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Abstract. A suite of Matlab programs has been developed as part of the book
“Orthogonal Polynomials: Computation and Approximation” expected to be pub-
lished in 2004. The package contains routines for generating orthogonal polyno-
mials as well as routines dealing with applications. In this paper, a brief review
is given of the first part of the package, dealing with procedures for generating
the three-term recurrence relation for orthogonal polynomials and more general
recurrence relations for Sobolev orthogonal polynomials. Moment-based methods
and discretization methods, and their implementation in Matlab, are among the
principal topics discussed.
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1. Introduction

The analytic theory of orthogonal polynomials is well documented in a number
of treatises; for classical orthogonal polynomials on the real line as well as on
the circle, see [25], for those on the real line also [24]. General orthogonal
polynomials are dealt with in [5] and more recently in [22], especially with
regard to nth-root asymptotics. The text [3] is rooted in continued fraction
theory and recurrence relations.

While the theory of orthogonal polynomials is well developed, the practice of
orthogonal polynomials — constructive, computational, and software aspects
— is still in an early stage of development. An effort in this direction is being
made by the author’s forthcoming book [13] and the accompanying package
OPQ: a Matlab Suite of Programs for Generating Orthogonal Polynomials and

Related Quadrature Rules, which can be found at the URL

http://www.cs.purdue.edu/archives/2002/wxg/codes.

The purpose of the work in [13] is twofold: (i) to present various procedures for
generating the coefficients of the recurrence relations satisfied by orthogonal
polynomials on the real line and by Sobolev orthogonal polynomials; and (ii) to
discuss selected applications of these recurrence relations, including numerical
quadrature, least squares and moment-preserving spline approximation, and
the summation of slowly convergent series. All is to be implemented in the
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form of Matlab scripts. In the present article we wish to give a brief account
of the first part of [13]: the generation of recurrence coefficients for orthogonal
polynomials and related Matlab programs. All Matlab routines mentioned in
this paper, and many others, are downloadable individually from the above
Web site.

2. Orthogonal polynomials

We begin with some basic facts about orthogonal polynomials on the real line
and introduce appropriate notation as we go along. Suppose dλ is a positive
measure supported on an interval (or a set of disjoint intervals) on the real
line such that all moments µr =

∫

R
trdλ(t) exist and are finite. Then the inner

product

(p, q)dλ =
∫

R

p(t)q(t)dλ(t) (1)

is well defined for any polynomials p, q and gives rise to a unique system
πr(t) = tr + · · · , r = 0, 1, 2, . . . , of monic orthogonal polynomials

πk( · ) = πk( · ; dλ) : (πk, π`)dλ











= 0, k 6= `,

> 0, k = `.
(2)

It is well known that they satisfy a three-term recurrence relation

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1,
(3)

where αk = αk(dλ) and βk = βk(dλ) are real resp. positive constants which de-
pend on the measure dλ. For convenience, we define β0 =

∫

R
dλ(t). Associated

with the recurrence relation (3) is the Jacobi matrix

J(dλ) =



















α0

√
β1 0√

β1 α1

√
β2√

β2 α2
. . .

. . .
. . .

0



















, (4)

a symmetric tridiagonal matrix of infinite order. Its leading principal minor
matrix of order n will be denoted by

Jn(dλ) = J(dλ)[1:n,1:n]. (5)

As already indicated in §1, the basic problem is this: for a given measure

dλ and for given integer n ≥ 1, generate the first n coefficients αk(dλ), k =
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0, 1, 2, . . . , n− 1, and the first n coefficients βk(dλ), k = 0, 1, 2, . . . , n− 1, that
is, the Jacobi matrix Jn(dλ) of order n and β0.

2.1. Recurrence coefficients. Frequently, the measure dλ is absolutely continu-
ous, i.e., representable in the form

dλ(t) = w(t)dt, (6)

where w is a nonnegative function, called weight function, integrable on the
support of dλ and not identically zero. Among the best-known weight functions
are the classical weight functions, the more important of which are listed in
Table 2.1.

name w(t) supported on
Jacobi (1 − t)α(1 + t)β, α > −1, β > −1 [−1, 1]
Laguerre tαe−t, α > −1 [0,∞]

Hermite |t|2αe−t2 , 2α > −1 [−∞,∞]

Table 2.1. Classical weight functions

For these, the recurrence coefficients are explicitly known. In Matlab, the first
N recurrence coefficients are always stored in an N × 2 array ab as shown in
Fig. 2.1.

α0 β0

α1 β1
...

...
αN−1 βN−1

Figure 2.1. The array ab of recurrence coefficients

The Matlab command to compute them has the syntax ab=r name(parameters),
where name identifies the weight function, and parameters is a list of parame-
ters including N . Thus, for example, in the case of the Jacobi weight function,
the Matlab command is

ab=r jacobi(N,a,b).

Here, a, b are the Jacobi parameters (denoted by α and β in Table 2.1). If
α = β, it suffices to write ab=r jacobi(N,a), and if α = β = 0, to write
ab=r jacobi(N).

Demo#1. The first ten recurrence coefficients for the Jacobi polynomials with
parameters α = −1

2
, β = 3

2
.

The Matlab command, followed by the output, is shown in the box below.
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>> ab=r jacobi(10,-.5,1.5)

ab =

6.666666666666666e-01 4.712388980384690e+00

1.333333333333333e-01 1.388888888888889e-01

5.714285714285714e-02 2.100000000000000e-01

3.174603174603174e-02 2.295918367346939e-01

2.020202020202020e-02 2.376543209876543e-01

1.398601398601399e-02 2.417355371900826e-01

1.025641025641026e-02 2.440828402366864e-01

7.843137254901961e-03 2.455555555555556e-01

6.191950464396285e-03 2.465397923875433e-01

5.012531328320802e-03 2.472299168975069e-01

Classical weight functions are not the only ones for which the recurrence co-
efficients are explicitly known. For example, the logistic weight function

w(t) =
e−t

(1 + e−t)2
, t ∈ R,

of interest in statistics, has all coefficients αk = 0 (by symmetry) and β0 = 1,
βk = k4π2/(4k2 − 1), k ≥ 1 ([3, Eq. (8.7) where λ = 0, x = t/π]). The
corresponding Matlab routine is r logistic.m. Other examples are measures
occurring in the diatomic linear chain model, which are supported on two
disjoint intervals; cf. [10].

Many nonclassical weight functions and measures, however, are such that their
recurrence relations are not explicitly known. In these cases, numerical tech-
niques must be used, some of which are to be described in the next four
subsections.

2.2. Modified Chebyshev algorithm. In principle, the desired recurrence coeffi-
cients can be computed from well-known formulae expressing them in terms
of Hankel-type determinants involving the moments µr of the given measure
dλ. The problems with this are: excessive complexity and, more seriously, ex-
treme numerical instability. To avoid these problems, one can attempt to use
modified moments

mr =
∫

R

pr(t)dλ(t), r = 0, 1, 2, . . . , (7)

where pr are monic polynomials of degree r “close” in some sense to the desired
polynomials πr. In particular, they are assumed to also satisfy a three-term
recurrence relation

pk+1(t) = (t − ak)pk(t) − bkpk−1(t), k = 0, 1, 2, . . . ,

p−1(t) = 0, p0(t) = 1,
(8)
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but this time with known coefficients ak ∈ R, bk ≥ 0. (We allow for zero
coefficients bk, since ak = bk = 0 yields the ordinary moments.) There is then
a unique map

R
2n 7→ R

2n : [mk]
2n−1
k=0 7→ [αk, βk]

n−1
k=0 (9)

that takes the first 2n modified moments into the desired n recurrence coef-
ficients αk and βk. An algorithm implementing this map has been developed
by Sack and Donovan [21], and in more definitive form, by Wheeler [26]. In
the case of ordinary moments (ak = bk = 0), it reduces to an algorithm alrady
developed (for discrete measures) by Chebyshev [2]. We called it, therefore,
the Modified Chebyshev Algorithm. It is implemented in the Matlab procedure

ab=chebyshev(N,mom,abm),

where N is the number n in (9), mom the 1 × 2N array of modified moments,
and abm the (2N −1)×2 array of the first 2N −1 recurrence coefficients ak, bk

in (8). If abm is omitted from the list of input parameters, the routine assumes
abm=zeros(2*N-1,2), that is, ordinary moments.

In view of the highly ill-conditioned nature of the map (9) when mr = µr

are ordinary moments, the conditioning of the modified moment map is an
important question that has been studied already in [7], and more definitively
in [9]. There are examples where the map is entirely well conditioned, but also
others, especially when the measure dλ has unbounded support, in which the
map is almost as ill conditioned as for ordinary moments.

Demo#2. The weight function

w(t) = [(1 − ω2t2)(1 − t2)]−1/2 on [−1, 1], 0 ≤ ω < 1,

of the “elliptic orthogonal polynomials”.

Since the weight function reduces to the Chebyshev weight function when
ω = 0, it seems natural to use as modified moments those relative to the
monic Chebyshev polynomials,

m0 =
∫ 1

−1
w(t)dt, mk =

1

2k−1

∫ 1

−1
Tk(t)w(t)dt, k ≥ 1.

Their computation, though not trivial by any means, can be accomplished in
a very stable fashion [9, Example 3.3]. The first 2N of them are generated
in the Matlab routine mm ell.m. The following box shows the Matlab script
required to generate elliptic polynomials.

function ab=r elliptic(N,om2)

abm=r jacobi(2*N-1,-1/2);

mom=mm ell(N,om2);

ab=chebyshev(N,mom,abm);
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The routine works well even for ω2 quite close to 1, as is shown by the output
below (displayed only partially) for N=40, om2=.999.

ab =

0 9.682265121100620e+00

0 7.937821421385184e-01

0 1.198676724605757e-01

0 2.270401183698990e-01

0 2.410608787266061e-01

0 2.454285325203698e-01

· · · · · · · · · · · · · · · · · · · · ·
0 2.499915376529289e-01

0 2.499924312667191e-01

0 2.499932210069769e-01

All coefficients are accurate to machine precision.

2.3. Discrete Stieltjes and Lanczos algorithm. Partly in preparation for the
next subsection, we now consider a discrete N-point measure

dλN (t) =
N

∑

k=1

wkδ(t − xk), wk > 0, (10)

where δ is the Dirac delta function. Thus, the measure is supported on N
distinct points xk on the real axis, where it has positive jumps wk. The corre-
sponding inner product is a finite sum,

(p, q)N =
∫

R

p(t)q(t)dλN(t) =
N

∑

k=1

wkp(xk)q(xk). (11)

There are now only a finite number, N , of recurrence coefficients αk = αk(dλN ),
βk = βk(dλN), which can be computed by either of two algorithms, one men-
tioned briefly by Stieltjes [23], and a more recent one based on ideas of Lanczos
[18].

The former combines Darboux’s formulae for the recurrence coefficients,























αk =
(tπk, πk)N

(πk, πk)N

, k = 0, 1, . . . , n − 1,

βk =
(πk, πk)N

(πk−1, πk−1)N

, k = 1, 2, . . . , n − 1,

(12)

with the recurrence relation (3). In (12), the πk are the (as yet unknown)
discrete orthogonal polynomials πk( · ; dλN). Stieltjes’s Procedure consists in
starting with k = 0 and successively increasing k by 1 until k = n − 1. Thus,
when k = 0, we have π0 = 1, so that α0 can be computed by the top relation in
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(12) with k = 0 and β0 by β0 =
∑N

k=1 wk. With α0, β0 at hand, we can go into
(3) with k = 0 and compute π1(xk) for all the support points xk. This then
in turn allows us to reapply (12) with k = 1 and compute α1 and β1. Going
back to (3) with k = 1, we compute π2(xk), whereupon (12) with k = 2 yields
α2, β2, etc. In this manner we continue until αn−1, βn−1 have been computed.
Here n ≤ N .

The second algorithm is based on the existence of an orthogonal similarity
transformation

QT















1
√

w1
√

w2 · · · √
wN√

w1 x1 0 · · · 0√
w2 0 x2 · · · 0
...

...
...

. . .
...√

wN 0 0 · · · xN















Q =















1
√

β0 0 · · · 0√
β0 α0

√
β1 · · · 0

0
√

β1 α1 · · · 0
...

...
...

. . .
...

0 0 0 · · · αN−1















,

where Q is an orthogonal matrix of order N + 1 having the first coordinate
vector e1 ∈ R

N+1 as its first column. Lanczos’s Algorithm [18] carries out
this transformation and thus, since the wk and xk are given, determines the
recurrence coefficients αk, βk. The algorithm, unfortunately, is unstable, but
can be stabilized by using ideas of Rutishauser [20]; see [16].

In Matlab, the two algorithms are implemented in the routines

ab=stieltjes(n,xw)

ab=lanczos(n,xw)

}

n ≤ N,

where xw is the N × 2 array of the support points and weights of the given
discrete measure (10); see Fig. 2.2.

x1 w1

x2 w2
...

...
xN wN

Figure 2.2. The array xw of support points and weights

The first routine is generally the one to be preferred, although as n approaches
N , it may gradually become unstable. If such is the case, and values of n near
N are indeed required, the second routine is preferable but is considerably
more time-consuming than the first.

2.4. Discretization methods. The basic idea, first advanced in [7] and more fully
developed in [9], is very simple: One first approximates the given measure dλ
by a discrete N -point measure,

dλ(t) ≈ dλN(t), (13)
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typically by applying some appropriate quadrature scheme. Thereafter, the
desired recurrence coefficients are approximated by those of the discrete mea-
sure,











αk(dλ) ≈ αk(dλN),

βk(dλ) ≈ βk(dλN).
(14)

If necessary, the integer N is increased to improve the approximation. For each
N , the approximate recurrence coefficients on the right of (14) are computed
by one of the methods described in §2.3. To come up with a good discretization
(13) that yields fast convergence as N → ∞ may require skill and inventiveness
on the part of the user. But if implemented intelligently, the method is one of
the most effective ones for generating orthogonal polynomials.

The seemingly complicated constructions of multicomponent discretizations
to be described further on will first be motivated by a simple example.

Example 2.1. The weight function

w(t) = (1 − t2)−1/2 + c on [−1, 1], c > 0.

When c = 0, this is the Chebyshev weight, and as c → ∞, one expects to
recover the Legendre polynomials. Thus, in a sense, the polynomials orthog-
onal with respect to w “interpolate” between the Legendre and Chebyshev
polynomials.

It would be very difficult to find a single quadrature scheme that would ad-
equately approximate an integral with respect to the weight function w by a
finite sum. However, by considering w as a 2-component weight function, the
first component consisting of the Chebyshev weight, and the second of a con-
stant weight function, a natural discretization is obtained by applying Gauss-
Chebyshev quadrature to the first component, and Gauss-Legendre quadrature
to the second. Thus, the inner product with respect to the weight function w
is approximated by

(p, q)w =
∫ 1

−1
p(t)q(t)(1 − t2)−1/2dt + c

∫ 1

−1
p(t)q(t)dt

≈
M
∑

k=1

wCh
k p(xCh

k )q(xCh
k ) + c

M
∑

k=1

wL
k p(xL

k )q(xL
k ),

(15)

where xCh
k , wCh

k are the nodes and weights of the M-point Gauss-Chebyshev
quadrature formula, and xL

k , wL
k those of the M-point Gauss-Legendre quadra-

ture formula. This in effect approximates the measure dλ(t) = w(t)dt by a
discrete N -point measure dλN , where N = 2M . Since M-point Gauss quadra-
ture integrates polynomials of degree 2M − 1 exactly and all inner products
in the Darboux formulae (12) involve polynomials of degree at most 2n − 1,
the choice M = n will insure that αk(dλ) = αk(dλN) for all k ≤ n − 1, and
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similarly for the βk. Thus, Stieltjes’s procedure, and therefore also Lanczos’s
algorithm, produces exact results. There is no need to increase N any further.

In general, the support interval [a, b] of dλ is decomposed into m subintervals

[a, b] =
m
⋃

µ=1

[aµ, bµ], m ≥ 1,

which may or may not be disjoint. The integral of a polynomial f against the
measure dλ(t) = w(t)dt is then represented somehow in the form

∫ b

a
f(t)w(t)dt =

m
∑

µ=1

∫ bµ

aµ

fµ(t)wµ(t)dt, (16)

where in the most general case fµ will differ from f (and in fact may no longer
be a polynomial) and wµ is a positive weight function which, too, may be
different from w. The Multicomponent Discretization Method uses (16) with
f(t) = p(t)q(t) to approximate the inner product (p, q)w by applying an ap-
propriate M-point quadrature rule to each constituent integral on the right of
(16). This yields an approximation dλ ≈ dλN with N = mM . If the given mea-
sure dλ, in addition to the absolutely continuous component, contains also a
discrete p-point component, then the latter is simply added to the (mM)-point
approximation to yield an N -point approximation dλN with N = mM + p.
Using either Stieltjes’s procedure or Lanczos’s algorithm, we then compute the
approximations αk(dλN), βk(dλN ) of αk(dλ), βk(dλ) for k = 0, 1, . . . , n − 1.
The integer M (and with it N) may be successively increased in an attempt
to obtain sufficient accuracy.

In Matlab, the multicomponent discretization method is implemented in the
routine

[ab,Mcap,kount]=mcdis(n,eps0,quad,Mmax).

Here, n is the number of recurrence coefficients to be computed, and eps0

the desired relative accuracy in the β-coefficients. (The α-coefficients, if they
are small, or even zero, may be obtained only to an absolute accuracy of
eps0.) The input parameter quad is a quadrature routine that generates the
M nodes and weights of the quadrature approximation of the µth component
of dλ for the current discretization parameter M . It may be a user-defined
routine tailored to the specific problem at hand, or a general-purpose routine
provided automatically. The last input parameter Mmax is an upper bound
for the discretization parameter M , which, when exceeded, causes the routine
to issue an error message. The output parameter ab is the n×2 array of the
desired recurrence coefficients, Mcap the value of M that yields the requested
accuracy, and kount the number of iterations required to achieve this accuracy.
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The details of the discretization must be specified prior to calling the proce-
dure. They are embodied in the following global parameters:

mc the number of component intervals
mp the number of points in the discrete part of the

measure (mp=0 if there is none)
iq to be set equal to 1 if a user-defined quadrature

routine is to be used, and different from 1 otherwise
idelta a parameter whose default value is 1, but which

is preferably set equal to 2 if iq=1 and the user
provides Gauss-type quadrature routines

irout to be set equal to 1 if Stieltjes’s procedure is to
be used, and different from 1 otherwise

DM if mp> 0 an mp×2 array [[x1 y1]; [x2 y2]; . . . ; [xmp ymp]]
containing the abscissae and jumps of the discrete
component of the measure

AB an mc×2 array specifying the component intervals
[[a1 b1]; [a2 b2]; . . . ; [amc bmc]].

Example 2.2. Normalized Jacobi weight function plus a discrete measure,

dλ(t) = [βJ
0 ]−1(1− t)α(1+ t)βdt+

p
∑

j=1

yjδ(t− tj)dt, α > −1, β > −1, yj > 0,

where βJ
0 =

∫ 1
−1(1 − t)α(1 + t)βdt.

Similarly as in Example 2.1, we use the M-point Gauss-Jacobi quadrature
rule with M = n and Jacobi parameters α, β to discretize the absolutely
continuous component, but now add on the discrete p-point measure. As in
Example 2.1, this will produce the first n recurrence coefficients exactly. The
Matlab routine implementing this is shown in the box below.

function ab=r jacplus(n,alpha,beta,ty)

global mc mp iq idelta irout DM AB

global a b

a=alpha; b=beta;

mc=1; mp=size(ty,1); iq=1; idelta=2; irout=1;

Mmax=n+1; DM=ty; AB=[-1 1]; eps0=1e3*eps;

[ab,Mcap,kount]=mcdis(n,eps0,@quadjp,Mmax);

The variables a and b are declared global since they are used in the quadra-
ture routine quadjp.m, which is shown in the next box. Note also the choice
Mmax=n+1, which is legitimate since the discretization parameter M = n yields
exact results.
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function xw=quadjp(N,mu)

global a b

ab=r jacobi(N,a,b); ab(1,2)=1;

xw=gauss(N,ab);

The integer mu in the routine quadjp (in the present case mu=1) specifies
the muth component interval. The call to gauss(N,ab) generates the N-point
Gaussian quadrature rule for the measure identified via the N×2 array ab of
its recurrence coefficients.

Demo#3. The first 40 recurrence coefficients of the normalized Jacobi weight
function with parameters α = −1

2
, β = 3

2
and a mass point of strength 2 added

at the left endpoint of [−1, 1].

The Matlab program, followed by the output (only partially displayed), is
shown in the box below.

>> ty=[-1 2];

>> ab=r jacplus(40,-.5,1.5,ty)

ab =

-4.444444444444e-01 3.000000000000e+00

2.677002583979e-01 6.635802469136e-01

3.224245925965e-01 8.620335316387e-02

1.882535273840e-01 1.426676765162e-01

1.207880431181e-01 1.809505902299e-01

8.380358927439e-02 2.025747903114e-01

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
2.077921831426e-03 2.489342817850e-01

1.972710627986e-03 2.489888786295e-01

1.875292842444e-03 2.490393860403e-01

The results can be compared with analytic answers (cf. [11, p. 43]) and are
found to be accurate to all digits shown.

Example 2.3. A weight function involving the modified Bessel function,

w(t) = tαK0(t) on [0,∞], α > −1.

This has applications in the asymptotic approximation of oscillatory integral
transforms [27].

The discretization of the measure dλ(t) = w(t)dt should be done with due
regard to the properties of the weight function, especially its behavior for
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small and large t. This behavior is determined by

K0(t) =











R(t) + I0(t) ln(1/t) if 0 < t ≤ 1,

t−1/2e−tS(t) if 1 ≤ t < ∞,

where I0 is the “regular” modified Bessel function and R, S are smooth func-
tions for which good rational approximations are known [19]. This suggests
the decomposition [0,∞] = [0, 1] ∪ [0, 1] ∪ [0,∞] and the representation

∫

∞

0
f(t)w(t)dt =

∫ 1

0
[R(t)f(t)]tαdt +

∫ 1

0
[I0(t)f(t)]tα ln(1/t)dt

+ e−1
∫

∞

0
[(1 + t)α−1/2S(1 + t)f(1 + t)]e−tdt.

(17)

Thus, in the notation of (16),

f1(t) = R(t)f(t), w1(t) = tα on [0, 1],

f2(t) = I0(t)f(t), w2(t) = tα ln(1/t) on [0, 1],

f3(t) = e−1(1 + t)α−1/2S(1 + t)f(1 + t), w3(t) = e−t on [0,∞].

The appropriate discretization of (17), therefore, involves Gauss-Jacobi quadra-
ture (with parameters 0 and α) for the first integral, Gauss quadrature relative
to the weight function w2 on [0, 1] for the second integral, and Gauss-Laguerre
quadrature for the third integral. The Gaussian quadrature rules required are
readily generated, the first and third by classical means, and the second by
using the routine r jaclog.m for generating the recurrence coefficients for the
weight function w2 followed by an application of the routine gauss.m. This
is implemented for arbitrary α > −1 in the routine r modbess.m shown in
the next box. The routine r jacobi01.m called in the sixth line generates the
recurrence coefficients for the shifted Jacobi polynomials (supported on the
interval [0, 1]). The variables abjac, abjaclog, ablag, declared global, are
used in the quadrature routine quadbess.m, which also incorporates one of
the rational approximations of [19] for computing R, S.

function ab=r modbess(N,a,Mmax,eps0)

global mc mp iq idelta irout AB

global abjac abjaclog ablag

mc=3; mp=0; iq=1; idelta=2; irout=1;

AB=[[0 1];[0 1];[0 Inf]];

abjac=r jacobi01(Mmax,0,a);

abjaclog=r jaclog(Mmax,a);

ablag=r laguerre(Nmax);

ab=mcdis(N,eps0,@quadbess,Mmax);
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Demo#4. Compute

∫

∞

0
e−ttαK0(t)dt =

√
π

2α+1

Γ2(α + 1)

Γ(α + 3/2)
.

The routine in the box below applies n-point Gauss quadrature of e−t relative
to the weight function w(t) = tαK0(t) and determines the smallest n for which
the relative error is less than eps0.

>> global a

>> a=-1/2; N=20; Mmax=200; eps0=1e4*eps;

>> exact=sqrt(pi)*(gamma(a+1))^2/(2^(a+1)*gamma(a+3/2));

>> ab=r modbess(N,a,Mmax,eps0); s=0; n=0;

>> while abs(s-exact)>abs(exact)*eps0

n=n+1;

xw=gauss(n,ab);

s=sum(xw(:,2).*exp(-xw(:,1)));

end

>> n, s, abs(s-exact)/abs(exact)

For the choices made of a, N, Mmax, and eps0=2.22×10−12, the routine yields
n = 12, s = 3.937402486427721, with a relative error of 7.32 × 10−13.

2.5. Modification algorithms. The problem to be considered here is the follow-
ing: Given the recurrence coefficients of dλ, generate those of the modified
measure

dλmod(t) = r(t)dλ(t), r rational ≥ 0 on supp(dλ).

The problem can be reduced to the one in which r is either a real linear, or
a real quadratic factor or divisor, since any general real r can be written as
a product of such factors and divisors. For these special cases, the problem
has been solved in [8]. (Other approaches have been taken in [17] and [4]; see
also [12, §3].) We briefly discuss the case of a linear factor, already solved by
Galant [6].

Example 2.4. Modification by a liner factor,

r(t) = s(t − c), c ∈ R\supp(dλ),

where s = ±1 is chosen such that r is nonnegative on the support of dλ.

The solution given by Galant is most elegantly described in linear algebra
terms. It consists in applying one step of the (symmetric) shifted LR algorithm
to the Jacobi matrix of the measure dλ. Specifically, the matrix s[Jn+1(dλ)−
cI], which by assumption is positive definite, is first Cholesky decomposed,

s[Jn+1(dλ) − cI] = LLT ,

13



whereupon the factors on the right are interchanged and the shift cI added
back. Discarding the last row and column of the resulting matrix yields the
desired Jacobi matrix of order n,

Jn(dλmod) = (LT L + cI)[1:n,1:n].

The solution can also be described in terms of a nonlinear recurrence algo-
rithm, which in Matlab is implemented by the routine

ab=chri1(N,ab0,c),

where ab0 contains the first N + 1 recurrence coefficients of dλ and c is the
shift parameter.

Our package includes seven additional routines chri2.m, chri3.m, . . ., chri8.m
corresponding to quadratic factors of various types, linear divisors, and quad-
ratic divisors of different kinds. The routine chri7.m, for example, deals with
a quadratic factor of the form r(t) = (t−x)2 with x ∈ R. It would be tempting
to apply the routine chri1.m for the linear factor t − x twice in succession,
but this may be risky if x is inside the support of dλ. There is, however, an
algorithm similar to Galant’s algorithm, which applies one step of the shifted
QR algorithm to the Jacobi matrix Jn+2(dλ) and discards the last two rows
and columns of the result to obtain Jn(rdλ) (cf. [12, §3.3]).

Example 2.5. Induced orthogonal polynomials ([14]).

Given an orthogonal polynomial πm( · ; dλ) of fixed degree m, the induced

orthogonal polynomial of degree k is orthogonal with respect to the weight
function w(t) = π2

m(t)dλ(t).

Here,

r(t) =
m
∏

µ=1

(t − xµ)2,

where xµ are the zeros of πm. This calls for m successive applications of the
routine chri7.m with x = xµ, µ = 1, 2, . . . , m. The routine indop.m shown in
the box below implements this.
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function ab=indop(N,m,ab0)

N0=size(ab0,1);

if N0<N+m, error(’input array ab0 too short’), end

ab=ab0;

if m==0, return, end

zw=gauss(m,ab0);

for imu=1:m

mi=N+m-imu;

for n=1:mi+1

ab1(n,1)=ab(n,1);

ab1(n,2)=ab(n,2);

end

x=zw(imu,1);

ab=chri7(mi,ab1,x);

end

Demo#5. Induced Legendre polynomials.

The routine shown in the next box generates the first 20 recurrence coefficients
of selected induced orthogonal polynomials when dλ is the Legendre measure.

>> N=20; M=11;

>> ab0=r jacobi(N+M);

>> for m=[0 2 6 11]

ab=indop(N,m,ab0)

end

By symmetry, all the α-coefficients are zero. Selected values of the β-coefficients
returned by the routine (rounded to 10 decimal places) are shown in Table
2.2.

k βk,0 βk,2 βk,6 βk,11

0 2.0000000000 0.1777777778 0.0007380787 0.0000007329
1 0.3333333333 0.5238095238 0.5030303030 0.5009523810
6 0.2517482517 0.1650550769 0.2947959861 0.2509913424
12 0.2504347826 0.2467060415 0.2521022519 0.1111727541
19 0.2501732502 0.2214990335 0.2274818789 0.2509466619

Table 2.2. β-coefficients of induced Legendre polynomials

The procedure is remarkably stable, not only for the Legendre measure, but
also for other classical measures, and for n and m as large as 320; see [11,
Tables X and XI].

15



3. Sobolev orthogonal polynomials

These are polynomials orthogonal with respect to an inner product that in-
volves derivatives in addition to function values, each derivative having asso-
ciated with it its own (positive) measure. Thus,

(p, q)S =
∫

R

p(t)q(t)dλ0(t) +
∫

R

p′(t)q′(t)dλ1(t) + · · · +
∫

R

p(s)(t)q(s)(t)dλs(t).

(18)
The Sobolev polynomials {πk( · ; S)} are monic polynomials of degree k or-
thogonal with respect to the inner product of (18),

(πk, π`)S

{

= 0, k 6= `,
> 0, k = `.

(19)

These polynomials no longer satisfy a three-term recurrence relation, but like
any other system of monic polynomials whose degrees increase by 1 from one
polynomial to the next, they must satisfy a recurrence relation of the extended
form

πk+1(t) = tπk(t) −
k

∑

j=0

βk
j πk−j(t), k = 0, 1, 2, . . . . (20)

In place of the Jacobi matrix, we now have an upper Hessenberg matrix of
recurrence coefficients,

Hn =





















β0
0 β1

1 β2
2 · · · βn−2

n−2 βn−1
n−1

1 β1
0 β2

1 · · · βn−2
n−3 βn−1

n−2

0 1 β2
0 · · · βn−2

n−4 βn−1
n−3

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · βn−2

0 βn−1
1

0 0 0 · · · 1 βn−1
0





















. (21)

In the case s = 0 corresponding to ordinary orthogonal polynomials, one has
βk

j = 0 for j > 0, and the matrix Hn is tridiagonal. It can be symmetrized
by a (real) diagonal similarity transformation and then becomes the Jacobi
matrix Jn(dλ0) (cf. (4)). When s > 0, symmetrization is no longer possible,
since some of the eigenvalues of Hn may well be complex.

3.1. Moment-based algorithms. We define modified moments similarly as in
(7), but now a separate set of them for each measure dλσ,

m
(σ)
k =

∫

R

pk(t)dλσ(t), k = 0, 1, 2, . . . ; σ = 0, 1, . . . , s. (22)

For simplicity, we use the same set of polynomials {pk} for each measure and
assume, as in (8), that they satisfy a three-term recurrence relation. In analogy
to (9), there is now a unique map that takes the first 2n modified moments of
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all the measures dλσ into the recurrence coefficients βk
j ,

[m
(σ)
k ]2n−1

k=0 , σ = 0, 1, . . . , s 7→ [βk
j ], k = 0, 1, . . . n − 1; j = 0, 1, . . . , k. (23)

The conditioning of this map has been studied in [28], and an algorithm,
analogous to the modified Chebyshev algorithm, developed (for s = 1) in [15].
The corresponding routine in Matlab is

[B,normsq]=chebyshev sob(N,mom,abm).

Here, N is the n in (23), mom the 2×2N array of the first 2N modified moments
corresponding to dλ0 and dλ1, and abm the (2N−1)×2 array of the recurrence
coefficients in (8). The output variable B is the N×N matrix of the recurrence
coefficients βk

j , k = 0, 1, . . . , N − 1, 0 ≤ j ≤ k, where βk
j occupies the position

B(j + 1, k + 1) of the matrix B; all remaining elements of B are zero. The
routine also returns the optional N -vector normsq of the squared norms ‖πk‖2

S

of the Sobolev orthogonal polynomials. If abm is absent in the list of input
parameters, then ordinary moments are assumed (ak = bk = 0).

Example 3.1. The polynomials of Althammer [1].

These are the Sobolev orthogonal polynomials with s = 1 and dλ0(t) = dt,
dλ1(t) = γdt on [−1, 1], where γ > 0. There is a fairly obvious choice of
the polynomials {pk} for defining the modified moments, namely the monic
Legendre polynomials. All modified moments in this case, by orthogonality,
are zero except for

m
(0)
0 = 2, m

(1)
0 = 2γ.

In Matlab, the recurrence matrix B for the Althammer polynomials is gener-
ated as shown in the box below (where N=n and g=γ).

>> N=20; g=1;

>> %g=0;

>> mom=zeros(2,2*N);

>> mom(1,1)=2; mom(2,1)=2*g;

>> abm=r jacobi(2*N-1);

>> B=chebyshev sob(N,mom,abm);

Demo#6. Legendre vs Althammer polynomials.

The routine in the box below generates and plots the Sobolev polynomial of
degree N = 20 corresponding to s = 1 and γ = 0 (Legendre polynomial) resp.
γ = 1 (Althammer polynomial). It is assumed that the matrix B has already
been generated by the routine for Althammer polynomials shown above with
N=20 and g=0 resp. g=1.
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>> N=20;

>> pi=zeros(N+1,1); np=500; y=zeros(np+1,1);

>> for it=0:np

t=-1+2*it/np;

pi(1)=1;

for k=1:N

temp=0;

for l=1:k

temp=temp+B(l,k)*pi(k-l+1);

end

pi(k+1)=t*pi(k)-temp;

end

y(it+1)=pi(N+1);

end

>> x=linspace(-1,1,np+1);

>> hold on

>> plot(x’,y)

>> plot([-1 1],[0 0],’--’)

>> hold off

The plot for the Legendre polynomial is shown in Fig. 3.1 in the left frame,
and the one for the Althammer polynomial in the right frame.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0

1

2

3
x 10

−6

Figure 3.1. Legendre vs Althammer polynomial

Interestingly, for the Legendre polynomial the envelope of the extreme points
is convex on top and concave at the bottom, whereas for the Althammer
polynomial it is the other way around. Note also that π20(±1) = .7607× 10−5

for the Legendre, and π20(±1) = 0 for the Althammer polynomial.
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3.2. Discretization algorithm. The analogue for Sobolev orthogonal polynomi-
als of the Darboux formulae (12) is

βk
j =

(tπk, πk−j)S

(πk−j, πk−j)S
, j = 0, 1, . . . , k, (24)

with the inner product ( · , · )S defined as in (18). The Discretized Stieltjes Al-

gorithm, similarly as for ordinary orthogonal polynomials, consists in combin-
ing the formulae (24) with the recurrence relation (20), discretizing the inner
products in (24) by suitable quadrature schemes. We chose to approximate
the absolutely continuous component of each measure dλσ by a Gauss-type
quadrature rule,

(p, q)dλσ
≈

nσ
∑

k=1

w
(σ)
k p(x

(σ)
k )q(x

(σ)
k ), σ = 0, 1, . . . , s, (25)

and to add on any discrete component of dλσ if present. In Matlab, the quadra-
ture schemes are identified by an md × 2(s + 1) array xw,

xw=

x
(0)
1 · · · x

(s)
1 w

(0)
1 · · · w

(s)
1

x
(0)
2 · · · x

(s)
2 w

(0)
2 · · · w

(s)
2

...
...

...
...

x
(0)
md · · · x

(s)
md w

(0)
md · · · w

(s)
md

where md=max(nσ). In each column of xw the entries after x(σ)
nσ

resp. w(σ)
nσ

(if
any) are ignored by the routine. The routine itself has the form

B=stieltjes sob(N,s,nd,xw,a0,same),

where nd=[n0, n1, . . . , ns], a0=α0(dλ0), and same is a logical variable to be set
equal to 1 if all quadrature rules have the same nodes, and equal to 0 otherwise.
If same=1, the routine takes advantage of significant simplifications that are
possible and reduce running time.

Example 3.2. The Althammer polynomials, revisited.

The box below shows the generation of the recurrence matrix B for the Al-
thammer polynomials using the routine stieltjes sob.m.
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>> N=20; g=1;

>> nd=[N N]; s=1; a0=0; same=1;

>> ab=r jacobi(N);

>> zw=gauss(N,ab);

>> xw=[zw(:,1) zw(:,1) zw(:,2) g*zw(:,2)];

>> B=stieltjes sob(N,s,nd,xw,a0,same);

The results are identical with those produced by the routine chebyshev sob.m.
There is no restriction, however, on the parameter s when using the routine
stieltjes sob.m.

3.3. Zeros. If π(t) is the vector of the first n Sobolev orthogonal polynomials,

πT (t) = [π0(t), π1(t), . . . , πn−1(t)],

then the recurrence relation (20) can be written in matrix form as follows,

tπT (t) = πT (t)Hn + πn(t)eT
n ,

where en is the last coordinate vector in R
n. If t = τν is a zero of πn, the last

term vanishes, implying that τν is an eigenvalue of the matrix Hn and πT (τν)
a corresponding (left) eigenvector. Thus, the zeros of Sobolev orthogonal poly-
nomials can be computed as eigenvalues of an upper Hessenberg matrix. In
Matlab, this is done by the routine sobzeros.m shown in the box below.

function z=sobzeros(n,N,B)

H=zeros(n);

for i=1:n

for j=1:n

if i==1

H(i,j)=B(j,j);

elseif j==i-1

H(i,j)=1;

elseif j>=i

H(i,j)=B(j-i+1,j);

end

end

end

z=sort(eig(H));

Here B is the recurrence matrix of order N for the Sobolev orthogonal poly-
nomials, and n≤N. The zeros are arranged in increasing order.

Demo#7. The zeros of the Althammer polynomial of degree 20 with γ = 1.

Assuming that the matrix B has already been generated by either the modified
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Chebyshev algorithm or the Stieltjes procedure as described in §§3.1 and 3.2,
the box below shows the Matlab commands and output (only the positive
zeros are shown, rounded to 12 decimals).

<< N=20; z=sobzeros(N,N,B)

z =

8.05392515636e-02

2.39532838077e-01

3.92325438959e-01

5.34960935873e-01

6.63745343244e-01

7.75342384688e-01

8.66859942239e-01

9.35924777578e-01

9.80740571465e-01

1.00000000000e-01

Judging from how well the symmetry of the roots is satisfied, the results appear
to be accurate to all digits shown except the last, which may be in error by one
or two units. Generating the matrix B by the modified Chebyshev algorithm
or Stieltjes’s procedure produces the same results to this accuracy, but the
Stieltjes procedure is considerably slower (by a factor of about 14) than the
modified Chebyshev algorithm.
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