Leonhard Euler: 300 years old

Walter Gautschi
wxg@cs.purdue.edu

Purdue University

March 22, 2007
The three stations of Euler’s life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783
The Man
The three stations of Euler’s life

Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783

The Man
The three stations of Euler’s life

Basel 1707–1727

St. Petersburg 1727–1741

Berlin 1741–1766

St. Petersburg 1766–1783

The Man
The three stations of Euler’s life

Basel 1707–1727

St. Petersburg 1727–1741

Berlin 1741–1766

St. Petersburg 1766–1783
The three stations of Euler’s life

Basel 1707–1727

St. Petersburg 1727–1741

Berlin 1741–1766

St. Petersburg 1766–1783
Basel 1707–1727

Auspicious beginnings
Chronology

• born April 15, 1707, the first of four children
Chronology

• born April 15, 1707, the first of four children
• parents: Paulus Euler (1670–1745), a Protestant minister, and Margaretha Brucker (1677–1761)
Chronology

• born April 15, 1707, the first of four children
• parents: Paulus Euler (1670–1745), a Protestant minister, and Margaretha Brucker (1677–1761)
• early childhood at the parish residence in Riehen near Basel
Chronology

• born April 15, 1707, the first of four children
• parents: Paulus Euler (1670–1745), a Protestant minister, and Margaretha Brucker (1677–1761)
• early childhood at the parish residence in Riehen near Basel
• at the age of 8, sent to the Latin school in Basel
Chronology

- born April 15, 1707, the first of four children
- parents: Paulus Euler (1670–1745), a Protestant minister, and Margaretha Brucker (1677–1761)
- early childhood at the parish residence in Riehen near Basel
- at the age of 8, sent to the Latin school in Basel
- University of Basel 1720–1726
Chronology

- born April 15, 1707, the first of four children
- parents: Paulus Euler (1670–1745), a Protestant minister, and Margaretha Brucker (1677–1761)
- early childhood at the parish residence in Riehen near Basel
- at the age of 8, sent to the Latin school in Basel
- University of Basel 1720–1726
- 1726: participates in a prize question of the Paris Academy with a memoir on the optimal placing of masts on a ship
Chronology

• born April 15, 1707, the first of four children
• parents: Paulus Euler (1670–1745), a Protestant minister, and Margaretha Brucker (1677–1761)
• early childhood at the parish residence in Riehen near Basel
• at the age of 8, sent to the Latin school in Basel
• University of Basel 1720–1726
• 1726: participates in a prize question of the Paris Academy with a memoir on the optimal placing of masts on a ship
• 1727: applied for the physics chair at the university with a work on the theory of sound
Chronology

- born April 15, 1707, the first of four children
- parents: Paulus Euler (1670–1745), a Protestant minister, and Margaretha Brucker (1677–1761)
- early childhood at the parish residence in Riehen near Basel
- at the age of 8, sent to the Latin school in Basel
- University of Basel 1720–1726
- 1726: participates in a prize question of the Paris Academy with a memoir on the optimal placing of masts on a ship
- 1727: applied for the physics chair at the university with a work on the theory of sound
- left Basel (for good) in April of 1727 to assume a junior appointment at the Academy of St. Petersburg
St. Petersburg 1727–1741

Meteoric rise to world fame and academic advancement
The three stations of Euler’s life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783

The Man

Chronology

• groundwork for Euler’s appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy

1731: professor of physics; ordinary member of the Academy
1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics
1734: marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood
1735: first setback in health
1738: second setback in health; loss of the right eye
1741: departure from St. Petersburg following political unrest after the death (1740) of the Empress Anna Ivanovna (a niece of Peter I); accepted an invitation of Frederick II to help set up an Academy in Berlin.
Chronology

- groundwork for Euler’s appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
Chronology

- groundwork for Euler’s appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics
Chronology

- groundwork for Euler’s appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics
- 1734: marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood
- 1735: first setback in health
- 1738: second setback in health; loss of the right eye
- 1741: departure from St. Petersburg following political unrest after the death (1740) of the Empress Anna Ivanovna (a niece of Peter I); accepted an invitation of Frederick II to help set up an Academy in Berlin.
Chronology

- groundwork for Euler’s appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics
- 1734: marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood
- 1735: first setback in health
Chronology

- groundwork for Euler’s appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics
- 1734: marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood
- 1735: first setback in health
- 1738: second setback in health; loss of the right eye
Chronology

- groundwork for Euler’s appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics
- 1734: marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood
- 1735: first setback in health
- 1738: second setback in health; loss of the right eye
- 1741: departure from St. Petersburg following political unrest after the death (1740) of the Empress Anna Ivanovna (a niece of Peter I); accepted an invitation of Frederick II to help set up an Academy in Berlin.
Major treatises

Mechanics: Analytic theory of motion (1736)
- kinematics and dynamics of a mass point
- in free motion (vol. I)
- in constrained motion (vol. II)
The three stations of Euler’s life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783

The Man

Major treatises

Mechanics: Analytic theory of motion (1736)
- kinematics and dynamics of a mass point
- in free motion (vol. I)
- in constrained motion (vol. II)

Music theory: Tentamen novae theoriae musicae (1739)
- nature of sound
- generation of sound
- auditory perception of sound
- mathematical theory of pleasantness of musical constructs
- mathematical theory of temperaments
Major treatises

Mechanics: Analytic theory of motion (1736)
- kinematics and dynamics of a mass point
- in free motion (vol. I)
- in constrained motion (vol. II)

Music theory: Tentamen novae theoriae musicae (1739)
- nature of sound
- generation of sound
- auditory perception of sound
- mathematical theory of pleasantness of musical constructs
- mathematical theory of temperaments

Naval science (1749, written 1740–41)
- principles of hydrostatics
- stability theory
- naval engineering and navigation (vol. II)
Selecta Euleriana

Selectio 1 The Basel problem (1740)
Selecta Euleriana

Selectio 1 The Basel problem (1740)

\[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \]

\[\pi^2 / 6 \]
Selecta Euleriana

Selectio 1 The Basel problem (1740)

\[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6} \]
Selecta Euleriana

Selectio 1 The Basel problem (1740)

\[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6} \]

zeta function

\[\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots \]
Selecta Euleriana

Selectio 1 The Basel problem (1740)

\[
1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}
\]

zeta function

\[
\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots
\]

Euler determines \(\zeta(4), \zeta(6), \zeta(8), \ldots, \zeta(12)\)
Selecta Euleriana

Selectio 1 The Basel problem (1740)

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}$$

zeta function

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots$$

Euler determines

$$\zeta(4), \zeta(6), \zeta(8), \ldots, \zeta(12)$$

Later in 1750, he was able to prove (rigorously)

$$\zeta(2n) = \frac{2^{2n-1}}{(2n)!} |B_{2n}| \pi^{2n}$$
Selectio 2 Prime numbers and the zeta function
Selectio 2 Prime numbers and the zeta function

\[\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\} \]
Selectio 2 Prime numbers and the zeta function

\[\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\} \]

product formula (1737)

\[\prod_{p \in \mathcal{P}} \frac{1}{1 - 1/p^s} = \zeta(s) \]
Selectio 2 Prime numbers and the zeta function

\[\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\} \]

product formula (1737)

\[\prod_{p \in \mathcal{P}} \frac{1}{1 - 1/p^s} = \zeta(s) \]

Euler’s derivation

from \(\zeta(s) \) “peel away” all terms divisible by 2

\[\frac{2^s - 1}{2^s} \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots \]
Selectio 2 Prime numbers and the zeta function

\[\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\} \]

product formula (1737)

\[
\prod_{p \in \mathcal{P}} \frac{1}{1 - 1/p^s} = \zeta(s)
\]

Euler’s derivation

from \(\zeta(s) \) “peel away” all terms divisible by 2

\[
\frac{2^s - 1}{2^s} \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots
\]

from this do the same with the prime 3, then with 5, etc.
Selectio 2 Prime numbers and the zeta function

\[\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\} \]

product formula (1737)

\[
\prod_{p \in \mathcal{P}} \frac{1}{1 - 1/p^s} = \zeta(s)
\]

Euler’s derivation

from \(\zeta(s) \) “peel away” all terms divisible by 2

\[
\frac{2^s - 1}{2^s} \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots
\]

from this do the same with the prime 3, then with 5, etc.

\[
\left(\prod_{p \in \mathcal{P}} \frac{p^s - 1}{p^s} \right) \zeta(s) = 1 \quad \square
\]
Berlin 1741–1766

The emergence of epochal treatises
Chronology

- 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class;
Chronology

• 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
The three stations of Euler’s life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783
The Man

Chronology

• 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London

• 1750: Euler’s widowed mother comes to Berlin, where she lives in Euler’s country estate together with Euler’s sister-in-law and children
Chronology

- 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
- 1750: Euler’s widowed mother comes to Berlin, where she lives in Euler’s country estate together with Euler’s sister-in-law and children
- 1752: Maupertuis returns to Paris in disgrace; Euler takes over the Academy as *de facto*, if not *de jure*, president
Chronology

• 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London

• 1750: Euler’s widowed mother comes to Berlin, where she lives in Euler’s country estate together with Euler’s sister-in-law and children

• 1752: Maupertuis returns to Paris in disgrace; Euler takes over the Academy as *de facto*, if not *de jure*, president

• 1755: elected foreign member of the Paris Academy
The three stations of Euler's life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783
The Man

Chronology

• 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
• 1750: Euler’s widowed mother comes to Berlin, where she lives in Euler’s country estate together with Euler’s sister-in-law and children
• 1752: Maupertuis returns to Paris in disgrace; Euler takes over the Academy as de facto, if not de jure, president
• 1755: elected foreign member of the Paris Academy
• 1763–: Euler’s relationship with Frederick II sours
Chronology

- 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
- 1750: Euler’s widowed mother comes to Berlin, where she lives in Euler’s country estate together with Euler’s sister-in-law and children
- 1752: Maupertuis returns to Paris in disgrace; Euler takes over the Academy as *de facto*, if not *de jure*, president
- 1755: elected foreign member of the Paris Academy
- 1763–: Euler’s relationship with Frederick II sours
- 1766: Euler returns to St. Petersburg
Major treatises

Methodus inveniendi lineas curvas (1744)

- one of Euler’s masterpieces: the first exposition ever of the calculus of variations
- Euler’s differential equation
- numerous examples from mathematics and the natural sciences
Major treatises

Methodus inveniendi lineas curvas (1744)
- one of Euler’s masterpieces: the first exposition ever of the calculus of variations
- Euler’s differential equation
- numerous examples from mathematics and the natural sciences

Cometary and planetary trajectories (1744)
Major treatises

Methodus inveniendi lineas curvas (1744)
- one of Euler’s masterpieces: the first exposition ever of the calculus of variations
- Euler’s differential equation
- numerous examples from mathematics and the natural sciences

Cometary and planetary trajectories (1744)

Optics (1746)
- theory of light and colors
Major treatises

Methodus inveniendi lineas curvas (1744)
- one of Euler’s masterpieces: the first exposition ever of the calculus of variations
- Euler’s differential equation
- numerous examples from mathematics and the natural sciences

Cometary and planetary trajectories (1744)

Optics (1746)
- theory of light and colors

Artillery (1745)
- vastly expanded and annotated German translation of Robins’s New principles of gunnery (1742)
Introduction to the analysis of the infinite (1748)
Differential calculus (1755)
Integral calculus (1763, 1773)
The three stations of Euler's life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783
The Man

Introduction to the analysis of the infinite (1748)
Differential calculus (1755)
Integral calculus (1763, 1773)
Theoria motus corporum (1765)
• “second mechanics”; mechanics of rigid bodies
Introduction to the analysis of the infinite (1748)

Differential calculus (1755)

Integral calculus (1763, 1773)

Theoria motus corporum (1765)
 • “second mechanics”; mechanics of rigid bodies

Dioptrics (1769–1771)
 • chromatic and spherical aberration in optical instruments
Introduction to the analysis of the infinite (1748)

Differential calculus (1755)

Integral calculus (1763, 1773)

Theoria motus corporum (1765)
 • “second mechanics”; mechanics of rigid bodies

Dioptrics (1769–1771)
 • chromatic and spherical aberration in optical instruments

Letters to a German princess (written 1760–1762)
 • Euler’s philosophical views on science, religion, and ethics
Selecta Euleriana

Selectio 3 The Königsberg bridge problem (1741)
Selecta Euleriana

Selectio 3 The Königsberg bridge problem (1741)

connected graph

• path • circuit • Eulerian path or circuit
Selecta Euleriana

Selectio 3 The Königsberg bridge problem (1741)

connected graph

• path • circuit • Eulerian path or circuit

• degree of a vertex

The three stations of Euler's life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783
The Man
Selecta Euleriana

Selectio 3 The Königsberg bridge problem (1741)

connected graph

• path • circuit • Eulerian path or circuit

• degree of a vertex

Theorem (Euler) Let n be the number of vertices of odd degree.
(a) If $n = 0$, the graph has at least one Eulerian circuit;
Selecta Euleriana

Selectio 3 The Königsberg bridge problem (1741)

connected graph

• path • circuit • Eulerian path or circuit

• degree of a vertex

Theorem (Euler) Let \(n \) be the number of vertices of odd degree.

(a) If \(n = 0 \), the graph has at least one Eulerian circuit;
(b) if \(n = 2 \), it has at least one Eulerian path, but no circuit;
Selecta Euleriana

Selectio 3 The Königsberg bridge problem (1741)

connected graph

• path • circuit • Eulerian path or circuit
 • degree of a vertex

Theorem (Euler) Let n be the number of vertices of odd degree.
(a) If $n = 0$, the graph has at least one Eulerian circuit;
(b) if $n = 2$, it has at least one Eulerian path, but no circuit;
(c) if $n > 2$, it has neither.
Selecta Euleriana

Selectio 3 The Königsberg bridge problem (1741)

connected graph

- path
- circuit
- Eulerian path or circuit
- degree of a vertex

Theorem (Euler) Let n be the number of vertices of odd degree.
(a) If $n = 0$, the graph has at least one Eulerian circuit;
(b) if $n = 2$, it has at least one Eulerian path, but no circuit;
(c) if $n > 2$, it has neither.
($n = 1$ is impossible.)
Selecta Euleriana

Selectio 3 The Königsberg bridge problem (1741)

connected graph

• path • circuit • Eulerian path or circuit

• degree of a vertex

Theorem (Euler) Let n be the number of vertices of odd degree.
(a) If $n = 0$, the graph has at least one Eulerian circuit;
(b) if $n = 2$, it has at least one Eulerian path, but no circuit;
(c) if $n > 2$, it has neither.
$(n = 1$ is impossible.)

Königsberg bridge graph: $n = 4$
Selectio 4 Euler flow (1757)
Selectio 4 Euler flow (1757)

Transonic Euler flow at Mach .85 about a cylinder
Selectio 5 Euler’s polyhedral formula (1753)
Selectio 5 Euler’s polyhedral formula (1753)

In a three-dimensional convex polyhedron let

\[V = \text{number of vertices} \]
\[E = \text{number of edges} \]
\[F = \text{number of faces} \]
Selectio 5 Euler’s polyhedral formula (1753)

In a three-dimensional convex polyhedron let

\[V = \text{number of vertices} \]
\[E = \text{number of edges} \]
\[F = \text{number of faces} \]

Theorem (Euler)

\[V - E + F = 2 \]
St. Petersburg 1766–1783

The glorious final stretch
Chronology

• 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind;
Chronology

- 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind; Euler’s wooden house burns down during the great St. Petersburg fire
Chronology

• 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind; Euler’s wooden house burns down during the great St. Petersburg fire

• 1773: Euler’s wife Katharina dies
Chronology

- 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind; Euler’s wooden house burns down during the great St. Petersburg fire

- 1773: Euler’s wife Katharina dies

- 1776: Euler remarries
Chronology

• 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind; Euler’s wooden house burns down during the great St. Petersburg fire

• 1773: Euler’s wife Katharina dies

• 1776: Euler remarries

• 1783: On September 18, Euler dies of a stroke
Major treatises

Algebra (1770)

- a work written for the absolute beginner; a prime example of Euler’s extraordinary didactic skill; it becomes another “bestseller”, translated into all major languages
Major treatises

Algebra (1770)
- a work written for the absolute beginner; a prime example of Euler’s extraordinary didactic skill; it becomes another “bestseller”, translated into all major languages

Second lunar theory (1772)
- a monumental work explaining the many irregularities of the moon’s orbit
- Euler’s struggle with ”solving” the three-body problem (sun–earth–moon)
Major treatises

Algebra (1770)
- a work written for the absolute beginner; a prime example of Euler’s extraordinary didactic skill; it becomes another “bestseller”, translated into all major languages

Second lunar theory (1772)
- a monumental work explaining the many irregularities of the moon’s orbit
- Euler’s struggle with ”solving” the three-body problem (sun–earth–moon)

Second theory of ships (1773)
- construction and maneuvering of ships
- written for people (e.g., sailors) with no, or little, mathematical knowledge
Selecta Euleriana

Selectio 6 Euler’s disk
Selecta Euleriana

Selectio 6 Euler’s disk
Selection 7 Gear transmission; Euler’s tooth profile
Selection 7 Gear transmission; Euler’s tooth profile
The three stations of Euler's life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783

The Man
The three stations of Euler’s life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783

The Man

Personality

• modest, inconspicuous, uncomplicated, yet cheerful and sociable
• “honesty, uncompromising rectitude—the acknowledged national virtues of Swiss people—he possessed to a superior degree” (Fuchs)
• free of priority concerns
• generous in acknowledging and furthering other people’s work
The Man

Personality

• modest, inconspicuous, uncomplicated, yet cheerful and sociable
• “honesty, uncompromising rectitude—the acknowledged national virtues of Swiss people—he possessed to a superior degree” (Fuchs)
• free of priority concerns
• generous in acknowledging and furthering other people’s work

Intellect

• phenomenal memory, erudite
• unusual power of mental calculation
• ability to concentrate on mental work under adverse conditions
The three stations of Euler's life
Basel 1707–1727
St. Petersburg 1727–1741
Berlin 1741–1766
St. Petersburg 1766–1783
The Man

Personality
• modest, inconspicuous, uncomplicated, yet cheerful and sociable
• “honesty, uncompromising rectitude—the acknowledged national virtues of Swiss people—he possessed to a superior degree” (Fuchs)
• free of priority concerns
• generous in acknowledging and furthering other people’s work

Intellect
• phenomenal memory, erudite
• unusual power of mental calculation
• ability to concentrate on mental work under adverse conditions

Craftsmanship
• superb expositor
• his goal: ultimate clarity and simplicity
• yet fearless and aggressive in his quest for discovery
Epilogue

LEONHARD EULER
1707–1783
mathematician, physicist, engineer, astronomer and philosopher, spent his youth in Riehen. He was a great scholar and a kind man.