
Orthogonal Polynomials, Quadrature,
and Approximation: Computational

Methods and Software
(in Matlab)

WALTER GAUTSCHI

Abstract

Orthogonal polynomials, unless they are classical, require special
techniques for their computation. One of the central problems is to
generate the coefficients in the basic three-term recurrence relation
they are known to satisfy. There are two general approaches for do-
ing this: methods based on moment information, and discretization
methods. In the former, one develops algorithms that take as input
given moments, or modified moments, of the underlying measure and
produce as output the desired recurrence coefficients. In theory, these
algorithms yield exact answers. In practice, owing to rounding errors,
the results are potentially inaccurate depending on the numerical con-
dition of the mapping from the given moments (or modified moments)
to the recurrence coefficients. A study of related condition numbers
is therefore of practical interest. In contrast to moment-based al-
gorithms, discretization methods are basically approximate methods:
one approximates the underlying inner product by a discrete inner
product and takes the recurrence coefficients of the corresponding dis-
crete orthogonal polynomials to approximate those of the desired or-
thogonal polynomials. Finding discretizations that yield satisfactory
rates of convergence requires a certain amount of skill and creativity
on the part of the user, although general-purpose discretizations are
available if all else fails.

Other interesting problems have as objective the computation of
new orthogonal polynomials out of old ones. If the measure of the new

1

orthogonal polynomials is the measure of the old ones multiplied by a
rational function, one talks about modification of orthogonal polyno-
mials and modification algorithms that carry out the transition from
the old to the new orthogonal polynomials. This enters into a circle
of ideas already investigated by Christoffel in the 1850s, but effective
algorithms have been obtained only very recently. They require the
computation of Cauchy integrals of orthogonal polynomials — another
interesting computational problem.

In the 1960s, a new type of orthogonal polynomials emerged —
the so-called Sobolev orthogonal polynomials — which are based on
inner products involving derivatives. Although they present their own
computational challenges, moment-based algorithms and discretiza-
tion methods are still two of the main stocks of the trade. The com-
putation of zeros of Sobolev orthogonal polynomials is of particular
interest in practice.

An important application of orthogonal polynomials is to quadra-
ture, specifically quadrature rules of the highest algebraic degree of
exactness. Foremost among them is the Gaussian quadrature rule and
its close relatives, the Gauss–Radau and Gauss–Lobatto rules. More
recent extensions are due to Kronrod, who inserts n+1 new nodes into
a given n-point Gauss formula, again optimally with respect to degree
of exactness, and to Turán, who allows derivative terms to appear in
the quadrature sum. When integrating functions having poles outside
the interval of integration, quadrature rules of polynomial/rational
degree of exactness are of interest. Poles inside the interval of in-
tegration give rise to Cauchy principal value integrals, which pose
computational problems of their own. Interpreting Gaussian quadra-
ture sums in terms of matrices allows interesting applications to the
computation of matrix functionals.

In the realm of approximation, orthogonal polynomials, especially
discrete ones, find use in curve fitting, e.g. in the least squares ap-
proximation of discrete data. This indeed is the problem in which
orthogonal polynomials (in substance if not in name) first appeared in
the 1850s in work of Chebyshev. Sobolev orthogonal polynomials also
had their origin in least squares approximation, when one tries to fit si-
multaneously functions together with some of their derivatives. Phys-
ically motivated are approximations by spline functions that preserve
as many moments as possible. Interestingly, these also are related to
orthogonal polynomials via Gauss and generalized Gauss-type quadra-
ture formulae. Slowly convergent series whose sum can be expressed

2

as a definite integral naturally invite the application of Gauss-type
quadratures to speed up their convergence. An example are series
whose general term is expressible in terms of the Laplace transform
or its derivative of a known function. Such series occur prominently
in plate contact problems.

3

Table of Contents

Part Ia. Orthogonal Polynomials

1. Recurrence coefficients
2. Modified Chebyshev algorithm
3. Discrete Stieltjes and Lanczos algorithm
4. Discretization methods
5. Cauchy integrals of orthogonal polynomials
6. Modification algorithms

Part Ib. Sobolev Orthogonal Polynomials

7. Sobolev inner product and recurrence relation
8. Moment-based algorithm
9. Discretization algorithm
10. Zeros

Exercises to Part I

Part II. Quadrature

11. Gauss-type quadrature formulae
• Gauss formula
• Gauss–Radau formula
• Gauss–Lobatto formula

12. Gauss–Kronrod quadrature
13. Gauss–Turán quadrature
14. Quadrature formulae based on rational functions
15. Cauchy principal value integrals
16. Polynomials orthogonal on several intervals
17. Quadrature estimates of matrix functionals

Exercises to Part II

4

Part III. Approximation

18. Polynomial least squares approximation
• classical
• constrained
• in Sobolev spaces

19. Moment-preserving spline approximation
• on the positive real line
• on a compact interval

20. Slowly convergent series
• generated by a Laplace transform or derivative thereof
• occurring in plate contact problems

Exercises to Part III

References

• W. Gautschi, Orthogonal polynomials: computation and approximation.
Numerical Mathematics and Scientific Computation. Oxford University
Press, Oxford, 2004. (This item will be referenced by Ga04.)
• A suite of Matlab routines, called OPQ, to be found at the web site
http://www.cs.purdue.edu/archives/2002/wxg/codes

Each routine can be downloaded individually.
• G. Szegö, Orthogonal polynomials (4th edn), AMS Colloq. Publ. 23,
Amer. Math. Soc., Providence, RI, 1975. (This item will be referenced
by Sz75.)
• M. Abramowitz and I.A. Stegun (eds), Handbook of mathematical
functions, Dover Publ., New York, 1992. (This item will be referenced
by AS92.)
• I.S. Gradshteyn and I.M. Ryzhik, Tables of integrals, series, and
products (6th edn), Academic Press, San Diego, CA, 2000. (This item
will be referenced by GR00.)

5

PART Ia ORTHOGONAL POLYNOMIALS

1 Recurrence coefficients

1.1 Background and Notations

Orthogonality is defined with respect to an inner product, which in turn
involves a measure of integration, dλ. An absolutely continuous measure has
the form

dλ(t) = w(t)dt on [a, b], −∞ ≤ a < b ≤ ∞,

where w is referred to as a weight function. Usually, w is positive on (a, b), in
which case dλ is said to be a positive measure and [a, b] is called the support

of dλ. A discrete measure has the form

dλN(t) =

N
∑

k=1

wkδ(t − xk)dt, x1 < x2 < · · · < xN ,

where δ is the Dirac delta function, and usually wk > 0. The support of dλN

consists of its N support points x1, x2, . . . , xN . For absolutely continuous
measures, we make the standing assumption that all moments

µr =

∫

R

trdλ(t), r = 0, 1, 2, . . . ,

exist and are finite. The inner product of two polynomials p and q relative
to the measure dλ is then well defined by

(p, q)dλ =

∫

R

p(t)q(t)dλ(t),

and the norm of a polynomial p by

‖p‖dλ =
√

(p, p)dλ.

Orthogonal polynomials relative to the (positive) measure dλ are defined by

πk(·) = πk(· ; dλ) a polynomial of exact degree k, k = 0, 1, 2, . . . ,

6

(πk, π`)dλ

{

= 0, k 6= `,
> 0, k = `.

They are uniquely defined up to the leading coefficient, if dλ is absolutely
continuous, and are called monic if the leading coefficient is equal to 1.
For a discrete measure dλN , there are exactly N orthogonal polynomials
π0, π1, . . . , πN−1. Orthonormal polynomials are defined and denoted by

π̃k(· ; dλ) =
πk(· ; dλ)

‖πk‖dλ
, k = 0, 1, 2,

They satisfy

(π̃k, π̃`)dλ = δk,` =

{

0, k 6= `,
1, k = `.

Examples of measures resp. weight functions are shown in Tables 1 and
2. The former displays the most important “classical” weight functions, the
latter the best-known discrete measures.

Table 1: “Classical” weight functions dλ(t) = w(t)dt

name w(t) support comment

Jacobi (1 − t)α(1 + t)β [−1, 1] α > −1,
β > −1

Laguerre tαe−t [0,∞] α > −1

Hermite |t|2αe−t2 [−∞,∞] α > −1
2

Meixner- 1
2π

e(2φ−π)t|Γ(λ + it)|2 [−∞,∞] λ > 0,
Pollaczek 0 < φ < π

1.2 Three-term recurrence relation

For any n (< N−1 if dλ = dλN), the first n+1 monic orthogonal polynomials
satisfy a three-term recurrence relation

(1.1)
πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, . . . , n − 1,

π−1(t) = 0, π0(t) = 1,

7

Table 2: “Classical” discrete measures dλ(t) =
∑M

k=0 wkδ(t − k)dt

name M wk comment

discrete N − 1 1
Chebyshev

Krawtchouk N
(

N
k

)

pk(1 − p)N−k 0 < p < 1

Charlier ∞ e−aak/k! a¿0

Meixner ∞ ck

Γ(β)
Γ(k+β)

k!
0 < c < 1, β > 0

Hahn N
(

α+k
k

)(

β+N−k
N−k

)

α > −1, β > −1

where the recurrence coefficients αk = αk(dλ), βk = βk(dλ) are real and
positive, respectively. The coefficient β0 in (1.1) multiplies π−1 = 0, and
hence can be arbitrary. For later use, it is convenient to define

(1.2) β0 = β0(dλ) =

∫

R

dλ(t).

The proof of (1.1) is rather simple if one expands πk+1(t) − tπk(t) ∈ Pk

in orthogonal polynomials π0, π1, . . . , πk and observes orthogonality and the
obvious, but important, property (tp, q)dλ = (p, tq)dλ of the inner product.
As a by-product of the proof, one finds the formulae of Darboux,

(1.3)
αk(dλ) =

(tπk, πk)dλ

(πk, πk)dλ
, k = 0, 1, 2, . . . ,

βk(dλ) =
(πk, πk)dλ

(πk−1, πk−1)dλ
, k = 1, 2,

The second yields

(1.4) ‖πk‖2
dλ = β0β1 · · ·βk.

Placing the coefficients αk on the diagonal, and
√

βk on the two side diagonals

8

of a matrix produces what is called the Jacobi matrix of the measure dλ,

(1.5) J(dλ) =















α0

√
β1 0√

β1 α1

√
β2√

β2 α2
. . .

. . .
. . .

0















.

It is a real, symmetric, tridiagonal matrix of infinite order, in general. Its
principal minor matrix of order n will be denoted by

(1.6) Jn(dλ) = J(dλ)[1:n,1:n].

Noting that the three-term recurrence relation for the orthonormal poly-
nomials is

(1.7)

√

βk+1π̃k+1(t) = (t − αk)π̃k(t) −
√

βkπ̃k−1(t), k = 0, 1, 2, . . . ,

π̃−1(t) = 0, π̃0(t) = 1/
√

β0,

or, in matrix form, with π̃(t) = [π̃0(t), π̃1(t), . . . , π̃n−1(t)]
T,

(1.8) tπ̃(t) = Jn(dλ)π̃(t) +
√

βnπ̃n(t)en,

one sees that the zeros τν of π̃n(· ; dλ) are precisely the eigenvalues of Jn(dλ),
and π̃(τν) corresponding eigenvectors. This is only one of many reasons why
knowledge of the Jacobi matrix, i.e. of the recurrence coefficients, is of great
practical interest. For classical measures as the ones in Tables 1 and 2, all
recurrence coefficients are explicitly known (cf. Ga04, Tables 1.1 and 1.2). In
most other cases, they must be computed numerically.

In the OPQ package, routines generating recurrence coefficients have the
syntax ab=r name(N), where name identifies the name of the orthogonal
polynomial and N is an input parameter specifying the number of αk and of
βk desired. There may be additional input parameters. The αs and βs are
stored in the N×2 array ab:

α0 β0

α1 β1

...
...

αN−1 βN−1

N ∈ N.

9

For example, ab=r jacobi(N,a,b) generates the first N recurrence coeffi-
cients of the Jacobi polynomial with parameters α=a, β=b.

Demo#1 The first ten recurrence coefficients for the Jacobi polynomials

with parameters α = −1
2
, β = 3

2
.

The Matlab command, followed by the output, is shown in the box below.

>> ab=r jacobi(10,-.5,1.5)
ab =

6.666666666666666e-01 4.712388980384690e+00
1.333333333333333e-01 1.388888888888889e-01
5.714285714285714e-02 2.100000000000000e-01
3.174603174603174e-02 2.295918367346939e-01
2.020202020202020e-02 2.376543209876543e-01
1.398601398601399e-02 2.417355371900826e-01
1.025641025641026e-02 2.440828402366864e-01
7.843137254901961e-03 2.455555555555556e-01
6.191950464396285e-03 2.465397923875433e-01
5.012531328320802e-03 2.472299168975069e-01

2 Modified Chebyshev algorithm

The first 2n moments µ0, µ1, . . . , µ2n−1 of a measure dλ uniquely determine
the first n recurrence coefficients αk(dλ) and βk(dλ), k = 0, 1, . . . , n−1. How-
ever, the corresponding moment map R2n 7→ R2n : [µk]

2n−1
k=0 7→ [αk, βk]

n−1
k=0 is

severely ill-conditioned when n is large. Therefore, other moment maps must
be sought that are better conditioned. One that has been studied extensively
in the literature is based on modified moments

(2.1) mk =

∫

R

pk(t)dλ(t), k = 0, 1, 2, . . . ,

where {pk}, pk ∈ Pk, is a given system of polynomials chosen to be close
in some sense to the desired polynomials {πk}. We assume that pk, like πk,
satisfies a three-term recurrence relation

(2.2)
pk+1(t) = (t − ak)pk(t) − bkπk−1(t), k = 0, 1, 2, . . . ,

p−1(t) = 0, p0(t) = 1,

but with coefficients ak ∈ R, bk ≥ 0, that are known. The case ak = bk = 0
yields powers pk(t) = tk, hence ordinary moments µk, which however, as
already mentioned, is not recommended.

10

Figure 1: Modified Chebyshev algorithm, schematically

l

k

k,l

m

σ

σ

σ

0

=

=

Computing stencil

l

0

0 0 0 0 0 0 0

1

0

1

n

2n

l

1,

0,

l

The modified moment map

(2.3) R2n 7→ R2n : [mk]
2n−1
k=0 7→ [αk, βk]

n−1
k=0

and related maps have been well studied from the point of view of condi-
tioning (cf. Ga04, §2.1.5 and 2.1.6). The maps are often remarkably well-
conditioned, especially for measures supported on a finite interval, but can
still be ill-conditioned otherwise.

An algorithm that implements the map (2.3) is the modified Chebyshev al-

gorithm (cf. Ga04, §2.1.7), which improves on Chebyshev’s original algorithm
based on ordinary moments. To describe it, we need the mixed moments

(2.4) σk` =

∫

R

πk(t; dλ)p`(t)dλ(t), k, ` ≥ −1,

which by orthogonality are clearly zero if ` < k.

Algorithm 1 Modified Chebyshev algorithm
initialization:

α0 = a0 + m1/m0, β0 = m0,
σ−1,` = 0, ` = 1, 2, . . . , 2n − 2,
σ0,` = m`, ` = 0, 1, . . . , 2n − 1

11

continuation (if n > 1): for k = 1, 2, . . . , n − 1 do

σk` = σk−1,`+1 − (αk−1 − a`)σk−1,` − βk−1σk−2,`

+b`σk−1,`−1, ` = k, k + 1, . . . , 2n − k − 1,

αk = ak +
σk,k+1

σkk
− σk−1,k

σk−1,`−1
, βk =

σkk

σk−1,k−1
.

If ak = bk = 0, Algorithm 1 reduces to Chebyshev’s original algorithm.
Figure 1 depicts the trapezoidal array of the mixed moments and the

computing stencil showing that the circled entry is computed in terms of the
four entries below. The entries in boxes are those used to compute the αs
and βs.

The OPQ Matlab command that implements the modified Chebyshev al-
gorithm has the form ab=chebyshev(N,mom,abm), where mom is the 1×2N
array of the modified moments, and abm the (2N−1)×2 array of the recur-
rence coefficients ak, bk from (2.2) needed in Algorithm 1:

m0 m1 m2 · · · m2N−1

mom

a0 b0

a1 b1
...

...
a2N−2 b2N−2

abm

If the input parameter abm is omitted, the routine assumes ak = bk = 0 and
implements Chebyshev’s original algorithm.

Demo#2 “Elliptic” orthogonal polynomials
These are orthogonal relative to the measure

dλ(t) = [(1 − ω2t2)(1 − t2)]−1/2dt on [−1, 1], 0 ≤ ω < 1.

To apply the modified Chebyshev algorithm, it seems natural to employ
Chebyshev moments (i.e. pk = the monic Chebyshev polynomial of degree
k)

m0 =

∫ 1

−1

dλ(t), mk =
1

2k−1

∫ 1

−1

Tk(t)dλ(t), k ≥ 1.

12

Their computation is not entirely trivial (cf. Ga04, Example 2.29), but a
stable algorithm is available as OPQ routine mm ell.m, which for given N

generates the first 2N modified moments of dλ with ω2 being input via the
parameter om2. The complete Matlab routine is as follows:

function ab=r elliptic(N,om2)

abm=r jacobi(2*N-1,-1/2);

mom=mm ell(N,om2);

ab=chebyshev(N,mom,abm)

For om2=.999 and N=40, results produced by the routine are partially shown
in the box below.

ab =
0 9.682265121100620e+00
0 7.937821421385184e-01
0 1.198676724605757e-01
0 2.270401183698990e-01
0 2.410608787266061e-01
0 2.454285325203698e-01
0 2.473016530297635e-01
0 2.482587060199245e-01
...

...
0 2.499915376529289e-01
0 2.499924312667191e-01
0 2.499932210069769e-01

Clearly, βk → 1
4

as k → ∞, which is consistent with the fact that dλ belongs
to the Szegö class (cf. Ga04, p. 12). Convergence, in fact, is monotone for
k ≥ 2.

3 Discrete Stieltjes and Lanczos algorithm

Computing the recurrence coefficients of a discrete measure is a prerequisite
for discretization methods to be discussed in the next section. Given the
measure

(3.1) dλN(t) =

N
∑

k=1

wkδ(t − xk)dt,

the problem is to compute αν,N = αν(dλN), βν,N = βν(dλN) for all ν ≤ n−1,
n ≤ N , which will provide access to the discrete orthogonal polynomials of

13

degrees up to n, or else, to determine the Jacobi matrix JN(dλN), which will
provide access to all discrete orthogonal polynomials. There are two methods
in use, a discrete Stieltjes procedure and the Lanczos algorithm.

3.1 Discrete Stieltjes procedure

Since the inner product for the measure (3.1) is a finite sum,

(3.2) (p, q)dλN
=

N
∑

k=1

wkp(xk)q(xk),

Darboux’s formulae (1.3) seem to offer attractive means of computing the
desired recurrence coefficients, since all inner products appearing in these
formulae are finite sums. The only problem is that we do not yet know the
orthogonal polynomials πk = πk,N involved. For this, however, we can make
use of an idea already expressed by Stieltjes in 1884: combine Darboux’s
formulae with the basic three-term recurrence relation. Indeed, when k = 0
we know that π0,N = 1, so that Darboux’s formula for α0(dλN) can be
applied, and β0(dλN) is simply the sum of the weights wk. Now that we know
α0(dλN), we can apply the recurrence relation (1.1) for k = 0 to compute
π1,N(t) for t = xk, k = 1, 2, . . . , N . We then have all the information at hand
to reapply Darboux’s formulae for α1,N and β1,N , which in turn allows us to
compute π2,N(t) for all t = xk from (1.1). In this manner we proceed until
all αν,N , βν,N , ν ≤ n−1, are determined. If n = N , this will yield the Jacobi
matrix JN(dλN).

The procedure is quite effective, at least when n � N . As n approaches
N , instabilities may develop, particularly if the support points xk of dλN are
equally, or nearly equally, spaced.

The OPQ routine implementing Stieltjes’s procedure is called by ab=

stieltjes(n,xw), where n ≤ N , and xw is an N × 2 array containing the
support points and weights of the inner product,

x1 w1

x2 w2
...

...
xN wN

xw

14

As usual, the recurrence coefficients αν,N , βν,N , 0 ≤ ν ≤ n − 1, are stored in
the n×2 array ab.

3.2 Lanczos’s algorithm

Lanczos’s algorithm is a general procedure to orthogonally tridiagonalize a
given symmetric matrix A. Thus, it finds an orthogonal matrix Q and a
symmetric tridiagonal matrix T such that QTAQ = T . Both Q and T are
uniquely determined by the first column of Q.

Given the measure (3.1), it is known that an orthogonal matrix Q ∈
R(N+1)×(N+1) exists, with the first column being e1 = [1, 0, . . . , 0]T ∈ RN+1,
such that (see Ga04, Corollary to Theorem 3.1)
(3.3)

QT















1
√

w1
√

w2 · · · √
wN√

w1 x1 0 · · · 0√
w2 0 x2 · · · 0
...

...
...

. . .
...√

wN 0 0 · · · xN















Q =















1
√

β0 0 · · · 0√
β0 α0

√
β1 · · · 0

0
√

β1 α1 · · · 0
...

...
...

. . .
...

0 0 0 · · · αN−1















,

where αk = αk,N , βk = βk,N . We are thus in the situation described above,
where A is the matrix displayed on the left and T the matrix on the right,
the desired Jacobi matrix JN (dλN) bordered by a first column and a first row
containing β0. The computation can be arranged so that only the leading
principal minor matrix of order n + 1 is obtained.

Lanczos’s algorithm in its original form (published in 1950) is numeri-
cally unstable, but can be stabilized using ideas of Rutishauser (1963). An
algorithm and pseudocode, using a sequence of Givens rotations to con-
struct the matrix Q in (3.3), forms the basis for the OPQ Matlab code
ab=lanczos(n,xw), where the input and output parameters have the same
meaning as in the routine stieltjes.m.

This routine enjoys good stability properties but may be considerably
slower than Stieltjes’s procedure.

15

4 Discretization methods

The basic idea is to discretize the given measure dλ, i.e. approximate it by
a discrete measure

(4.1) dλ(t) ≈ dλN(t),

and then use the recurrence coefficients αk(dλN), βk(dλN) of the discrete
measure to approximate αk(dλ), βk(dλ). The former are computed by ei-
ther Stieltjes’s procedure or the Lanczos algorithm. The effectiveness of the
method is crucially tied to the quality of the discretization. We illustrate
this by a simple, yet interesting, example.

Example 1. Chebyshev weight function plus a constant,

w(t) = (1 − t2)−1/2 + c on [−1, 1], c > 0.

It suffices to approximate the inner product for the weight function w.
This can always be done by using appropriate quadrature formulae. In the
case at hand, it is natural to treat the two parts of the weight function
separately, indeed to use Gauss–Chebyshev quadrature for the first part and
Gauss–Legendre quadrature for the second,

(4.2)

(p, q)w =

∫ 1

−1

p(t)q(t)(1 − t2)−1/2dt + c

∫ 1

−1

p(t)q(t)dt

≈
M
∑

k=1

wCh
k p(xCh

k)q(xCh
k) + c

M
∑

k=1

wL
k p(xL

k)q(xL
k).

Here, xCh
k , wCh

k are the nodes and weights of the M-point Gauss–Chebyshev
quadrature rule, and xL

k , wL
k those of the Gauss–Legendre quadrature rule.

The discrete measure implied by (4.2) is dλN with N = 2M and

(4.3) dλN(t) =
M
∑

k=1

wCh
k δ(t − xCh

k) + c
M
∑

k=1

wL
k δ(t − xL

k).

What is attractive about this choice is the fact that the approximation in
(4.2) is actually an equality whenever the product p · q is a polynomial of
degree ≤ 2M − 1. Now if we are interested in computing αk(w), βk(w) for
k ≤ n−1, then the products p · q that occur in Darboux’s formulae are all of

16

degree ≤ 2n− 1. Therefore, we have equality in (4.2) if n ≤ M . It therefore
suffices to take M = n in (4.2) to obtain the first n recurrence coefficients
exactly.

In general, the quadrature rules will not produce exact results, and N
will have to be increased through a sequence of integers until convergence
occurs.

Example 1 illustrates the case of a 2-component discretization. In a gen-
eral multiple-component discretization, the support [a, b] of dλ is decomposed
into s intervals,

(4.4) [a, b] =

s
⋃

j=1

[aj , bj],

where the intervals [aj , bj] may or may not be disjoint. The measure dλ is
then discretized on each interval [aj , bj] using either a tailor-made quadrature
(as in Example 1), or a general-purpose quadrature. For the latter, a Fejér
quadrature rule on [−1, 1], suitably transformed to [aj , bj], has been found
useful. (The Fejér rule is the interpolatory quadrature formula based on
Chebyshev points.) If the original measure dλ has also a discrete component,
this component is simply added on. Rather than go into details (which are
discussed in Ga04, §2.2.4), we present the Matlab implementation, another
illustrative example, and a demo.

The OPQ routine for the multiple-component discretization is ab=mcdis

(n,eps0,quad,Nmax), where in addition to the variables ab and n, which
have the usual meaning, there are three other parameters, eps0: a prescribed
accuracy tolerance, quad: the name of a quadrature routine carrying out
the discretization on each subinterval if tailor-made (otherwise, quadgp.m, a
general-purpose quadrature routine can be used), Nmax: a maximal allowable
value for the discretization parameter N . The decomposition (4.4) is input
via the mc×2 array

AB=

a1 b1

a2 b2
...

...
amc bmc

,

where mc is the number of components (the s in (4.4)). A discrete component
which may possibly be present in dλ is input via the array

17

DM=

x1 y1

x2 y2
...

...
xmp ymp

,

with the first column containing the support points, and the second column
the associated weights. The number of support points is mp. Both mc and
mp, as well as AB and DM, are global variables. Another global variable is iq,
which has to be set equal to 1 if the user provides his or her own quadrature
routine, and equal to 0 otherwise.
Example 2. The normalized Jacobi weight function plus a discrete measure.

This is the measure

dλ(t) = (βJ
0)

−1(1 − t)α(1 + t)βdt +

p
∑

j=1

wjδ(t − xj)dt on [−1, 1],

where

βJ
0 =

∫ 1

−1

(1 − t)α(1 + t)βdt, α > −1, β > −1.

Here, one single component suffices to do the discretization, and the obvious
choice of quadrature rule is the Gauss–Jacobi N -point quadrature formula to
which the discrete component is added on. Similarly as in Example 1, taking
N = n yields the first n recurrence coefficients αk(dλ), βk(dλ), k ≤ n − 1,
exactly. The global parameters in Matlab are here mc=1, mp=p, iq=1, and

AB= −1 1 DM=

x1 w1

x2 w2
...

...
xp wp

Demo#3 Logistic density function,

dλ(t) =
e−t

(1 + e−t)2
dt, t ∈ R.

The discretization is conveniently effected by the quadrature rule
∫

R

p(t)dλ(t) =

∫ ∞

0

p(−t)

(1 + e−t)2
e−tdt +

∫ ∞

0

p(t)

(1 + e−t)2
e−tdt

≈
N
∑

ν=1

λL
ν

p(−τL
ν) + p(τL

ν)

(1 + e−τL
ν)2

,

18

where τL
k , λL

k are the nodes and weights of the N -point Gauss–Laguerre
quadrature formula. This no longer produces exact results for N = n, but
converges rapidly as N → ∞. The exact answers happen to be known,

αk(dλ) = 0 by symmetry,

β0(dλ) = 1, βk(dλ) =
k4π2

4k2 − 1
, k ≥ 1.

Numerical results produced by mcdis.m with N=40, eps0=103×eps, along
with errors (absolute errors for αk, relative errors for βk) are shown in the
box below. The two entries in the last row are the maximum errors taken
over 0 ≤ n ≤ 39.

n βn errα errβ
0 1.0000000000(0) 7.18(–17) 3.33(–16)
1 3.2898681337(0) 1.29(–16) 2.70(–16)
6 8.9447603523(1) 4.52(–16) 1.43(–15)
15 5.5578278399(2) 2.14(–14) 0.00(+00)
39 3.7535340252(3) 6.24(–14) 4.48(–15)

6.24(–14) 8.75(–15)

5 Cauchy integrals of orthogonal polynomials

5.1 The Jacobi continued fraction

The Jacobi continued fraction associated with the measure dλ is

(5.1) J = J (t; dλ) =
β0

t − α0 −
β1

t − α1 −
β2

t − α2 −
· · · ,

where αk = αk(dλ), βk = βk(dλ). From the theory of continued fractions it
is readily seen that the nth convergent of J is

(5.2)
β0

z − α0 −
β1

z − α1 −
· · · βn−1

z − αn−1

=
σn(z; dλ)

πn(z; dλ)
, n = 1, 2, 3, . . . ,

where πn is the monic orthogonal polynomial of degree n, and σn a polynomial
of degree n − 1 satisfying the same basic three-term recurrence relation as
πn, but with different starting values,

(5.3)
σk+1(z) = (z − αk)σk(z) − βkσk−1(z), k = 1, 2, 3, . . . ,

σ0(z) = 0, σ1(z) = β0.

19

Recall that β0 =
∫

R
dλ(t). If we define σ−1 = −1, then (5.3) holds also for

k = 0. We have, moreover,

(5.4) σn(z) =

∫

R

πn(z) − πn(t)

z − t
dλ(t), n = 0, 1, 2, . . . ,

as can be seen by showing that the integral on the right also satisfies (5.3).
If we define

(5.5) F (z) = F (z; dλ) =

∫

R

dλ(t)

z − t

to be the Cauchy transform of the measure dλ, and more generally consider

(5.6) ρn(z) = ρn(z; dλ) =

∫

R

πn(t)

z − t
dλ(t),

the Cauchy integral of the orthogonal polynomial πn, we can give (5.4) the
form

(5.7) σn(z) = πn(z)F (z) − ρn(z),

and hence

(5.8)
σn(z)

πn(z)
= F (z) − ρn(z)

πn(z)
.

An important result from the theory of the moment problem tells us that,
whenever the moment problem for dλ is determined, then

(5.9) lim
n→∞

σn(z)

πn(z)
= F (z) for z ∈ C\[a, b],

where [a, b] is the support of the measure dλ. If [a, b] is a finite interval, then
the moment problem is always determined, and (5.9) is known as Markov’s

theorem.
Note from (5.7) that, since σ−1 = −1, we have

(5.10) ρ−1(z) = 1,

and the sequence {ρn}∞n=−1 satisfies the same three-term recurrence relation
as {πn}∞n=−1. As a consequence of (5.8) and (5.9), however, it behaves quite
differently at infinity,

(5.11) lim
n→∞

ρn(z)

πn(z)
= 0,

20

which implies that {ρn(z)} is the minimal solution of the three-term recur-
rence relation having the initial value (5.10). It is well known that a minimal
solution of a three-term recurrence relation is uniquely determined by its
starting value, and, moreover, that

(5.12)
ρn(z)

ρn−1(z)
=

βn

z − αn−
βn+1

z − αn+1−
βn+2

z − αn+2−
· · · ,

i.e. the successive ratios of the minimal solution are the successive tails of
the Jacobi continued fraction (Pincherele’s theorem). In particular, by (5.12)
for n = 0, and (5.2) and (5.9),

(5.13) ρ0(z) = F (z),

i.e. ρ0 is the Cauchy transform of the measure.
We remark that (5.6) is meaningful also for real z = x in (a, b), if the

integral is interpreted as a Cauchy principal value integral (cf. (15.1))

(5.14) ρn(x) =

∫

R

− πn(t; dλ)

x − t
dλ(t), x ∈ (a, b),

and the sequence {ρn(x)} satisfies the basic three-term recurrence relation
with initial values

(5.15) ρ−1(x) = 1, ρ0(x) =

∫

R

− dλ(t)

x − t
,

but is no longer minimal.

5.2 Continued fraction algorithm

This is an algorithm for computing the minimal solution ρn(z), z ∈ C\[a, b],
of the basic three-term recurrence relation. Denote the ratio in (5.12) by

(5.16) rn−1 =
ρn(z)

ρn−1(z)
.

Then, clearly,

(5.17) rn−1 =
βn

z − αn − rn
.

21

If, for some ν ≥ N , we knew rν , we could apply (5.17) for r = ν, ν −1, . . . , 0,
and then obtain

(5.18) ρn(z) = rn−1ρn−1(z), n = 0, 1, . . . , N.

The continued fraction algorithm is precisely this algorithm, except that rν is
replaced by 0. All quantities generated then depend on ν, which is indicated
by a superscript.

Algorithm 2 Continued fraction algorithm
backward phase; ν ≥ N :

r[ν]
ν = 0, r

[ν]
n−1 =

βn

z − αn − r
[ν]
n

, n = ν, ν − 1, . . . , 0

forward phase:

ρ
[ν]
−1(z) = 1, ρ[ν]

n (z) = r
[ν]
n−1ρ

[ν]
n−1(z), n = 0, 1, . . . , N

It can be shown that, as a consequence of the minimality of {ρn(z)} (cf.
Ga04, pp. 114–115),

(5.19) lim
ν→∞

ρ[ν]
n (z) = ρn(z), n = 0, 1, . . . , N, if z ∈ C\[a, b].

Convergence is faster the larger dist(z, [a, b]). To compute ρn(z), it suffices to
apply Algorithm 2 for a sequence of increasing values of ν until convergence
is achieved to within the desired accuracy.

The OPQ command implementing this algorithm is

[rho,r,nu]=cauchy(N,ab,z,eps0,nu0,numax)

where the meanings of the output variables rho, r and input variable ab are
as shown below.

ρ0(z)
ρ1(z)

...
ρN (z)

r0(z)
r1(z)

...
rN(z)

α0 β0

α1 β1
...

...
αnumax βnumax

rho r ab

The input variable eps0 is an error tolerance, the variable nu0 a suitable
starting value of ν in Algorithm 2, which is incremented in steps of, say 5,
until the algorithm converges to the accuracy eps0. If convergence does not
occur within ν ≤numax, an error message is issued, otherwise the value of ν
yielding convergence is output as nu.

22

6 Modification algorithms

By “modification” of a measure dλ, we mean here multiplication of dλ by a
rational function r which is positive on the support [a, b] of dλ. The modified

measure thus is

(6.1) dλ̂(t) = r(t)dλ(t), r rational and r > 0 on [a, b].

We are interested in determining the recurrence coefficients α̂k, β̂k for dλ̂ in
terms of the recurrence coefficients αk, βk of dλ. An algorithm that carries
out the transition from αk, βk to α̂k, β̂k is called a modification algorithm.
While the passage from the orthogonal polynomials relative to dλ to those
relative to dλ̂ is classical (at least in the case when r is a polynomial), the
transition in terms of recurrence coefficients is more recent. It was first
treated for linear factors in 1971 by Galant.
Example 3. Linear factor r(t) = s(t − c), c ∈ R\[a, b], s = ±1.

Here, s is a sign factor to make r(t) > 0 on (a, b). Galant’s approach
is to determine the Jacobi matrix of dλ̂ from the Jacobi matrix of dλ by
means of one step of the symmetric, shifted LR algorithm: by the choice of
s, the matrix s[Jn+1(dλ) − cI] is symmetric positive definite, hence admits
a Choleski decomposition

s[Jn+1(dλ) − cI] = LLT,

where L is lower triangular. The Jacobi matrix Jn(dλ̂) is now obtained by
reversing the order of the product on the right, adding back the shift c, and
then discarding the last row and column,1

Jn(dλ̂) =
(

LTL + cI
)

[1:n,1:n]
.

Since the matrices involved are tridiagonal, the procedure can be imple-
mented by simple nonlinear recurrence relations. These can also be obtained
more systematically via Christoffel’s theorem and its generalizations.

1See, e.g. W. Gautschi, “The interplay between classical analysis and (numerical) linear
algebra—a tribute to Gene H. Golub”, Electron. Trans. Numer. Anal. 13 (2002), 119–
147, where it is also shown how a quadratic factor (t − c1)(t − c2) can be dealt with by
one step of the QR algorithm; see in particular §3.2 and 3.3

23

6.1 Generalized Christoffel’s theorem

We write

(6.2) dλ̂(t) =
u(t)

v(t)
dλ(t), u(t) = ±

∏̀

λ=1

(t − uλ), v(t) =

m
∏

µ=1

(t − vµ),

where uλ and vµ are real numbers outside the support of dλ. The sign of

u(t) is chosen so that dλ̂ is a positive measure. Christoffel’s original theorem
(1858) relates to the case v(t) = 1, i.e. m = 0. The generalization to
arbitrary v is due to Uvarov (1969). It has a different form depending on
whether m ≤ n or m > n. In the first case, it states that

(6.3)

u(t)πn(t; dλ̂) = const ×
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

πn−m(t) · · · πn−1(t) πn(t) · · · πn+`(t)
πn−m(u1) · · · πn−1(u1) πn(u1) · · · πn+`(u1)

· · · · · · · · · · · · · · · · · ·
πn−m(u`) · · · πn−1(u`) πn(u`) · · · πn+`(u`)
ρn−m(v1) · · · ρn−1(v1) ρn(v1) · · · ρn+`(v1)

· · · · · · · · · · · · · · · · · ·
ρn−m(vm) · · · ρn−1(vm) ρn(vm) · · · ρn+`(vm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where

ρk(z) =

∫

R

πk(t; dλ)

z − t
dλ(t), k = 0, 1, 2, . . . ,

are the Cauchy integrals of the orthogonal polynomials πk. They occur only
if m > 0. To get monic polynomials, the constant in (6.3) must be taken to
be the reciprocal of the (signed) cofactor of the element πn+`(t).

If m > n, the generalized Christoffel theorem has the form

(6.4)

u(t)πn(t; dλ̂) = const ×
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 · · · 0 π0(t) · · · πn+`(t)
0 0 · · · 0 π0(u1) · · · πn+`(u1)
· ·
0 0 · · · 0 π0(u`) · · · πn+`(u`)
1 v1 · · · vm−n−1

1 ρ0(v1) · · · ρn+`(v1)
· ·
1 vm · · · vm−n−1

m ρ0(vm) · · · ρn+`(vm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Both versions of the theorem remain valid for complex uλ, vµ if orthogo-
nality is understood in the sense of formal orthogonality.

24

6.2 Linear factors

Generalizing Example 3 to arbitrary complex shifts, we let

(6.5) dλ̂(t) = (t − z)dλ(t), z ∈ C\[a, b].

Using Christoffel’s theorem, letting π̂n(·) = πn(· ; dλ̂), we have

(6.6) (t − z)π̂n(t) =

∣

∣

∣

∣

πn(t) πn+1(t)
πn(z) πn+1(z)

∣

∣

∣

∣

−πn(z)
= πn+1(t) − rnπn(t),

where

(6.7) rn =
πn+1(z)

πn(z)
.

Following Verlinden (1999), we write (t − z)tπ̂n(t) in two different ways: in
the first, we use the three-term recurrence relation for πk to obtain

(t − z)tπ̂k(t) = tπk+1(t) − rk · tπk(t)

= πk+2(t) + (αk+1 − rk)πk+1(t) + (βk+1 − rkαk)πk(t) − rkβkπk−1(t);

in the second, we use the three-term recurrence relation directly on π̂k, and
then apply (6.6), to write

(t − z)tπ̂k(t) = (t − z)[π̂k+1 + α̂kπ̂k(t) + β̂kπ̂k−1(t)]

= πk+2(t) + (α̂k − rk+1)πk+1(t) + (β̂k − rkα̂k)πk(t) − rk−1β̂kπk−1(t).

Since orthogonal polynomials are linearly independent, the coefficients in the
two expressions obtained must be the same. This yields

α̂k − rk+1 = αk+1 − rk, rk−1β̂k = rkβk,

hence the following algorithm.

Algorithm 3 Modification by a linear factor t − z
initialization:

r0 = z − α0, r1 = z − α1 − β1/r0,

α̂0 = α1 + r1 − r0, β̂0 = −r0 β0.

25

continuation (if n > 1): for k = 1, 2, . . . , n − 1 do

rk+1 = z − αk+1 − βk+1/rk,

α̂k = αk+1 + rk+1 − rk,

β̂k = βkrk/rk−1.

Note that this requires αn, βn in addition to the usual n recurrence coefficients
αk, βk for k ≤ n − 1. Algorithm 3 has been found to be numerically stable.

The OPQ Matlab command implementing Algorithm 3 is

ab=chri1(N,ab0,z)

where ab0 is an (N+1)×2 array containing the recurrence coefficients αk, βk,
k = 0, 1, . . . , N.

6.3 Quadratic factor

We consider (real) quadratic factors (t−x)2 + y2 = (t− z)(t− z), z = x+iy,
y > 0. Christoffel’s theorem is now applied with u1 = z, u2 = z to express
(t − z)(t − z)π̂n(t) as a linar combination of πn, πn+1, and πn+2,

(6.8) (t − z)(t − z)π̂n(t) = πn+2(t) + snπn+1(t) + tnπn(t),

where

(6.9) sn = −
(

r′n+1 +
r′′n+1

r′′n
r′n

)

, tn =
r′′n+1

r′′n
|rn|2.

Here we use the notation

(6.10) r′n = Re rn(z), r′′n = Im rn(z), |rn|2 = |rn(z)|2, n = 0, 1, 2, . . . ,

where rn(z) continues to be the quantity defined in (6.7). The same technique
used in §6.2 can be applied to (6.8): express (t − z)(t − z)tπ̂k(t) in two
different ways as a linear combination of πk+3, πk+2, . . . , πk−1 and compare
the respective coefficients. The result gives rise to

26

Algorithm 4 Modification by a quadratic factor (t − z)(t − z), z = x + iy
initialization:

r0 = z − α0, r1 = z − α1 − β1/r0, r2 = z − α2 − β2/r1,

α̂0 = α2 + r′2 +
r′′2
r′′1

r′1 −
(

r′1 +
r′′1
r′′0

r′0

)

,

β̂0 = β0(β1 + |r0|2).

continuation (if n > 1): for k = 1, 2, . . . , n − 1 do

rk+2 = z − αk+2 − βk+2/rk+1,

α̂k = αk+2 + r′k+2 +
r′′k+2

r′′k+1

r′k+1 −
(

r′k+1 +
r′′k+1

r′′k
r′k

)

,

β̂k = βk

r′′k+1r
′′
k−1

[r′′k]
2

∣

∣

∣

∣

rk

rk−1

∣

∣

∣

∣

2

.

Note that this requires αk, βk for k up to n + 1. Algorithm 4 is also quite
stable, numerically.

The OPQ routine for Algorithm 4 is

ab=chri2(N,ab0,x,y)

with obvious meanings of the variables involved.
Since any real polynomial can be factored into a product of real linear and

quadratic factors of the type considered, Algorithms 3 and 4 can be applied
repeatedly to deal with modification by an arbitrary polynomial which is
positive on the support [a, b].

6.4 Linear divisor

In analogy to (6.5), we consider

(6.11) dλ̂(t) =
dλ(t)

t − z
, z ∈ C\[a, b].

Now the generalized Christoffel theorem (with ` = 0, m = 1) comes into play,
giving

(6.12) π̂n(t) =

∣

∣

∣

∣

πn−1(t) πn(t)
ρn−1(z) ρn(z)

∣

∣

∣

∣

−ρn−1(z)
= πn(t) − rn−1πn−1(t),

27

where now

(6.13) rn =
ρn+1(z)

ρn(z)
.

Similarly as in §6.2 and 6.3, we express tπ̂k(t) in two different ways as a linear
combination of πk+1, πk, . . . , πk−2 and compare coefficients. By convention,

β̂0 =

∫

R

dλ̂(t) =

∫

R

dλ(t)

t − z
= −ρ0(z).

The result is:

Algorithm 5 Modification by a linear divisor
initialization:

α̂0 = α0 + r0, β̂0 = −ρ0(z).

continuation (if n > 1): for k = 1, 2, . . . , n − 1 do

α̂k = αk + rk − rk−1,

β̂k = βk−1rk−1/rk−2.

Note that here no coefficient αk, βk beyond k ≤ n − 1 is needed, not even
βn−1.

The ratios rk of Cauchy integrals that appear in Algorithm 5 can be
precomputed by Algorithm 2, where only the backward phase is relevant,
convergence being tested on the r

[ν]
k . Once converged, the algorithm also

provides ρ0(z) = r
[∞]
−1 .

As z approaches the support interval [a, b], the strength of minimality of
the Cauchy integrals {ρk(z)} weakens and ceases altogether when z = x ∈
[a, b]. For z very close to [a, b], Algorithm 2 therefore converges very slowly.
On the other hand, since minimality is very weak, one can generate ρk with
impunity, if n is not too large, by forward application of the basic three-term
recurrence relation, using the initial values ρ−1(z) = 1 and ρ0(z).

All of this is implemented in the OPQ routine

[ab,nu]=chri4(N,ab0,z,eps0,nu0,numax,rho0,iopt)

where all variables except rho and iopt have the same meaning as before.
The parameter rho is ρ0(z), whereas iopt controls the method of computa-
tion for rk: Algorithm 2 if iopt=1, and forward recursion otherwise.

28

6.5 Quadratic divisor

We now consider

(6.14) dλ̂(t) =
dλ(t)

(t − z)(t − z)
=

dλ(t)

(t − x)2 + y2
, z = x + iy, x ∈ R, y > 0.

Here we have

(6.15) α̂0 =

∫

R

tdλ(t)/|t − z|2
∫

R

dλ(t)/|t − z|2
= x + y

Re ρ0(z)

Im ρ0(z)
, β̂0 = −1

y
Im ρ0(z).

We are in the case ` = 0, m = 2 of the generalized Christoffel theorems (6.3)
and (6.4), which give respectively
(6.16)

π̂n(t) =

∣

∣

∣

∣

∣

∣

πn−2(t) πn−1(t) πn(t)
ρn−2(z) ρn−1(z) ρn(z)
ρn−2(z) ρn−1(z) ρn(z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρn−2(z) ρn−1(z)
ρn−2(z) ρn−1(z)

∣

∣

∣

∣

, n ≥ 2; π̂1(t) =

∣

∣

∣

∣

∣

∣

0 π0(t) π1(t)
1 ρ0(z) ρ1(z)
1 ρ0(z) ρ1(z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ρ0(z)
1 ρ0(z)

∣

∣

∣

∣

.

This becomes

(6.17) π̂n(t) = πn(t) + snπn−1(t) + tnπn−2(t), n ≥ 1,

where

(6.18) sn = −
(

r′n−1 +
r′′n−1

r′′n−2

r′n−2

)

, n ≥ 1; tn =
r′′n−1

r′′n−2

|rn−2|2, n ≥ 2,

with rn as defined in (6.13) and notations as in (6.10). Exactly the same
procedure used to obtain Algorithm 5 yields

Algorithm 6 Modification by a quadratic divisor
initialization:

α̂0 = x + ρ′
0y/ρ′′

0, β̂0 = −ρ′′
0/y,

α̂1 = α1 − s2 + s1, β̂1 = β1 + s1(α0 − α̂1) − t2,

α̂2 = α2 − s3 + s2, β̂2 = β2 + s2(α1 − α̂2) − t3 + t2.

29

continuation (if n > 3): for k = 3, 4, . . . , n − 1 do

α̂k = αk − sk+1 + sk, β̂k = βk−2 tk/tk−1.

The OPQ routine for Algorithm 6 is

[ab,nu]=chri5(N,ab0,z,eps0,nu0,numax,rho0,iopt)

where the input and output variables have the same meaning as in the routine
chri4.m.

Just like Algorithms 3 and 4, also Algorithms 5 and 6 can be applied
repeatedly to deal with more general polynomial divisors.

30

PART Ib SOBOLEV ORTHOGONAL

POLYNOMIALS

7 Sobolev inner product and recurrence re-

lation

In contrast to the orthogonal polynomials considered so far, the inner product
here involves not only function values, but also successive derivative values,
all being endowed with their own measures. Thus,

(7.1)
(p, q)S =

∫

R

p(t)q(t)dλ0(t) +

∫

R

p′(t)q′(t)dλ1(t)

+ · · ·+
∫

R

p(s)(t)q(s)(t)dλs(t), s ≥ 1.

If all the measures dλσ are positive, as we assume, the inner product (7.1) has
associated with it a sequence of (monic) polynomials πk(· ; S), k = 0, 1, 2, . . . ,
orthogonal in the sense

(7.2) (πk, π`)S

{

= 0, k 6= `,
> 0, k = `.

These are called Sobolev orthogonal polynomials. We cannot expect them to
satisfy a three-term recurrence relation, since the inner product no longer
has the shift property (tp, q) = (p, tq). However, like any sequence of monic
polynomials of degrees 0, 1, 2, . . . , orthogonal or not, they must satisfy an
extended recurrence relation of the type

(7.3) πk+1(t) = tπk(t) −
k
∑

j=0

βk
j πk−j(t), k = 0, 1, 2,

Associated with it is the upper Hessenberg matrix of recurrence coefficients

(7.4) Hn =

















β0
0 β1

1 β2
2 · · · βn−2

n−2 βn−1
n−1

1 β1
0 β2

1 · · · βn−2
n−3 βn−1

n−2

0 1 β2
0 · · · βn−2

n−4 βn−1
n−3

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · βn−2

0 βn−1
1

0 0 0 · · · 1 βn−1
0

















.

31

In the case s = 0 (of ordinary orthogonal polynomials) there holds βk
j = 0

for j > 1, and the matrix Hn is tridiagonal. If symmetrized by a (real)
diagonal similarity transformation, it becomes the Jacobi matrix Jn(dλ0).
When s > 0, however, symmetrization of Hn is no longer possible, since Hn

may well have complex eigenvalues (see Example 5).

8 Moment-based algorithm

There are now s+1 sets of modified moments, one set for each measure dλσ,

(8.1) m
(σ)
k =

∫

R

pk(t)dλσ, k = 0, 1, 2, . . . ; σ = 0, 1, . . . , s.

The first 2n modified moments of all the sets will uniquely determine the
matrix Hn in (7.4), i.e. there is a well-determined map

(8.2) [m
(σ)
k]2n−1

k=0 , σ = 0, 1, . . . , s 7→ Hn,

called modified moment map for Sobolev orthogonal polynomials. In the case
where the polynomials pk in (8.1) satisfy a three-term recurrence relation
with known coefficients, and for s = 1, an algorithm has been developed that
implements the map (8.2). It very much resembles the modified Chebyshev
algorithm for ordinary orthogonal polynomials, but is technically much more
elaborate.2 The algorithm, however, is implemented in the OPQ routine

B=chebyshev sob(N,mom,abm)

which produces the N×N upper triangular matrix B of recurrence coefficients,
with βk

j , 0 ≤ j ≤ k, 0 ≤ k ≤N–1, occupying the position (j + 1, k + 1) in the
matrix. The input parameter mom is the 2× (2N) array of modified moments

m
(σ)
k , k = 0, 1, . . . , 2N–1; σ = 0, 1, of the two measures dλ0 and dλ1, and abm

the (2N−1) × 2 array of coefficients ak, bk, k = 0, 1, . . . , 2N–2, defining the
polynomials pk.

Example 3. Althammer’s polynomials (1962)
These are the Sobolev polynomials relative to the measures dλ0(t) = dt,
dλ1(t) = γdt on [−1, 1], γ > 0.

2See W. Gautschi and M. Zhang,“Computing orthogonal polynomials in Sobolev
spaces”, Numer. Math. 71 (1995), 159–183.

32

A natural choice of modified moments are the Legendre moments, i.e.
pk(t) is the monic Legendre polynomial of degree k. By orthogonality of the

Legendre polynomials, all modified moments m
(0)
k and m

(1)
k are zero for k > 0,

while m
(0)
0 = 2 and m

(1)
0 = 2γ. The following Matlab routine, therefore, can

be used to generate the Althammer polynomials.

mom=zeros(2,2*N);

mom(1,1)=2; mom(2,1)=2*g;

abm=r jacobi(2*N-1);

B=chebyshev sob(N,mom,abm);

9 Discretization algorithm

Taking the inner product of both sides of (7.3) with πk−j gives

0 = (πk+1, πk−j)S = (tπk, πk−j)S − βk
j (πk−j, πk−j)S, j = 0, 1, . . . , k,

hence

(9.1) βk
j =

(tπk, πk−j)S

(πk−j, πk−j)S
, j = 0, 1, . . . , k; k = 0, 1, . . . , n − 1.

These are the analogues of Darboux’s formulae for ordinary orthogonal poly-
nomials, and like these, can be combined with the recurrence relation (7.3) to
successively build up the recurrence coefficients βk

j in the manner of Stielt-
jes’s procedure. The technical details, of course, are more involved, since
we must generate not only the polynomials πk, but also their derivatives, in
order to be able to compute the Sobolev inner products in (9.1). This all is
implemented, for arbitrary s ≥ 1, in the Matlab routine stieltjes sob.m.
The basic assumption in the design of this routine is the availability, for each
measure dλσ, of an nσ-point quadrature rule

(9.2)

∫

R

p(t) dλσ(t) =

nσ
∑

k=1

w
(σ)
k p(x

(σ)
k), p ∈ P2(n−σ)−1, σ = 0, 1, . . . , s,

that is exact for polynomials p of degree ≤ 2(n− σ)− 1. These are typically
Gaussian quadrature rules, possibly with discrete components (present in
dλσ) added on. The information is supplied to the routine via the 1× (s+1)
array

33

nd= [n0, n1, . . . , ns]

and the md×(2s + 2) array

xw=

x
(0)
1 · · · x

(s)
1 w

(0)
1 · · · w

(s)
1

x
(0)
2 · · · x

(s)
2 w

(0)
2 · · · w

(s)
2

...
...

...
...

x
(0)
md · · · x

(s)
md w

(0)
md · · · w

(s)
md

where md=max(nd). In each column of xw the entries after x
(σ)
nσ resp. w

(σ)
nσ (if

any) are not used by the routine. Two more input parameters are needed;
the first is a0, the coefficient α0(dλ0), which allows us to initialize the matrix
of recurrence coefficients,

β0
0 =

(t, 1)S

(1, 1)S

=
(t, 1)dλ0

(1, 1)dλ0

= α0(dλ0).

The other, same, is a logical variable set equal to 1 if all quadrature rules have
the same set of nodes, and equal to 0 otherwise. The role of this parameter
is to switch to a simplified, and thus faster, procedure if same=1. A call to
the routine, therefore, has the form

B=stieltjes sob(N,s,nd,xw,a0,same)

Example 4. Althammer’s polynomials, revisited.
Here, the obvious choice of the quadrature rule for dλ0 and dλ1 is the

n-point Gauss–Legendre rule. This gives rise to the following routine:

s=1; nd=[N N];

a0=0; same=1;

ab=r jacobi(N);

zw=gauss(N,ab);

xw=[zw(:,1) zw(:,1) ...

zw(:,2) g*zw(:,2)];

B=stieltjes sob(N,s,nd,xw,a0,same);

The results are identical with those obtained in Example 3.

34

10 Zeros

If we let πT(t) = [π0(t), π1(t), . . . , πn−1(t)], where πk are the Sobolev orthog-
onal polynomials, then the recurrence relation (7.3) can be written in matrix
form as

(10.1) tπT(t) = πT(t)Hn + πn(t)eT
n

in terms of the matrix Hn in (7.4). This immediately shows that the zeros τν

of πn are the eigenvalues of Hn and πT(τν) corresponding left eigenvectors.
Naturally, there is no guarantee that the eigenvalues are real; some may well
be complex. Also, if n is large, there is a good chance that some of the
eigenvalues are ill-conditioned.

The OPQ routine for the zeros of πn is

z=sobzeros(n,N,B)

where B is the N×N matrix returned by chebyshev sob.m or stieltjes sob.m,
and z the n-vector of the zeros of πn, 1 ≤ n ≤ N .

Example 5. Sobolev orthogonal polynomials with only a few real zeros
(Meijer, 1994).

The Sobolev inner product in question is
(10.2)

(u, v)S =

∫ 3

−1

u(t)v(t) dt + γ

∫ 1

−1

u′(t)v′(t) dt +

∫ 3

1

u′(t)v′(t) dt, γ > 0.

Meijer proved that for n(even)≥ 2 and γ sufficiently large, the polynomial
πn(· ; S) has exactly two real zeros, one in [−3,−1] and the other in [1, 3]. If
n(odd)≥ 3, there is exactly one real zero, located in [1, 3], if γ is sufficiently
large. We use the routine stieltjes sob.m and sobzeros.m to illustrate
this for n = 6 and γ = 44, 000. (The critical value of γ above which Meijer’s
theorem takes hold is about γ = 43, 646.2; see Ga04, Table 2.30.)

The inner product corresponds to the case s = 1 and

dλ0(t) = dt on [−1, 3], dλ1(t) =

{

γdt if t ∈ [−1, 1],
dt if t ∈ (1, 3].

Thus, we can write, with suitable transformations of variables,

∫ 3

−1

p(t) dλ0(t) = 2

∫ 1

−1

p(2x+1) dx,

∫ 3

−1

p(t) dλ1(t) =

∫ 1

−1

[γp(x)+p(x+2)] dx

35

and apply n-point Gauss–Legendre quadrature to the integrals on the right.
This will produce the matrix Hn exactly. The parameters in the routine
stieltjes sob.m have to be chosen as follows:

nd = [n, 2n], xw =





























2τG
1 + 1 τG

1 2λG
1 γλG

1

...
...

...
...

2τG
n + 1 τG

n 2λG
n γλG

n

τG
1 + 2 λG

1

...
...

τG
n + 2 λG

n





























∈ R2n×4,

where τG
ν , λG

ν are the nodes and weight of the n-point Gauss–Legendre
quadrature rule. Furthermore, a0=1 and same=1. The complete program,
therefore, is as follows:

N=6; s=1; a0=1; same=0; g=44000; nd=[N 2*N];

ab=r jacobi(N); zw=gauss(N,ab);

xw=zeros(2*N,2*(s+1));

xw(1:N,1)=2*zw(:,1)+1; xw(1:N,2)=zw(:,1);

xw(1:N,3)=2*zw(:,2); xw(1:N,4)=g*zw(:,2);

xw(N+1:2*N,2)=zw(:,1)+2; xw(N+1:2*N,4)=zw(:,2);

B=stieltjes sob(N,s,nd,xw,a0,same);

z=sobzeros(N,N,B)

It produces the output

z =

-4.176763898909848e-01 - 1.703657992747233e-01i

-4.176763898909848e-01 + 1.703657992747233e-01i

8.453761089539369e-01 - 1.538233952529940e-01i

8.453761089539369e-01 + 1.538233952529940e-01i

-1.070135059563751e+00

2.598402134930250e+00

confirming Meijer’s theorem for n = 6. A more detailed numerical study,
also in the case of odd values of n, has been made in Ga04, Table 2.30.

36

Exercises to Part I (Stars indicate more advanced exercises.)

1. Explain why, under the assumptions made about the measure dλ, the
inner product (p, q)dλ of two polynomials p, q is well defined.

2. Show that monic orthogonal polynomials relative to an absolutely con-
tinuous measure are uniquely defined. {Hint: Use Gram-Schmidt or-
thogonalization.} Discuss the uniqueness in the case of discrete mea-
sures.

3. Supply the details of the proof of (1.1). In particular, derive (1.3) and
(1.4).

4. Derive the three-term recurrence relation (1.7) for the orthonormal
polynomials.

5. (a) With π̃k denoting the orthonormal polynomials relative to a mea-
sure dλ, show that

∫

R

tπ̃k(t)π̃`(t)dλ(t) =







0 if |k − `| > 1,
√

βk+1 if |k − `| = 1,
αk if k = `,

where αk = αk(dλ), βk = βk(dλ).

(b) Use (a) to prove

J = Jn(dλ) =

∫

R

tp(t)pT(t)dλ(t),

where pT(t) = [π̃0(t), π̃1(t), . . . , π̃n−1(t)].

(c) With notations as in (b), prove

tp(t) = Jp(t) +
√

βnπ̃n(t)en,

where en = [0, 0, . . . , 1]T ∈ Rn.

6. Let dλ(t) = w(t)dt be symmetric on [−a, a], a > 0, that is, w(−t) =
w(t) on [−a, a]. Show that αk(dλ) = 0, all k ≥ 0.

7∗. Symmetry of orthogonal polynomials.

Let dλ(t) = w(t)dt be symmetric in the sense of Exercise 6.

37

(a) Show that

π2k(t; dλ) = π+
k (t2), π2k+1(t; dλ) = tπ−

k (t2),

where π±
k are the monic polynomials orthogonal on [0, a2] with

respect to dλ±(t) = t∓1/2w(t1/2)dt.

(b) Let (cf. Exercise 6)

πk+1(t) = tπk(t) − βkπk−1(t), k = 0, 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1

be the recurrence relation for {πk(· ; dλ)}, and let α±
k , β±

k be the
recurrence coefficients for {π±

k }. Show that

β1 = α+
0

β2k = β+
k /β2k−1

β2k+1 = α+
k − β2k







k = 1, 2, 3,

(c) Derive relations similar to those in (b) which involve α+
0 and α−

k ,
β−

k .

(d) Write a Matlab program that checks the numerical stability of
the nonlinear recursions in (b) and (c) when {πk} are the monic
Legendre polynomials.

8. The recurrence relation, in Matlab, of the Chebyshev polynomials of
the second kind.

(a) Using Matlab, compute Uk(x) for 1 ≤ k ≤ N either by means of
the three-term recurrence relation Un+1(x) = 2xUn(x) − Un−1(x)
for n = 0, 1, . . . , N − 1 (where U−1(x) = 0, U0(x) = 1), or
else by putting n = 1 : N in the explicit formula Un(cos θ) =
sin(n + 1)θ/ sin θ, where x = cos θ. For selected values of x and
N , determine which of the two methods, by timing each, is more
efficient.

(b) Using Matlab, compute the single value UN (x) either by use of the
three-term recurrence relation, or by direct computation based on

38

the trigonometric formula for UN(cos θ). For selected values of x
and N , determine which of the two methods, by timing each, is
more efficient.

9∗. Orthogonality on two separate (symmetric) intervals.

Let 0 < ξ < 1 and consider orthogonal polynomials πk relative to the
weight function

w(t) =







|t|γ(1 − t2)α(t2 − ξ2)β, t ∈ [−1, ξ] ∪ [ξ, 1],

0, otherwise.

Here, γ ∈ R and α > −1, β > −1. Evidently, w is a symmetric weight
function (in the sense of Exercise 6). Define π±

k as in Exercise 7(a).

(a) Transform the polynomials π±
k orthogonal on [ξ2, 1] to orthogonal

polynomials π̊±
k on the interval [−1, 1] and obtain the respective

weight function ẘ±.

(b) Express β2k and β2k+1 in terms of γ̊±
r , the leading coefficient of the

orthonormal polynomial of degree r relative to the weight function
ẘ± on [−1, 1]. {Hint: Use βr = ‖πr‖2/‖πr−1‖2 (cf. eqn (1.4)) and
relate this to the leading coefficients γk, γ±

k , and γ̊±
k , with obvious

notations.}
(c) Prove that

lim
k→∞

β2k =
1

4
(1 − ξ)2, lim

k→∞
β2k+1 =

1

4
(1 + ξ)2.

{Hint: Use the result of (b) in combination with the asymptotic
equivalence

γ̊±
k ∼ 2kγ̊±, γ̊± = π−1/2 exp

{

− 1

2π

∫ 1

−1

ln ẘ±(x)(1 − x2)−1/2dx

}

,

as k → ∞

(cf. Sz75, eqn (12.7.2)). You may also want to use

∫ 1

0

ln(1 − a2x2)(1 − x2)−1/2dx = π ln
1 + (1 − a2)1/2

2
, a2 < 1

(see GR00, eqn 4.295.29).}

39

(d) Prove that

lim
k→∞

α±
k =

1 + ξ2

2
, lim

k→∞
β±

k =

(

1 − ξ2

4

)2

.

{Hint: Express α±
k , β±

k in terms of α̊±
k , β̊±

k , and use the fact that
the weight function ẘ± is in the Szegö class.}

(e) The recurrence coefficients {βk} must satisfy the two nonlinear
recursions of Exercise 7(b),(c). Each of them can be interpreted
as a pair of fixed-point iterations for the even-indexed and for the
odd-indexed subsequence, the fixed points being respectively the
limits in (c). Show that, asymptotically, both fixed points are “at-
tractive” for the recursion in 7(b), and “repelling” for the one in
7(c). Also show that in the latter, the fixed points become attrac-
tive if they are switched. What are the numerical implications of
all this?

(f) Consider the special case γ = ±1 and α = β = −1
2
. In the case

γ = 1, use Matlab to run the nonlinear recursion of Exercise 7(b)
and compare the results with the known answers

β2k =
1

4
(1 − ξ)2 1 + η2k−2

1 + η2k
, k = 1, 2, 3, . . . , 0 ≤ t ≤ 1

and

β1 =
1

2
(1 + ξ2), β2k+1 =

1

4
(1 + ξ)2 1 + η2k+2

1 + η2k
, k = 1, 2, 3, . . . ,

where η = (1− ξ)/(1 + ξ) (see Ga04, Example 2.30). Likewise, in
the case γ = −1, run the nonlinear recursion of Exercise 7(c) and
compare the results with the exact answers

β2 = 1
2
(1 − ξ)2, β2k = 1

4
(1 − ξ)2, k = 2, 3, . . . ,

and
β1 = ξ, β2k+1 = 1

4
(1 + ξ)2, k = 1, 2, 3,

Comment on what you observe.

10. Prove the validity of Algorithm 1.

40

(a) Verify the initialization part.

(b) Combine σk+1,k−1 = 0 with the three-term recurrence relation for
πk to prove the formula for βk in the continuation part.

(c) Combine σk+1,k = 0 with the three-term recurrence relation for
both, πk and pk, and use the result of (b), to prove the formula
for αk in the continuation part.

11∗. Orthogonal polynomials {πk(· ; w)} relative to the weight function (“hat
function”)

w(t) =







1 + t if − 1 ≤ t ≤ 0,
1 − t if 0 ≤ t ≤ 1,

0 otherwise.

(a) Develop a modified Chebyshev algorithm for generating the first
n recurrence coefficients βk(w), k = 0, 1, . . . , n− 1 (all αk(w) = 0;
why?). Define modified moments with respect to a suitable system
of (monic) orthogonal polynomials.

(b) What changes in the routine are required if one wants {πk(· ; 1−
w)}, or {πk(· ; w(1− w))}, or {πk(· ; wp)} where p > −1?

(c) Download the routine chebyshev.m, write a routine mom.m for the
modified moments to be used in conjunction with chebyshev.m

to implement (a), and write a Matlab driver to produce results for
selected values of n.

(d) Devise a 2-component discretization scheme for computing the first
n recurrence coefficients βk(w), k = 0, 1, 2, . . . , n − 1, which uses
an n-point discretization of the inner product on each component
interval and is to yield exact answers (in the absence of rounding
errors).

(e) Same as (b).

(f) Download the routine mcdis, write a quadrature routine qhatf

necessary to implement (d), and append a script to the driver of (c)
that produces results of the discretization procedure for selected
values of n. Download whatever additional routines you need.
Run the procedure with irout = 1 and irout 6= 1 and observe
the respective timings and the maximum discrepancy between the
two sets of answers. Verify that the routine “converges” after one

41

iteration if idelta is properly set. Compare the results with those
of (a).

(g) Use the routines acondG.m and rcondG.m to print the absolute
and relative condition numbers of the relevant map Gn. Do any
of these correlate well with the numerical results obtained in (c)?
If not, why not?

12∗. Orthogonal polynomials {πk(· ; w)} relative to the weight function (“ex-
ponential integral”)

w(t) = E1(t), E1(t) =

∫ ∞

1

e−ts

s
ds on [0,∞].

These are of interest in the theory of radiative transfer; see S. Chan-
drasekhar, Radiative transfer, Oxford Univ. Press, Oxford, 1950, Chap-
ter II, §23.

(a) Develop and run a multiple-component discretization routine for
generating the first n recurrence coefficients αk(w), βk(w), k =
0, 1, . . . , n − 1. Check your results for n = 20 against B. Danloy,
Math. Comp. 27 (1973), 861–869, Table 3. {Hint: Decompose
the interval [0,∞] into two subintervals [0, 2] and [2,∞] (addi-
tional subdivisions may be necessary to implement the develop-
ments that follow) and incorporate the behavior of E1(t) near
t = 0 and t = ∞ to come up with appropriate discretizations. For
0 ≤ t ≤ 2, use the power series

E1(t) − ln(1/t) = −γ −
∞
∑

k=1

(−1)ktk

kk!
,

where γ = .57721566490153286 . . . is Euler’s constant, and for
t > 2 the continued fraction (cf. AS92, eqn 5.1.22)

tetE1(t) =
1

1 +

a1

1 +

a2

1 +

a3

1 +

a4

1 +
· · · , ak = dk/2e/t.

Evaluate the continued fraction recursively by (cf. W. Gautschi,
Math. Comp. 31 (1977), 994–999, §2)

1

1 +

a1

1 +

a2

1 +
· · · =

∞
∑

k=0

tk,

42

where

t0 = 1, tk = ρ1ρ2 · · · ρk, k = 1, 2, 3, . . . ,

ρ0 = 0, ρk =
−ak(1 + ρk−1)

1 + ak(1 + ρk−1)
, k = 1, 2, 3,

Download the array abjaclog(101:200,:) to obtain the recur-
rence coefficients ab for the logarithmic weight function ln(1/t).}

(b) Do the same for

w(t) = E2(t), E2(t) =

∫ ∞

1

e−ts

s2
ds on [0,∞].

Check your results against the respective two- and three-point
Gauss quadrature formulae in Chandrasekhar, ibid., Table VI.

(c) Do the same for

w(t) = Em(t) on [0, c], 0 < c < ∞, m = 1, 2.

Check your results against the respective two-point Gauss quadra-
ture formulae in Chandrasekhar, ibid., Table VII.

13. Let C = b0 + a1

b1+
a2

b2+
a3

b3+
· · · be an infinite continued fraction, and

Cn = b0 + a1

b1+
· · · an

bn
= An

Bn
its nth convergent. From the theory of

continued fractions, it is known that

An = bnAn−1 + anAn−2

Bn = bnBn−1 + anBn2







n = 1, 2, 3, . . . ,

where
A−1 = 1, A0 = b0; B−1 = 0, B0 = 1.

Use this to prove (5.2) and (5.3).

14. Prove (5.4).

15. Show that (5.11) implies limn→∞
ρn

yn
= 0, where yn is any solution of the

three-term recurrence relation (satisfied by ρn and πn) which is linearly
independent of ρn. Thus, {ρn} is indeed a minimal solution.

43

16. Show that the minimal solutions of a three-term recurrence relation
form a one-dimensional manifold.

17. (a) Derive (6.9).

(b) Supply the details for deriving Algorithm 4.

18. Supply the details for deriving Algorithm 5.

19. (a) Prove (6.15).

(b) Prove (6.17), (6.18).

(c) Supply the details for deriving Algorithm 6.

20. Show that a Sobolev inner product does not satisfy the shift property
(tp, q) = (p, tq).

21. Prove (7.3).

22. The Sobolev inner product (7.1) is called symmetric if each measure
dλσ is symmetric in the sense of Problem 6. For symmetric Sobolev
inner products,

(a) show that πk(−t; S) = (−1)kπk(t; S);

(b) show that βk
2r = 0 for r = 0, 1, . . . , bk/2c.

44

PART II QUADRATURE

11 Gauss-type quadrature formulae

11.1 Gauss formula

Given a positive measure dλ, the n-point Gaussian quadrature formula asso-
ciated with the measure dλ is

(11.1)

∫

R

f(t)dλ(t) =
n
∑

ν=1

λG
ν f(τG

ν) + RG
n (f),

which has maximum algebraic degree of exactness 2n − 1,

(11.2) RG
n (f) = 0 if f ∈ P2n−1.

It is well known that the nodes τG
ν are the zeros of πn(· ; dλ), and hence the

eigenvalues of the Jacobi matrix Jn(dλ); cf. §1.2. Interestingly, the weights
λG

ν , too, can be expressed in terms of spectral data of Jn(dλ); indeed, they
are (Golub and Welsch, 1969)

(11.3) λG
ν = β0v

2
ν,1,

where vν,1 is the first component of the normalized eigenvector vν corre-
sponding to the eigenvalue τG

ν ,

(11.4) Jn(dλ)vν = τG
ν vν , vT

ν vν = 1,

and, as usual, β0 =
∫

R
dλ(t). This is implemented in the OPQ Matlab routine

xw=gauss(N,ab)

where ab, as in all previous routines, is the N×2 array of recurrence coef-
ficients for dλ, and xw the N×2 array containing the nodes τG

ν in the first
column, and the weights λG

ν in the second.
We remark, for later purposes, that the Gauss quadrature sum, for f

sufficiently regular, can be expressed in matrix form as

(11.5)
n
∑

ν=1

λG
ν f(τG

ν) = β0e
T
1 f(Jn(dλ))e1, e1 = [1, 0, . . . , 0]T.

45

This is an easy consequence of (11.3) and the spectral decomposition of Jn,

Jn(dλ)V = V Dτ , Dτ = diag(τG
1 , τG

2 , . . . , τG
n),

where V = [v1, v2, . . . , vn].

Example 6. Zeros of Sobolev orthogonal polynomials of Gegenbauer type
(Groenevelt, 2002).

The polynomials in question are those orthogonal with respect to the
Sobolev inner product

(u, v)S =

∫ 1

−1

u(t)v(t)(1 − t2)α−1dt + γ

∫ 1

−1

u′(t)v′(t)
(1 − t2)α

t2 + y2
dt.

Groenevelt proved that in the case γ → ∞ the Sobolev orthogonal polyno-
mials of even degrees n ≥ 4 have complex zeros if y is sufficiently small. By
symmetry, they must in fact be purely imaginary, and by the reality of the
Sobolev polynomials, must occur in conjugate complex pairs. As we illustrate
this theorem, we have an opportunity to apply not only the routine gauss.m,
but also a number of other routines, specifically the modification algorithm
embodied in the routine chri6.m, dealing with the special quadratic divisor
t2 + y2 in the second integral, and the routine stieltjes sob.m generating
the recurrence matrix of the Sobelev orthogonal polynomials:

s=1; same=0; eps0=1e-14; numax=250; nd=[N N];
ab0=r jacobi(numax,alpha);
z=complex(0,y);
nu0=nu0jac(N,z,eps0); rho0=0; iopt=1;
ab1=chri6(N,ab0,y,eps0,nu0,numax,rho0,iopt);
zw1=gauss(N,ab1);
ab=r jacobi(N,alpha-1); zw=gauss(N,ab);
xw=[zw(:,1) zw1(:,1) zw(:,2) gamma*zw1(:,2)];
a0=ab(1,1); B=stieltjes sob(N,s,nd,xw,a0,same);
z=sobzeros(N,N,B)

Demo#4 The case N=12, α = 1
2
, and γ = 1 of Example 6.

Applying the above routine for y = .1 and y = .09 yields the following
zeros (with positive imaginary parts; the other six zeros are the same with
opposite signs):

46

y zeros y zeros
.1 .027543282225 .09 .011086169153 i

.284410786673 .281480077515

.541878443180 .540697645595

.756375307278 .755863108617

.909868274113 .909697039063

.989848649239 .989830182743

The numerical results (and additional tests) suggest that Groenevelt’s theo-
rem also holds for finite, not necessarily large, values of γ, and, when γ = 1,
that the critical value of y below which there are complex zeros must be
betweeen .09 and .1.

11.2 Gauss–Radau formula

If there is an interval [a,∞], −∞ < a, containing the support of dλ, it may
be desirable to have an (n + 1)-point quadrature rule of maximum degree of
exactness that has a as a prescribed node,

(11.6)

∫

R

f(t)dλ(t) = λa
0f(a) +

n
∑

ν=1

λa
νf(τa

ν) + Ra
n(f).

Here, Ra
n(f) = 0 for all f ∈ P2n, and τa

ν are the zeros of πn(· ; dλa), dλa(t) =
(t − a)dλ(t). This is called the Gauss–Radau formula. There is again a
symmetric, tridiagonal matrix, the Jacobi–Radau matrix

(11.7) J
R,a
n+1(dλ) =





Jn(dλ)
√

βnen

√
βneT

n αR
n



 , αR
n = a − βn

πn−1(a)

πn(a)
,

where en = [0, 0, . . . , 1]T ∈ Rn, βn = βn(dλ), and πk(·) = πk(· ; dλ), which
allows the Gauss–Radau formula to be characterized in terms of eigenvalues
and eigenvectors: all nodes of (11.6), including the node a, are the eigen-
values of (11.7), and the weights λa

ν expressible as in (11.3) in terms of the
corresponding normalized eigenvectors vν of (11.7),

(11.8) λa
ν = β0v

2
ν,1, ν = 0, 1, 2, . . . , n.

As in (11.5), this implies that the Gauss–Radau quadrature sum, for smooth
f , can be expressed as β0e

T
1 f(JR,a

n)e1.

47

Naturally, if the support of dλ is contained in an interval [−∞, b], b < ∞,
there is a companion formula to (11.6) which has the prescribed node b,

(11.9)

∫

R

f(t) dλ(t) =
n
∑

ν=1

λb
νf(τ b

ν) + λb
n+1f(τ b

n+1) + Rb
n(f).

The eigenvalue/vector characterization also holds for (11.9) if in the formula
for αR

n in (11.7), the variable a, at every occurrence, is replaced by b.
The remainder terms of (11.6) and (11.9), if f ∈ C2n+1[a, b], have the

useful property

(11.10) Ra
n(f) > 0, Rb

n(f) < 0 if sgn f (2n+1) = 1 on [a, b],

with the inequalities reversed if sgn f (2n+1) = −1.
For Jacobi resp. generalized Laguerre measures with parameters α, β

resp. α, the quantity αR
n is explicitly known (cf. Ga04, Examples 3.4 and

3.5). For example, if a = −1 (in the case of Jacobi measures),

(11.11) αR
n = −1 +

2n(n + α)

(2n + α + β)(2n + α + β + 1)
, αR

n = n,

whereas for a = 1, the sign of αR
n must be changed and α and β interchanged.

The respective OPQ Matlab routines are

xw=radau(N,ab,end0)

xw=radau jacobi(N,iopt,a,b)

xw=radau laguerre(N,a)

In the first, ab is the (N+1)×2 array of recurrence coefficients for dλ, and
end0 either a (for (11.6)) or b (for (11.9)). The last two routines make use of
the explicit formulae for αR

n in the case of Jacobi resp. Laguerre measures,
the parameters being α=a, β=b. The parameter iopt chooses between the
two Gauss–Radau formulae: the left-handed, if iopt=1, the right-handed
otherwise.

11.3 Gauss–Lobatto formula

If the support of dλ is contained in the finite interval [a, b], we may wish to
prescribe two nodes, the points a and b. Maximizing the degree of exactness

48

subject to these constraints yields the Gauss–Lobatto formula

(11.12)

∫ b

a

f(t)dλ(t) = λL
0 f(a) +

n
∑

ν=1

λL
ν f(τL

ν) + λL
n+1f(b) + Ra,b

n (f),

which we write as an (n+2)-point formula; we have Ra,b
n (f) = 0 for f ∈ P2n+1.

The internal nodes τL
ν are the zeros of πn(· ; dλa,b), dλa,b(t) = (t − a)(b −

t)dλ(t). All nodes and weights can be expressed in terms of eigenvalues and
eigenvectors exactly as in the two preceding subsections, except that the
matrix involved is the Jacobi–Lobatto matrix

(11.13) JL
n+2(dλ) =





Jn+1(dλ)
√

βL
n+1en+1

√

βL
n+1e

T
n+1 αL

n+1



 ,

where αL
n+1 and βL

n+1 are the solution of the 2×2 system of linear equations

(11.14)





πn+1(a) πn(a)

πn+1(b) πn(b)









αL
n+1

βL
n+1



 =





aπn+1(a)

bπn+1(b)



 .

For smooth f , the quadrature sum is expressible as β0e
T
1 f(JL

n+2)e1. For
f ∈ C2n+2[a, b] with constant sign on [a, b], the remainder Ra,b

n (f) satisfies

(11.15) Ra,b
n (f) < 0 if sgn f (2n+2) = 1 on [a, b],

with the inequality reversed if sgn f (2n+2) = −1.
The parameters αL

n+1, βL
n+1 for Jacobi measures on [−1, 1] with parameters

α, β and a = −b = −1 are explicitly known (cf. Ga04, Example 3.8),

(11.16)
αL

n+1 =
α − β

2n + α + β + 2
,

βL
n+1 = 4

(n + α + 1)(n + β + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)
.

The OPQ Matlab routines are

xw=lobatto(N,ab,endl,endr)

xw=lobatto jacobi(N,a,b)

49

with the meaning of ab, a, b the same as in the Gauss–Radau routines, and
endl=a, endr=b.

We remark that both Gauss–Radau and Gauss–Lobatto formulae can be
generalized to include boundary points of multiplicity r > 1. The inter-
nal (simple) nodes and weights are still related to orthogonal polynomials,
but the boundary weights require new techniques for their computation; see
Exercises 8–9.

12 Gauss–Kronrod quadrature

In an attempt to estimate the error of the n-point Gauss quadrature rule,
Kronrod in 1965 had the idea of inserting n+1 additional nodes and choosing
them, along with all 2n + 1 weights, in such a way as to achieve maximum
degree of exactness. The resulting quadrature rule can be expected to yield
much higher accuracy than the Gauss formula, so that the difference of the
two provides an estimate of the error in the Gauss formula. The extended
formula thus can be written in the form

(12.1)

∫

R

f(t)dλ(t) =

n
∑

ν=1

λK
ν f(τG

ν) +

n+1
∑

µ=1

λ∗K
µ f(τK

µ) + RGK
n (f),

and having 3n + 2 free parameters λK
ν , λ∗K

µ , τK
µ at disposal, one ought to be

able to achieve degree of exactness 3n + 1,

(12.2) RGK
n (f) = 0 for f ∈ P3n+1.

A quadrature formula (12.1) that satisfies (12.2) is called a Gauss–Kronrod

formula. The nodes τK
µ , called Kronrod nodes, are the zeros of the polynomial

πK
n+1 of degree n + 1 which is orthogonal to all polynomials of lower degree

in the sense

(12.3)

∫

R

πK
n+1(t)p(t)πn(t; dλ) dλ(t) = 0 for all p ∈ Pn.

Note that the measure of orthogonality here is πn(t; dλ)dλ(t) and thus os-
cillates on the support of dλ. Stieltjes (1894) was the first to consider poly-
nomials πK

n+1 of this kind (for dλ(t) = dt); a polynomial πK
n+1 satisfying

(12.3) is therefore called a Stieltjes polynomial. Stieltjes conjectured (in the
case dλ(t) = dt) that all zeros of πK

n+1 are real and interlace with the n

50

Gauss nodes— a highly desirable configuration! This has been proved only
later by Szegö (1935) not only for Legendre measures, but also for a class of
Gegenbauer measures. The study of the reality of the zeros for more general
measures is an interesting and ongoing activity.

The computation of Gauss–Kronrod formulae is a challenging problem.
A solution has been given only recently by Laurie (1997), at least in the case
when a Gauss–Kronrod formula exists with real nodes and positive weights.
Interestingly, it can be computed again in terms of eigenvalues and eigen-
vectors of a symmetric tridiagonal matrix, just like the previous Gauss-type
formulae. The relevant matrix, however, is the Jacobi–Kronrod matrix

(12.4) JK
2n+1(dλ) =











Jn(dλ)
√

βnen 0
√

βneT
n αn

√

βn+1e
T
1

0
√

βn+1e1 J∗
n











.

Here, αn = αn(dλ), βn = βn(dλ), etc, and J∗
n (which is partially known)

can be computed by Laurie’s algorithm (cf. Ga04, §3.1.2.2). Should some of
the eigenvalues of (12.4) turn out to be complex, this would be an indication
that a Gauss–Kronrod formula (with real nodes) does not exist.

There are two routines in OPQ,

ab=r kronrod(N,ab0)

xw=kronrod(n,ab)

that serve to compute Gauss–Kronrod formulae. The first generates the
Jacobi-Kronrod matrix of order 2N+1, the other the nodes and weights of
the quadrature formula, stored respectively in the first and second column
of the (2N+1)×2 array xw. The recurrence coefficients of the given measure
dλ are input via the d3N/2+1e×2 array ab0.

13 Gauss–Turán quadrature

The idea of allowing derivatives to appear in a Gauss-type quadrature formula
is due to Turán (1950). He considered the case where each node has the same
multiplicity r ≥ 1, that is,

(13.1)

∫

R

f(t) dλ(t) =
n
∑

ν=1

[λνf(τν)+λ′
νf

′(τν)+· · ·+λ(r−1)
ν f (r−1)(τν)]+Rn(f).

51

This is clearly related to Hermite interpolation. Indeed, if all nodes were
prescribed and distinct, one could use Hermite interpolation to obtain a
formula with degree of exactness rn−1 (there are rn free parameters). Turán
asked, like Gauss before him, whether one can do better by choosing the
nodes τν judiciously. The answer is yes; more precisely, we can get degree of
exactness rn − 1 + k, k > 0, if and only if

(13.2)

∫

R

ωr
n(t)p(t) dλ(t) = 0 for all p ∈ Pk−1,

where ωn(t) =
∏n

ν=1(t− τν) is the node polynomial of (13.1). We have here a
new type of orthogonality: the rth power of ωn, not ωn, must be orthogonal
to all polynomials of degree k − 1. This is called power orthogonality. It is
easily seen that r must be odd,

(13.3) r = 2s + 1, s ≥ 0,

so that (13.1) becomes

(13.4)

∫

R

f(t) dλ(t) =
n
∑

ν=1

2s
∑

σ=0

λ(σ)
ν f (σ)(τν) + Rn,s(f).

Then in (13.2), necessarily k ≤ n, and k = n is optimal. The maximum
possible degree of exactness, therefore, is (2s + 2)n − 1, and is achieved if

(13.5)

∫

R

[ωn(t)]2s+1p(t) dλ(t) = 0 for all p ∈ Pn−1.

The polynomial ωn = πn,s satisfying (13.5) is called s-orthogonal. It exists
uniquely and has distinct simple zeros contained in the support interval of
dλ. The formula (13.4) is the Gauss-Turán formula if its node polynomial ωn

satisfies (13.5) and the weights λ
(σ)
ν are obtained by Hermite interpolation.

The computation of Gauss-Turán formulae is not as simple as in the case
of ordinary Gauss-type formulae. The basic idea, however, is to consider
the positive measure dλn,s(t) = [πn,s(t)]

2sdλ(t) and to note that πn,s is the
nth-degree polynomial orthogonal relative to dλn,s. The difficulty is that
this defines πn,s implicitly, since πn,s already occurs in the measure dλn,s.
Nevertheless, the difficulty can be surmounted, but at the expense of having
to solve a system of nonlinear equations; for details, see Ga04, §3.1.3.2. The
procedure is embodied in the OPQ routine

52

xw=turan(n,s,eps0,ab0,hom)

where the nodes are stored in the first column of the n×(2s+2) array xw, and
the successive weights in the remaining 2s+1 columns. The input parameter
eps0 is an error tolerance used in the iterative solution of the nonliner sys-
tem of equations, and the measure dλ is specified by the ((s+1)n)×2 input
array ab0 of its recurrence coefficients. Finally, hom=1 or hom6=1 depending
on whether or not a certain homotopy in the variable s is used to facilitate
convergence of Newton’s method for solving the system of nonlinear equa-
tions.

14 Quadrature formulae based on rational

functions

All quadrature formulae considered so far were based on polynomial degree
of exactness. This is meaningful if the integrand is indeed polynomial-like.
Not infrequently, however, it happens that the integrand has poles outside
the interval of integration. In this case, exactness for appropriate rational
functions, in addition to polynomials, is more natural. We discuss this for
the simplest type of quadrature rule,

(14.1)

∫

R

g(t)dλ(t) =

n
∑

ν=1

λνg(τν) + Rn(g).

The problem, more precisely, is to determine λν , τν such that Rn(g) = 0 if
g ∈ S2n, where S2n is a space of dimension 2n consisting of rational functions
and polynomials,

(14.2)

S2n = Qm ⊕ P2n−m−1, 0 ≤ m ≤ 2n,

P2n−m−1 = polynomials of degree ≤ 2n − m − 1,

Qm = rational functions with prescribed poles.

Here, m is an integer of our choosing, and

(14.3) Qm = span

{

r(t) =
1

1 + ζµt
, µ = 1, 2, . . . , m

}

,

53

where

(14.4) ζµ ∈ C, ζµ 6= 0, 1 + ζµt 6= 0 on supp(dλ).

The idea is to select the poles −1/ζµ of the rational functions in Qm to match
the pole(s) of g closest to the support interval of dλ.

In principle, the solution of the problem is rather simple: put ωm(t) =
∏m

µ=1(1 + ζµt) and construct, if possible, the n-point (poynomial) Gauss
formula

(14.5)

∫

R

g(t)
dλ(t)

ωm(t)
=

n
∑

ν=1

λG
ν g(τG

ν), g ∈ P2n−1,

for the modified measure dλ̂(t) = dλ(t)/ωm(t). Then

(14.6) τν = τG
ν , λν = ωm(τG

ν)λG
ν , ν = 1, 2, . . . , n,

are the desired nodes and weights in (14.1).
We said “if possible”, since in general ωm is complex-valued, and the

existence of a Gauss formula for dλ̂ is not guaranteed. There is no problem,
however, if ωm ≥ 0 on the support of dλ. Fortunately, in many instances of
practical interest, this is indeed the case.

There are a number of ways the formula (14.5) can be constructed: a
discretization method using Gauss quadrature relative to dλ to do the dis-
cretization; repeated application of modification algorithms involving linear
or quadratic divisors; special techniques to handle “difficult” poles, that is,
poles very close to the support interval of dλ. Rather than going into details
(which can be found in Ga04, §3.1.4), we present an example taken from
solid state physics.

Example 7. Generalized Fermi–Dirac integral.
This is the integral

Fk(η, θ) =

∫ ∞

0

tk
√

1 + θt/2

e−η+t + 1
dt,

where η ∈ R, θ ≥ 0, and k is the Boltzmann constant (=1
2
, 3

2
, or 5

2
). The

ordinary Fermi–Dirac integral corresponds to θ = 0.
The integral is conveniently rewritten as

(14.7) Fk(η, θ) =

∫ ∞

0

√

1 + θt/2

e−η + e−t
dλ[k](t), dλ[k](t) = tke−tdt,

54

which is of the form (14.1) with g(t) =
√

1 + θt/2/(e−η +e−t) and dλ = dλ[k]

a generalized Laguerre measure. The poles of g evidently are η + µiπ, µ =
±1,±3,±5, . . . , and all are “easy”, that is, at a comfortable distance from
the interval [0,∞]. It is natural to take m even, and to incorporate the first
m/2 pairs of conjugate complex poles. An easy computation then yields

(14.8) ωm(t) =

m/2
∏

ν=1

[(1 + ξνt)
2 + ηνt

2], 2 ≤ m(even) ≤ 2n,

where

(14.9) ξν =
−η

η2 + (2ν − 1)2π2
, ην =

(2ν − 1)π

η2 + (2ν − 1)2π2
.

Once the nodes and weights τν , λν have been obtained according to (14.6),
the rational/polynomial quadrature approximation is given by

(14.10) Fk(η, θ) ≈
N
∑

n=1

λn

√

1 + θτn/2

e−η + e−τn
.

It is computed in the OPQ routine

xw=fermi dirac(N,m,eta,theta,k,eps0,Nmax)

where eps0 is an error tolerance, Nmax a limit on the discretization parameter,
and the other variables having obvious meanings.

15 Cauchy principal value integrals

When there is a (simple) pole inside the support interval [a, b] of the measure
dλ, the integral must be taken in the sense of a Cauchy principal value integral

(15.1)

(Cf)(x; dλ) :=

∫ b

a

− f(t)

x − t
dλ(t) = lim

ε↓0

(
∫ x−ε

a

+

∫ b

x+ε

)

f(t)

x − t
dλ(t), x ∈ (a, b).

There are two types of quadrature rules for Cauchy principal value integrals:
one in which x occurs as a node, and one in which it does not. They have
essentially different character and will be considered separately.

55

15.1 Modified quadrature rule

This is a quadrature rule of the form

(15.2) (Cf)(x; dλ) = c0(x)f(x) +
n
∑

ν=1

cν(x)f(τν) + Rn(f ; x).

It can be made “Gaussian”, that is, Rn(f ; x) = 0 for f ∈ P2n, by rewriting
the integral in (15.1) as

(15.3) (Cf)(x; dλ) = f(x)

∫

R

− dλ(t)

x − t
−
∫

R

f(x) − f(t)

x − t
dλ(t)

and applying the n-point Gauss formula for dλ to the second integral. The
result is

(15.4) (Cf)(x; dλ) =
ρn(x)

πn(x)
f(x) +

n
∑

ν=1

λG
ν

f(τG
ν)

x − τG
ν

+ Rn(f ; x),

where ρn(x) is the Cauchy principal value integral (5.14) and τG
ν , λG

ν are the
Gauss nodes and weights for dλ.

Formula (15.4) is not without numerical difficulties. The major one occurs
when x approaches one of the Gauss nodes τG

ν , in which case two terms on
the right go to infinity, but with opposite signs. In effect, this means that
for x near a Gaussian node severe cancellation must occur.

The problem can be avoided by expanding the integral (15.1) in Cauchy
integrals ρk(x). Let pn(f ; ·) be the polynomial of degree n interpolating f
at the n Gauss nodes τG

ν and at x. The quadrature sum in (15.4) is then
precisely the Cauchy integral of pn,

(15.5) (Cf)(x; dλ) =

∫ b

a

− pn(f ; t)

x − t
dλ(t) + Rn(f ; x).

Expanding pn in the orthogonal polynomials πk,

(15.6) pn(f ; t) =

n
∑

k=0

akπk(t), ak =
1

‖πk‖2

∫ b

a

pn(f ; t)πk(t)dλ(t),

and integrating, one finds

(15.7) (Cf)(x; dλ) =
n
∑

k=0

akρk(x) + Rn(f ; x),

56

where

(15.8) ak =
1

‖πk‖2

n
∑

ν=1

λG
ν f(τG

ν)πk(τ
G
ν), k < n; an =

n
∑

ν=1

f(x) − f(τG
ν)

(x − τG
ν)π′

n(τG
ν)

.

The Cauchy integrals ρk(x) in (15.7) can be computed in a stable manner by
forward recursion; cf. the last paragraph of §5.1. This requires ρ0(x), which
is either explicitly known or can be computed by the continued fraction
algorithm; cf. §5.2. Some care must be exercised in computing the divided
difference of f in the formula for an.

The procedure is inplemented in the OPQ routine

cpvi=cauchyPVI(N,x,f,ddf,iopt,ab,rho0)

with iopt6=1, which produces the (N+1)-term approximation (15.7) where
Rn(f ; x) is neglected. The input parameter ddf is a routine for computing
the divided difference of f in a stable manner. It is used only if iopt6=1.
The meaning of the other parameters is obvious.

15.2 Quadrature rule in the strict sense

This rule, in which the node t = x is absent, is obtained by interpolating f
at the n Gauss nodes τG

ν by a polynomial pn−1(f ; ·) of degree n − 1,

f(t) = pn−1(f ; t) + En−1(f ; t), pn−1(f ; t) =

n
∑

ν=1

πn(t)

(t − τG
ν)π′

n(τG
ν)

f(τG
ν),

where En−1 is the interpolation error, which vanishes identically if f ∈ Pn−1.
The formula to be derived, therefore, will have degree of exactness n − 1
(which can be shown to be maximum possible). Integrating in the sense of
(15.1) yields

(15.9) (Cf)(x; dλ) =

n
∑

ν=1

ρn(x) − ρn(τG
ν)

(x − τG
ν)π′

n(τG
ν)

f(τG
ν) + R∗

n(f ; x),

where R∗
n(f ; x) =

∫ b

a
− En−1(f ; t)dλ(t)/(x − t).

This formula, too, suffers from severe cancellation errors when x is near
a Gauss node. The resolution of this problem is similar (in fact, simpler) as

57

in §15.1: expand pn−1(f ; ·) in the orthogonal polynomials πk to obtain

(15.10)
(Cf)(x; dλ) =

n−1
∑

k=0

a′
kρk(x) + R∗

n(f ; x),

a′
k =

1

‖πk‖2

∫ b

a

pn−1(f ; t)πk(t)dλ(t).

It turns out that

(15.11) a′
k = ak, k = 0, 1, . . . , n − 1,

where ak, k < n, is given by (15.8). This is implemented in the OPQ routine
cauchyPVI.m with iopt=1.

16 Polynomials orthogonal on several inter-

vals

We are given a finite set of intervals [cj , dj], which may be disjoint or not, and
on each interval a positive measure dλj . Let dλ be the “composite” measure

(16.1) dλ(t) =
∑

j

χ[cj ,dj](t)dλj(t),

where χ[cj ,dj] is the characteristic function of the interval [cj , dj]. Assuming

known the Jacobi matrices J (j) = Jn(dλj) of the component measures dλj ,
we now consider the problem of determining the Jacobi matrix J = Jn(dλ) of
the composed measure dλ. We provide two solutions, one based on Stieltjes’s
procedure, and one based on the modified Chebyshev algorithm.

16.1 Solution by Stieltjes’s procedure

The main problem in applying Stieltjes’s procedure is to compute the inner
products (tπk, πk)dλ and (πk, πk)dλ for k = 0, 1, 2, . . . , n−1. This can be done
by using n-point Gaussian quadrature on each component interval,

(16.2)

∫ dj

cj

p(t)dλj(t) =
n
∑

ν=1

λ(j)
ν p(τ (j)

ν), p ∈ P2n−1.

58

Here we use (11.5) to express the quadrature sum in terms of the Jacobi
matrix J (j),

(16.3)

∫ dj

cj

p(t)dλj(t) = β
(j)
0 eT

1 p(J (j))e1, β
(j)
0 =

∫ dj

cj

dλj(t).

Then, for the inner products (tπk, πk)dλ, k ≤ n − 1, we get

(tπk, πk)dλ =

∫

R

tπ2
k(t)dλ(t) =

∑

j

∫ dj

cj

tπ2
k(t)dλj(t)

=
∑

j

β
(j)
0 eT

1 J (j)[πk(J
(j))]2e1

=
∑

j

β
(j)
0 eT

1 [πk(J
(j))]TJ (j)πk(J

(j))e1

and for (πk, πk)dλ similarly (in fact, simpler)

(πk, πk)dλ =
∑

j

β
(j)
0 eT

1 [πk(J
(j))]Tπk(J

(j))e1.

This can be conveniently expressed in terms of the vectors

ζ
(j)
k := πk(J

(j))e1, e1 = [1, 0, . . . , 0]T ,

which, as required in Stieltjes’s procedure, can be updated by means of the
basic three-term recurrence relation. This leads to the following algorithm.

Algorithm 7 Stieltjes procedure for polynomials orthogonal on several in-
tervals

initialization:

ζ
(j)
0 = e1, ζ

(j)
−1 = 0 (all j),

α0 =

∑

j β
(j)
0 eT

1 J (j)e1
∑

j β
(j)
0

, β0 =
∑

j

β
(j)
0 .

continuation (if n > 1): for k = 0, 1, . . . , n − 2 do

ζ
(j)
k+1 = (J (j) − αkI)ζ

(j)
k − βkζ

(j)
k−1 (all j),

αk+1 =

∑

j β
(j)
0 ζ

(j)T
k+1J (j)ζ

(j)
k+1

∑

j β
(j)
0 ζ

(j)T
k+1ζ

(j)
k+1

, βk+1 =

∑

j β
(j)
0 ζ

(j)T
k+1ζ

(j)
k+1

∑

j β
(j)
0 ζ

(j)T
k ζ

(j)
k

.

In Matlab, this is implemented in the OPQ routine

59

ab=r multidomain sti(N,abmd)

where abmd is the array containing the (α, β)-coefficients of the measures
dλ(j).
Example 8. Example 1, revisited.

This is the case of two identical intervals [−1, 1] and two measures dλ(j)

on [−1, 1], one a multiple c of the Legendre measure, the other the Cheby-
shev measure. This was solved in Example 1 by a 2-component discretization
method. The solution by the 2-domain algorithm of this subsection, in Mat-
lab, looks as follows:

ab1=r jacobi(N); ab1(1,2)=2*c;

ab2=r jacobi(N,-.5);

abmd=[ab1 ab2];

ab=r multidomain sti(N,abmd)

It produces results identical with those produced by the method of Example
1.

16.2 Solution by the modified Chebyshev algorithm

The quadrature procedure used in §16.1 to compute inner products can
equally be applied to compute the first 2n modified moments of dλ,

(16.4) mk =
∑

j

∫ dj

cj

pk(t)dλj(t) =
∑

j

β
(j)
0 eT

1 pk(J
(j))e1.

The relevant vectors are now

z
(j)
k := pk(J

(j))e1, e1 = [1, 0, . . . , 0]T,

and the computation proceeds as in

Algorithm 8 Modified moments for polynomials orthogonal on several in-
tervals

initialization

z
(j)
0 = e1, z

(j)
−1 = 0 (all j), m0 =

∑

j

β
(j)
0 .

60

continuation: for k = 0, 1, . . . , 2n − 2 do

z
(j)
k+1 = (J (j) − akI)z

(j)
k − bkz

(j)
k−1 (all j),

mk+1 =
∑

j

β
(j)
0 z

(j)T
k+1e1.

With these moments at hand, we can apply Algorithm 1 to obtain the
desired recurrence coefficients. This is done in the OPQ routine

ab=r multidomain cheb(N,abmd,abmm)

The input array abmd has the same meaning as in the routine of §16.1, and
abmm is a (2N×2) array of the recurrence coefficients ak, bk generating the
polynomials pk.

Applied to Example 8, the Matlab program, using Legendre moments (pk

the monic Legendre polynomials), is as follows:

abm=r jacobi(2*N-1);

ab1=abm(1:N,:); ab1(1,2)=2*c;

ab2=r jacobi(N,-.5);

abmd=[ab1 ab2];

ab=r multidomain cheb(N,abmd,abm)

It produces results identical with those obtained in §16.1, but takes about
three times as long to run.

17 Quadrature estimates of matrix function-

als

The problem to be considered here is to find lower and upper bounds for the
quadratic form

(17.1) uTf(A)u, u ∈ RN , ‖u‖ = 1,

where A ∈ RN×N is a symmetric, positive definite matrix, f a smooth func-
tion (for which f(A) makes sense), and u a given vector. While this looks
more like a linear algebra problem, it can actually be solved, for functions f

61

with derivatives of constant sign, by applying Gauss-type quadrature rules.
The connecting link is provided by the spectral resolution of A,

(17.2) AV = V Λ, Λ = diag(λ1, λ2, . . . , λN), V = [v1, v2, . . . , vN],

where λk are the eigenvalues of A (which for simplicity are assumed distinct),
and vk the normalized eigenvectors of A. If we put

(17.3) u =

N
∑

k=1

ρkvk = V ρ, ρ = [ρ1, ρ2, . . . , ρN]T,

and again for simplicity assume ρk 6= 0, all k, then

(17.4)

uTf(A)u = ρTV TV f(Λ)V TV ρ = ρTf(Λ)ρ,

=

N
∑

k=1

ρ2
kf(λk) =:

∫

R+

f(t)dρN (t).

This shows how the matrix functional is related to an integral relative to
a discrete positive measure. Now we know from (11.10) and (11.15) how
Gauss–Radau or Gauss–Lobatto rules (and for that matter also ordinary

Gauss rules, in view of RG
n = [f (2n)(τ)/(2n)!]

∫ b

a
[πn(t; dλ)]2dλ(t), a < τ < b)

can be applied to obtain two-sided bounds for (17.4) when some derivative
of f has constant sign. To generate these quadrature rules, we need the
orthogonal polynomials for the measure dρN , and for these the Jacobi ma-
trix JN(dρN). The latter, in principle, could be computed by Lanczos’s
algorithm of §3.2. However, in the present application this would require
knowledge of the eigenvalues λk and expansion coefficients ρk, which are too
expensive to compute. Fortunately, there is an alternative way to implement
Lanczos’s algorithm that works directly with the matrix A and requires only
multiplications of A into vectors and the computation of inner products.

17.1 Lanczos algorithm

Let ρk be as in (17.4) and h0 =
∑N

k=1 ρkvk (= u), ‖h0‖ = 1, as in (17.3).

Algorithm 9 Lanczos algorithm
initialization:

h0 prescribed with ‖h0‖ = 1, h−1 = 0.

62

continuation: for j = 0, 1, . . . , N − 1 do

αj = hT
j Ahj ,

h̃j+1 = (A − αjI)hj − γjhj−1,

γj+1 = ‖h̃j+1‖,
hj+1 = h̃j+1/γj+1.

While γ0 in Algorithm 9 can be arbitrary (it multiplies h−1 = 0), it is conve-
nient to define γ0 = 1. The vectors h0, h1, . . . , hN generated by Algorithm 9
are called Lanczos vectors. It can be shown that αk generated by the Lanczos
algorithm is precisely αk(dρN), and γk =

√

βk(dρN), for k = 0, 1, 2, . . . , N−1.
This provides us with the Jacobi matrix JN (dρN). It is true that the algo-
rithm becomes unstable as j approaches N , but in the applications of interest
here, only small values of j are needed.

17.2 Examples

Example 9. Error bounds for linear algebraic systems.
Consider the system

(17.5) Ax = b, A symmetric, positive definite.

Given an approximation x∗ ≈ x = A−1b to the exact solution x, and the
residual vector r = b−Ax∗, we have x−x∗ = A−1b +A−1(r− b) = A−1r,
thus

‖x − x∗‖2 = (A−1r)TA−1r = rTA−2r,

and therefore

(17.6) ‖x − x∗‖2 = ‖r‖2 · uTf(A)u,

where u = r/‖r‖ and f(t) = t−2. All derivatives of f are here of constant
sign on R+,

(17.7) f (2n)(t) > 0, f (2n+1)(t) < 0 for t ∈ R+.

By (17.4), we now have

(17.8) ‖x − x∗‖ = ‖r‖2

∫

R+

t−2dρN (t).

63

The n-point Gauss quadrature rule applied to the integral on the right of
(17.8), by the first inequality in (17.7), yields a lower bound of ‖x − x∗‖,
without having to know the exact support interval of dρN . If, on the other
hand, we know that the support of dρN is contained in some interval [a, b],
0 < a < b, we can get a lower bound also from the right-handed (n+1)-point
Gauss–Radau formula, and upper bounds from the left-handed (n + 1)-point
Gauss–Radau formula on [a, b], or from the (n + 2)-point Gauss–Lobatto
formula on [a, b].

Example 10. Diagonal elements of A−1.
Here, trivially

(17.9) uTf(A)u = eT
i A−1ei,

where f(t) = t−1 and ei is the ith coordinate vector. Using n-point Gauss
quadrature in (17.4), with n < N , yields

(17.10) (A−1)ii =

∫

R+

t−1 dρN(t) > eT
1 J−1

n e1, eT
1 = [1, 0, . . . , 0] ∈ Rn.

Suppose we take n = 2 steps of Algorithm 9 to compute

J2 =





α0 γ1

γ1 α1



 .

We get

(17.11)

α0 = aii,

h̃1 = (A − α0I)ei = [a1i, . . . , ai−1,i, 0, ai+1,i, . . . , aNi]
T,

γ1 =

√

∑

k 6=i

a2
ki =: si,

h1 = h̃1/si,

α1 =
1

s2
i

h̃
T

1 Ah̃1 =
1

s2
i

∑

k 6=i

∑

` 6=i

ak`akia`i.

But

J−1
2 =

1

α0α1 − γ2
1





α1 −γ1

−γ1 α0



 , eT
1 J−1

2 e1 =
α1

α0α1 − γ2
1

,

64

so that by (17.10) with n = 2, and (17.11),

(17.12) (A−1)ii >

∑

k 6=i

∑

` 6=i ak`akia`i

aii

∑

k 6=i

∑

` 6=i ak`akia`i −
(

∑

k 6=i a
2
ki

)2 .

Simpler bounds, both lower and upper, can be obtained by the 2-point Gauss-
Radau and Gauss-Lobatto formulae, which however require knowledge of an
interval [a, b], 0 < a < b, containing the spectrum of A.

65

Exercises to Part II (Stars indicate more advanced exercises.)

1. Prove (11.5).

2. Prove that complex zeros of the Sobolev orthogonal polynomials of
Example 6 must be purely imaginary.

3∗. Circle theorems for quadrature weights (cf. P.J. Davis and P. Rabi-
nowitz, J. Math. Anal. Appl. 2 (1961), 428–437).

(a) Gauss–Jacobi quadrature

Let w(t) = (1 − t)α(1 + t)β be the Jacobi weight function. It is
known (Sz75, eqn (15.3.10)) that the nodes τν and weights λν of
the n-point Gauss–Jacobi quadrature formula satisfy

λν ∼ π

n
w(τν)

√

1 − τ 2
ν , n → ∞,

for τν on any compact interval contained in (−1, 1). Thus, suitably
normalized weights, plotted against the nodes, lie asymptotically
on the unit circle. Use Matlab to demonstrate this graphically.

(b) Gauss quadrature for the logarithmic weight function w(t) =
tα ln(1/t) on [0, 1] (cf. Ga04, Example 2.27).

Try, numerically, to find a circle theorem in this case also, and
experiment with different values of the parameter α > −1. (Use
the OPQ routine r jaclog.m to generate the recurrence coefficients
of the orthogonal polynomials for the weight function w.)

(c) Gauss–Kronrod quadrature.

With w as in (a), the analogous result for the 2n + 1 nodes τν

and weights λν of the (2n + 1)-point Gauss–Kronrod formula is
expected to be

λν ∼ π

2n
w(τν)

√

1 − τ 2
ν , n → ∞.

That this indeed is the case, when α, β ∈ [0, 5
2
), follows from

Theorem 2 in F. Peherstorfer and K. Petras, Numer. Math. 95
(2003), 689–706. Use Matlab to illustrate this graphically.

(d) Experiment with the Gauss–Kronrod formula for the logarithmic
weight function of (b), when α = 0.

66

4. Discrete orthogonality.

Let πk(· ; dλ), k = 0, 1, 2, . . . , be the orthogonal polynomials relative to
an absolutely continuous measure. Show that for each N ≥ 2, the first
N of them are orthogonal with respect to the discrete inner product

(p, q)N =
N−1
∑

ν=0

λG
ν p(τG

ν)q(τG
ν),

where τG
ν , λG

ν are the nodes and weights of the N -point Gauss formula
for dλ. Moreover, ‖πk‖2

N = ‖πk‖2
dλ for k ≤ n − 1.

5. (a) Consider the Cauchy integral

ρn(z) = ρn(z; dλ) =

∫ b

a

πn(t; dλ)

z − t
dλ(t),

where [a, b] is the support of dλ. Show that

ρn(z) = O(z−n−1) as z → ∞.

{Hint: Expand the integral defining ρn(z) in descending powers
of z.}

(b) Show that

∫ b

a

dλ(t)

z − t
− σn(z)

πn(z)
=

ρn(z)

πn(z)
= O(z−2n−1) as z → ∞.

{Hint: Use (5.8).}
(c) Consider the partial fraction decomposition

σn(z)

πn(z)
=

n
∑

ν=1

λν

z − τG
ν

of σn(z)/πn(z) in (5.8). Use (b) to show that λν = λG
ν are the

weights of the n-point Gaussian quadrature formula for dλ. In
particular, show that

λG
ν =

σn(τG
ν)

π′
n(τG

ν)
.

67

(d) Discuss what happens if z → x, x ∈ (a, b).

6. Characterize the nodes τ b
ν in (11.9) as zeros of an orthogonal polyno-

mial of degree n, and identify the appropriate Gauss–Radau matrix for
(11.9).

7. Prove (11.10). {Hint: Use the fact that both formulae (11.6) and (11.9)
are interpolatory.}

8. (a) Prove the first formula in (11.11). {Hint: Use the relation be-

tween the Jacobi polynomials Pk = P
(α,β)
k customarily defined and

the monic Jacobi polynomials πk = π
(α,β)
k , expressed by Pk(t) =

2−k
(

2k+α+β
k

)

πk(t). You also need Pk(−1) = (−1)k
(

k+β
k

)

and the
β-coefficient for Jacobi polynomials, βJ

n = 4n(n + α)(n + β)(n +
α + β)/(2n + α + β)2(2n + α + β + 1)(2n + α + β − 1).}

(b) Prove the second formula in (11.11). {Hint: With π
(α)
k and L

(α)
k

denoting the monic resp. conventional generalized Laguerre poly-
nomials, use L

(α)
k (t) =

(

(−1)k/k!
)

π
(α)
k (t). You also need L

(α)
k (0) =

(

k+α
k

)

, and βL
n = n(n + α).}

9. Prove (11.16). {Hint: With notation as in the hint to Exercise 8(a),
use Pk(1) =

(

k+α
k

)

in addition to the information provided there.}

10. The (left-handed) generalized Gauss–Radau formula is

∫ ∞

a

f(t) dλ(t) =
r−1
∑

ρ=0

λ
(ρ)
0 f (ρ)(a) +

n
∑

ν=1

λR
ν f(τR

ν) + RR
n,r(f),

where r > 1 is the multiplicity of the end point τ0 = a, and RR
n,r(f) =

0 for f ∈ P2n−1+r. Let dλ[r](t) = (t − a)rdλ(t) and τ
[r]
ν , λ[r], ν =

1, 2, . . . , n, be the nodes and weights of the n-point Gauss formula for
dλ[r].

(a) Show that

τR
ν = τ [r]

ν , λR
ν =

λ
[r]
ν

(τR
ν − a)r

, ν = 1, 2, . . . , n.

68

(b) Show hat not only the internal weights λR
ν are all positive (why?),

but also the boundary weights λ0, λ′
0 if r = 2.

11. The generalized Gauss–Lobatto formula is

∫ b

a

f(t) dλ(t) =

r−1
∑

ρ=0

λ
(ρ)
0 f (ρ)(a)+

n
∑

ν=1

λL
ν f(τL

ν)+

r−1
∑

ρ=0

(−1)ρλ
(ρ)
n+1f

(ρ)(b)+RL
n,r(f),

where r > 1 is the multiplicity of the end points τ0 = a, τn+1 = b,
and RL

n,r(f) = 0 for P2n−1+2r. Let dλ[r](t) = [(t − a)(b − t)]rdλ(t) and

τ
[r]
ν , λ

[r]
ν , ν = 1, 2, . . . , n, be the nodes and weights of the n-point Gauss

formula for dλ[r].

(a) Show that

τL
ν = τ [r]

ν , λL
ν =

λ
[r]
ν

[(τL
ν − a)(b − τL

ν)]r
, ν = 1, 2, . . . , n.

(b) Show that not only the internal weights λL
ν are all positive (why?),

but also the boundary weights λ0, λ′
0 and λn+1, λ′

n+1.

(c) Show that λ
(ρ)
0 = λ

(ρ)
n+1, ρ = 0, 1, . . . , r − 1, if the measure dλ is

symmetric.

12∗. Generalized Gauss-Radau quadrature.

(a) Write a Matlab routine gradau.m for generating the generalized
Gauss-Radau quadrature rule of Exercise 10 for a measure dλ on
[a,∞], having a fixed node a of multiplicity r, r > 1. {Hint:
To compute the boundary weights, set up an (upper triangular)
system of linear equations by applying the formula in turn with
π2

n(t), (t − a)π2
n(t), . . . , (t − a)r−1π2

n(t), where πn(t) =
∏n

ν=1(t −
τR
ν).}

(b) Check your routine against the known formulae with r = 2 for
the Legendre and Chebyshev measures (see Ga04, Examples 3.10
and 3.11). Devise and implement a check that works for arbitrary
r ≥ 2 and, in particular, for r = 1.

(c) Use your routine to explore positivity of the boundary weights and
see whether you can come up with any conjectures.

69

13∗. Generalized Gauss-Lobatto quadrature.

(a) Write a Matlab routine globatto.m for generating the generalized
Gauss-Lobatto rule of Exercise 11 for a measure dλ on [a, b], hav-
ing fixed nodes at a and b of multiplicity r, r > 1. For simplicity,
start with the case r ≥ 2 even; then indicate the changes neces-
sary to deal with odd values of r. {Hint: Similar to the hint in
Exercise 12(a).}

(b) Check your routine against the known formulae with r = 2 for
the Legendre and Chebyshev measures (see Ga04, Examples 3.13
and 3.14). Devise and implement a check that works for arbitrary
r ≥ 2 and, in particular, for r = 1.

(c) Explore the positivity of the boundary weights λ
(ρ)
0 and the quan-

tities λ
(ρ)
n+1 in the quadrature formula.

14. Show that the monic Stieltjes polynomial πK
n+1 in (12.3) exists uniquely.

15. (a) Let dλ be a positive measure. Use approximation theory to show
that the minimum of

∫

R
|π(t)|pdλ(t), 1 < p < ∞, extended over

all monic polynomials π of degree n is uniquely determined.

(b) Show that the minimizer of the extremal problem in (a), when
p = 2s + 2, s ≥ 0 an integer, is the s-orthogonal polynomial
π = πn,s. {Hint: Differentiate the integral partially with respect
to the variable coefficients of π.}

16. (a) Show that r in (13.2) has to be odd.

(b) Show that in (13.2) with r as in (13.3), one cannot have k > n.

17. Derive (14.8) and (14.9).

18. Derive (15.4) from (15.3) and explain he meaning of Rn(f ; x). {Hint:
Use Exercise 5(c) and (5.8).}

19. Show that pn(f ; t) in (15.5) is

pn(f ; t) =
πn(t)

πn(x)
f(x) +

n
∑

ν=1

(t − x)πn(t)

(t − τG
ν)(τG

ν − x)π′
n(τG

ν)
f(τG

ν),

and thus prove (15.5). {Hint: Use Exercise 5(c).}

70

20. Derive (15.7) and (15.8). {Hint: For k < n, use Gauss quadrature,
and for k = n insert the expression for pn(f ; t) from Exercise 19 into
the formula for an in (15.6). Also use the fact that the elementary
Lagrange interpolation polynomials sum up to 1.}

21. Derive (15.9).

22. Prove (15.11). {Hint: Use Exercise 4.}

23. (a) Prove that the Lanczos vectors are mutually orthonormal.

(b) Show that the vectors {hj}n
j=0, n < N , form an orthonormal basis

of the Krylov space

Kn(A, h0) = span(h0, Ah0, . . . , A
nh0).

(c) Prove that
hj = pj(A)h0, j = 0, 1, . . . , N,

where pj is a polynomial of degree j satisfying the three-term
recurrence relation

γj+1pj+1(λ) = (λ − αj)pj(λ) − γjpj−1(λ),

j = 0, 1, . . . , N − 1,

p0(λ) = 1, p−1(λ) = 0.

{Hint: Use mathematical induction.}

24. Prove that the polynomial pk of Exercise 23(c) is equal to the orthonor-
mal polynomial π̃k(· ; dρN). {Hint: Use the spectral resolution of A and
Exercises 23(a) and (c).}

25. Derive the bounds for (A−1)ii hinted at in the last sentence of Example
10.

71

PART III APPROXIMATION

18 Polynomial least squares approximation

18.1 Classical least squares problem

We are given N data points (tk, fk), k = 1, 2, . . . , N , and wish to find a
polynomial π̂n of degree ≤ n, n < N , such that a weighted average of the
squared errors [p(tk) − fk]

2 is as small as possible among all polynomials p
of degree n,

(18.1)

N
∑

k=1

wk[p̂n(tk) − fk]
2 ≤

N
∑

k=1

wk[p(tk) − fk]
2 for all p ∈ Pn.

Here, wk > 0 are positive weights, which allow placing more emphasis on
data points that are reliable, and less emphasis on others, by choosing them
larger resp. smaller. If the quality of the data is uniformly the same, then
equal weights, say wk = 1, are appropriate.

The problem as formulated suggests a discrete N -point measure

(18.2) dλN(t) =

N
∑

k=1

wkδ(t − tk), δ = Dirac delta function,

in terms of which the problem can be written in the compact form

(18.3) ‖p̂n − f‖2
dλN

≤ ‖p − f‖2
dλN

for all p ∈ Pn.

The polynomials πk(·) = πk(· ; dλN) orthogonal (not necessarily monic) with
respect to the discrete measure (18.2) provide an easy solution: one writes

(18.4) p(t) =
n
∑

i=0

ciπi(t), n < N,

and obtains for the squared error, using the orthogonality of πk,
(18.5)

E2
n =

(

n
∑

i=0

ciπi − f,

n
∑

j=0

cjπj − f

)

=

n
∑

i,j=0

cicj(πi, πj) − 2

n
∑

i=0

ci(f, πi) + ‖f‖2

=

n
∑

i=0

(

‖πi‖ci −
(f, πi)

‖πi‖

)2

+ ‖f‖2 −
n
∑

i=0

(f, πi)
2

‖πi‖2
.

72

(All norms and inner products are understood to be relative to the measure
dλN .) Evidently, the minimum is attained for ci = ĉi(f), where

(18.6) ĉi(f) =
(f, πi)

‖πi‖2
, i = 0, 1, . . . , n,

are the “Fourier coefficients” of f relative to the orthogonal system π0, π1,
. . . , πN−1. Thus,

(18.7) p̂n(t) =

n
∑

i=0

ĉi(f)πi(t; dλN).

In Matlab, the procedure is implemented in the OPQ routine

[phat,c]=least squares(n,f,xw,ab,d)

The given function values fk are input through the N×1 array f, the abscissae
tk and weights wk through the N×2 array xw, and the measure dλN through
the (N+1)×2 array ab of recurrence coefficients. The 1×(n+1) array d is the
vector of leading coefficients of the orthogonal polynomials. The procedure
returns as output the N×(n+1) array phat of the values p̂ν(tk), 0 ≤ ν ≤ n,
1 ≤ k ≤ N , and the (n+1)×1 array c of the Fourier coefficients.

Example 11. Equally weighted least squares approximation on N = 10
equally spaced points on [−1, 1].

Matlab program:

N=10; k=(1:N)’; d=ones(1,N);

xw(k,1)=-1+2*(k-1)/(N-1); xw(:,2)=2/N;

ab=r hahn(N-1); ab(:,1)=-1+2*ab(:,1)/(N-1);

ab(:,2)=(2/(N-1))^2*ab(:,2); ab(1,2)=2;

[phat,c]=least squares(N-1,f,xw,ab,d);

Demo#5 The program is applied to the function f(t) = ln(2+t) on [−1, 1],

and selected least squares errors Ên are compared in the table below with
maximum errors E∞

n (taken over 100 equally spaced points on [−1, 1]).

n Ên E∞
n

0 4.88(–01) 6.37(–01)
3 2.96(–03) 3.49(–03)
6 2.07(–05) 7.06(–05)
9 1.74(–16) 3.44(–06)

73

If n = N − 1, the least squares error ÊN−1 is zero, since the N data points
can be interpolated exactly by a polynomial of degree ≤ N − 1. This is
confirmed in the first tabular entry for n = 9. The infinity errors are only
slightly larger than the least squares errors, except for n = 9.

18.2 Constrained least squares approximation

It is sometimes desirable to impose constraints on the least squares approx-
imation, for example to insist that at certain points sj the error should be
exactly zero. Thus, the polynomial p ∈ Pn is subject to the constraints

(18.8) p(sj) = fj, j = 1, 2, . . . , m; m ≤ n,

but otherwise is freely variable. For simplicity we assume that none of the
sj equals one of the support points tk. (Otherwise, the procedure to be
described requires some simple modifications.)

In order to solve the constrained least squares problem, let

(18.9) pm(f ; t) = pm(f ; s1, . . . , sm; t), σm(t) =

m
∏

j=1

(t − sj)

be respectively the polynomial of degree m− 1 interpolating f at the points
sj and the constraint polynomial of degree m. We then write

(18.10) p(t) = pm(f ; t) + σm(t)q(t).

This clearly satisfies the constraints (18.8), and q is a polynomial of degree
n − m that can be freely varied. The problem is to minimize the squared
error

‖f − pm(f ; ·) − σmq ‖2
dλN

=

∫

R

[

f(t) − pm(f ; t)

σm(t)
− q(t)

]2

σ2
m(t)dλN

over all polynomials q of degree n−m. This is an unconstrained least squares
problem, but for a new function f ∗ and a new measure dλ∗

N ,

(18.11) minimize : ‖f ∗ − q ‖dλ∗

N
, q ∈ Pn−m,

where

(18.12) f ∗(t) =
f(t) − pm(f ; t)

σm(t)
, dλ∗

N(t) = σ2
m(t)dλN(t).

74

If q̂n−m is the solution of (18.11), then

(18.13) p̂n(t) = pm(f ; t) + σm(t)q̂n−m(t)

is the solution of the constrained least squares problem. The function f ∗,
incidentally, can be given the form of a divided difference,

f ∗(t) = [s1, s2, . . . , sm, t]f, t ∈ supp dλ∗
N ,

as follows from the theory of interpolation. Note also that the discrete or-
thogonal polynomials πk(· ; dλ∗

N) needed to solve (18.11) can be obtained
from the polynomials πk(· ; dλN) by m modifications of the measure dλN (t)
by linear factors t − sj.

Example 12. Bessel function J0(t) for 0 ≤ t ≤ j0,3.
Here, j0,3 is the third positive zero of J0. A natural constraint is to

reproduce the first three zeros of J0 exactly, that is, m = 3 and

s1 = j0,1, s2 = j0,2, s3 = j0.3.

Demo#6 The constrained least squares approximations of degrees n =

3, 4, 5 (that is, n − m = 0, 1, 2) using N = 51 equally spaced points on
[0, j0,3] (end points included) are shown in the figure below. The solid curve

0 1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

x

B
es

se
l

represents the exact function, the dashdotted, dashed, an dotted curves the
approximants for n = 3, 4, and 5, respectively. The approximations are not
particularly satisfactory and show spurious behavior near t = 0.

75

Example 13. Same as Example 12, but with two additional constraints

p(0) = 1, p′(0) = 0.

Demo#7 Derivative constraints, as the one in Example 13, can be incorpo-
rated similarly as before. In this example, the added constraints are designed
to remove the spurious behavior near t = 0; they also improve considerably
the overall accuracy, as is shown in the next figure.

0 1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

x

B
es

se
l

18.3 Least squares approximation in Sobolev spaces

The task now is to approximate simultaneously functions and some of their
first derivatives. More precisely, we want to minimize

s
∑

σ=0

N
∑

k=1

w
(σ)
k [p(σ)(tk) − f

(σ)
k]2

over all polynomials p ∈ Pn, where f
(σ)
k , σ = 0, 1, . . . , s, are given function

and derivative values, and w
(σ)
k > 0 appropriate weights for each derivative.

These are often chosen such that

w
(σ)
k = γσwk, γσ > 0, k = 1, 2, . . . , N,

in terms of one set of positive weights wk. Evidently,, the problem, analo-
gously to (18.3), can be written in terms of the Sobolev inner product and

76

norm

(18.14) (u, v)S =

s
∑

σ=0

N
∑

k=1

w
(σ)
k u(σ)(tk)v

(σ)(tk), ‖u‖S =
√

(u, u)S

in the compact form

(18.15) minimize : ‖p − f‖2
S for all p ∈ Pn.

The solution is entirely analogous to the one provided in §18.1,

(18.16) p̂n(t) =

n
∑

i=0

ĉi(f)πi(t), ĉi(f) =
(f, πi)S

‖πi‖2
S

,

where {πi} are the orthogonal polynomials of Sobolev type. In Matlab, the
procedure is

[phat,c]=least squares sob(n,f,xw,B)

The input parameter f is now an N×(s + 1) array containing the N values of
the given function and its first s derivatives at the points tk. The abscissae tk
and the weights w

(σ)
k of the Sobolev inner product are input via the N×(s+1)

array xw. (The routine determines s automatically from the size of the array
xw.) The user also has to provide the N×N upper triangular array of the
recurrence coefficients for the Sobolev orthogonal polynomials, which for s =
1 can be generated by the routine chebyshev sob.m and for arbitrary s by
the routine stieltjes sob.m. The output phat is an array of dimension
(n+1)×(Ns) containing the N values of the derivative of order σ of the nth
degree approximant p̂n in positions (n+1,σ:s + 1:Ns) of the array phat. The
Fourier coefficients ĉi are output in the (n+1)×1 vector c.

Example 14. The complementary error function on [0, 2].
This is the function

f(t) = et2erfc t =
2√
π

et2
∫ ∞

t

e−u2

du, 0 ≤ t ≤ 2,

whose derivatives are easily calculated.

Demo#8 The routine least squares sob.m is applied to the function

f of Example 14 with s = 2 and N=5 equally spaced points tk on [0, 2]. All

weights are chosen to be equal, w
(σ)
k = 1/N for σ = 0, 1, 2. The table below,

in the top half, shows selected results for the Sobolev least squares error Ên

77

s n Ên E∞
n,0 E∞

n,1 E∞
n,2

2 0 1.153(+00) 4.759(–01) 1.128(+00) 2.000(+00)
2 7.356(–01) 8.812(–02) 2.860(–01) 1.411(+00)
4 1.196(–01) 1.810(–02) 5.434(–02) 1.960(–01)
9 2.178(–05) 4.710(–06) 3.011(–05) 3.159(–04)
14 3.653(–16) 1.130(–09) 1.111(–08) 1.966(–07)

0 0 2.674(–01) 4.759(–01) 1.128(+00) 2.000(+00)
2 2.245(–02) 3.865(–02) 3.612(–01) 1.590(+00)
4 1.053(–16) 3.516(–03) 5.160(–02) 4.956(–01)

and the maximum errors E∞
n,0, E∞

n,1, E∞
n,2 (over 100 equally spaced points on

[0, 2]) for the function and its first two derivatives. In the bottom half are
shown the analogous results for ordinary least squares approximation (s = 0)
when n ≤ N − 1. (It makes no sense to consider n > N − 1.) Note that
the Sobolev least squares error Ê3N−1 is essentially zero, reflecting the fact
that the Hermite interpolation polynomial of degree 3N − 1 interpolates the
data exactly. In contrast, Ên = 0 for n ≥ N − 1 in the case of ordinary least
squares.

As expected, the table shows rather convincingly that Sobolev least squares
approximation approximates the derivatives decidedly better than ordinary
least squares approximation, when applicable, and even the function itself
when n is sufficiently large.

19 Moment-preserving spline approximation

There are various types of approximation: those that control the maximum
pointwise error; those that control some average error (like least squares
error); and those, often motivated by physical considerations, that try to
preserve the moments of the given function, or at least as many of the first
moments as possible. It is this last type of approximation that we now wish
to study. We begin with piecewise constant approximation on the whole real
line R+, then proceed to spline approximation on R+, and end with spline
approximation on a compact interval.

78

19.1 Piecewise constant approximation on R+

The piecewise constant approximants to be considered are

(19.1) sn(t) =
n
∑

ν=1

aνH(tν − t), t ∈ R+,

where aν ∈ R, 0 < t1 < t2 < · · · < tn, and H is the Heaviside function

H(u) =







1 if u ≥ 0,

0 otherwise.

The problem is, for given f ∈ C1(R+), to find, if possible, the aν and tν such
that

(19.2)

∫ ∞

0

sn(t)tjdt = µj , j = 0, 1, . . . , 2n − 1,

where

(19.3) µj =

∫ ∞

0

f(t)tjdt, j = 0, 1, . . . , 2n − 1,

are the moments of f , assumed to exist.
The solution can be formulated in terms of Gauss quadrature relative to

the measure

(19.4) dλ(t) = −tf ′(t)dt on R+.

Indeed, if f(t) = o(t−2n) as t → ∞, then the problem has a unique solution
if and only if dλ in (19.4) admits an n-point Gauss quadrature formula

(19.5)

∫ ∞

0

g(t)dλ(t) =
n
∑

ν=1

λG
ν g(τG

ν), g ∈ P2n−1,

satisfying 0 < τG
1 < τG

2 < · · · < τG
n . If that is the case, then the desired

knots tν and coefficients aν are given by

(19.6) tν = τG
ν , aν =

λG
ν

τG
ν

, ν = 1, 2, . . . , n.

79

A Gauss formula (19.5) always exists if f ′ < 0 on R+, that is, dλ(t) ≥ 0.
For the proof, we use integration by parts,

∫ T

0

f(t)tjdt =
1

j + 1
tj+1f(t)

∣

∣

∣

∣

T

0

− 1

j + 1

∫ T

0

f ′(t)tj+1dt, j ≤ 2n − 1,

and let T → ∞. The integrated part on the right goes to zero by assumption
on f , and the left-hand side converges to the jth moment of f , again by
assumption. Therefore, the last term on the right also converges, and since
−tf ′(t) = dλ(t), one finds

µj =
1

j + 1

∫ ∞

0

tjdλ(t), j = 0, 1, . . . , 2n − 1.

This shows in particular that the first 2n moments of dλ exist, and therefore,
if dλ ≥ 0, also the Gauss formula (19.5).

On the other hand, the approximant sn has moments

∫ ∞

0

sn(t)tjdt =
n
∑

ν=1

aν

∫ tν

0

tjdt =
1

j + 1

n
∑

ν=1

aνt
j+1
ν ,

so that the first 2n moments µj of f are preserved if and only if

n
∑

ν=1

(aνtν)t
j
ν =

∫ ∞

0

tjdλ(t), j = 0, 1, . . . , 2n − 1.

This is equivalent to saying that the knots tν are the Gauss nodes in (19.5),
and aνtν the corresponding weights.

Example 15. Maxwell distribution f(t) = e−t2 on R+.
Here,

dλ(t) = 2t2e−t2dt on R+,

which is a positive measure obtained (up to the factor 2) by twice modi-
fying the half-range Hermite measure by a linear factor t. The first n + 2
recurrence coefficients of the half-range Hermite measure can be computed
by a discretization method. Applying to these recurrence coefficients twice
the routine chri1.m, with zero shift, then yields the recurrence coefficients
αk(dλ), βk(dλ), k ≤ n−1, and hence the required n-point Gauss quadrature
rule (19.5) for dλ. The result for n = 5 is depicted in the figure below.

80

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

t
1

t
2

t
3

t
4

t
5

19.2 Spline approximation on R+

The approximant sn of §19.1 can be interpreted as a spline function of degree
0. We now consider spline functions sn,m of degree m > 0,

(19.7) sn,m(t) =

n
∑

ν=1

aν(tν − t)m
+ , t ∈ R+,

where um
+ is the truncated power um

+ = um if u ≥ 0, and um
+ = 0 if u < 0.

Given the first 2n moments (19.3) of f , the problem again is to determine
aν ∈ R and 0 < t1 < t2 < · · · < tn such that

(19.8)

∫ ∞

0

sn,m(t)tjdt = µj , j = 0, 1, . . . , 2n − 1.

By a reasoning similar to the one in §19.1, but more complicated, involving
m integrations by part, one proves that for f ∈ Cm+1(R+) and satisfying
f (µ)(t) = o(t−2n−µ) as t → ∞, µ = 0, 1, . . . , m, the problem has a unique
solution if and only if the measure

(19.9) dλ[m](t) =
(−1)m+1

m!
tm+1f (m+1)(t)dt on R+

admits an n-point Gauss quadrature formula

(19.10)

∫ ∞

0

g(t) dλ[m](t) =
n
∑

ν=1

λG
ν g(τG

ν) for all g ∈ P2n−1

81

satisfying 0 < τG
1 < τG

2 < · · · < τG
n . If that is the case, the knots tν and

coefficients aν are given by

(19.11) tν = τG
ν , aν =

λG
ν

[τG
ν]m+1

, ν = 1, 2, . . . , n.

Note that dλ[m] in (19.9) is a positive measure, for each m ≥ 0, and hence
(19.10) exists, if f is completely monotonic on R+, that is, (−1)µf (µ)(t) > 0,
t ∈ R+, for µ = 0, 1, 2,

Example 16. Maxwell distribution f(t) = e−t2 on R+, revisited.
We now have

dλ[m](t) =
1

m!
tm+1Hm+1(t)e

−t2 dt on R+,

where Hm+1 is the Hermite polynomial of degree m+1. Here, dλ[m] if m > 0 is
no longer of constant sign on R+, and hence the existence of the Gauss rule
(19.10) is in doubt. Numerical exploration, using discretization methods,
yields the situation shown in the table below, where a dash indicates the
presence of a negative Gauss node τG

ν , and an asterisk the presence of a pair

n m = 1 m = 2 m = 3 n m = 1 m = 2 m = 3
1 6.9(–2) 1.8(–1) 2.6(–1) 11 — 1.1(–3) 1.1(–4)
2 8.2(–2) — 2.3(–1) 12 — — *
3 — 1.1(–2) 2.5(–3) 13 7.8(–3) 6.7(–4) *
4 3.5(–2) 6.7(–3) 2.2(–3) 14 8.3(–3) 5.6(–4) 8.1(–5)
5 2.6(–2) — 1.6(–3) 15 7.7(–3) — 7.1(–5)
6 2.2(–2) 3.1(–3) * 16 — 4.9(–4) 7.8(–5)
7 — 2.4(–3) * 17 — 3.8(–4) 3.8(–5)
8 1.4(–2) — 3.4(–4) 18 5.5(–3) 3.8(–4) *
9 1.1(–2) 1.7(–3) 2.5(–4) 19 5.3(–3) — *
10 9.0(–3) 1.1(–3) — 20 5.4(–3) 3.1(–4) *

of conjugate complex Gauss nodes. In all cases computed, there were never
more than one negative Gauss node, or more than one pair of complex nodes.
The numbers in the table represent the maximum errors ‖sn,m − f‖∞, the
maximum being taken over 100 equally spaced points on [0, τG

n].

82

19.3 Spline approximation on a compact interval

The problem on a compact interval, say [0, 1], is a bit more involved than
the problem on R+. For one, the spline function sn,m may now include a
polynomial p of degree m, which was absent before since no moment of p
exists on R+ unless p ≡ 0. Thus, the spline approximant has now the form

(19.12) sn,m(t) = p(t) +
n
∑

ν=1

aν(tν − t)m
+ , p ∈ Pm, 0 ≤ t ≤ 1,

where aν ∈ R and 0 < t1 < t2 < · · · < tn < 1. There are two problems of
interest:

Problem I. Find sn,m such that

(19.13)

∫ 1

0

sn,m(t)tjdt = µj, j = 0, 1, . . . , 2n + m.

Since we have m + 1 additional parameters at our disposal (the coefficients
of p), we can impose m + 1 additionl moment conditions.

Problem II. Rather than matching more moments, we use the added degree
of freedom to impose m + 1 “boundary conditions” at the end point t = 1.
More precisely, we want to find sn,m such that

(19.14)

∫ 1

0

sn,m(t)tjdt = µj, j = 0, 1, . . . , 2n − 1

and

(19.15) s(µ)
n,m(1) = f (µ)(1), µ = 0, 1, . . . , m.

It is still true that a solution can be given in terms of quadrature formulae,
but they are now respectively generalized Gauss–Lobatto and generalized
Gauss–Radau formulae relative to the measure3

(19.16) dλ[m](t) =
(−1)m+1

m!
f (m+1)(t)dt on [0, 1].

3See M. Frontini, W. Gautschi, and G.V. Milovanović, “Moment-preserving spline ap-
proximation on finite intervals”, Numer. Math. 50 (1987), 503–518; also M. Frontini, W.
Gautschi, G.V. Milovanović, “Moment-preserving spline approximation on finite intervals
and Turán quadratures”, Facta Univ. Ser. Math. Inform. 4 (1989), 45–56.

83

Problem I, in fact, has a unique solution if and only if the generalized Gauss–

Lobatto formula

(19.17)

∫ 1

0

g(t)dλ[m](t) =
m
∑

µ=0

[λ
(µ)
0 g(µ)(0) + (−1)µλ

(µ)
n+1g

(µ)(1)]

+

n
∑

ν=1

λL
ν g(τL

ν), g ∈ P2n+2m+1,

exists with 0 < τL
1 < · · · < τL

n < 1. In this case,

(19.18) tν = τL
ν , aν = λL

ν , ν = 1, 2,n,

and p is uniquely determined by

(19.19) p(µ)(1) = f (µ)(1) + (−1)mm!λ
(m−µ)
n+1 , µ = 0, 1, . . . , m.

Similarly, Problem II has a unique solution if and only if the generalized

Gauss–Radau formula

(19.20)

∫ 1

0

g(t)dλ[m](t) =
m
∑

µ=0

λ
(µ)
0 g(µ)(0) +

n
∑

ν=1

λR
ν g(τR

ν), g ∈ P2n+m,

exists with 0 < τR
1 < · · · < τR

n < 1. Then

(19.21) tν = τR
ν , aν = λR

ν , ν = 1, 2,n,

and (trivially)

(19.22) p(t) =

m
∑

µ=0

f (µ)(1)

µ!
(t − 1)µ.

In both cases, complete monotonicity of f implies dλ ≥ 0 and the existence
of the respective quadrature formulae. For their construction, see Exercises
12 and 13 of Part II.

20 Slowly convergent series

Standard techniques of accelerating the convergence of slowly convergent
series are based on linear or nonlinear sequence transformations: the sequence

84

of partial sums is transformed somehow into a new sequence that converges
to the same limit, but a lot faster. Here we folllow another approach, more
in the spirit of these lectures: the sum of the series is represented as a
definite integral; a sequence of quadrature rules is then applied to this integral
which, when properly chosen, will produce a sequence of approximations that
converges quickly to the desired sum.

An easy way (and certainly not the only one) to obtain an inegral repre-
sentation presents itself when the general term of the series, or part thereof,
is expressible in terms of the Laplace transform (or some other integral trans-
form) of a known function. Several instances of this will now be described.

20.1 Series generated by a Laplace transform

The series

(20.1) S =

∞
∑

k=1

ak

to be considered first has terms ak that are the Laplace transform

(Lf)(s) =

∫ ∞

0

e−stf(t)dt

of some known function f evaluated at s = k,

(20.2) ak = (Lf)(k), k = 1, 2, 3,

In this case,

S =
∞
∑

k=1

∫ ∞

0

e−ktf(t)dt

=

∫ ∞

0

∞
∑

k=1

e−(k−1)t · e−tf(t)dt

=

∫ ∞

0

1

1 − e−t
e−tf(t)dt

that is,

(20.3) S =

∫ ∞

0

t

1 − e−t

f(t)

t
e−tdt.

85

There are at least three different approaches to evaluate this integral nu-
merically: one is Gauss–Laguerre quadrature of (t/(1 − e−t))f(t)/t with
dλ(t) = e−tdt on R+; another is rational/polynomial Gauss–Laguerre quadra-
ture of the same function; and a third Gauss–Einstein quadrature of the
function f(t)/t with dλ(t) = tdt/(et − 1) on R+. In the last method, the
weight function t/(et − 1) is widely used in solid state physics, where it is
named after Einstein (coming from the Einstein-Bose distribution). It is also,
incidentally, the generating function of the Bernoulli polynomials.

Example 17. The Theodorus constant

S =
∞
∑

k=1

1

k3/2 + k1/2
= 1.860025

This is a universal constant introduced by P.J. Davis (1993) in connection
with a spiral attributed to the ancient mathematician Theodorus of Cyrene.

Here we note that

1

s3/2 + s1/2
= s−1/2 1

s + 1
=

(

L 1√
πt

∗ e−t

)

(s),

where the star stands for convolution. A simple computation yields (20.2)
with

f(t) =
2√
π

F (
√

t),

where

F (x) = e−x2

∫ x

0

et2dt

is Dawson’s integral.

Demo#9 To make f(t) regular at t = 0, we divide by
√

t and write

S =
2√
π

∫ ∞

0

t

1 − e−t

F (
√

t)√
t

t−1/2e−tdt

=
2√
π

∫ ∞

0

F (
√

t)√
t

t−1/2 t

et − 1
dt.

To the first integral we apply Gauss–Laguerre quadrature with dλ(t) =
t−1/2e−tdt on R+, or rational Gauss–Laguerre with the same dλ, and to the
second integral Gauss–Einstein quadrature (modified by the factor t−1/2).
The errors committed in these quadrature methods are shown in the table
below.

86

n Gauss-Laguerre rational Gauss-Laguerre Gauss-Einstein
1 9.6799(–03) 1.5635(–02) 1.3610(–01)
4 5.5952(–06) 1.1893(–08) 2.1735(–04)
7 4.0004(–08) 5.9689(–16) 3.3459(–07)
10 5.9256(–10) 5.0254(–10)
15 8.2683(–12) 9.4308(–15)
20 8.9175(–14) 4.7751(–16)

timing: 10.8 timing: 8.78 timing: 10.4

The clear winner is rational Gauss–Laguerre, both in terms of accuracy and
run time.

Example 18. The Hardy–Littlewood function

H(x) =

∞
∑

k=1

1

k
sin

x

k
, x > 0.

It can be shown that

ak :=
1

k
sin

x

k
= (Lf(t; x))(k),

where

f(t; x) =
1

2i
[I0(2

√
ixt) − I0(2

√
−ixt)]

and I0 is the modified Bessel function. This gives rise to the two integral
representations

H(x) =

∫ ∞

0

t

1 − e−t

f(t; x)

t
e−tdt =

∫ ∞

0

f(t; x)

t

t

et − 1
dt.

Among the three quadrature methods, Gauss–Einstein performs best, but all
suffer from internal cancellation of terms in the quadrature sum. The problem
becomes more prominent as the number n of terms increases. In this case,
other methods can be applied, using the Euler-Maclaurin formula.4

The figure below shows the behavior of H(x) in the range 0 ≤ x ≤ 100.

4See W. Gautschi, “The Hardy-Littlewood function: an exercise in slowly convergent
series”, J. Comput. Appl. Math., to appear.

87

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

H
(x

)

20.2 “Alternating” series generated by a Laplace trans-

form

These are series in which the general terms are Laplace transforms with
alternating signs of some function f , that is, series (20.1) with

(20.4) ak = (−1)k−1(L f)(k), k = 1, 2, 3,

An elementary computation similar to the one carried out in §20.1 will show
that

(20.5) S =

∫ ∞

0

1

1 + e−t
f(t)e−tdt =

∫ ∞

0

f(t)
1

et + 1
dt.

We can again choose between three quadrature methods: Gauss–Laguerre
quadrature of the function f(t)/(1+e−t) with dλ(t) = e−tdt, rational/polynomial
Gauss–Laguerre of the same function, and Gauss-Fermi quadrature of f(t)
with dλ(t) = dt/(et + 1) involving the Fermi function 1/(et + 1) (also used
in solid state physics).

Example 19. The series

S =
∞
∑

k=1

(−1)k−1

k
e−1/k.

One can show that the function f in question here is f(t) = J0(2
√

t), with
J0 the Bessel function of order zero. Errors obtained by the three quadrature
methods are displayed in the table below, showing the clear superiority of
Gauss–Fermi quadrature.

88

n Gauss-Laguerre rational Gauss-Laguerre Gauss-Fermi
1 1.6961(–01) 1.0310(–01) 5.6994(–01)
4 4.4754(–03) 4.6605(–05) 9.6454(–07)
7 1.7468(–04) 1.8274(–09) 9.1529(–15)
10 3.7891(–06) 1.5729(–13) 2.8163(–16)
15 2.6569(–07) 1.5490(–15)
20 8.6155(–09)
40 1.8066(–13)

timing: 12.7 timing: 19.5 timing: 4.95

20.3 Series generated by the derivative of a Laplace

transform

These are series (20.1) in which

(20.6) ak = − d

ds
(Lf)(s)

∣

∣

∣

∣

s=k

, k = 1, 2, 3,

In this case one finds

(20.7) S =

∫ ∞

0

t

1 − e−t
f(t)e−tdt =

∫ ∞

0

f(t)
t

et − 1
dt,

and Gauss–Laguerre, rational/polynomial Gauss–Laguerre, and Gauss–Einstein
quadrature are again options as in §20.1.

Example 20. The series

S =
∞
∑

k=1

(3
2

+ 1)k−2(k + 1)−3/2.

The relevant function f is calculated to be

f(t) =
erf

√
t√

t
· t1/2,

where erf is the error function erf x = (2/
√

π)
∫ x

0
e−t2dt. Numerical results

analogous to those in the two previous tables are shown below.

89

n Gauss-Laguerre rational Gauss-Laguerre Gauss-Einstein
1 4.0125(–03) 5.1071(–02) 8.1715(–02)
4 1.5108(–05) 4.5309(–08) 1.6872(–04)
7 4.6576(–08) 1.3226(–13) 3.1571(–07)
10 3.0433(–09) 1.2087(–15) 5.4661(–10)
15 4.3126(–11) 1.2605(–14)
20 7.6664(–14)
30 3.4533(–16)

timing: 6.50 timing: 10.8 timing: 1.58

The run time is best for Gauss–Einstein quadrature, though the error is worse
than for the closest competitor, rational Gauss–Laguerre.

20.4 Slowly convergent series occurring in plate con-

tact problems

The series of interest here is

(20.8) Rp(z) =

∞
∑

k=0

z2k+1

(2k + 1)p
, z ∈ C, |z| ≤ 1, p = 2 or 3.

Rather than expressing the whole general term of the series as a Laplace
transform, we do this only for the coefficient,

(20.9)
1

(k + 1
2
)p

= (Lf)(k), f(t) =
1

(p − 1)!
tp−1e−t/2.

Then

Rp(z) =
z

2p

∞
∑

k=0

z2k

(k + 1
2
)p

=
z

2p

∞
∑

k=0

z2k

∫ ∞

0

e−kt · tp−1e−t/2

(p − 1)!
dt

=
z

2p(p − 1)!

∫ ∞

0

∞
∑

k=0

(z2e−t)k · tp−1e−t/2dt

=
z

2p(p − 1)!

∫ ∞

0

1

1 − z2e−t
tp−1e−t/2dt,

that is,

(20.10) Rp(z) =
z

2p(p − 1)!

∫ ∞

0

tp−1et/2

et − z2
dt, z−2 ∈ C\[0, 1].

90

The case z = 1 can be treated directly by using the connection with the zeta
function, Rp(1) = (1 − 2−p)ζ(p). Assume therefore z 6= 1. When |z| is close
to 1, the integrand in (20.10) is rather ill-behaved near t = 0, exhibiting a
steep boundary layer. We try to circumvent this by making the change of
variables e−t 7→ t to obtain

Rp(z) =
1

2p(p − 1)!z

∫ 1

0

t−1/2[ln(1/t)]p−1

z−2 − t
dt.

This expresses Rp(z) as a Cauchy integral of the measure

dλ[p](t) = t−1/2[ln(1/t)]p−1dt.

Since by assumption, z−2 lies outside the interval [0, 1], the integral can
be evaluated by the continued fraction algorithm, once sufficiently many
recurrence coefficients for dλ[p] have been precomputed. For the latter, the
modified Chebyshev algorithm is quite effective. The first 100 coefficients are
available for p = 2 and p = 3 in the OPQ files absqm1log1 and absqm1log2

to 25 resp. 20 decimal digits.

Example 21.

Rp(x), p = 2 and 3, x = .8, .9, .95, .99, .999 and 1.0.

Numerical results are shown in he table below and are accurate to all digits

x R2(x) R3(x)
.8 0.87728809392147 0.82248858052014
.9 1.02593895111111 0.93414857586540
.95 1.11409957792905 0.99191543992243
.99 1.20207566477686 1.03957223187364
.999 1.22939819733 1.05056774973
1.000 1.233625 1.051795

shown. Full acuracy cannot be achieved for x ≥ .999 using only 100 recur-
rence coefficients of dλ[p].

Example 22.

Rp(e
iα), p = 2 and 3, α = ωπ/2, ω = .2, .1, .05, .01, .001 and 0.0.

Numerical results are shown in the table below.

91

p ω Re(Rp(z)) Im(Rp(z))
2 .2 0.98696044010894 0.44740227008596
3 0.96915102126252 0.34882061265337
2 0.1 1.11033049512255 0.27830297928558
3 1.02685555765937 0.18409976778928
2 0.05 1.17201552262936 0.16639152396897
3 1.04449441539672 0.09447224926029
2 0.01 1.22136354463481 0.04592009281744
3 1.05140829197388 0.01928202831056
2 0.001 1.232466849 0.006400460
3 1.051794454 0.001936923
2 0.000 1.2336 0.0000
3 1.0518 0.0000

Here, too, full accuracy is not attainable for ω ≤ 0.001 with only 100 re-
currence coefficients. Curiously, the continued fraction algorithm seems to
converge also when z = 1, albeit slowly.

20.5 Series involving ratios of hyperbolic functions

More of a challenge are series of the type

(20.11) Tp(x; b) =

∞
∑

k=0

1

(2k + 1)p

cosh(2k + 1)k

cosh(2k + 1)b
, 0 ≤ x ≤ b, b > 0, p = 2, 3,

which also occur in plate contact problems. Here, we first expand the ratio
of hyperbolic cosines into an infinite series,

(20.12)

cosh(2k + 1)x

cosh(2k + 1)b

=
∞
∑

n=0

(−1)n
{

e−(2k+1)[(2n+1)b−x] + e−(2k+1)[(2n+1)b+x]
}

,

insert this in (20.11) and apply the Laplace transform technique of §20.4.
This yields, after an elementary computation (using an interchange of the
summations over k and n),

(20.13) Tp(x, b) =
1

2p(p − 1)!

∞
∑

n=0

(−1)ne(2n+1)b[ϕn(−x) + ϕn(x)],

92

where

(20.14) ϕn(s) = es

∫ 1

0

dλ[p](t)

e2[(2n+1)b+s] − t
, −b ≤ s ≤ b.

The integral on the right is again amenable to the continued fraction algo-
rithm for dλ[p], which for large n converges almost instantaneously. Conver-
gence of the series (20.13) is geometric with ratio e−b.

93

Exercises to Part III (Stars indicate more advanced exercises.)

1. With π0, π1, . . . , πN−1 denoting the discrete orthogonal polynomials rel-
ative to the measure dλN , and ĉi(f) the Fourier coefficients of f with
respect to these orthogonal polynomials, show that

n
∑

i=0

|ĉi(f)|2‖πi‖2 ≤ ‖f‖2, n < N,

with equality holding for n = N − 1.

2. Prove the following alternative form for the Fourier coefficients,

ĉi(f) =
1

‖πi‖2

(

f −
i−1
∑

j=0

ĉj(f)πj , πi

)

, i = 0, 1, . . . , n,

and discuss its possible advantages over the original form.

3. Discuss the modifications required in the constrained least squares ap-
proximation when ν (0 ≤ ν ≤ m) of the points sj are equal to one of
the support points tk.

4. What are pm(f ; ·), f ∗, and σm in Example 12?

5. Calculate the first and second derivative of the complementary error
function of Example 14.

6∗. Prove the unique solvability of the problem (19.8) under the conditions
stated in (19.9)–(19.10), and, in the affirmative case, derive (19.11).

7. Derive the measure dλ[m] for the Maxwell distribution of Example 16.

8. Derive the formula for f in Example 17.

9. Derive the formula for f in Example 18.

10. Derive (20.5).

11. Derive the formula for f in Example 19.

12. Derive (20.7).

13. Derive the formula for f in Example 20.

14. Supply the details for deriving (20.13).

94

