Leonhard Euler His Life, The Man, and His Work

Walter Gautschi wxg@cs.purdue.edu

Purdue University

April 30, 2007

A ▶

Basel 1707–1727 St. Petersburg 1727–1741 Berlin 1741–1766 St. Petersburg 1766–1783 The Man

Outline

Basel 1707-1727

æ

Basel 1707–1727 St. Petersburg 1727–1741 Berlin 1741–1766 St. Petersburg 1766–1783 The Man

Outline

Basel 1707-1727

St. Petersburg 1727-1741

æ

<ロト <部ト < 注ト < 注ト

Basel 1707–1727 St. Petersburg 1727–1741 Berlin 1741–1766 St. Petersburg 1766–1783 The Man

Outline

Basel 1707-1727

St. Petersburg 1727-1741

Berlin 1741-1766

- 4 聞 と 4 臣 と 4 臣 と

æ

Basel 1707–1727 St. Petersburg 1727–1741 Berlin 1741–1766 St. Petersburg 1766–1783 The Man

Outline

Basel 1707-1727

St. Petersburg 1727-1741

Berlin 1741-1766

St. Petersburg 1766-1783

э

Basel 1707–1727 St. Petersburg 1727–1741 Berlin 1741–1766 St. Petersburg 1766–1783 The Man

Outline

Basel 1707-1727

St. Petersburg 1727-1741

Berlin 1741-1766

St. Petersburg 1766-1783

The Man

Basel 1707–1727 Auspicious beginnings

▲ □ ▶ ▲ □ ▶ ▲

∃ >

メロト メポト メヨト メヨト

э

Parish residence and church in Riehen

The old university of Basel and Johann Bernoulli

メロト メポト メヨト メヨト

э

Chronology

æ

Chronology

• born April 15, 1707 as the first of four children

- 《圖》 《문》 《문》

æ

Chronology

- born April 15, 1707 as the first of four children
- parents: Paulus Euler (1670–1745) and Margaretha Brucker (1677–1761)

< 17 ▶

- born April 15, 1707 as the first of four children
- parents: Paulus Euler (1670–1745) and Margaretha Brucker (1677–1761)
- early childhood at the parish residence in Riehen; home schooling

- born April 15, 1707 as the first of four children
- parents: Paulus Euler (1670–1745) and Margaretha Brucker (1677–1761)
- early childhood at the parish residence in Riehen; home schooling
- at the age of 8, sent to the Latin gymnasium in Basel; first mathematical instruction from a private tutor

- born April 15, 1707 as the first of four children
- parents: Paulus Euler (1670–1745) and Margaretha Brucker (1677–1761)
- early childhood at the parish residence in Riehen; home schooling
- at the age of 8, sent to the Latin gymnasium in Basel; first mathematical instruction from a private tutor
- 1720: enrolled at the University of Basel (propaedeutic study); freshman mathematics course from Johann Bernoulli

- born April 15, 1707 as the first of four children
- parents: Paulus Euler (1670–1745) and Margaretha Brucker (1677–1761)
- early childhood at the parish residence in Riehen; home schooling
- at the age of 8, sent to the Latin gymnasium in Basel; first mathematical instruction from a private tutor
- 1720: enrolled at the University of Basel (propaedeutic study); freshman mathematics course from Johann Bernoulli
- 1724: masters degree; first public lecture (in Latin); advanced mathematics course from Johann Bernoulli; "privatissima"

From Euler's autobiography (1767)

"... In 1720 I was admitted to the university as a public student, where I soon found the opportunity to become acquainted with the famous professor Johann Bernoulli, who made it a special pleasure for himself to help me along in the mathematical sciences. Private lessons, however, he categorically ruled out because of his busy schedule. However, he gave me a far more beneficial advice, which consisted in myself taking a look at some of the more difficult mathematical books and work through them with great diligence, and should I encounter some objections or difficulties, which was gracious enough to comment on the collected difficulties, which was done with such a desired advantage that, when he resolved one of my objections, ten others at once disappeared, which certainly is the best method of making auspicious progress in the mathematical sciences."

Early professional activities

æ

<ロト <部ト < 注ト < 注ト

Early professional activities

• 1726: two papers on isochronous resp. "reciprocal" curves in the *Acta Eruditorum* of Leipzig

Early professional activities

- 1726: two papers on isochronous resp. "reciprocal" curves in the *Acta Eruditorum* of Leipzig
- responded to a prize question of the Paris Academy of Sciences with a memoir on the optimal placing of masts on a ship

Early professional activities

- 1726: two papers on isochronous resp. "reciprocal" curves in the *Acta Eruditorum* of Leipzig
- responded to a prize question of the Paris Academy of Sciences with a memoir on the optimal placing of masts on a ship
- 1727: applied (unsuccessfully) for the physics chair at the University of Basel with a work on the theory of sound

Early professional activities

- 1726: two papers on isochronous resp. "reciprocal" curves in the *Acta Eruditorum* of Leipzig
- responded to a prize question of the Paris Academy of Sciences with a memoir on the optimal placing of masts on a ship
- 1727: applied (unsuccessfully) for the physics chair at the University of Basel with a work on the theory of sound
- left Basel (for good) in April of 1727 to assume a junior appointment at the Academy of St. Petersburg

 Basel 1707–1727

 St. Petersburg 1727–1741

 Berlin 1741–1766

 St. Petersburg 1766–1783

 The Man

Physical dissertation on sound

æ

《曰》《聞》《臣》《臣》

St. Petersburg 1727–1741 Meteoric rise to world fame and academic advancement

The Academy in St. Petersburg and Peter I

< 4 → <

Chronology

æ

Chronology

• groundwork for Euler's appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy

- groundwork for Euler's appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy

Chronology

- groundwork for Euler's appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics

marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood

Chronology

- groundwork for Euler's appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics

marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood

• 1735: first setback in health

Chronology

- groundwork for Euler's appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics

marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood

- 1735: first setback in health
- 1738: second setback in health; loss of the right eye

Chronology

- groundwork for Euler's appointment at the Academy had been laid by Johann Bernoulli and his sons Niklaus II and Daniel I, both already active at the Academy
- 1731: professor of physics; ordinary member of the Academy
- 1733: succeeds Daniel Bernoulli (who returns to Basel) as professor of mathematics

marriage to Katharina Gsell, which brought forth 13 children of whom only 5 reached the age of adulthood

- 1735: first setback in health
- 1738: second setback in health; loss of the right eye
- 1741: departure from St. Petersburg following political unrest after the death (1740) of the Empress Anna Ivanovna (a niece of Peter I)

Major works

*ロト *部ト *注ト *注ト

æ

Major works

Mechanics: Analytic theory of motion (1736)

- kinematics and dynamics of a mass point
- in free motion (vol. I)
- in constrained motion (vol. II)

A D

Major works

Mechanics: Analytic theory of motion (1736)

- kinematics and dynamics of a mass point
- in free motion (vol. I)
- in constrained motion (vol. II)
- Music theory: Tentamen novae theoriae musicae (1739)
 - nature of sound
 - generation and perception of sound
 - mathematical theory of pleasantness of musical constructs
 - mathematical theory of temperaments

Major works

Mechanics: Analytic theory of motion (1736)

- kinematics and dynamics of a mass point
- in free motion (vol. I)
- in constrained motion (vol. II)

Music theory: Tentamen novae theoriae musicae (1739)

- nature of sound
- generation and perception of sound
- mathematical theory of pleasantness of musical constructs
- mathematical theory of temperaments
- Naval science (1749, written 1740-41)
 - principles of hydrostatics
 - stability theory
 - \bullet naval engineering and navigation (vol. II)

Mechanics I,II

(日) (同) (日) (日) (日)

Tentamen

<ロ> <部> < 部> < き> < き> <</p>

 Outline

 Basel 1707–1727

 St. Petersburg 1727–1741

 Berlin 1741–1766

 St. Petersburg 1766–1783

 The Man

Naval science I,II

Respect the Rheinbard of Kleiner Stadt . Von seiten der Kleinen Stadt . der Mehr der .

Basel 1761

Selecta Euleriana

*ロト *部ト *注ト *注ト

Selecta Euleriana

Selectio 1 The Basel problem (1740)

<ロト <部ト < 注ト < 注ト

Selecta Euleriana

Selectio 1 The Basel problem (1740) $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots =$

- 4 聞 と 4 臣 と 4 臣 と

Selecta Euleriana

Selectio 1 The Basel problem (1740) $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$

- 4 同 6 4 日 6 4 日 6

Selecta Euleriana

Selectio 1 The Basel problem (1740) $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$

zeta function

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots$$

▲ 同 ▶ → ● 三

Selecta Euleriana

Selectio 1 The Basel problem (1740) $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$

zeta function

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots$$

Euler determines

$$\zeta(4), \ \zeta(6), \ \zeta(8), \ \ldots, \ \zeta(12)$$

-

< /₽ > < 三

Selecta Euleriana

Selectio 1 The Basel problem (1740) $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$

zeta function

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots$$

Euler determines

$$\zeta(4), \ \zeta(6), \ \zeta(8), \ \ldots, \ \zeta(12)$$

Later in 1750, he was able to prove

$$\zeta(2n) = \frac{2^{2n-1}}{(2n)!} |B_{2n}| \pi^{2n}$$

Euler ca. 1737

Selectio 2 Prime numbers and the zeta function

Ξ.

Selectio 2 Prime numbers and the zeta function

$$\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$

Ξ.

Selectio 2 Prime numbers and the zeta function

$$\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$

product formula (1737)

$$\prod_{p\in\mathcal{P}}\frac{1}{1-1/p^s}=\zeta(s)$$

æ

<ロト <部ト < 注ト < 注ト

Selectio 2 Prime numbers and the zeta function

$$\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$

product formula (1737)

$$\prod_{\rho\in\mathcal{P}}\frac{1}{1-1/\rho^s}=\zeta(s)$$

Euler's derivation

from $\zeta(s)$ "peal away" all terms divisible by 2

$$rac{2^s-1}{2^s}\,\zeta(s)=1+rac{1}{3^s}+rac{1}{5^s}+rac{1}{7^s}+\cdots$$

Selectio 2 Prime numbers and the zeta function

$$\mathcal{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$

product formula (1737)

$$\prod_{p\in\mathcal{P}}\frac{1}{1-1/p^s}=\zeta(s)$$

Euler's derivation

from $\zeta(s)$ "peal away" all terms divisible by 2

$$\frac{2^s - 1}{2^s} \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots$$

from this do the same with the prime 3, then with 5, etc.

A D

Selectio 2 Prime numbers and the zeta function

$$\mathcal{P} = \{2,3,5,7,11,13,17,\ldots\}$$

product formula (1737)

$$\prod_{p\in\mathcal{P}}\frac{1}{1-1/p^s}=\zeta(s)$$

Euler's derivation

from $\zeta(s)$ "peal away" all terms divisible by 2

$$\frac{2^s - 1}{2^s} \, \zeta(s) = 1 + \frac{1}{3^s} + \frac{1}{5^s} + \frac{1}{7^s} + \cdots$$

from this do the same with the prime 3, then with 5, etc.

$$\left(\prod_{p\in\mathcal{P}}\frac{p^s-1}{p^s}\right)\zeta(s)=1\qquad \Box$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Selectio 3 The gamma function (1738)

æ

メロト メポト メヨト メヨト

Selectio 3 The gamma function (1738) Problem: interpolate the factorials

 $1! = 1, 2! = 1 \cdot 2, 3! = 1 \cdot 2 \cdot 3, 4! = 1 \cdot 2 \cdot 3 \cdot 4, \dots$

at noninteger values.

Image: A image: A

Selectio 3 The gamma function (1738) Problem: interpolate the factorials

 $1! = 1, \ 2! = 1 \cdot 2, \ 3! = 1 \cdot 2 \cdot 3, \ 4! = 1 \cdot 2 \cdot 3 \cdot 4, \ldots.$

at noninteger values. Euler writes

$$n! = \frac{1 \cdot 2^n}{n+1} \cdot \frac{2^{1-n} \cdot 3^n}{n+2} \cdot \frac{3^{1-n} \cdot 4^n}{n+3} \cdot \frac{4^{1-n} \cdot 5^n}{n+4} \cdots$$

- 4 同 6 4 日 6 4 日 6

Selectio 3 The gamma function (1738) Problem: interpolate the factorials

 $1! = 1, \ 2! = 1 \cdot 2, \ 3! = 1 \cdot 2 \cdot 3, \ 4! = 1 \cdot 2 \cdot 3 \cdot 4, \ldots.$

at noninteger values. Euler writes

$$n! = \frac{1 \cdot 2^n}{n+1} \cdot \frac{2^{1-n} \cdot 3^n}{n+2} \cdot \frac{3^{1-n} \cdot 4^n}{n+3} \cdot \frac{4^{1-n} \cdot 5^n}{n+4} \cdots$$

and comes up with $\frac{1}{2}! = \frac{1}{2}\sqrt{\pi}$.

э

Selectio 3 The gamma function (1738) Problem: interpolate the factorials

 $1!=1,\ 2!=1\cdot 2,\ 3!=1\cdot 2\cdot 3,\ 4!=1\cdot 2\cdot 3\cdot 4,\ldots.$

at noninteger values. Euler writes

$$n! = \frac{1 \cdot 2^n}{n+1} \cdot \frac{2^{1-n} \cdot 3^n}{n+2} \cdot \frac{3^{1-n} \cdot 4^n}{n+3} \cdot \frac{4^{1-n} \cdot 5^n}{n+4} \cdots$$

and comes up with $\frac{1}{2}! = \frac{1}{2}\sqrt{\pi}$. Aha! There must be calculus involved.

Selectio 3 The gamma function (1738) Problem: interpolate the factorials

 $1!=1,\ 2!=1\cdot 2,\ 3!=1\cdot 2\cdot 3,\ 4!=1\cdot 2\cdot 3\cdot 4,\ldots.$

at noninteger values. Euler writes

$$n! = \frac{1 \cdot 2^n}{n+1} \cdot \frac{2^{1-n} \cdot 3^n}{n+2} \cdot \frac{3^{1-n} \cdot 4^n}{n+3} \cdot \frac{4^{1-n} \cdot 5^n}{n+4} \cdots$$

and comes up with $\frac{1}{2}! = \frac{1}{2}\sqrt{\pi}$. Aha! There must be calculus involved. Ingeniously, he derives

$$x! = \int_0^\infty e^{-t} t^x \mathrm{d}t = \Gamma(x+1).$$

Selectio 3 The gamma function (1738) Problem: interpolate the factorials

 $1!=1,\ 2!=1\cdot 2,\ 3!=1\cdot 2\cdot 3,\ 4!=1\cdot 2\cdot 3\cdot 4,\ldots.$

at noninteger values. Euler writes

$$n! = \frac{1 \cdot 2^n}{n+1} \cdot \frac{2^{1-n} \cdot 3^n}{n+2} \cdot \frac{3^{1-n} \cdot 4^n}{n+3} \cdot \frac{4^{1-n} \cdot 5^n}{n+4} \cdots$$

and comes up with $\frac{1}{2}! = \frac{1}{2}\sqrt{\pi}$. Aha! There must be calculus involved. Ingeniously, he derives

$$x! = \int_0^\infty e^{-t} t^x \mathrm{d}t = \Gamma(x+1).$$

There holds $\Gamma(x+1) = x\Gamma(x)$, $\Gamma(1) = 1$, so that $\Gamma(n+1) = n!$.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Auguste de Morgan (1806–1871): " $[\pi]$ comes on many occasions through the window and through the door, sometimes even down the chimney."

▲ 同 ▶ → 三 ▶

∃ >

Selectio 4 Euler's constant (1740)

Selectio 4 Euler's constant (1740) Three most important constants in mathematics:

 π , e, γ

<ロト <部ト < 注ト < 注ト

Selectio 4 Euler's constant (1740) Three most important constants in mathematics:

$$\pi$$
, e , γ

The last (and most mysterious) one is Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n} - \ln n \right) = 0.57721 \dots$$

Selectio 4 Euler's constant (1740) Three most important constants in mathematics:

 $\pi, \quad e, \quad \gamma$

The last (and most mysterious) one is Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n} - \ln n \right) = 0.57721 \dots$$

Not even known whether γ is rational or not.

Selectio 4 Euler's constant (1740) Three most important constants in mathematics:

 π, e, γ

The last (and most mysterious) one is Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n} - \ln n \right) = 0.57721 \dots$$

Not even known whether γ is rational or not. If it were, say $\gamma = p/q$, then q would have to be larger than $10^{10,000}$ (R. Brent, 1973).

Selectio 4 Euler's constant (1740) Three most important constants in mathematics:

 π, e, γ

The last (and most mysterious) one is Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n} - \ln n \right) = 0.57721 \dots$$

Not even known whether γ is rational or not. If it were, say $\gamma = p/q$, then q would have to be larger than $10^{10,000}$ (R. Brent, 1973).

Euler computes γ to 15 decimals.

Selectio 4 Euler's constant (1740) Three most important constants in mathematics:

 $\pi, \quad e, \quad \gamma$

The last (and most mysterious) one is Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n} - \ln n \right) = 0.57721 \dots$$

Not even known whether γ is rational or not. If it were, say $\gamma = p/q$, then q would have to be larger than $10^{10,000}$ (R. Brent, 1973).

Euler computes γ to 15 decimals. Mascheroni (in 1790) computes it to 32 decimals.
Selectio 4 Euler's constant (1740) Three most important constants in mathematics:

 $\pi, \quad e, \quad \gamma$

The last (and most mysterious) one is Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n} - \ln n \right) = 0.57721 \dots$$

Not even known whether γ is rational or not. If it were, say $\gamma = p/q$, then q would have to be larger than $10^{10,000}$ (R. Brent, 1973).

Euler computes γ to 15 decimals. Mascheroni (in 1790) computes it to 32 decimals. Today, it is known to (only) 108 million decimals

Selectio 4 Euler's constant (1740) Three most important constants in mathematics:

 $\pi, \quad e, \quad \gamma$

The last (and most mysterious) one is Euler's constant

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{n} - \ln n \right) = 0.57721 \dots$$

Not even known whether γ is rational or not. If it were, say $\gamma = p/q$, then q would have to be larger than $10^{10,000}$ (R. Brent, 1973).

Euler computes γ to 15 decimals. Mascheroni (in 1790) computes it to 32 decimals. Today, it is known to (only) 108 million decimals (compared to 2×10^{11} decimals of π and 50.1 billion for *e*)

From Euler's autobiography (1767)

"... in 1740, when His still gloriously reigning Royal Majesty came to power in Prussia, I received a most gracious call to Berlin, which, after the illustrious Empress Anne had died and it began to look rather dismal in the regency that followed, I accepted without much hesitation ... "

Berlin 1741–1766 The emergence of epochal treatises

Walter Gautschi Leonhard Euler

The Berlin Academy and Frederick II

э

Chronology

æ

Chronology

• 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London

- 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
- 1750: Euler's widowed mother comes to Berlin, where she lives in Euler's country estate together with her daughter and Euler's children

- 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
- 1750: Euler's widowed mother comes to Berlin, where she lives in Euler's country estate together with her daughter and Euler's children
- 1752: Maupertuis returns to Paris in disgrace; Euler takes over the Academy as *de facto*, if not *de jure*, president

- 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
- 1750: Euler's widowed mother comes to Berlin, where she lives in Euler's country estate together with her daughter and Euler's children
- 1752: Maupertuis returns to Paris in disgrace; Euler takes over the Academy as *de facto*, if not *de jure*, president
- 1755: elected foreign member of the Paris Academy

- 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
- 1750: Euler's widowed mother comes to Berlin, where she lives in Euler's country estate together with her daughter and Euler's children
- 1752: Maupertuis returns to Paris in disgrace; Euler takes over the Academy as *de facto*, if not *de jure*, president
- 1755: elected foreign member of the Paris Academy
- 1763- : Euler's relationship with Frederick II sours

- 1746: Berlin Academy opens its doors, with Maupertuis its president and Euler the director of the Mathematics Class; elected foreign member of the Royal Society of London
- 1750: Euler's widowed mother comes to Berlin, where she lives in Euler's country estate together with her daughter and Euler's children
- 1752: Maupertuis returns to Paris in disgrace; Euler takes over the Academy as *de facto*, if not *de jure*, president
- 1755: elected foreign member of the Paris Academy
- 1763- : Euler's relationship with Frederick II sours
- 1766: Euler returns to St. Petersburg

Major works

*ロト *部ト *注ト *注ト

æ

Major works

Calculus of variations (1744)

- a very general new kind of optimization problem that grew out of the brachystochrone problem
- Euler (differential) equations
- numerous examples from mathematics and the natural sciences

Major works

Calculus of variations (1744)

- a very general new kind of optimization problem that grew out of the brachystochrone problem
- Euler (differential) equations
- numerous examples from mathematics and the natural sciences

Cometary and planetary trajectories (1744)

Major works

Calculus of variations (1744)

- a very general new kind of optimization problem that grew out of the brachystochrone problem
- Euler (differential) equations
- numerous examples from mathematics and the natural sciences

Cometary and planetary trajectories (1744) Optics (1746)

• theory of light and colors

Major works

Calculus of variations (1744)

- a very general new kind of optimization problem that grew out of the brachystochrone problem
- Euler (differential) equations
- numerous examples from mathematics and the natural sciences

Cometary and planetary trajectories (1744) Optics (1746)

• theory of light and colors

Artillery (1745)

• vastly expanded and annotated German translation of Robins's *New principles of gunnery* (1742)

Calculus of variations

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Euler 1753

*ロト *部ト *注ト *注ト

æ

Artillery

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Introduction to the analysis of the infinite (1748)

- elementary functions
- infinite series and products; continued fractions
- analytic geometry: algebraic curves and surfaces

-

< 1 → <

э

Introduction to the analysis of the infinite (1748)

- elementary functions
- infinite series and products; continued fractions
- analytic geometry: algebraic curves and surfaces

Differential calculus (1755)

- calculus of differences and differentials (part I)
- power series and summation formulae (part II)

Introduction to the analysis of the infinite (1748)

- elementary functions
- infinite series and products; continued fractions
- analytic geometry: algebraic curves and surfaces

Differential calculus (1755)

- calculus of differences and differentials (part I)
- power series and summation formulae (part II)

Integral calculus (1763, 1773)

- integration of elementary functions (vol. I)
- ordinary and partial differential equations (vols. II, III)

Introduction to the analysis of the infinite (1748)

- elementary functions
- infinite series and products; continued fractions
- analytic geometry: algebraic curves and surfaces

Differential calculus (1755)

- calculus of differences and differentials (part I)
- power series and summation formulae (part II)

Integral calculus (1763, 1773)

- integration of elementary functions (vol. I)
- ordinary and partial differential equations (vols. II, III)

Theoria motus corporum (1765)

• "second mechanics"; mechanics of rigid bodies

Introduction to the analysis of the infinite (1748)

- elementary functions
- infinite series and products; continued fractions
- analytic geometry: algebraic curves and surfaces

Differential calculus (1755)

- calculus of differences and differentials (part I)
- power series and summation formulae (part II)

Integral calculus (1763, 1773)

- integration of elementary functions (vol. I)
- ordinary and partial differential equations (vols. II, III)

Theoria motus corporum (1765)

• "second mechanics"; mechanics of rigid bodies Dioptrics (1769–1771)

• chromatic and spherical aberration in optical instruments

Introduction to the analysis of the infinite (1748)

- elementary functions
- infinite series and products; continued fractions
- analytic geometry: algebraic curves and surfaces

Differential calculus (1755)

- calculus of differences and differentials (part I)
- power series and summation formulae (part II)

Integral calculus (1763, 1773)

- integration of elementary functions (vol. I)
- ordinary and partial differential equations (vols. II, III) Theoria motus corporum (1765)

• "second mechanics"; mechanics of rigid bodies Dioptrics (1769–1771)

• chromatic and spherical aberration in optical instruments

Letters to a German princess (written 1760–1762)

• Euler's philosophical views on science, religion, and ethics

Infinitesimal analysis I,II

Differential and integral calculus

イロン 不聞 とくほとう ほどう

æ

Walter Gautschi Leonhard Euler

Second mechanics and Optics

э

Letters

< ロ > < 部 > < 注 > < 注 > < </p>

æ

▲ロ▶ ▲□▶ ▲ 三▶ ▲ 三 の へ ()

Selecta Euleriana

æ

Selecta Euleriana

Selectio 5 The Königsberg bridge problem (1741)

<ロト <部ト < 注ト < 注ト

æ

Selecta Euleriana

Selectio 5 The Königsberg bridge problem (1741) connected graph

• path • circuit • Eulerian path or circuit • degree of vertex

-

< 67 ▶

-

Selecta Euleriana

Selectio 5 The Königsberg bridge problem (1741) connected graph

path
circuit
Eulerian path or circuit
degree of vertex **Theorem** (Euler) Let *n* be the number of vertices of odd degree.

(a) If *n* = 0, the graph has at least one Eulerian circuit;

Selecta Euleriana

Selectio 5 The Königsberg bridge problem (1741) connected graph

path
 circuit
 Eulerian path or circuit
 degree of vertex
 Theorem (Euler) Let *n* be the number of vertices of odd degree.

(a) If n = 0, the graph has at least one Eulerian circuit; (b) if n = 2, it has at least one Eulerian path, but no circuit;
Selecta Euleriana

Selectio 5 The Königsberg bridge problem (1741) connected graph

• path • circuit • Eulerian path or circuit • degree of vertex

Theorem (Euler) Let *n* be the number of vertices of odd degree. (a) If n = 0, the graph has at least one Eulerian circuit; (b) if n = 2, it has at least one Eulerian path, but no circuit; (c) if n > 2, it has neither.

Selecta Euleriana

Selectio 5 The Königsberg bridge problem (1741) connected graph

• path • circuit • Eulerian path or circuit • degree of vertex

Theorem (Euler) Let *n* be the number of vertices of odd degree. (a) If n = 0, the graph has at least one Eulerian circuit; (b) if n = 2, it has at least one Eulerian path, but no circuit; (c) if n > 2, it has neither. (n = 1 is impossible.)

Selecta Euleriana

Selectio 5 The Königsberg bridge problem (1741) connected graph

• path • circuit • Eulerian path or circuit • degree of vertex

Theorem (Euler) Let *n* be the number of vertices of odd degree. (a) If n = 0, the graph has at least one Eulerian circuit; (b) if n = 2, it has at least one Eulerian path, but no circuit; (c) if n > 2, it has neither. (n = 1 is impossible.)

Königsberg bridge graph: n = 4

Selectio 6 Euler's buckling formula (1744)

æ

メロト メポト メヨト メヨト

Selectio 6 Euler's buckling formula (1744)

æ

メロト メポト メヨト メヨト

Selectio 7 Euler flow (1757)

æ

Selectio 7 Euler flow (1757)

æ

Octahedron

V = 6 E = 12 F = 8

< ロ > < 部 > < 注 > < 注 > < </p>

æ

Walter Gautschi Leonhard Euler

Selectio 8 Euler's polyhedral formula (1753)

æ

メロト メポト メヨト メヨト

Selectio 8 Euler's polyhedral formula (1753)

In a three-dimensional convex polyhedron let

- V = number of vertices
- E = number of edges
- F = number of faces

Selectio 8 Euler's polyhedral formula (1753)

In a three-dimensional convex polyhedron let

- V = number of vertices
- E = number of edges
- F = number of faces

Theorem (Euler)

$$V - E + F = 2$$

э

Selectio 9 Euler and q-theory

æ

Selectio 9 Euler and q-theory

the story begins 1734 with a letter of Euler to Daniel Bernoulli, in which he wants to interpolate the logarithm from the data

x	1	10	100	1000	• • •
log x	0	1	2	3	• • •

(日) (同) (三) (三)

э

Selectio 9 Euler and q-theory

the story begins 1734 with a letter of Euler to Daniel Bernoulli, in which he wants to interpolate the logarithm from the data

X	1	10	100	1000	• • •
log x	0	1	2	3	• • •

Euler takes S(x) = Newton's interpolation series, but notices that, when x = 9, one gets $S(9) \neq \log 9$, even though the series converges fast

Selectio 9 Euler and q-theory

the story begins 1734 with a letter of Euler to Daniel Bernoulli, in which he wants to interpolate the logarithm from the data

Х	1	10	100	1000	• • •
log x	0	1	2	3	• • •

Euler takes S(x) = Newton's interpolation series, but notices that, when x = 9, one gets $S(9) \neq \log 9$, even though the series converges fast

what, then, is S(x), if not the logarithm log x?

Selectio 9 Euler and q-theory

the story begins 1734 with a letter of Euler to Daniel Bernoulli, in which he wants to interpolate the logarithm from the data

Х	1	10	100	1000	• • •
log x	0	1	2	3	

Euler takes S(x) = Newton's interpolation series, but notices that, when x = 9, one gets $S(9) \neq \log 9$, even though the series converges fast

what, then, is S(x), if not the logarithm $\log x$?

Euler's answer (1753): a detailed study of the interpolation series S(x; a) for the logarithm to base a

Selectio 9 Euler and q-theory

the story begins 1734 with a letter of Euler to Daniel Bernoulli, in which he wants to interpolate the logarithm from the data

Х	1	10	100	1000	• • •
log x	0	1	2	3	• • •

Euler takes S(x) = Newton's interpolation series, but notices that, when x = 9, one gets $S(9) \neq \log 9$, even though the series converges fast

what, then, is S(x), if not the logarithm log x?

Euler's answer (1753): a detailed study of the interpolation series S(x; a) for the logarithm to base a

today we know that S(x; a) is a *q*-analogue of the logarithm where q = 1/a

St. Petersburg 1766–1783 The glorious final stretch

The Euler house and Catherine II

э

Euler 1778

・ロト ・部ト ・ヨト ・ヨト

æ

Chronology

æ

Chronology

• 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind; Euler's wooden house burns down during the great St. Petersburg fire

Chronology

- 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind; Euler's wooden house burns down during the great St. Petersburg fire
- 1773: Euler's wife Katharina dies

Chronology

- 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind; Euler's wooden house burns down during the great St. Petersburg fire
- 1773: Euler's wife Katharina dies
- 1776: Euler remarries

Chronology

- 1771: Euler loses his (good) left eye following a cataract operation and becomes virtually blind; Euler's wooden house burns down during the great St. Petersburg fire
- 1773: Euler's wife Katharina dies
- 1776: Euler remarries
- 1783: On September 18, Euler dies of a stroke

Algebra and Second lunar theory

Second theory of ships

æ

イロン 不聞 とくほとう ほどう

Major works

*ロ * * @ * * 注 * * 注 *

æ

Major works

Algebra (1770)

• a work written for the absolute beginner; a prime example of Euler's extraordinary didactic skill; it becomes a "bestseller", translated into all major languages

Major works

Algebra (1770)

• a work written for the absolute beginner; a prime example of Euler's extraordinary didactic skill; it becomes a "bestseller", translated into all major languages

Second lunar theory (1772)

- a monumental work explaining the many irregularities of the moon's orbit
- Euler's struggle with "solving" the three-body problem (sun-earth-moon)

Major works

Algebra (1770)

• a work written for the absolute beginner; a prime example of Euler's extraordinary didactic skill; it becomes a "bestseller", translated into all major languages

Second lunar theory (1772)

- a monumental work explaining the many irregularities of the moon's orbit
- Euler's struggle with "solving" the three-body problem (sun-earth-moon)

Second theory of ships (1773)

- construction and maneuvering of ships
- written for people (e.g., sailors) with no, or little, mathematical knowledge

Selecta Euleriana

æ

Selecta Euleriana

Selectio 10 Euler's disk

æ

<ロト <部ト < 注ト < 注ト

Selecta Euleriana

Selectio 10 Euler's disk

æ

<ロト <部ト < 注ト < 注ト

Selection 11 Gear transmission; Euler's tooth profile

æ
Selection 11 Gear transmission; Euler's tooth profile

æ

The Man

æ

<ロト <部ト < 注ト < 注ト

Personality

- modest, inconspicuous, uncomplicated, yet cheerful and sociable
- "honesty, uncompromising rectitude—the acknowledged national virtues of Swiss people—he possessed to a superior degree" (Fuchs)
- free of priority concerns
- generous in acknowledging and furthering other people's work

Personality

- modest, inconspicuous, uncomplicated, yet cheerful and sociable
- "honesty, uncompromising rectitude—the acknowledged national virtues of Swiss people—he possessed to a superior degree" (Fuchs)
- free of priority concerns
- generous in acknowledging and furthering other people's work Intellect
- phenomenal memory, erudite
- unusual power of mental calculation
- ability to concentrate on mental work under adversity

Personality

- modest, inconspicuous, uncomplicated, yet cheerful and sociable
- "honesty, uncompromising rectitude—the acknowledged national virtues of Swiss people—he possessed to a superior degree" (Fuchs)
- free of priority concerns
- generous in acknowledging and furthering other people's work Intellect
- phenomenal memory, erudite
- unusual power of mental calculation
- ability to concentrate on mental work under adversity

Craftsmanship

- superb expositor
- his goal: ultimate clarity and simplicity
- yet fearless and agressive in his quest for discovery

Euler memorial plaque in Riehen

*ロト *部ト *注ト *注ト

æ

Epilogue

*ロ * * @ * * 注 * * 注 *

æ

Epilogue

LEONHARD EULER 1707–1783 mathematician, physicist, engineer, astronomer and philosopher, spent his youth in Riehen. He was a great scholar and a kind man.

< □ > < 同 > < 三

-