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Abstract

On the occasion of the 300th anniversary of Euler’s birth (on April
15), an attempt is made to bring Euler’s genius to the attention of
a broad segment of the educated public. The three stations of his
life—Basel, St. Petersburg, and Berlin—are sketched and the principal
works identified in more or less chronological order. To convey a flavor
of his work and its impact on modern science, a selection of some
of Euler’s memorable contributions is made and discussed in more
detail. Remarks on Euler’s personality, intellect, and craftsmanship,
will round out the presentation.

1 Introduction

It is a virtually impossible task to do justice, in a short span of time and
space, to the great genius of Leonhard Euler. We attempt, in this lecture,
to bring across to a broad segment of the educated public, at least some
glimpses of Euler’s incredibly diverse and profound ideas. We begin in §2
with a brief outline of his life, going through the three stations of his life:
Basel, St. Petersburg (twice), and Berlin. In §3, we identify in more or less
chronological order Euler’s principal works and try to convey a flavor and
some of the characteristic features of his work by selecting, and describing in
some more detail, a few of his many outstanding contributions. We conclude
in §4 with remarks on Euler’s personality, character, and intellect, as gained
from testimonials of his contemporaries and from his vast correspondence,
and in §5 with some bibliographic information for further reading.



2 His Life

2.1 Basel 1707-1727: Auspicious beginnings

Leonhard Euler was born on April 15, 1707, the first child of Paulus Euler
and Margaretha Brucker. The father at the time was a vicar at the church
of St. Jakob, just outside the old city walls of Basel. Although a theologian,
Paulus had interests in mathematics and took courses from the famous Jakob
Bernoulli during the first two years of his study at the university. About a
year-and-a-half after Leonhard’s birth, the family moved to Riehen, a suburb
of Basel, where Paulus Euler assumed the position of Protestant minister at
the local parish. He served in that capacity faithfully and devotedly for the
rest of his life.

The parish residence, as it looks today (Fig. 1) seems comfortable enough,
but at the time the quarters it provided were rather cramped, especially
after the family increased by another child, Anna Maria, in 1708. Two more
children, Maria Magdalena and Johann Heinrich, were to follow later on.

Figure 1: The parish residence and church in Riehen

Leonhard received his first schooling at home from his mother, in classics,
and from his father, in mathematics. Around the age of eight he was sent
to the Latin school in Basel and given room and board at his maternal
grandmother’s house. To compensate for the poor quality then prevailing at
the school, Paulus Euler hired a private tutor for his son, a young theologian,
himself an enthusiastic lover of mathematics. In October of 1720, at the age
of thirteen (not unusual at the time), Leonhard enrolled at the University of
Basel, first at the Philosophical Faculty, where he took the freshman courses



on elementary mathematics given by Johann Bernoulli, the younger brother
of Jakob. He graduated three years later with a master’s degree and a public
lecture (in Latin) comparing Descartes’s system of natural philosophy with
the one of Newton.

Following the wishes of his parents, he then entered the Theological Fac-
ulty, devoting, however, most of his time to mathematics and attending Jo-
hann Bernoulli’s courses on higher mathematics. So successful did he pursue
his mathematical studies that he soon caught the attention of his teacher,
who in turn convinced Euler’s father that Leonhard’s vocation was mathe-
matics, not theology. This is how Euler himself recounts this early learning
experience at the university in his brief autobiography of 1767 (here freely
translated from German):

Figure 2: The old university of Basel and Johann I Bernoulli

In 1720 T was admitted to the university as a public student, where
I soon found the opportunity to become acquainted with the famous
professor Johann Bernoulli, who made it a special pleasure for himself
to help me along in the mathematical sciences. Private lessons, how-
ever, he categorically ruled out because of his busy schedule. However,
he gave me a far more beneficial advice, which consisted in myself tak-
ing a look at some of the more difficult mathematical books and work
through them with great diligence, and should I encounter some ob-
jections or difficulties, he offered me free access to him every Saturday
afternoon, and he was gracious enough to comment on the collected
difficulties, which was done with such a desired advantage that, when
he resolved one of my objections, ten others at once disappeared,



which certainly is the best method of making auspicious progress in
the mathematical sciences.

These personal meetings have become known, and famous, as the privatis-
sima, and they continued well beyond his graduation. It was during these
privatissima that Johann Bernoulli discovered, and more and more began to
admire, the extraordinary mathematical talents of the young Euler.

Barely nineteen years old, Euler dared to compete with the greatest scien-
tific minds of the time by responding to a prize question of the Paris Academy
of Sciences with a memoir on the optimal placing of masts on a ship. He
did not win first prize, but still a respectable second. A year later, when
the physics chair at the University of Basel became vacant, the young Euler,
dauntlessly again, but with the full support of his mentor, Johann Bernoulli,
competed for the position, but failed, undoubtedly because of his youth and
lack of an extensive record of publications. In a sense, this was a blessing
in disguise, because in this way he was free to accept a call to the Academy
of Sciences in St. Petersburg, founded a few years earlier by the czar Peter I
(the Great). The groundwork for this appointment had been laid by Johann
Bernoulli and two of his sons, Niklaus II and Daniel I, both of whom were
already active at the Academy.

2.2 St. Petersburg 1727-1741: Meteoric rise to world
fame and academic advancement

Euler spent the winter of 1726 in Basel studying anatomy and physiology
in preparation for his anticipated duties at the Academy. When he arrived
in St. Petersburg, and started his position as an adjunct of the Academy,
it was determined, however, that he should devote himself entirely to the
mathematical sciences. In addition, he was to participate in examinations
for the cadet corps and act as a consultant to the Russian state in a variety
of scientific and technological questions.

Euler adjusted easily and quickly to the new and sometimes harsh life in
the northern part of Europe. Contrary to most other foreign members of the
Academy he began immediately to study the Russian language and mastered
it quickly, both in writing and speaking. For six years he shared a dwelling
with Daniel Bernoulli, and he was also on friendly terms with Christian
Goldbach, the permanent Secretary of the Academy and best known today for
his—still open—conjecture in number theory. The extensive correspondence



Figure 3: The Academy in St. Petersburg and Peter I

between Euler and Goldbach that ensued has become an important source
for the history of science in the 18th century.

Euler’s years at the Academy of St. Petersburg proved to be a period of
extraordinary productivity and creativity. Many spectacular results achieved
during this time (more on this later) brought him instant world fame and in-
creased status and esteem within the Academy. A portrait of Euler stemming
from this period is shown in Fig. 4.

In January of 1734 Euler married Katharina Gsell and they moved into a
house of their own. The marriage brought forth thirteen children, of whom,
however, only five reached the age of adulthood. The first-born child, Johann
Albrecht, was to become a mathematician himself and later in life was to serve
Euler as one of his assistants.

Figure 4: Euler ca. 1737



Euler was not spared misfortunes. In 1735, he fell seriously ill and almost
lost his life. To the great relief of all, he recovered, but suffered a repeat
attack three years later of (probably) the same infectious disease. This time
it cost him his right eye, which is clearly visible on all portraits of Euler from
this time on (for example the one in Fig. 6).

The political turmoil in Russia that followed the death of the czarina
Anna Ivanovna induced Euler to seriously consider, and eventually decide,
to leave St. Petersburg. This all the more as he already had an invitation
from the Prussian king Frederick II to come to Berlin and help establish an
Academy of Sciences there. This is how Euler put it in his autobiography:

...in 1740, when His still gloriously reigning Royal Majesty [Frederick
I1] came to power in Prussia, I received a most gracious call to Berlin,
which, after the illustrious Empress Anne had died and it began to
look rather dismal in the regency that followed, I accepted without
much hesitation ...

In June of 1741, Euler together with his wife Katharina, the six-year-old
Johann Albrecht, and the one-year-old toddler Karl, set out on the journey
from St. Petersburg to Berlin.

2.3 Berlin 1741-1766: The emergence of epochal trea-
tises

Because of his preocupation with the war campaign in Silesia, Frederick II
took his time to set up the Academy. It was not until 1746 that the Academy
finally took on shape, with Pierre-Louis Moreau de Maupertuis its president
and Euler the director of the Mathematics Class. In the interim, Euler did
not remain idle; he completed some twenty memoirs, five major treatises,
now classics, and he composed over 200 letters!

Even though Euler was entrusted with manifold duties at the Academy—
he had to oversee the Academy’s observatory and botanical gardens, deal
with personnel matters, attend to financial affairs, notably the sale of al-
manacs which constituted the major source of income for the Academy, not
to speak of a variety of technological and engineering projects—his mathe-
matical productivity did not slow down. Nor was he overly distracted by an
ugly priority dispute that erupted in the early 1750s over Euler’s principle
of least action, which was also claimed by Maupertuis and which the Swiss
fellow mathematician and newly elected academician Johann Samuel Ko6nig
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Figure 5: The Berlin Academy and Frederick 11

affirmed to have already been formulated by Leibniz in a letter to the mathe-
matician Jakob Hermann. He even accused Maupertuis of plagiarism. When
challenged to produce the letter, Konig was unable to do so, and Euler was
asked to investigate. Not sympathetic to Leibniz’s philosophy, Euler sided
with Maupertuis and in turn accused Konig of fraud. This all came to a boil
when Voltaire, aligned with Konig, came forth with a scathing satire ridicul-
ing Maupertuis and not sparing Euler either. So distraught was Maupertuis

Figure 6: Euler 1753

that he left Berlin soon thereafter, and Euler had to conduct the affairs of
the Academy as de facto, if not de jure, president of the Academy.

By now, Euler was sufficiently well-off that he could purchase a country
estate in Charlottenburg, in the western outskirts of Berlin, which was large
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enough to provide a comfortable home for his widowed mother, whom he
had come to Berlin in 1750, his sister-in-law, and all the children. His first-
born son Johann Albrecht was elected 1754, only twenty years old, to the
Berlin Academy on the recommendation of Maupertuis. With a memoir
on the perturbation of cometary orbits by planetary attraction he won in
1762 a prize of the Petersburg Academy, but had to share it with Alexis-
Claude Clairaut. Euler’s second son, Karl, went to study medicine in Halle,
whereas the third, Christoph, became an officer in the military. His daughter
Charlotte married into Dutch nobility and her older sister Helene a Russian
officer later in 1777.

Euler’s relation with Frederick II was not an easy one. In part, this was
due to the marked difference in personality and philosophical inclination:
Frederick—proud, self-assured, worldly, a smooth and witty conversation-
alist, sympathetic to French Enlightenment; Euler—modest, inconspicuous,
down to earth, and a devout protestant. Another, perhaps more important,
reason was Euler’s resentment for never having been offered the presidency of
the Berlin Academy. This resentment was only reinforced after Maupertuis’s
departure and Euler’s subsequent efforts to keep the Academy afloat, when
Frederick tried to interest Jean le Rond d’Alembert in the presidency. The
latter indeed came to Berlin, but only to inform the king of his disinterest
and to recommend Euler for the position instead. Still, Frederick not only
ignored d’Alembert’s advice, but ostentatiously declared himself the head of
the Academy! This, together with many other royal rebuffs finally led Euler
in 1766 to leave Berlin. He in fact already had a most cordial invitation from
Empress Catherine II (the Great) to return to the Academy of St. Petersburg.

2.4 St. Petersburg 1766—1783: The glorious final stretch

Highly respected at the Academy and adored at Catherine’s court, Euler
now held a position of great prestige and influence that had been denied
him in Berlin for so long. He in fact was the spiritual leader of the Academy.
Unfortunately, however, there were setbacks on a personal level. A cataract in
his left (good) eye, which already began to bother him in Berlin, now became
increasingly worse, so that in 1771 Euler decided to undergo an operation.
The operation, though successful, led to the formation of an abscess, which
soon destroyed Euler’s vision almost entirely. Later in the same year, his
wooden house burned down during the great fire of St. Petersburg, and the
almost blind Euler escaped from being burnt alive only by a heroic rescue by



Figure 7: The Euler house and Catherine II

Peter Grimm, a workman from Basel. To ease the misfortune, the Empress
granted funds to build a new house (the one shown in Fig. 7). Another heavy
blow hit Euler in 1773 when his wife Katharina died. Euler remarried three
years later so as not to be dependent on his children.

In spite of all these fateful events, Euler remained mathematically as ac-
tive as ever, if not more. Indeed, about half of his scientific output was
published, or originated, during this second St. Petersburg period, among
which his two “bestsellers”, the Letters to a German princess and the Al-
gebra. Naturally, he could not have done it without good secretarial and

Figure 8: Euler 1778

technical help, which he received among others from Niklaus Fuss, a com-
patriot from Basel and grandson-in-law of Euler, and from Euler’s own son,
Johann Albrecht. The latter, by now secretary of the Academy, also acted



as the protocolist of the Academy sessions, over which Euler, as the oldest
member of the Academy, had to preside.

The high esteem in which Euler was held at the Academy and at the Court
is touchingly revealed by a passage in the memoirs of the Countess Dashkova,
a directress of the Academy appointed by the Empress. She recounts the first
time she accompanied the old Euler to one of the sessions of the Academy,
probably Euler’s last. Before the session started, a prominent professor and
State Councilor as a matter of course claimed the chair of honor, next to
the director’s chair. The countess then turned to Euler and said: “Please be
seated wherever you want; the seat you select will of course become the first
of all.”

Leonhard Euler died from a stroke on September 18, 1783 while playing
with one of his grandchildren. Formulae that he had written down on two
of his large slates describing the mathematics underlying the spectacular
balloon flight undertaken on June 5, 1783 by the brothers Montgolfier in
Paris, were found on the day of his death. Worked out and prepared for
publication by Euler’s son Johann Albrecht, they became the last article
of Euler; it appeared in the 1784 volume of the Mémoires. A stream of
memoirs, however, all queued up at the presses of the Academy, were still to
be published for nearly fifty years after Euler’s death.

3 His Work

In the face of the enormous volume of Euler’s writings, we content ourselves
with briefly identifying his principal works, and then select, and describe in
some more detail, a few of Euler’s prominent results in order to convey a
flavor of his work and some of its characteristic features. The papers will be
cited by their Enestrom-Index numbers (E-numbers).

3.1 The period in Basel

During the relatively short time of Euler’s creative activity in Basel, he
published two papers (E1, E3) in the Acta Eruditorum (Leipzig), one on
isochronous curves, the other on so-called “reciprocal” curves, both influ-
enced by Johann Bernoulli, and the work on the Paris Academy prize ques-
tion (E4). The major work of this period is probably his Dissertatio physica
de sono (E2), which he submitted in support of his application to the physics
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chair at the University of Basel and had it printed 1727 in Basel. In it, Euler

QFFQS
DISSERTATIO PHYSICA

Figure 9: Physical dissertation on sound, 1727

discusses the nature and propagation of sound, in particular the speed of
sound, and also the generation of sound by musical instruments. Some of
this work is preliminary and has been revisited by Euler in his Tentamen
(cf. §3.2.1) and, thirty years later, in several memoirs (E305-E307).

3.2 First St. Petersburg period

In spite of the serious setbacks in health, Euler’s creative output during this
period is nothing short of astonishing. Major works on mechanics, music
theory, and naval architecture are interspersed with some 50 memoirs on a
great variety of topics that run the gamut from the purest parts of mathe-
matics to concrete problems in physics and astronomy. An account of the
mathematical work during this period is given in [13].

3.2.1 Major works

The two-volume Mechanica (E15, E16) is the beginning of a far-reaching
program, outlined by Euler in Vol. I, §98 of composing a comprehensive
treatment of all aspects of mechanics, including the mechanics of rigid, flex-
ible, and elastic bodies, fluid mechanics, and the many-body problem. The
present work is restricted almost entirely to the dynamics of a point mass,
to its free motion in Vol. I and constrained motion in Vol. II. In either case
the motion may take place either in vacuum or in a resisting medium. The
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Figure 10: Mechanics, 1736

novelty of the Mechanica consists in the systematic use of (the then new)
differential and integral calculus, including differential equations, and in this
sense it represents the first treatise on what is now called analytic (or ratio-
nal) mechanics. It has won the praise of many leading scientists of the time,
Johann Bernoulli among them, who said of the work that ”... it does honor
to Euler’s genius and acumen”. Also Lagrange, who in 1788 wrote his own
Mécanique analytique, acknowledges Euler’s mechanics to be ”... the first
great work where Analysis has been applied to the science of motion”. Im-
plementation and systematic treatment of the rest of Euler’s program, never
entirely completed, occupied him thoughout much of his life.

It is evident from Euler’s note books, that he thought a great deal about
music and musical composition while still in Basel and had plans to write a
book on the subject. These plans matured only later in St. Petersburg and
gave rise to the Tentamen novae theoriae musicae (E33), usually referred
to as the Tentamen, published in 1739 but completed already in 1731. (An
English translation is available in [14, pp. 21-347]). The work opens with
a discussion of the nature of sound as vibrations of air particles, including
the propagation of sound, the physiology of auditory perception, and the
generation of sound by string and wind instruments. The core of the work,
however, deals with a theory of pleasure that music can evoke, which Euler
develops by assigning to a tone interval, a chord, or a succession of such, a
numerical value—the “degree”—which is to measure the agreeableness, or
pleasure, of the respective musical construct: the lower the degree, the more
pleasure. This is done in the context of Euler’s favorite diatonic-chromatic

12



TENTAMEN
NOVAE THEORIAE

MVSICAE

CERTEI);SlMlS
HARMONIAE PRINCIPIIS

DILYCIDE EXFOSITAE.

LEONHARDO EVLERO.

Figure 11: Tentamen, 1739 (1731)

temperament, but a complete mathematical theory of temperaments, both
antique and contemporary ones, is also given.

In trying to make music an exact science, Euler was not alone: Descartes,
Galileo, and Mersenne did the same before him, d’Alembert and many others
after him (cf. Bailhache [2], Assayag [1]). In 1766 and 1774, Euler returns to
music in three memoirs E314, E315, and E457.

Euler’s two-volume Scientia navalis (E110, E111) is a second milestone
in his development of rational mechanics. In it, he sets forth the principles of
hydrostatics and develops a theory of equilibrium and oscillations about the
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Figure 12: Naval science, 1749 (1740-1741)
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equilibrium of three-dimensional bodies submerged in water. This already
contains the beginnings of the mechanics of rigid bodies, which much later
is to culminate in his Theoria motus corporum, the third major treatise on
mechanics (cf. §4.3.1). The second volume applies the theory to ships, to
ship building and navigation.

3.2.2 Selecta Euleriana

Selectio 1. The Basel problem
This is the name that has become attached to the problem of determining
the sum of the reciprocal squares,

1 1 1
(3.1) 1+§+§+E+---.
In modern terminology, this is called the zeta function of 2, where more
generally

1 1 1

(3.2) C(S)_1+23+3s+4s+""

The problem has stumped the leading mathematicians of the time—Leibniz,
Stirling, de Moivre, and all the Bernoullis—until Euler came along. Typically
for Euler, he started using his stupendous capabilities of mental calculations
and his adroiteness in speeding up slowly converging series to calculate ((2)
to seven decimal places (E20). (Stirling, already in 1730, actually calculated
the series to nine decimal places, but Euler did not yet know this.) The
breakthrough came in 1735 (published as E41 in 1740) when he showed by a
brilliant but daring procedure (using Newton’s identities for polynomials of
infinite degree!) that

Spectacular as this achievement was, Euler went on to use the same method
to determine ((s) for all even s = 2n up to 12. He found ((2n) to be always
a rational number multiplied by the 2nth power of 7. It was in connection
with the Basel problem that Euler in 1732 discovered a general summation
procedure, found independently by Maclaurin in 1738, and promptly used
it to calculate ((2) to twenty decimal places! Eventually, Euler managed to
place his approach on a more solid footing, and he succeeded, in E130 (see
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also E212, Part II, Ch. 5), to prove the general formula

22n—1 )
——— | By, | ",

(2n)! | Bonl

Here, By, are the Bernoulli numbers (introduced by Jakob Bernoulli in his
Ars conjectandi), which Euler already encountered in his general summation
formula.

Euler also tried odd values of s, but wrote in a letter to Johann Bernoulli
that “... the odd powers I cannot sum, and I don’t believe that their sums
depend on the quadrature of the circle [that is, on 7|” (Fellmann [6, p. 84,
footnote 56]. The problem in this case, as a matter of fact, is still open today.

(3.3) ((2n) =

Selectio 2. Prime numbers and the zeta function
Let
P ={2,3,57,11,13,17,...}

be the set of all prime numbers larger than 1, i.e., the integers > 1 that
have no divisors other than 1 and themselves. Euler’s fascination with prime
numbers started quite early and continued throughout his life, even though
the rest of the mathematical world at the time (Lagrange excluded!) was
rather indifferent to problems of this kind. An example of his profound
insight into the theory of numbers is the discovery in 1737 (E72) of the
fabulous product formula

(3.4) H 1_;1/1)3 = ((s)

peEP

connecting prime numbers with the zeta function (3.2). How did he do it?—
Simply by starting with the zeta function and peeling away, layer after layer,
all the terms whose integers in the denominators are divisible by a primel!
Thus, from

dividing by 2° and subtracting, one gets

95 _ 1 1 1 1
T T N T
o () =Tt oot
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All the denominator integers divisible by 2 are gone. Do the same with the
next prime 3, i.e., divide the last equation by 3® and subtract, and one gets
22—-1 3°—-1 1 1 1

— 14+ — 4+ —
95 5 S =1ttt

where all integers divisible by 3 are gone. Continue in this way ad infinitum,
everything eventually will be gone except for the first term 1,

p’—1
(][ : >c<s>=1.
But this is the same as (3.4)!

pEP p
The result provides a neat analytic proof of the fact (already known to
the Greek) that the number of primes is infinite. Indeed, since ((1)—the
harmonic series—diverges to oo (cf. Selectio 4), the product on the left of
(3.4), if s = 1, cannot be finite.
The formula—the beginning of “analytic number theory”—in fact paved
the way to important later developments in the distribution of primes.

Selectio 3. The gamma function
Following a correspondence in 1729 with Goldbach, Euler in E19 considers
the problem of interpolating the sequence of factorials

(3.5) nl=1-2-3---n, n=1,2,3,...,

at noninteger values of the argument. Euler quickly realized that this cannot
be done algebraically, but requires ”transcendentals”, that is, calculus. He
writes n! as an infinite product,

1.97 21—n . 3n 31—n .4 41—n . 5N

3.6 .
(3.6) 1+n 24+n 3+n 4+n

)

which formally, by multiplying out the numerators, can be seen to be the
ratio of two infinite products, 1-2-3-4-5--- and (n+1)(n+2)(n+3) - - -,
which indeed reduces to (3.5). Now for n = 1, Euler manages to manipulate
the infinite product (3.6) into the square root of an infinite product for 7 /4
due to Wallis; therefore, %! = %ﬁ This is why Euler knew that some kind
of integration was necessary to solve the problem.
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By a stroke of insight, Euler takes the integral fo (1 — x)"dz—up to
the factor 1/n! the n-times iterated integral of z° Where e is an arbitrary
number (not the basis of the natural logarithms!)—and finds the formula

n!
e+2)---(e+n)

1
3.7 e—l—n—l—l/mel—x"dx:
B7) )| -y =
He now lets e = f/g be a fraction, so that
f+(n+1)g n!

291 — 2)"dx = )
g / A=) e = e v a9 (F T ng)

If f =1, g =0, then on the right we have n!; on the left, we have to determine
the limit as f — 1, g — 0, which Euler takes to be the desired interpolant,
since it is meaningful also for noninteger n. Skillfully, as always, Fuler carries
out the limit by first changing variables, x = t9/(/+9) to obtain

f+(n+1)g /1 (1—t9/<f+9>)"dt
f+yg 0 g 7

and then doing the limit as ¢ — 0 with f = 1 by the Bernoulli-L’Hospital
rule. The result is fol —Int)"dt. Here we can set n = x to be any positive

number, and thus obtain x! = fo — Int)*dt, which today is written as
(3.8) ol — / e dt = D(z + 1)
0

in terms of the gamma function I'. It is easily verified that
(3.9) Mx+1)=al'(z), I'(1)=1,

so that indeed I'(n + 1) = n! if n is an integer > 0.

Euler’s unfailing intuition in producing the gamma function has been vin-
dicated early in the 20th century when it was shown by Bohr and Mollerup
that there is no other function interpolating the factorials if, in addition to
satisfying the difference equation (3.9), it is also required to be logarith-
mically convex. The gamma function indeed has become one of the most
fundamental functions in analysis.

The integral in (3.8) is often referred to as the second Eulerian integral,
the first being

1
B(x,y):/ N1 —t)vde,
0
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also called the beta function. The latter can be beautifully expressed in terms
of the gamma function by

['()l'(y)

B(%y):m,

which is nothing but (3.7) fore=2z -1, n=y — 1.

Selectio 4. Euler’s constant

It is generally acknowledged that the two most important constants in
mathematics are m = 3.1415..., the ratio of the circumference of a circle
to its diameter, and e = 2.7182..., the basis of the natural logarithms,
sometimes named after Euler. They pop up everywhere, often quite unex-
pectedly. The 19th-century logician Auguste de Morgan said about 7 that
“...it comes on many occasions through the window and through the door,
sometimes even down the chimney.” The third most important constant is
undoubtedly Euler’s constant v introduced by him 1740 in E43. Of the three
together—the “holy trinity”, as they are sometimes called—the last one, v,
is the most mysterious one, since its arithmetic nature, in contrast to = and
e, is still shrouded in obscurity. It is not even known whether v is rational,
even though most likely it is not; if it were, say equal to p/q in reduced form,
then according to a 1973 result of R. Brent, ¢ would have to be larger than
1010,000.

Euler’s constant arises in connection with the harmonic series (1) =
14343+ (so called because each of its terms is the harmonic mean of
the two neighboring terms) and is defined as the limit

(3.10) v = lim (1+1+1-~-+l—lnn):0.57721....
It has been known as early as the 14th century that the harmonic series
diverges, but a rigorous proof of it is usually attributed to Jakob Bernoulli,
who also mentioned another proof by his younger brother Johann, which
however is not entirely satisfactory. At any rate, Euler, in defining his con-
stant and showing it to be finite, puts in evidence not only the divergence of
the harmonic series, but also its logarithmic rate of divergence. Beyond this,
using his general summation formula (mentioned in Selectio 1), he computes
v to 15 correct decimal places, and to equally many decimals the sum of
the first million terms of the harmonic series! Since later (in 1790) Lorenzo
Mascheroni also considered Euler’s constant and computed it to 32 decimal
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places (of which, curiously, the 19th, 20th, and 21st are incorrect), the name
“Euler-Mascheroni constant” for «y is also found in the literature. As of today,
it appears that v has been computed to 108 million decimal places, compared
to over 2 x 10! decimals for 7 and 50.1 billion for e.

A recent encyclopedic account of Euler’s constant—its history and math-
ematical properties—can be found in Kramer [10].

After all these spectacular achievements, the numerous other memoirs
written on many different topics, and his responsibilities at the Academy, it
is unbelievable that Euler still had the time and stamina to write a 300-page
volume on elementary arithmetic for use in the St. Petersburg gymnasia.
How fortunate were those St. Petersburg kids for having had Euler as their
teacher!

3.3 Berlin

Next to a multitude of memoirs and consultation on engineering and tech-
nology projects, this period saw the creation of a number of epochal scientific
treatises and a highly successful and popular work on the philosophy of sci-
ence.

3.3.1 Major works

The brachystochrone problem—finding the path of a mass point moving un-
der the influence of gravity from one point of a vertical plane to another in
the shortest amount of time—is an early example of an optimization prob-
lem, posed by Johann Bernoulli, which seeks a function (or a curve) that
renders optimal an analytic expression that depends on this function. In
1744 (E65), and later in 1766 (E296) adopting an improved approach of La-
grange, FEuler vastly generalizes this problem, thereby creating an entirely
new branch of mathematics, called (already by Euler) the “calculus of vari-
ations”. He derives his famous Euler equation: a necessary condition in the
form of a differential equation that any solution of the problem must satisfy.
Typically for Euler, he illustrates this by many—some hundred!—examples,
among them the principle of least action that caused so much turmoil in the
mid 1700s (cf. §2.3).

Two smaller treatises, one on planetary and cometary trajectories (E66),
and another on optics (E88), appeared at about the same time (1744 resp.
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Figure 13: Calculus of variations, 1744, and Artillery, 1745

1746). The latter is insofar of historical interest as it started the debate of
Newton’s particle vs Euler’s own wave theory of light.

In deference to his master, king Frederick II, Euler translated an impor-
tant work on ballistics by the Englishman Benjamin Robins, even though
the latter had been unfairly critical of Euler’s Mechanica of 1736. He added,
however, so many commentaries and explanatory notes (also corrections!)
that the resulting book—his Artillerie of 1745 (E77)—is about five times the
size of the original! Niklaus Fuss in his 1783 Eulogy of Euler (cf. Opera om-
nia, Ser. I, Vol. 1, pp. xliii-xcv) remarks: “...the only revenge [Euler] took
against his adversary because of the old injustice consists in having made
[Robin’s| work so famous as, without him, it would never have become.”

The two-volume Introductio of 1748 (E101, E102) together with the
Institutiones calculi differentialis of 1755 (E212) and the four-volume In-
stitutiones calculi integralis of 1763 and 1773 (E342, E366, E385, E660)—a
“magnificent trilogy” (Fellmann [6, §4])—establishes analysis as we know it
today. In the first volume of the Introductio, after a treatment of elemen-
tary functions, Euler summarizes his many discoveries in the areas of infinite
series, infinite products, partition of numbers, and continued fractions. On
several occasions, he uses the fundamental theorem of algebra, clearly states
it, but does not prove it. He develops a clear concept of function—real-
as well as complex-valued—and emphasizes the fundamental role played in
analysis by the number e and the exponential and logarithm functions. The
second volume is devoted to analytic geometry: the theory of algebraic curves
and surfaces.
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Figure 14: Infinitesimal analysis, 1748

The Differential calculus also has two parts, the first being devoted to
the calculus of differences and differentials, the second to the theory of power
series and summation formulae, with many examples given for each. Chapter
4 of the second part, incidentally, contains the first example, in print, of a
Fourier series; cf. also p. 297 of the Opera omnia, Ser. I, Vol. 10. Another
chapter deals with Newton’s method, and improvements thereof, for solving
nonlinear equations, and still another with criteria for algebraic equations to
have only real roots.
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Figure 15: Differential and integral calculus, 1755, 1763, 1773

The four-volume Integral calculus is a huge foray into the realm of quadra-
ture and differential equations. In the first volume, Euler treats the quadra-
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ture (i.e., indefinite integration) of elementary functions and techniques for
reducing the solution of linear ordinary differential equations to quadratures.
In the second volume, he presents, among other things, a detailed theory
of the important linear second-order differential equations, and in the third
volume a treatment, to the extent known at the time (mostly through Eu-
ler’s own work), of linear partial differential equations. The fourth volume
contains supplements to the preceding volumes, mostly the first. Euler’s
method—a well-known approximate method for solving an arbitrary first-
order differential equation—is embedded in Chapter 7 of the second part of
Volume 1. Systems of differential equations, interestingly, are not considered
in this work.

Euler’s program for mechanics (cf. §4.2.1) progressed steadily but slowly,
as he tried to develop a theory of the motion of solids. Major technical
difficulties had to be overcome, and were gradually dealt with in a series
of memoirs. These, in 1765, eventually led to his great treatise Theoria
motus corporum (E289), also called the Second mechanics, which crowned
Euler’s work on mechanics. In addition to an improved exposition of his
earlier mechanics of mass points (cf. §4.2.1), it now contains the differential
equations (Euler’s equations) of motion of a rigid body subject to external
forces. Here, Euler introduces the original idea of employing two coordinate
systems—one fixed, the other moving, attached to the body—and deriving
differential equations for the angles between the respective coordinate axes,
now called the Euler angles. The intriguing motion of the spinning top is
one of many examples worked out by Euler in detail.

THEORIA MOTVS
CORPORVM
SOLIDORVM s+ RIGIDORVM

Figure 16: Theoria motus corporum, 1765
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Throughout his years in Berlin and beyond, Euler was deeply occupied
with geometric optics. His memoirs and books on this topic, including the
monumental three-volume Dioptrics (E367, E386, E404), written mostly
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Figure 17: Optics, 1769-1771, and Letters, 1768, 1772 (1760-1762)

while still in Berlin, fill no fewer than seven volumes in his Opera omnia.
A central theme and motivation of this work was the improvement of opti-
cal instruments like telescopes and microscopes, notably ways of eliminating
chromatic and spherical aberration.

Euler’s philosophical views on science, religion, and ethics are expressed
in over 200 letters written 1760-1762 (in French) to a German princess and
published later in 1768 and 1772 (E343, E344, E417). While Euler’s role
as a philosopher may be controversial (even his best friend Daniel Bernoulli
advised him to better deal with “more sublime matters”), his Letters became
an instant success and were translated into all major languages.

3.3.2 Selecta Euleriana

Selectio 5. The Konigsberg bridge problem

The river Pregel, which flows through the Prussian city of Konigsberg,
divides the city into an island and three distinct land masses, one in the
north, one in the east, and one in the south. There are altogether seven
bridges, arranged as shown in green on the left of Fig. 18, connecting the
three land masses with each other and with the island. The problem is: can
one take a stroll from one point in the city to another by traversing each
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bridge exactly once? In particular, can one return to the starting point in
the same manner?

Evidently, this is a problem that cannot be dealt with by the traditional
methods of analysis and algebra. It requires a new kind of analysis, an
analysis that Leibniz already has termed analysis situs, and today is called
“topology”. Euler solved the problem in 1735, published as E53 in 1741, by
showing that such paths cannot exist. He does this by an ingenious process of
abstraction, associating with the given land and bridge configuration (what
today is called) a connected graph, i.e., a network of vertices and connect-
ing edges, each vertex representing a piece of land and each edge a bridge
connecting the respective pieces of land. In the problem at hand, there are
four distinct pieces of land, hence four vertices, and they are connected with
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Figure 18: The Konigsberg bridge problem

edges as shown on the right of Fig. 18. It is obvious what is meant by a path
from one vertex to another. A closed path is called a circuit, and paths or
circuits are (today) called Eulerian, if each edge is traversed exactly once.

Euler recognized that a crucial concept here is the degree of a vertex, i.e.,
the number of edges emanating from it. If, in an arbitrary connected graph,
n denotes the number of vertices of odd degree, he proves that (a) if n = 0,
the graph has at least one Eulerian circuit; (b) if n = 2, it has at least one
Eulerian path, but no circuit; (c) if n > 2, it has neither. (The case n = 1
is impossible.) Since the Konigsberg bridge graph has n = 4, we are in case
(c), hence it is impossible to traverse the city in the manner required in the
problem.

Here again, like in the calculus of variations, one can admire Euler’s
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powerful drive and capacity of starting with a concrete example and deriving
from it, by a process of sweeping generalization, a whole new theory. In the
present case, it is the theory of graphs and topological networks.

Selectio 6. Euler’s buckling formula (1744)

In a first supplement to his Methodus (cf. Fig. 13, left), Euler applies the
calculus of variations to elasticity theory, specifically to the bending of a rod
subject to an axial load. He derives the critical load under which the rod
buckles. This load depends on the stiffness constant of the material, on the
way the rod is supported at either end, and it is inversely proportional to
the square of the length of the rod. A particular configuration of two rods
loaded on top by a connecting bar (assumed to be of infinite stiffness) is
shown in Fig. 19, during the initial phase (left), and at the time of buckling
(right). Here, the top end of the rods is slidably supported, and the bottom
end clamped.

TR,

Figure 19: The buckling of a rod

The critical load is the first elastostatic eigenvalue of the problem. Euler
also calculates the elastokinetic eigenvalues, the eigenfrequencies of the rod’s
transversal oscillations, and the associated eigenfunctions, which determine
the shapes of the deformed rod.

Selectio 7. Euler flow

In a series of three memoirs, E225-E227, all published in 1757, and an-
other three papers (FE258, E396, E409), Euler gave his definitive treatment
of continuum and fluid mechanics, culminating a number of earlier mem-
oirs on the subject. It contains the celebrated Euler equations, expressing
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the conservation of mass, momentum, and energy. In two [three| dimensions,
these constitute a system of four [five] nonlinear hyperbolic partial differential
equations, which have to be solved, given appropriate initial and boundary
conditions. Naturally, in Euler’s time, this was virtually impossible, except
in very special cases, and indeed Euler in the introduction to E226 had to
write “... if there remain any difficulties, they shall not be on the side of
mechanics, but solely on the side of analysis: for this science has not yet
been carried to the degree of perfection which would be necessary in order to
develop analytic formulae which include the priciples of the motion of fluids.”
Nowadays, however, the Euler equations are widely being used in computer
simulation of fluids.

Figure 20: Transonic Euler flow at Mach .85 about a cylinder

An example is the asymmetric flow of a compressible, inviscid fluid about
a circular cylinder at transonic speed, calculated in 1995 by N. Botta [3]. A
still picture of the two-dimensional flow (vorticity contour lines) is shown in
Fig. 20.

Selectio 8. Fuler’s polyhedral formula (1758)

In a three-dimensional convex polyhedron, let V' denote the number of
vertices, E' the number of edges, and F' the number of faces. Mentioned 1750
in a letter to Goldbach, and later published in E231, Euler proves for the
first time the extremely simple, but stunning formula

V-E+F=2

Descartes, some 100 years earlier, already knew, but did not prove, the for-
mula. It is one of the first contributions to combinatorial topology.
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Here, too, as in the Konigsberg bridge problem (cf. Selectio 5), there is
a connection with graph theory, as to each polyhedron one can associate a
connected graph. The construction of the graph, however, is not so obvious,
and Euler was unaware of it; the first to observe this seems to have been
Cauchy in 1813.

Much later, the formula has been generalized to polytopes in spaces of
arbitrary dimension.

Selectio 9. Euler and q-theory

The story here begins with a letter Euler wrote in 1734 to Daniel Bernoulli,
in which he considered the (somewhat bizarre) problem of interpolating the
common logarithm log z at the points x, = 10", r = 0,1,2,... . He essen-
tially writes down Newton’s interpolation series S(z) (without mentioning
Newton by name) and remarks that, when x = 9, the series converges quickly,
but to a wrong value, S(9) # log9 (cf. [8]). Rather than losing interest in the
problem, Euler must have begun pondering the question about the nature of
the limit function S(x); what is it, if not the logarithm?

Almost twenty years later, in 1753, he returned to this problem in E190,
now more generally for the logarithm to base a > 1, and studied the respec-
tive limit function S(z;a) in great detail. Intuitively, he must have perceived
its importance. Today we know indeed (Koelink and Van Assche [9]) that
it can be thought of as a g-analogue of the logarithm, where ¢ = 1/a, and
some of the identities derived by Euler (in part already contained in Vol. 1,
Ch. 16 of his Introductio) are in fact special cases of the g-binomial theorem—
a centerpiece of g-theory in combinatorial analysis and physics. Thus, Euler
must be counted among the precursors of g-theory, which was only developed
about 100 years later by Heine.

3.4 Second St. Petersburg period

This may well be Euler’s most productive period, with over 400 published
works to his credit, not only on each of the topics already mentioned, but
also on geometry, probability theory and statistics, cartography, even widow’s
pension funds and agriculture. In this enormous body of work there figure
three treatises on algebra, lunar theory, and naval science, and what appear to
be fragments of major treatises on number theory (E792), natural philosophy
(E842), and dioptrics (E845).
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3.4.1 Major works

Soon into this second St. Petersburg period, another of Euler’s “bestsellers”
appeared: the Vollstindige Anleitung zur Algebra (E387, E388), or Algebra
for short. Even before publication of the German original, a translation into
Russian came out, and translations into all major languages were soon to
follow. (The French translation by Johannn III Bernoulli includes a long
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Figure 21: Algebra, 1770

supplement by Lagrange containing an exposé on the arithmetic theory of
continued fractions and many addenda to the last section of the Algebra
dealing with Diophantine equations.)

Euler wrote this 500-page volume to introduce the absolute beginner into
the realm of algebra. He dictated the work to a young man—a tailor by
profession—whom he brought with him from Berlin, and who (according to
the preface of the work) “...was fairly good at computing, but beyond that
did not have the slightest notion about mathematics ... As far as his intellect
is concerned, he belonged among the mediocre minds.” Nevertheless, it is
said that, when the work was completed, he understood everything perfectly
well and was able to solve algebraic problems posed to him with great ease.

It is indeed a delight to witness in this work Euler’s magnificient didactic
skill, to watch him progress in ever so small steps from the basic principles of
arithmetic to algebraic (up to quartic) equations, and finally to the beautiful
art of Diophantine analysis. Equally delightful is to see how the theory is
illustrated by numerous well-chosen examples, many taken from everyday
life.
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The orbit of the noon with all its irregularities has fascinated mathe-
maticians like Clairaut, d’Alembert and others for a long time, including
Euler, who already in 1753 published his Theoria motus lunae (E187), the
First lunar theory. The theory he developed, while tentative, provided as-
tronomers with formulae needed to prepare lunar tables, which in turn served
seafaring nations for over a century with accurate navigational aids. Euler’s
definitive work on the subject, however, is his Second lunar theory (E418) of
1772, a monumental work dealing in a more effective way than before with
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Figure 22: Second lunar theory, 1772 and Second theory of ships, 1773

the difficult three-body problem, i.e., with the study of the motion of three
bodies—in this case the sun, the earth, and the moon, thought of as point
masses—moving under the influence of mutual gravitational forces. Already
Newton is reputed to have said that “... an exact solution of the three-body
problem exceeds, if I am not mistaken, the power of any human mind.” To-
day it is known, indeed, that an exact solution is not possible. Euler grapples
with the problem by introducing appropriate variables, again choosing two
coordinate systems—one fixed, the other moving—applying processes of suc-
cessive approximation, and making use, when needed, of observational data.

According to L. Courvoisier (cf. Opera omnia, Ser. 11, Vol. 22, p. xxviii),
“ .. all later progress in celestial mechanics is based, more or less, on the
ideas contained in the works of Euler, [and the later works of] Laplace and
Lagrange.”

The Théorie complete de la construction et de la manceuvre des vaisseaux
(E426), also called the Second theory of ships, is a work that treats the topic
indicated in the title for people having no or little mathematical knowledge,
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in particular for the sailors themselves. Not surprisingly, given the level of
presentation and the author’s extraordinary didactic skill, the work proved to
be very successful. The French maritime and finance minister (and famous
economist), Anne Robert Jacques Turgot, proposed to king Louis XVI to
require all students in marine schools (and also those in schools of artillery)
to study Euler’s relevant treatises. The king even paid Euler 1,000 Rubles
for the privilege of having the work reprinted, and czarina Catherine II, not
wanting to be outdone by the king, doubled the amount and pitched in an
additional 2,000 Rubles!

3.4.2 Selecta Euleriana

Selectio 10 Fuler’s disk

In a number of memoirs (E257, E292, E386, E585) from the 20-year period
1761-1781, Euler analyzes the motion of a rigid body around a moving axis,
including the effects of friction. An interesting example is the “Euler disk”,
a circular (homogeneous) metal disk being spun on a clean smooth surface.
At first, it will rotate around its vertical axis, but owing to friction, the axis
is beginning to tilt and the disk to roll on a circular path. The more the
axis is tilting, the wider the circular path and the higher the pitch of the
whirring sound produced by the point of contact of the disk with the surface.
Thus, paradoxically, the speed of the motion seems to increase, judging from
the rising pitch of the sound, although energy is being dissipated through
friction. The disk, eventually, comes to an abrupt halt, flat on the surface.

The key toward explaining the motion are Euler’s equations, a set of
differential equations involving the Euler angles (cf. §3.3.1). The technical
details of the motion, though, are still being debated today (cf. e.g. the
publications listed on the web site http://www.eulersdisk.com).

Selectio 11 Euler’s gear transmission

In connection with the design of water turbines, Euler developed optimal
profiles for teeth in cogwheels that transmit motion with a minimum of resis-
tance and noise (E330, OIL.17, pp. 196-219). These profiles involve segments
of cycloidal curves as shown in Fig. 23.

The technical realization of this design took shape only later in what is
called the involute gear. Euler not only is the inventor of this kind of gear,
but he also anticipated the underlying geometric equations now usually called
the Euler—Savary equations.
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Figure 23: Euler gear, 1767

4 The Man

4.1 Personality

From various testimonials of Euler’s contemporaries, and also, of course, from
Euler’s extensive correspondence, one has a fairly accurate picture of Euler’s
personality. A valuable source is the eulogy of Nicklaus Fuchs (Opera om-
nia, Ser. I, Vol. 1, pp. xliii-xcv), who during the last ten years of Euler’s
life has seen him regularly, almost on a daily basis, as one of his assistants.
Also based on personal acquaintance is the eulogy of the marquis Nicolas de
Condorcet (Opera omnia, Ser. 111, Vol. 12, pp. 287-310), which, however,
deals more with Euler’s work. Euler comes across as a modest, inconspicu-
ous, uncomplicated, yet cheerful and sociable person. He was down-to-earth
and upright; “honesty and uncompromising rectitude, acknowledged Swiss
national virtues, he possesed to a superior degree” writes Fuchs. Euler never
disavowed, in fact was proud of, his Swiss heritage; he, so Fuchs (who also
originates from Basel): “...always retained the Basel dialect with all the
peculiarities of its idiom. Often he amused himself to recall for me certain
provincialisms and reversals [of word order|, or mix into his parlance Basel
expressions whose use and meaning I had long forgotten.”

Feelings of rancor, be it because of priority issues or because of unfair crit-
icism, are totally foreign to Euler. When Maclaurin, for example, discovered
the well-known summation formula which Euler obtained six years earlier,
and for some time the formula was generally referred to as the “Maclaurin
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summation formula”, Euler did not object, let alone complain. It may even
have pleased him that others hit upon the same fortunate idea. In due time,
of course, the formula became justly known as the “Euler—-Maclaurin sum-
mation formula”. Another example is Maupertuis’s claim for the principle of
least action (cf. §2.3), which Euler had already enunciated before, much more
clearly and exhaustively; yet Euler remained supportive of Maupertuis. Eu-
ler’s noble way of reacting to Robin’s criticism of the Mechanica has already
been mentioned in §3.2.1.

Sharing ideas with others and letting others take part in the process of
discovery is another noble trait of Euler. A case in point is the way he put on
hold his already extensive work on hydrodynamics, so that his friend Daniel
Bernoulli, who was working on the same topic, could complete and publish
his own Hydrodynamics first! It became a classic.

An important aspect of Euler’s personality is his religiosity: By his up-
bringing in the Riehen parish environment, he was a devout protestant and
even served as an elder in one of the Protestant communities in Berlin. In-
deed, he felt increasingly uncomfortable and frustrated in the company of
so many “free-thinkers”—as he called them—, the believers in French en-
lightenment, that populated and began to dominate the Berlin Academy. He
gave vent to his feelings in the (anonymously published) pamphlet Rettung
der gottlichen Offenbarung gegen die Einwiirfe der Freygeister (E92, Opera
omnia, Ser. 111, Vol. 12, pp. 267-286). This frustration may well have been
one, and not the least, of the reasons why Euler left Berlin and returned to
St. Petersburg.

4.2 Intellect

There are two outstanding qualities in Euler’s intellect: a phenomenal mem-
ory, coupled with an unusual power of mental calculation, and an ease in
concentrating on mental work irrespective of any hustle and bustle going on
around him: “A child on the knees, a cat on his back, that’s how he wrote
his immortal works”, recounts Dieudonné Thiébault, the French linguist and
confidant of Frederick II. With regard to memory, the story is well known
of Euler’s ability, even at an advanced age, to recite by heart all the verses
of Virgil’s Aeneid. One of these, Euler says in a memoir, has given him the
first ideas in solving a problem in mechanics. Niklaus Fuss also tells us that
during a sleepness night, Euler mentally calculated the first six powers of all
the numbers less than twenty (less than 100 in Concordet’s account), and
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several days later was able to recall the answers without hesitation.

Equipped with such intellectual gifts, it is not surprising that Euler was
extremely well read. In Fuchs’s words, “he possessed to a high degree what
commonly is called erudition; he had read the best writers of antique Rome;
the older mathematical literature was very well known to him; he was well
versed in the history of all times and all people. Even about medical and
herbal remedies, and chemistry, he knew more than one could expect from a
scholar who doesn’t make these sciences a special subject of his study.” Many
visitors who came to see Euler went away “...with a mixture of astonishment
and admiration. They could not understand how a man who during half a
century seemed to have occupied himself solely with discoveries in the natural
sciences and mathematics could retain so many facts that to him were useless
and foreign to the subject of his researches.”

4.3 Craftsmanship

Euler’s writings had the marks of a superb expositor. He always strove for
utmost clarity and simplicity, and he often revisited earlier work when he
felt they were lacking in these qualities. At the same time, in his quest
for discovery, he could be fearless, even reckless, but owing to his secure
instinct, he rarely went astray when his argumentation became shaky. He
had an eye for what is essential and unifying. In mechanics, as writes Gleb
Konstantinovich Mikhailov [11, p. 67], “...Euler possessed a rare gift of
systematizing and generalizing scientific ideas, which allowed him to present
large parts of mechanics in a relatively definitive form.” FEuler was open
and receptive to new ideas. In the words of André Weil [16, pp. 132-133],
“...what at first is striking about Euler is his extraordinary quickness in
catching hold of any suggestion, wherever it came from ... There is not one
of these suggestions which in Euler’s hands has not become the point of
departure of an impressive series of researches ...Another thing, not less
striking, is that Euler never abandons a research topic, once it has excited
his curiosity; on the contrary, he returns to it, relentlessly, in order to deepen
and broaden it on each revisit. Even if all problems related to such a topic
seem to be resolved, he never ceases until the end of his life to find proofs
that are ‘more natural’, ‘simpler’, ‘more direct’.”
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4.4 Epilogue

In closing, let me cite the text—concise but to the point—that Otto Spiess
had inscribed on a memorial plaque attached next to the house in which
Euler grew up:
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Figure 24: Euler memorial plaque in Riehen

LEONHARD EULER
1707-1783
mathematician, physicist, engineer,
astronomer and philosopher, spent his
youth in Riehen. He was a great scholar
and a kind man.

5 Further reading

For readers interested in more details, we recommend the authoritative scien-
tific (yet formula-free!) biography by Fellmann [7]. More recently, a number
of popular and semipopular accounts on Euler and parts of his work have
appeard; we mention Dunham [4], [5], Nahin [12], Varadarajan [15], and
Sandifer [13].

The web site of the U.S. Euler Archive,

http://www.math.dartmouth.edu/~euler,

also provides detailed information of Euler’s complete works.
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