HOW SHARP IS BERNSTEIN'S INEQUALITY
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WALTER GAUTSCHIf

Dedicated to Richard S. Varga on his 80th birthday

Abstract. Bernstein’s inequality for Jacobi polynomialS(La’ﬁ), established in 1987 by P. Baratella for the
regionRy,2 = {la] < 1/2, |8 < 1/2}, and subsequently supplied with an improved constant byhéwC
L. Gatteschi, and R. Wong, is analyzed here analytically, abdve all, computationally with regard to validity and
sharpness, not only in the original regi® /-, butalso in larger regiorR s = {-1/2 < a <s,-1/2 < 3 < s},
s > 1/2. Computation suggests that the inequality holds with nemewhat larger, constants in any regign.
Best constants are provided fer=1:.5:4 ands =5:1:10. Our work also sheds new light on the so-called
Erdélyi-Magnus—Nevai conjecture for orthonormal Jagquidynomials, adding further support for its validity and
suggesting .66198126... as the best constant implied icahjecture.
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1. Introduction. Bernstein’s inequality for Legendre polynomidfs, slightly sharp-
ened by Antonov and HolSevnikot][and Lorch ], states that fon = 1,2, 3, ...

2\ /2 _
(sin 0)/2|P, (cos 0)| < <—> (n+ %) 1z , 0<6< (1.1)
T

According to Bernstein, the constafit/7)'/? is best possible. An extension df.() to
ultraspherical polynomials%(f) = pPTYEAY2) g o X < 1, is due to Lorch $], and a
further extension to Jacobi polynomia®s®? with la] < 1/2,|8] < 1/2 to Baratella P].

Chow, Gatteschi, and Wong@]| by sharpening her constant, improved Baratella’s result
read

r 1
(sin §0)° 4172 (cos J0) 12 Pl M eos)] < A (M v,

N=n+(a+8+1)/2, 0<0 <,

(1.2)

whereq = max(a, 8) and|a] < 1/2, |8| < 1/2. Equality sign is included inl(.2), since in
the casex = 3 = F1/2 the inequality reduces taos(nf)| < 1 resp.|sin((n + 1)0)| < 1,
andin the caser = £1/2, 8 = F1/2to |sin(n + 1/2)0| < 1 resp.|cos(n +1/2)0| < 1. It
appears, though, that strict inequality holds in all otheeses.

Squaring both sides of the inequality.®) and writing the result in terms af = cos ¢

and the orthonormal Jacobi polynomféﬁ“’m yields (if 3 > «; cf. (4.2))

(1— x)a+1/2(1 + $)6+1/2[p7(10aﬁ)(x)]2

2T(n+a+8+1DI(n+F+1)
“al(n+a+)nl(n+ (a+5+1)/2)28"°

(1.3)

lal <1/2, |8] < 1/2.
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Since as1 — oo the right-hand side is- 2/, it follows that the left-hand side i©(1) for
|z| < 1, which proves the Erdélyi-Magnus—Nevai conjecture

(1= 2)™ 214+ 2) AP @) = O (maxL, (02 +691)  (14)

[7, p. 604] (see also4]) on the domaina| < 1/2, |8| < 1/2. The constant on the right
of (1.3 takes on the valué/w not only atn = oo, but also atn = 1 when = 0 or
la] = |B| = 1/2. ltis probably forn = 1 andg@ = 1/2 that the maximum is attained, near
a = —.0691, its value being64297807.

Incidentally, if we denote the ratio of the left-hand sidg(bf) and the right-hand side
(asin B.3), (3.9) by ¢, F,(z), we have

(1 —2)*T2(1 + 2)P T2 [PP) (2)]? = v, 2 Fi (), (1.5)

where

2'(n+a+ B+ 1)I'(n+B+1)
al(n+a+1)n!l(n+ (a+3+1)/2)28°

Tn = (16)

While the constant'(¢ + 1)/T'(1/2) in (1.2, whena = 3 = 0, is best possible, it
does not follow necessarily that the same is true in the gémase, although asymptotic
arguments will suggest that it is. In this note, the sharprdéghe inequality is determined
computationally, at least for < 100, in the squaréa| < 1/2, |5 < 1/2. Outside thereof,
it is examined to what extent the inequality is an underesion. We will also experiment
with different choices of the parametgrwhich, asymptotically, is irrelevant.

All of this will be done by computing the infinity norm, = p,,(a, 3, ¢) (on the interval
0 < 0 < ) of the ratio of the left-hand side ol (2) divided by the right-hand side. This
is an important quantity inasmuch as it allows us to assesguhlity of the inequalityX.2)
on a domairD of the parameter spade, «, 3, ). In fact, letp}, = maxp p, (o, 8,¢) and
pp = minp p,(a, 3,q). Then, ifpf5 < 1, i.e., the inequality holds oP, on a scale from 0
to 1, the best degree of sharpnessiof(on D is p, and the worst degree of sharpness on
Dis pp. If pf, > 1, then the inequality on the domain should be modified by multiplying
the right-hand side by}, to make it valid orD. The best and worst degrees of sharpness,
P+, pp Of the modified inequality are the, = 1, 5, = pp /5.

2. The constant in (L.2) is sharp. An elementary computation, using Stirling’s for-
mula, will show that the right-hand side df.@), asn — oo, is asymptotically equivalent to
(mn)~1/2, regardless of the values of the parameters, andq. The inequality {.2) thus
says that the function on the left, multiplied byn)'/2, is less than, or equal to, a constant
that tends to 1 a8 — oo. But Darboux’s formula§, Theorem 8.21.8] tells us that this same
expression, at least on a compact subinterval ef ¢ < , but for arbitrary reakv and 3,
is <14 O(1/n), where the constant 1 is best possible (bounding, as it @oassine func-
tion). This not only shows that the constditiy + 1)/I'(1/2) in (1.2) is indeed best possible,
but also that the inequality, with the constant somewhadrged, may well hold in larger
domains of the«, 5)-plane. The purpose of this note is to explore this computatly in
some detail.

3. Bernstein’s inequality for monic Jacobi polynomials. In what follows, we prefer
to use the monic Jacobi polynomifa({“’ﬁ), i.e.,

(3.1)

2
PO ) = o),k =2,
n
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and we shall write it as

Sk

?

=
=
S—

Il
—

(x — ) (3.2)

in terms of the zeros, = a, ;ﬁ) (in ascending order) of the Jacobi polynom&%ﬂ“v i
we divide both sides ofl(2) by the expression on its right-hand side, anddet 0059
Bernstein’s inequality takes the form

Cn|F ( )| < 11 -1 <z < 17 (33)
where

VAE(n + (o + B +1)/2)01/2 (2rtets)
(g + 1)2nt+e+p+1)/2("+a) ’ 3.4)

Fo(z) = Fv(la’ﬁ)(fﬂ) =(1- )(2a+1)/4(1 +I)(25+1)/4 (a 76)( ),

Cp = Cn(a757Q) =

whereq = max(«, 3). Since we later considerto be an independent parameter, we include
it in the constant,, as one of three parameters. Notice that

cn(a, B,q) = cn(B, @, q), (3.5)
regardless of how = ¢(«, ) is defined so long ag«, 5) = q(8, «).

4. The infinity norm || F,, ||« of F,,. We now wish to comput@F;, ||cc = max_j<z<1
|F,(z)|. Since by the reflection formula for Jacobi polynomials,

IE D oo = 5 oo, (4.1)

it suffices to conside > «, and sian\Frga’B)H

oo = 00 If 2a 4+ 1 < 0, we may assume
B>a>-1/2. (4.2)

Computing|| F, || amounts to computing the local extremaZof in the interior of the
interval[—1, 1] along with|F}, (£1)|. With regard to the former, we have

Fj(2) = 5(1=2) 7 (142) 04 [B-a—(a+B+1)2]mi P (@) +2(1—a?)m P (2)},

so that the local extrema occur at those roots of the equgtion. — (a+ 3+ 1):1:]73({"’5) (z)+
2(1 — 22)r{™? () = 0 that are insidé—1, 1), that is, dividing byr'™" and noting 8.2,
at the respective roots of

(4.3)

T — X,

flx)=0, flx)=B—a—(a+B+1Dz+2(1—2? Z
r=1

There can be at mosat-+ 1 real roots. To discuss their location, we first observe that
f(=H)=28+1, f(1)=-2a+1). (4.4)
Itis clear from from ¢.3) that

f(zr+0) =400, f(z,—0)=-00, r=1,2,...,n, (4.5)
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and on each intervdle,, z,11), r = 1,2,...n — 1, the functionf descends monotonically
(cf. §5) from +o00 to —oo. It therefore crosses the real line exactly once, accogritn

n — 1 internal extrema. We distinguish three cases with regatdeagarametes. If, first,
2a.+ 1 > 0, and hence by4(2) also28 + 1 > 0, thenf(—1) > 0 andf(1) < 0, so that
there are two more roots, one eachinl, 21 ) and(z,, 1), accounting for two more internal
extrema, and thus for a complete setof 1 extrema. If, secondiR« + 1 = 0, there are
two subcases25 + 1 > 0 and23 + 1 = 0. In the former, there is still a local extremum
in (—1,24), but none in(x,,, 1); in the latter, both these lateral intervals are devoid o&lo
extrema (in fact, this is one of the trivial cases notefllinin which ¢, || F;, |- = 1.) Finally,

in the third case2a + 1 < 0, as was already mentiong), || = .

5. Computing|| F;, ||« in terms of local extrema. To compute a local extremum &f,,
say in the intervala, b), —1 < a < b < 1, we use Newton’s method applied to the equation
(4.3), with the midpoint of the intervela, b) as the initial approximation,

f@)’
Since the intervala, b) in our application is small anfirapidly descending from-co to —co

(i.e., f’ is large negative), Newton'’s iteratioB.() converges very quickly. The derivative of
f is easily computed from4(3),

i=0,1,2,..., 29 =(a+10)/2. (5.1)

2(

(5.2)

Sincea + 6+ 1 > 0 by (4.2), and the discriminants of the quadratics in the numerator o
the right are—4(1 — z2) < 0, each term of the sum is positive afit{z) < 0 on (a,b), as
already noted in the previous section. Thus we arrive atahewing

Computational procedure. If & > —1/2, apply (5.1 to the intervals
(aab) = (‘rTax’r-i-l)! r=2012....n (Where rg = —1, Lo+l = 1)’
giving &, = (). Then, since F, (£1) = 0,

1Polloo = max [Fu(&)], 26+1>2a+1>0. (5.3)

Ifa=-1/2and 3 > —1/2, do the same, but in (5.3) let r run only up to
n — 1, and compute

|Fn|oozmax{Fn(1), max |Fn(§T)|}7 20+1>0=2a+1.

0<r<n-—1
(5.4)
Ifa= = —1/2, put | Folo = 1.

The Matlab scripbernstein.m listed in the Appendix implements this procedure and
for any givenn, a, 8, ¢ outputsp, (a, 3, q) = cn(a, 3. 9) | FA" | .

6. Numerical results. In this section we present numerical results for the sqlgre
1/2,18] < 1/2. We determing; andp, (cf. §1) on the domairD = {n = [5 10 20 50 100],
a=->5:.01:.503=«:.01:.5,q}, where inturng = ¢+ = max(c,8) = 3, ¢ =q =
min(«, 8) = a, ¢ = —.75:.25: 1. The results are shown in Table 5.1.
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=1 q T 0 25 5 75 1
ph | 1.0000 1.0000 1.0230 1.0169 1.0000 .9997 .9988
p5 | 9978 9978 9754 9468 .9091 .8639 .8128

q— | —25 -5 —.75
ph | 1.0174 1.0000 1.0000
pp | 9532 9167 .8707

Table 5.1 Sharpness ofl(2) on the squarén| < 1/2, |5] < 1/2
with selected values aof

It was observed that the sequengs,(«, 3, ¢)} is monotone, either increasing or de-
creasing. Therefore, iy < n < ng, it would suffice to compute,, for n = ny and
n = nq, SINCEMaX,,<n<n, Prn = MaxX(Png, Pny) ANAMIN, <p<pny Pr = MIN(Ong, Pny )-
Consequentlypf, = max(maxp p,, maxp p,, ) andppy = min(minp py,,, minp py, ). I
other words, if monotonicity in fact holds tru®, = {no < n < nq,...} may be replaced
by D = {n = {no,n1},...}. Inall our experiments we have verified that indeed the tesul
for p5 andp, are the same whether we restricto the smallest and largest value, or include
intermediate values as well.

It can be seen from Table 5.1 that the choiges ¢™ andq = ¢~ yield by far the
best degrees of sharpness, both choices being essert&itycal in quality. Naturally, if we
lowerny = 5 tong = 1, the sharpness deteriorates (tg = .9406 for both choices of),
while increasing to, say,ng = 10 improves sharpness (fg, = .9994 for both choices of

q)-

7. Bernstein’s inequality on larger domains. We now explore the sharpness resp. va-
lidity of (1.2) in the larger region®, = {—1/2 < a < s5,—1/2 < 8 < s}, where, to begin
with, s = 1,2, 5, and 10. We define

D =D, ={n=1[5102050100], (a, 8) € Rs}, s>1/2. (7.1)

We found thatp, = p{)]/z for all s > 1/2, and computations based on successively finer
screenings near the minimum pofat—, 37) € R4/, for PD, s yielded

Dy, = .997780002408 (where g = ¢*),

.997804307519 (where g = ¢ 7). (7.2)

pD1/2

Forpjgs we found, whens = 1,2, 5,10, regardless of whether= ¢™ or ¢ = ¢, that the
maximump;gs = maxp, p, IS always attained at the upper right-hand coffeer3) = (s, s)
of the squaréR. Assuming this to be true in general, we computed Table 5*.2@(5) and
(cf.8§1) pp. = pgs/pgs, where we used the first of the two values fgy = p51/2 in (7.2.
(The other value, of course, gives very similar results.)

It can be seen that the sharpness of the inequality, even forl0, is still well within

one order of magnitude. What is remarkable is also that thdteeare exacly the same if we
letn go up to 200, so that the results are likely to be valid fornalt 5.
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S

D

Pp

1.0
15
2.0
2.5
3.0
3.5
4.0
5.0
6.0
7.0
8.0

1.03867046328¢
1.07793637073¢
1.11990521663§
1.166112996124
1.217697600824
1.275581233437
1.340588974514
1.495211643984
1.688484850744
1.92864860001(
2.22595034133¢

G——G—=d—O—-00—(C

960631920975
.92563905393(
.890950401502
.855646070084
.819398840677
782215962614
.74428480420(
667316902204
.59093216144(
517346707121
448248994544

9.0
10.0

2.593289070919
3.046949165887

384754639811
327468542495

Table 5.2 Sharpness of (the modified) Bernstein’s inequality?)
with the right-hand side multiplied b,yjjs on the
square-1/2 <a<s,-1/2<p3<s

As a final experiment, we recomputed the second column ofeTal# withD, =
{n=152443 6281100], {(a, )} C Rs }, where{(a, )} is a set of 1,000 randomly gen-
erated pairga, 5) in R,. We verified that the results are all strictly smaller thaostin Table
5.2, the smallest and largest deviations be&ig70 x 10~° (for s = 3.5) resp.6.2961 x 103
(for s =9).

We remark that the property of the maximl,aﬁgs being attained att = 3 = s has been
verified also ifn. =[1:10, 20, 25, 50, 75, 100] in the definition ofD, and also fotnax,, \/7,¢n
X ||Fnlloo In (1.5. The property, therefore, is likely to hold for amy > 1 and anys >
1/2; if so, it would allow to extend the upper bound fafax j<,<;(1 — x)*T1/2(1 +
)P 12 [P P) (2))2, proved fora = 8 > (1 4 /2)/4in [4, eq (4)] to arbitraryy > —1/2,
8 > —1/2, lending added support for the validity of the Erdélyi—-Mag—Nevai conjecture.
Indeed, further calculations along the lines reported oFainle 5.2, but forn > 1, in partic-
ular the computation fow = 8 = s of the quantitymax,, v,,c2|| F, |2,/ max (1, (25%)'/4)
fors = [.5:.01:12:10 20 50] and = .706:.0001:.708 reveals that it attains a global
maximum .66198126... at= 1/v/2. This suggests that the best constant implied in the
Erdélyi-Magnus—Nevai conjecturg.{) is .66198126.. . .
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Appendix.

In the following Matlab script, the routines_ jacobi andgauss are part of a software
packageOPQ which can be downloaded, along with the routine below, learyi routines,
and a driver, from

http://www.cs.purdue.edu/archives/2002/wxg/codes

by clicking onBIJ .

% BERNSTEIN Sharpness of Bernstein’'s inequality for
% Jacobi polynomials P _n(a,b; -) with b>=a>=-1/2.
% The output is ¢ n || F _n ||
%
function rho=bernstein(n,a,b,q)
if a<-1/2 | b<-1/2 | b<a
disp('parameters a and/or b not in range’)
return
end
tol=1e2*eps;
pnum=1; pden=1; p2=1,;
for nu=1:n
pnum=(1+(n+a+b)/nu)*pnum;
pden=(1+qg/nu)*pden;
p2=(1-1/(2*nu))*p2;
end
cO=pnum/2°(n+(a+b+1)/2);
cl=(n+(a+b+1)/2)"(g+1/2)/(gamma(l+q)*pden);
c2=sqrt(pi)*c1*p2;
c=sqrt(pi)*c0*cl;
extr=zeros(n+1,1);
%
% When applying this routine for the same values
% of a and b, but many different values of n, the
% following command, for better efficiency, should
% be called outside the n-loop with n set equal to
% the largest n-value in the loop and the array ab
% included among the input parameters of this routine.
%
ab=r _jacobi(n,a,b);
xw=gauss(n,ab);
x=xw(:,1);
x1=[-1 x' 1J;
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kO=1; kl=n+1;
if a==-1/2
if b>-1/2
kl=n;
else
rho=1;
return
end
end
for k=k0:k1
t0=0; t1=(x1(k)+x1(k+1))/2;
while abs(t1-t0)>tol
t0=t1;
t1=t0-fbern(t0,a,b,x)/f1bern(t0,a,b,x);
end
p=prod(t1-x);
extr(k)=(1-t1)"(a/2+1/4)*(1+t1)"(b/2+1/4)*abs(p);
end
rho=c*max(extr);
if a==-1/2
if c2>rho
rho=c2;
end
end

% FBERN A function f needed in Bernstein’s inequality
% for Jacobi polynomials

%

function y=fbern(t,a,b,x)
y=b-a-(a+b+1)*t+2*(1-t"2)*sum(1./(t-x));

% F1BERN The function f needed in Bernstein’s inequality
% for Jacobi polynomials

%

function y=flbern(t,a,b,x)
y=-(a+b+1)-2*sum((t"2-2*t*x+1)./(t-X).”2);



