - I, {3 > - I. Since x~,~~ : fJ ) are the nodes of the 11-point Gauss- Jacobi quadrature 

formula , this can be readily accomplished by the OPQ routine 

xw = gauss(n, ab ), (5) 

which in the first column of the (11 X 2)-array XW furnishes the II nodes xf.'.~: /J ) of 

the quadrature formula (though in increasing order). The second column contains 

the corresponding quadrature weights, which here can be ignored. The routine (5) 

is applicable to Gauss quadrature for any weight function whose recurrence cncf"li

cicnts cxb {Jk in the three-term recurrence relation 

rck 1 t (x) = (x - cxk)rck(x) - f3krck . t (x), k = 0, I , . .. ,11 - I, (6) 

for the respective nwnic orthogonal polynomials rck arc known (Tr- t in (6) is to be 

taken as i'.cro, aml f3o , though arbitrary, is assumed to be the i'.cro-onkr moment of 

the weight function , i.e., its integral over the interval of orthogonality). In (5) , ab 

is the (11 x 2)-array containing in the first column the coel"lieients Q(J, a 1, • • • , a 11 _ 1, 

and in till: second column the coefficients {30 ,{3 1, .•. , {3, _ 1• In the case of Jacobi 

polynomials, these of COUrSl! arl! l!Xplicitly known (cf. rx, p. 291), and arc furnished 

by the OPQ routine 

ab = r_jacobi(n , a , b), (7) 

when.: a and b play the role or thl! .Incubi parameters o: and {3 , respectively. 

Extensive experimentation with the routines (5) and (7) rcvcabl (cL also 1131 

for a small revision) that the domain ur validity 'D for (4) in the (cx ,{3) -planc is 

almost the full domain { (a,{J): a > - 1,/3 > - I}, except for a small part ncar the 

lower left-hand corner, which has to be deleted . In fact, for - I < a < I , the lower 

boundary or 'D ncar this corner is made up or two parts, the straight-line segment 

{3 = - a - I ( - I < ex < - I /2) , on which (4) actually holds for all 11 2: I , and the 

curve {3 = {3 (a) ( - I /2 < a < I) , where {3 (a) is the solution nf the equation (in {3) 

2 arccos ( 
1 

[ - ((X - {3) -1- 2 2 + _a-'-/
3
--=---

2
-] ) 

cx + f3 + 4 a + f3 + 3 (8) 
a - {3 

+ arccos - rc = 0. 
a -1- {3 -1- 2 

This equation expresses l!quality in (4) for 11 = I; sec Fig. I . The point a = {3 = 
- 1/2 must be deleted , since for this point one has equality in (4) ror alii/ 2: I. 

It is true that these arc all experimental results obtained by computation, but the 

numerical evidence in support or them ~ccms compelling. It may be interesting to 

note that the inequalities (4) can be proved to hold for all 11 surlicicntly large if 

a + {3 + I > 0, and to bl! false for all 11 sufficiently large if a -1- {3 -1- I < 0 (d. [ 13, 

Theorem in Sect. 21). 
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6 
II 

Fi~. I Conjectured domain or validity l'nr (4) 

2.2 Inequalities for ALL Zeros 

I . I . . . . "I I 1· // (n,/ll t IS natura to tnvcsttgate 111 a snn1 ar manner t1c case o o zeros x, ,,. = 
cos a,\~; - lll, r = I, 2, .. . ,11. and to sec to what extent the inequalities (4) continue 
to hold, that is, ror what values or a, f3 one has 

A(a,fJ) .-- ( I l)() (cx .fJ) 
ltl7n ,r ~ ... II ·· - ll ! l,r l r = 1,2 , ... ,11 ; II = 1 , 2 , ~ .... (9) 

While it is again true that l'or.fixed r the inequalities (9) are valid ror all11 sufficiently 
large ira + /3 + I > 0 (convergence in (3), therefore, being ultimately monotone), 
this no longer holds i r we allow r = r(11) to grow with 11 . This can bc seen already in 
the special case or ultraspherical polynomials (a = {3) and r = 11. in which case the 
inequalities are round to be raise l'or II ;::: /lo. where//() = llo(a) depends on o: . Fnr 
example, 11o(2.2009 .. . ) = 50, no( 1.0605 .. . ) = 100 (cr. [14, Sect. 21). 

Restricting II in (9) to II = I, 2, ... ' N. one linds 1141 that the domain or validity ror 
the inequalities, 'DN , depends on Nand is bounded above by an ascending. slightly 
concave, curve BN. on the left by the vertical segment at a = - I betwcc.:n BN and 
the a-axis. and below by Lhc diagonally descending line segment I< = { (a , f3) : f3 = 
- a - I , - I < a < - I /2} followed by a descending, slightly convex . curve CN (see 
Fig. 2) . 

It is suggestive to conclude from Fig. 2 that as N - • oo, the domain or validity 
'D = 'D"" or all inequalities in (9) is the horizontal strip { ((X , f3) : a > - I, lfJI ::; I /2} 
with the lower left-hand corner cut niT by the diagonal segment K (see Fig. 3). This 
in racl was reinf'orecd by the validity of' (9) f'or II :5 N = 500, and ror I 00 points 
selected randomly in the strip {(a ,{J) : - 1/2 S a ::; 20,1 {31 :S 1/2} . 
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Fig. 3 Domain or validi1y ol' (lJ ) 

2.3 Modified Inequalities for All Zeros 

121 

Bso 

8100 

6 

Ct. 

6 

In Ill . Ridwrd Askcy sugg~.:stcd lo the author to try rcplacing thc !'actor 11 in (9) by 

thc factor 11 + (ex + {3 + I )/2, which is olkn more natural. This led us to considcr 

thc modilicd inequa lities 
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(I 0) 
r = 1,2, ... , 11 ; 11 = 1,2 , :1 , .... 

Clearly, for any .fixed r, we have 

. (cx,fj) . n + (a. + {J -i- 1)/2 (a .fJ ) . 
l1111 ((n + (cx + {J + 1)/2)0,,,. = lim nO, ,,. = ./cl.r, ( II) 

11 -· .C)O n - u:o II 

so that, if ( 10) holds, convergenct.: in (II) is monotmw decrt.:asing. 
II is shown in [ 15 [ that (I 0), for lixcd r, is true for 11 sufficiently large i (' cx 2 + 

1{3 2 > I, and false for 11 sul'liciently large if a. 2 + :1{3 2 < I . Thus. if ( 10) is to hold 
l'or alln and r, then the point (cx, {J ) must lie outside the dlipsc 

or possibly on il. Note, however, that the four points with lex! = 1/3 1 = 1/2 . which 
are all on the cllipst.:, must be excluded, since for them equality holds in (I 0) fur all 
11 and r. 

Using the same so rt ware as in the preccdi ng sect ion s, we determined by cxtcnsivt.: 
numerical computation that ( I 0) holds in the !'our rectangular regions (shown in 
1-ig. 4 and extending to inlinity in both the ex- and {3- directions) with wrners at 

3.5 

3 

2.5 

2 

1.5 

0.5 

0 -1 
f{ 

-0.5 

-1 

-1 .5 
- 2 -1 0 2 3 4 

FiJ.:. 4 (Partial ) domains or validity or (Ill) 

tlw four points Ia. I= 1/31 = I /2 on £. The same inequalities also hold in the vertical 
strips on top and hollom of the ellipse (with base interval - I /2 < a. < I /2) , possibly 
with equality ncar the ellipse. Inequalities in either dirct:tion arc observed in the 
horizontal strip to the right of the ellipse and in the small remaining pieces to the 
lc f't t hcreo r. 

682



Expl:ri mcntal Matlu:matk:s Involving Onhogonal Polynomials 12:1 

With regard Ill thl.: rl.:gion inside the ellipse £, it was found that the inequalities 

( 10) hold with > n.:plac.:ed by< (or by :S in the two caps on the lcrt and right , where 

Ia! > I / 2) , and the inequality may occur in both directions in the small caps on top 

and bollolll (where 1/31 > I /2). The inequality on the upward diagonal of the square 

Ia! < I /2. 1/31 < I /2, called " remarkable" by Szegii, has been proved by the Sturm 

comparison theorem ([ 24, Sect. (d(5) 1). 

3 Bernstein's Inequality for .Jacobi Polynomials 

Originally (in ll)31. see 121), Bernstein rnrmulated his inequality for Legendre poly

nomials , 
(s in 0) l / 2 11~, (cos (:) )I < J2jit II - l 12

' () :s (:) :s 7r ' 

and shnwed that the constant jf[ir is h!.!sl possible . In the 19HOs, the inequality has 

been slightly sharpl!ned (for example, by replacing 11 on the right by 11 + I /2) and 

gencrali1.ed by various authors to ultraspherical and, eventually, In Jacobi polyno

mials . 1\ delinitive form for the latter was given by Chow, Gallcschi, and Wong in 

14 1, and reads 

( ~in J. 0 )'! I I /'). (cos J. e )fJ.i I 121/J(It.(J ) (cos 0) I < l(q -I- I) (/1 + q) N- tf ··- l / 2 

,, 2 . '2 II • - I( I /2) II ' ( 12) 

N = ll + (a -1- /3 + 1)/2, o:s e :s n, 

when.: Ia! :S 1/2, lf3 1 :S 1/2, and q = max(a ,{3) . Here also, the constant /(q + 

I )/ r( I /2) is best plJssiblc 116, Sect. 21. 
1\ Jllalter or SOille interest is to measure, and Compute, the degree Of sharpness 

of the inequality ( 12) on some domain 'D(n ,a ,{3 ,q) (where q may depend on a , 

/3. hut such that q(a ,{3 ) = q(f3 , o:) , or may he an independent parameter). Another 

objective is to ex tend the im:quality to rnore general regions ::.Rs = { (ex , f3) : - I /2 :S 
o: ::. s , - 1/2 :S {3 :S s} in the (cx,f3)-planc, tin: original region being ~n 1 ; 2 . 

3. I Shaqmess of Bernstein's Inequality 

Upon di viding both sides or ( 12) hy the expression on the ri ght , and letting X = eos e' 
til l: inequality ( 12) may he given the l'nrm 

j;, (x; a ,{3 q) :S I , - I :S x :S I . ( ll) 

l·ollnwing 1161. given a domain 'D(n,a ,{J ,q), we define the " local magnitude" of 

j;, by 
p, = p, ((X I f3 ' fj ) = II ./;, ( . ; 0: ' !3 ' lf) II ""' ( 14) 
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wlwn.: tlu.: infinity nmm is laken over the interval !- I, I ]; the globally largest and 
smallest magnilltde are then deli ned, respl!ctivcly, hy 

( 15) 

If, on the one hand, p.j~1 :::; I, i.e., the inequality (I:\) holds on 'D, the quantities in 
( 15) may be in!Crprc!Cd as rollnws: on a scale !'rom() to I , the hest (11/(/WOJ'.I'/ degree 
r4slwrpne.1·s 0 11 'D is p.j~; and P·J) · If, un the other hand , P·l) > l , i .e., the inl!quality 
docs nol hold on 'D, we can "correct" it hy dividing j;, by P·b and hy considering 
the modUied inequality on 'D, 

,f,lr; a, {3 , q) :::; I , - I :::; x :::; I , ( 16) 

where 

./~lr; a., {3 , q) = ~ j;, (x; , ex, {3, q) . 
P·v 

( 17) 

By construction , the best degree of sharpness on 'D uf the modified inequality is 
P·J~ = I. and the worst degree or sharpness 

(I K) 

To compute the quantities in ( 15), nne takes the maximum and minimum (if nee
essay) on a sul'ficicnLiy fine grid of 'D. This then leaves us with the problem or 
computing the infinity norm in ( 14). In the case of Bernstein's inequality this can 
conveniently he done hy computing local ex trcnw of' j;,(x;a ,{3 ,q) in - I < .r < I 
and co111paring them with the hnuntlury values at x = ~1: I. The two routines in (7) 
and (5) arc again heavily engaged in this endeavor, together with a routine !'or com
ruting the relative extrema; cf. Sects. 4 and 5 or 1161 and the Appendix therein !'or a 
Mat lab script. Because of' the rc!lcction formula for Jacobi polynomials, it surticcs 
to consider {3 2: a ;::: - I / 2, the last inequality hy virtue of' the fact that ll.f;, U,., = oo 

if o: < - I /2. 

Tahlc I Degree or sharpness or llcrnstein' s inequality on :.n 1n 

q - · 
q l q -· I 0.5 0 - 0.5 

fl ·J~ I .000 1.000 O,l)l)l) 1.000 1 . 02~ 1.000 
p.;. (),l)l)ll o.(J9X 0.81:1 O.lJ()l) ().97) 0.917 

On lhc original domain :Rt/2 = {(a,f3) : Ia! :::; 1/2,1 {3 1 S 1/2}, taking 'D = 
{!5 10 20 50 IOOJ, :n 1n, q}, one obtains the results in Table I for st:lct:tcd values of' 
q. E~v idently , the choices q I· = max(a, /3) , q- = lllin(a, {3) are by rar the best wi th 
regard Lo ovt:rall sharpness. 
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3.2 Bernstein's Inequality on 1.-<Lrger Domains 

We now proceed to the larger domains 

:1.!., = l( a , t3) : - I /2 5. a 5. s, - I /2 5. t3 5. s}, .1' > I /2, 

and let 'D., = {[5 I 0 20 50 I 00], ~R .,., q}. Ex peri mentation (with q = q 1 ) revealed that 

p.jj = p.1; for all s > I /2, 
' . 1/ 2 

( ll)) 

i.e. , the minimum of p, on 'D., is always attained in 'D 112. Also, the maximum of p, 

un 'D., is found to be always attained in the upper right-hand corner of~).,. , 

p.1j = maxp,(a,[J ,q+ ) = maxp,(s,s ,s) . 
·' 'D.. II 

(20) 

Using this properly. we were abk to compute for many values of s both P·b and .. 
{>.j· , I'm the modilied (in tlw sense ol'(l6) and (17)) Bernstein 's inequality. An ex-

tract of the result s is given in Table 2. As can he seen from '11thle 2, the degrees of 

Tahlc 2 Dcgn.:e of sharpness on 'L), or the modi lied Hemstein's inequality 

J p.}) p:;, 
I 1.039 0.%1 
2 1.120 O.H91 
5 1.495 (),()(17 

10 :1 .047 0.:127 

sharpness on 'Ds nl' the modi lied Bernstein's inequality, even for .1' as large as I 0. are 

well within one decimal order of magnitude. Also remarkable is the experimentally 

observed fact that exactly the same results are obtained if we let 11 go frnm 5 up to 

200, so that the results in Table 2 are likely to be valid for all11 2: 5 . 

4 Quadrature Formulae 

Our interest in this section is in the positivity of quadrature formulae . Classical 

Newton- Cotes formulae of moderate to large order are notorious not unly for their 

lack of positivity, hut also for their wildly oscillating weights. Newton-Cotes for

mulae with nonunil'ormly distributed nodes, however, may well exhibit positivity. 

A well-known example is Fejer's quadrature formula using Chebyshev nodes of 

the lirst and seeond kind . A Newton-Cotes formula using both kinds of nodes si

multaneously. even in a more gem:ral setting, has been proposed hy Milnvanovic 

and conjectured to be positive . This will he further elaborated on in Sect. 4. 1. In 
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Sct:ts. 4.2-4.4. we lnnk at gcm.:ralized Gauss-Radau and Gauss-Lobatto formulae, 
f'or which positivity has been conjectured by us in the past , and has been proved 
very recently by .loulak and Bcckermann. 

4.1 Positivity of Weighted Newton-Cotes Formulae 

Let 111 he a (positive) weight function on the interval / , and X, a set of n distint:t 
points Xk in / . A weighted Newton-Cotes .Ji)/'1111/la is an interpolatory quadrature 
formula or the form 

.lw(x)f(x)dx = _2,::, wk.f'(xk), I E 11'\, I · 

·'k ~;;X, 

(2 1) 

Definition We write (w,X,) E NC 1 il' and only if in (21) there holds 

ll 'k > 0, all k. (22) 

The quadrature rule (21) is then called a JI()Sitil•e weighted Newton- Cotes formula . 

A well-known example is Fejer's quadrature rule 151. for whit:h w(.r) = I on 
I = ]- I , 1]. and X11 = x;:· or X,~1 • the zeros of the Chebyshev polynomial 7;, or the 
first kind resp. U11 of' the second kind. In particular, there lwlds 

(2~) 

Noting that Lh. 11 - 1 = 27;,u, _ 1, we can write 

(24) 

This is the motivation for the following conjecture. 

Conjecture of Milovanovic (1231. 122, Sect. 5.1.21) There holds 

(w,X2, ·· 1) E NC 1 , (25) 

where 
w(x) = (1 - .r) 1x·t· l/2(1 + x)fh i/Z onj - 1, 1], (2()) 

and 
x - x''(l~ , fl) u x/'(l! l l , /3 · 1 1) 

211 - l - II 11 - l ' (27) 

Here, a and {3 arc arbitrary real numbers greater than - I, and X,~'(a..Jll the 1.eros or 

I J I · I . I ( rt /J) I'( a ·I· I /3 + t ) t 1c acu )I po ynomta /~, ' , and X
11

_ 1 • the 1.cros of the Jacobi polynomial 
p(IX·I 1./J I· I) 

Il - l 

Note that (23), (24) are the special case a = f3 = - 1/2 of the conjecture. 
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Testing the conjecture requires a reliable and stable procedure for generating the 

weighted Newton-Cotes formula (21 ), that is, tht: wt:igllls ~~'kt given 11 and the nodes 

x~ - X, . Clearly. 

ll'k = fr1~"\r)w(x)dx , k = 1,2, . .. ,,, 
./, 

(2X) 

where ei") are the elementary Lagrange interpolation polynomials belonging In the 

nodes Xkt 

1/(ll)( ·) = n" x - xr 
<k A . 

1- 1 Xk - xr 
f/k 

(29) 

1\s alrt:ad y suggested in 171. the integral in (2X) can he co1nputt:d by l " ·~· 1 J- point 

Gaussian quadrature relative to the wt:ighl function II', and the Lagrange polynomi 

als ri") by lllt:ans of the barycentric formula 

1 (11 )/( . . ) 
1(11)(·) - Ak .1 -.lk 

tk .I - ( ) ' 

"'" A."/ (r - r) .L.(·;o I I · · ( 

Here. A.1"1 arc au xi liary quantities that are rt:adily calculated hy the recursive scheme 

(wriucn in pseudoMatlab) 

1 (I) _ I . 
/1.1 - ' 
fork = 2: n 

for l = 1 : k - 1 

1 (k} - 1 (k ·· l )/( . - . )· 
r..r - r..t .l r ·'k , 

end 

dk) nk - '1/(1· ~· )· 
r..k = h I · k - · I ' 

end 

In contrast tol7 , Sect. 2. II. where A.?1 was computed by a stun, causing potentially 

severe cancdlat ion problems, here, followin g 13 . Sect. 31, we com putt: it nwre stably 

hy a product. This is implemented in the OPQ routine NewtCotes. m, which calls 

on the routine gauss . m to Ju the intcgrution . 

We tcst~.:d Milovanovi~'s conjecture fm a. = - .75 : .25 : 5, {3 = a.: .25 : 5, and 

11 == 2: 100 (hy sy mmetry, it sul'lices to take {3 2: a.). We al so examint:d. in part 

alrt:ady in 171 , the ranges ex = - .9: . I: 1.0, {3 = a.: . I : 1.0, and 11 = 2: 100. In all 

these tests, the conjt:cturt: without exct:ptinn, was confirmed . 

4.2 Positivit.y f~/' Generalized Gauss-Radtm Formulae 

Gt:neralizcd Gauss-Radau formulae arc quadrature formulae or Gauss type, i.e. , or 

maximum algebraic degree of exactness, that invol ve a boundary point of arbitrary 
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multiplicity r ? 2 (those with r = I being the ordinary Gauss- Radau formulaL:) . 
Tht.!y are thus of the form 

{ " f(.r)dJ...(x) =
1

IJ...<\P)f(Pl(a) + 'f;..[,1f(t{,\ / E IP':." 1 1r . (31) 
, a Jl '"'o " '"· ' 

where dJ... is a positive measure whose support may be bounded or unbounded . (In 
the former case, the upper limit or thL: integral could be SO Ill!.! /J with(/ < /J < oo. ) Tht.: 
interior nodes r~1 and weights J...~1 arc easily obtained (and computL:d by our routine 
gauss. m) from the 11-point Gaussian quadrature formula relative to the modilicd 
measure 

dA.Irl(.r) = (x - a)~'dJ...(.r). 0 2) 

The major dil'liculty in computing generaliwd Gauss-Radau formulae li~.:s in the 

boundary weights J...(\")· and has been addressed only recently in lt.>l (sGc also ]171 
for additional dil'ficulties when// is very large, of the or<kr or magnitude 11 ~ 400). 
Tht.! m~.:thod proposed in f9], ami implemented in the OPQ routine gradau. m, 
is based on the so lution of an (r x r) upper triangular system of linear algebraic 
equations, 

Ax = /J , 

where 1 he matri x A is expressible in a somewhat com pi icated man ncr in terms or 1 he 
monic nth-degree polynomial Tr11 ,,. orthogonal with respect to the measure (32). hut 
I he diagonal dements. and also the element in position (r - I , r ). an.: mon.: simply 
I!Xpn.:ssibk as 

II 

a;; = (i - I )!n,;,,.(a) , i = I ,2, ... , r: a,. .. 1,,. = - 2a,.,. I, (r{~ - (I) 1 (34) 

""" ' 
The vector .r = [.\"j [ ol' unknowns in (:B), and till! right -hand vector IJ = [/J;j. an.: 
g iven by 

. - ,(j- 1) 
.\j - /\.() , /J; = j '"" (x - a)H n,;,,.(x)dA.(x) , 

• II 

i , j = 1,2 , ... ,r. (35) 

With regard to the positivity ol' (31 ), it is clear that all interior weights J...[,1 an.: 
positive by definition . When r = 2, the same is true for the boundary weights. 
This follows from the positivity of a;; and /J; , ami from X:! = h:./a:.:. > 0, .r 1 = 
(/11 - a, 2.r:.)ja,, > 0, since a ,:, < 0 by (34). In tht: general case r > 2, howevt:r. 
positivity ol' x was lt:l't open in ]9], but was conjectured to hold, bast:d on ex
ll.:nsive computation. Today we know that positivity in l'act is a provt:n theorem; 
cf'. Sec!. 4.4 . 
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4.3 Positivity of Generalized Gauss-Lobatto Formulae 

Generalized Gauss- Lohatto formulae are similar lo generalized Gauss- Radau for

mulae. except that the interval of integration is necessarily bounded, and there arc 

boundary points of multiplicity r 2': 2 at either end of the interval. Tints, 

[f(x)tl?..(x) ='I Ac\PlflPl(a) + I .:l.{,'}'(r{; ) 
. " p d l v,,, , 

,. · I 

-1- l:,( - l)flA_,~~)tflt> l( !J), ./' E 11~2, - t ·l2 r· 
(36) 

j ) ' () 

The signs ( - I )fl in the last sumnwtion are included in anticipation or the fact that 

Ac\P l = ?..,~~:\ in case of symmetry (i.e., u -1- /; = 0 and dA.( - x) = d?..(x} ). 

h)J' computational methods, which are similar to those for generalized Gauss

Radau formulae indicated in Sect. 4.2, we refer to 191 and 1171. They are implc

nlctllcd in the OPQ routine globa t to. m. 

Positivity of (36) is here understood to mean 

~ lP l () 1 li> l .... () - () I · I · /'() > 1 All I t ? 1 p - > > • • • 1 I - 1 A.{,·> O, V = l ,2, ... , 11 . (37) 

The interior weights?..{;, for reasons similar as in Sect. 4.21 arc all positive, and so 

are Ac;t>l 1 ?..,~~·ll if r = 2. For general r > 2, positivity nl' (3o) has been conjectured 

in 191. again on the basis of extensive computation. In the meantime, it has been 

proven: cr. Se<.:t. 4.4 . 

4.4 Positivity of Most Gelleral Gauss-Radau!Lobatto Formulae 

The question of positivity regarding generalized Gauss-Radau and Gauss-Lobauo 

formulae has been settled very n.:<.:ently by 1-1 • .loulak and 13. 13eckermann, even for 

more gen~.:ral formulae or the form 

[I(x)dft. (.r) = 
1

~ Ac~t> ) flP l( a) +I Avf(r,.) 
. " fl •= O I' "'' I 

.1·- t 
+ l:,( - l)a?..,~7V < o l( !;)1 ./ E un2, - t ~-~· 1.~1 

(3~) 

(J ··" () 

where possibly h :::: oo if .1· = ()or a = - oo if r = 0. In fact, we have the following 

th~.:orem . 
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Theorem (12 1 I) fiJI' any positive ciA.. and r 2': 0, s :?: 0, there holds 

Av > 0 ( I :S V :S II); 

A.(\p) > 0 (0 ~ p ~ r - 1) ; A1~~~ > 0 (0 ~ cr ~ s - 1). 
(:'9) 

The prool' nl' the theorem given in 12 11 is based on the l'act that certain c..:lc..:mc..:ntary 
Hermite interpolation polynomials associated with the points a, Tv, I> nl' multiplici
ties r, 2,.1·. respectively, arc nonnegative on (o ,b). 

5 Gauss Quadrature with Exotic Weight Functions 

In certain intc..:graliransl'orms involving mmlilic..:d 13c..:ssd l'unc..: tions or complex urdc..:r. 
the integrand exhibits behavior at infinity, and al zero, that is hi ghl y unusual. To 
propc..:rl y account I'm this behavior, it is necessary to dc..:vc..:lop Gaussian quadrature 
l'ormulac..: having weight !'unctions that mimic this bc..:havior. This in lllrn requires 
generating the necessary onhogonal polynomials, specifically the. C\H.:I'Iicicnls in 
their three-term recurrence 1'Ciation. The behavioral inlinily is characterized by 
super-exponential decay, lhe one al 1.ero by dense oscillation. In the l'ormer case , 
w~.: use a di scr~.:tiwd Stic..:ltj~.:s proc~.:durc tn gen~.:ralc the necessary recurrence cod
licienls, in the Iauer case the classical Chebyshev algorithm, cxc..:culc..:d in symbolic 
variable-precision computation to cou11leractthc..: undc..:rlying severe ill -conditioning. 

5.1 Weight Function Decaying Super-Exponentially at ll~finity 

The real and imagi nary pans ol' the Macdonald !'unction (or modified Bessel !'unc 
ti on) K,.(s ) with complex order v = o: + i/3 and s > 0 arc knownlo he rcprcsc..:ntablc 
by intcgraltransl'orms. 

ReKcH ifJ(s) = r ' e·-swsh.rcosho:xcos{3xdx, ./o 
r m KIX·I i/J (s) = ( "' e --swsh.r sinh cxxsin /hdx . ./o 

( 40) 

In both, the integrand decays cxlremdy rapidly al infinity, owing to the !'actor coshx 
in the exponent. The essence or this behavior is captured by the weight !'unction 

(4 1) 

not depending on s. It becomes relevant aflcr a suitable L:hangc or variables (d. Ill, 
Secl. ll) . 
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The recurrent.:e cm:flicients for the polynomials orthogonal with respect to the 
weight funet inn ( 41) can be generated by a mult iplc-component discrctizat ion 

procedure, decomposing the interval !O,ooJ into four subintervals and using h.:jer 

quadrature rules as a general-purpose device nl' discretization (d.lll, Sect. 2]). The 

rek:vant OPQ routine is mcdis . m, and the lirst I 00 rccurrcm:c cocflicients gener
ated hy it arc listed in the lile abmacdonald. It can he downloaded from the web 
site cited above in Sect. I hy clicking on !"!CD. The Mallah commands 

load -ascii abmacdonald; 
xw=gauss(n,abmacdonald); 

then produce the 11-point Gauss quadrature rule relative to the weight function (41 ), 

with the lirst column of xw containing the nodes Xv and the second column the 
weights ll'v. 

To give an example. consider the integral 

! . ..., cxp( - ex) 
I = dx 

.o I +x 
(42) 

and its approximation 1,~; = I.':. 1 w 11 /(1 -l-x 11 ) by the 11-point Gaussian quadrature 
rule . In Table~ . we compare it with the 11-point Gauss-Laguerre approximation 1/,· 
or 

I = ~.: ·· 1 c- 1dt . !"" I 

. o (l + ln(l + t))(l + t) 

As can he seen. our special Gauss quadrature rule, already for 11 = I;\ yields 14 

cmrcct decimal places. whereas Gauss- Laguerre manages to produce only four. 

Tahlc 3 Gauss and Gauss- ! agucrrc quadralun.: or I he integral (42) 

II I,' f,· 

I 0.15171K77142494 O.IOK6:17 .. . 
2 0.159:1M6:1K44Ci:14 0.1404:16 ... 
3 0.159H7CJ02Ci6750:1 0.15146K ... 
4 0. 1599 I 604K62904 0.1)51)00 . . . 

12 0. 1599 19K!DK<>:1K4 0.159KCJK ... 
1:1 0. 159') 19KK38<):1lJ I 0.15<)KK6 ... 
14 0.1599 19KK:1K<)Jl) I 0. 15<)!\<)7 .. . 

5.2 Weight Functions Densely Oscillating at Zero 

Integral transforms in which Kv , v = a. + i{J, a~.:ts as a kcrnd, calll.!d Kontorovich
Lehetlev transforms (when ex = 0 or 1/2), yield peculiar behavior of the integrand 

691



Wall..:r Gauts~:hi 

at zero, caused by the behavior or Kv(x) near x = 0. If ex = 0, for example. the 
transfmm is 

F(/3) = / "' Kifl(x)f(x)dx , 
./o 

which is real-valued for real-valued f. The behavior or Ki/l near zero is (cr. 112, 
Sect. 21) 

13
. n( {

3
) sin({3In(2/x) -1- y) , y = argr(I + i/3), .rIo, 

Slllh 7t 

showing that Kifl(x) is densely oscillating near x = 0. This prompted us in 1121 to 

consider Gauss quadrature on [0, Ij with the nonnegative weight function 

~~'fJ(x) = l -1- sin(f3In(I/x) + y) , O < x :S I . 

But how do we lind the necessary orthogonal polynomials? 
The only way we knew how to do this is by applying the classical Chebyshev al

gorithm that allows us to generate.the required re<.:urrence coel'fi<.:ients din.:c tly from 
the moments or the weight function . The problem is that this approach via mot\lents 
is quite ill-conditioned. We therefore used a symbolic version schebyshev . m or 
the OPQ routine chebyshev. m to generate the recurrence coefficients in variable
precision arithmetic (cl'. 112, Example 3.51). This symholi<.: routine can also he 
downloaded from the web site mentioned in Sect. I, by clicking on SO PQ 1• 

For illustration, we show here the sirnrler (hut not less ehallenging!) example of 
the weight fun<.:tion 

w(.r) = I -1- sin( I / .r) on [0, I], (4~) 

taken from II 0, Sect. 2.11. Here the moments lllk = .J;i .\.k 111(x)d.r arc computed by 

I o 
/Ilk = k -1- 1 -1- lllk , k = 0 , 1,2 , ... , (44) 

where 111~ arc the "core moments" 111~ = J;i .\.k sin( I /x)d.r that can be generated re
cursively by 

~
'"'' sin/ 

111°t = -dt = I - Si(l) , 
. I I 

111g = -~- dt = sin I - Ci( I) , ~
'"" sin/ 

. I t-

and 

111~ . 1 1 = k -l- 2 [k -:- l (cos I - 111~.- t ) + sinl] , k = 0, 1, 2, .. . . 

1 SOPQ is a symlmli~: cmnll..:rparl to the 11a1:kage OPQ. hut far l'nun cumplctc. 1\ wonhwhilc pro.icct 
for anyone familiar with the symbolic toolbox of Matlah wnulc.J he to tran scribe the entire package 
OPQ intu symholi~.: Matlah. 
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'1(1 give a llllllll:rical example, suppose we want to compute the integral 

i
· l 

I = f (.r)s in(l/.r)d.r, f(x) = tan((~rr - o)x) , . () " 
(45) 

Tahlc 4 Num..:ri\:al rcsulls l'nr lhc inlcgral (45) I'm 8 0. 1 

II 1, 
4 1.27 1 (>6550:l61 2.'i 
H 1.2!J57:llll)!J42:i60 

12 I .2% 17')001)%!!6 

:12 1.2%1llf> 170!!6:16 
](i 1.2% 18(1 170!!6:16 

Wc write this in the l'orm 

l· t i·l I = .f'(.r) l l -1- sin ( I /x) jdx -- .f'(x)tlx, 
. () . 0 

and compute the lirst integral by 1he special Gauss formula !'or the weight !'unction 
(4 :\) , and the second integra l by Gauss- Legendre quadra1ure on (0, lj . The results 1, 
!'or i5 = 0.1, using 11 -point Gauss l'ormulae, are shown in Table 4. 

Even the speci al Gauss formula here has some trouble converging, the reason 
being a pole close lo the upper limit or I he integral when (j is small. 

Other densely oscillating integrals , and also integrals or rapidly cb.:aying func-
tions like C' 1/.1 on IO, I j, or exp( - I /.r - .r) on IO, ooj. are treated in 1'1 01 similarly and 
with si milar success . 
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