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Abstract. Bernstein’s inequality for Jacobi polynomialsP (α,β)
n , established in 1987 by P. Baratella for the

regionR1/2 = {|α| ≤ 1/2, |β| ≤ 1/2}, and subsequently supplied with an improved constant by Y. Chow,
L. Gatteschi, and R. Wong, is analyzed here analytically and, above all, computationally with regard to validity and
sharpness, not only in the original regionR1/2, but also in larger regionsRs = {−1/2 ≤ α ≤ s,−1/2 ≤ β ≤ s},
s > 1/2. Computation suggests that the inequality holds with new, somewhat larger, constants in any regionRs.
Best constants are provided fors = 1 : .5 : 4 ands = 5 : 1 : 10. Our work also sheds new light on the so-called
Erdélyi–Magnus–Nevai conjecture for orthonormal Jacobipolynomials, adding further support for its validity and
suggesting .66198126. . . as the best constant implied in theconjecture.
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1. Introduction. Bernstein’s inequality for Legendre polynomialsPn, slightly sharp-
ened by Antonov and Holševnikov [1] and Lorch [5], states that forn = 1, 2, 3, . . .

(sin θ)1/2|Pn(cos θ)| <

(

2

π

)1/2
(

n + 1
2

)−1/2
, 0 ≤ θ ≤ π. (1.1)

According to Bernstein, the constant(2/π)1/2 is best possible. An extension of (1.1) to

ultraspherical polynomialsP (λ)
n = P

(λ−1/2,λ−1/2)
n , 0 < λ < 1, is due to Lorch [6], and a

further extension to Jacobi polynomialsP
(α,β)
n with |α| ≤ 1/2, |β| ≤ 1/2 to Baratella [2].

Chow, Gatteschi, and Wong [3], by sharpening her constant, improved Baratella’s resultto
read

(sin 1
2θ)α+1/2(cos 1

2θ)β+1/2|P (α,β)
n (cos θ)| ≤ Γ(q + 1)

Γ(1/2)

(

n + q

n

)

N−q−1/2,

N = n + (α + β + 1)/2, 0 ≤ θ ≤ π,

(1.2)

whereq = max(α, β) and|α| ≤ 1/2, |β| ≤ 1/2. Equality sign is included in (1.2), since in
the caseα = β = ∓1/2 the inequality reduces to| cos(nθ)| ≤ 1 resp.| sin((n + 1)θ)| ≤ 1,
and in the caseα = ±1/2, β = ∓1/2 to | sin(n + 1/2)θ| ≤ 1 resp.| cos(n + 1/2)θ| ≤ 1. It
appears, though, that strict inequality holds in all other cases.

Squaring both sides of the inequality (1.2) and writing the result in terms ofx = cos θ

and the orthonormal Jacobi polynomialP̂
(α,β)
n yields (if β ≥ α; cf. (4.2))

(1 − x)α+1/2(1 + x)β+1/2[P̂
(α,β)
n (x)]2

≤ 2 Γ(n + α + β + 1)Γ(n + β + 1)

π Γ(n + α + 1)n!(n + (α + β + 1)/2)2β
, |α| ≤ 1/2, |β| ≤ 1/2.

(1.3)
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Since asn → ∞ the right-hand side is∼ 2/π, it follows that the left-hand side isO(1) for
|x| ≤ 1, which proves the Erdélyi–Magnus–Nevai conjecture

(1 − x)α+1/2(1 + x)β+1/2[P̂ (α,β)
n (x)]2 = O

(

max[1, (α2 + β2)1/4]
)

(1.4)

[7, p. 604] (see also [4]) on the domain|α| ≤ 1/2, |β| ≤ 1/2. The constant on the right
of (1.3) takes on the value2/π not only atn = ∞, but also atn = 1 whenβ = 0 or
|α| = |β| = 1/2. It is probably forn = 1 andβ = 1/2 that the maximum is attained, near
α = −.0691, its value being.64297807.

Incidentally, if we denote the ratio of the left-hand side of(1.2) and the right-hand side
(as in (3.3), (3.4)) by cnFn(x), we have

(1 − x)α+1/2(1 + x)β+1/2[P̂ (α,β)
n (x)]2 = γnc2

nF 2
n(x), (1.5)

where

γn =
2 Γ(n + α + β + 1)Γ(n + β + 1)

π Γ(n + α + 1)n!(n + (α + β + 1)/2)2β
. (1.6)

While the constantΓ(q + 1)/Γ(1/2) in (1.2), whenα = β = 0, is best possible, it
does not follow necessarily that the same is true in the general case, although asymptotic
arguments will suggest that it is. In this note, the sharpness of the inequality is determined
computationally, at least forn ≤ 100, in the square|α| ≤ 1/2, |β| ≤ 1/2. Outside thereof,
it is examined to what extent the inequality is an underestimation. We will also experiment
with different choices of the parameterq, which, asymptotically, is irrelevant.

All of this will be done by computing the infinity normρn = ρn(α, β, q) (on the interval
0 ≤ θ ≤ π) of the ratio of the left-hand side of (1.2) divided by the right-hand side. This
is an important quantity inasmuch as it allows us to assess the quality of the inequality (1.2)
on a domainD of the parameter space(n, α, β, q). In fact, letρ+

D = maxD ρn(α, β, q) and
ρ−D = minD ρn(α, β, q). Then, ifρ+

D ≤ 1, i.e., the inequality holds onD, on a scale from 0
to 1, the best degree of sharpness of (1.2) onD is ρ+

D, and the worst degree of sharpness on
D is ρ−D. If ρ+

D > 1, then the inequality on the domainD should be modified by multiplying
the right-hand side byρ+

D, to make it valid onD. The best and worst degrees of sharpness,
ρ̂+
D, ρ̂−D of the modified inequality are then̂ρ+

D = 1, ρ̂−D = ρ−D/ρ+
D.

2. The constant in (1.2) is sharp. An elementary computation, using Stirling’s for-
mula, will show that the right-hand side of (1.2), asn → ∞, is asymptotically equivalent to
(πn)−1/2, regardless of the values of the parametersα, β, andq. The inequality (1.2) thus
says that the function on the left, multiplied by(πn)1/2, is less than, or equal to, a constant
that tends to 1 asn → ∞. But Darboux’s formula [8, Theorem 8.21.8] tells us that this same
expression, at least on a compact subinterval of0 < θ < π, but for arbitrary realα andβ,
is ≤ 1 + O(1/n), where the constant 1 is best possible (bounding, as it does,a cosine func-
tion). This not only shows that the constantΓ(q + 1)/Γ(1/2) in (1.2) is indeed best possible,
but also that the inequality, with the constant somewhat enlarged, may well hold in larger
domains of the(α, β)-plane. The purpose of this note is to explore this computationally in
some detail.

3. Bernstein’s inequality for monic Jacobi polynomials. In what follows, we prefer
to use the monic Jacobi polynomialπ

(α,β)
n , i. e.,

P (α,β)
n (x) = knπ(α,β)

n (x), kn = 2−n

(

2n + α + β

n

)

, (3.1)
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and we shall write it as

π(α,β)
n (x) =

n
∏

r=1

(x − xr) (3.2)

in terms of the zerosxr = x
(α,β)
n,r (in ascending order) of the Jacobi polynomialP

(α,β)
n . If

we divide both sides of (1.2) by the expression on its right-hand side, and letx = cos θ,
Bernstein’s inequality takes the form

cn|Fn(x)| ≤ 1, −1 ≤ x ≤ 1, (3.3)

where

cn = cn(α, β, q) =

√
π(n + (α + β + 1)/2)q+1/2

(

2n+α+β
n

)

Γ(q + 1)2n+(α+β+1)/2
(

n+q
n

) ,

Fn(x) = F
(α,β)
n (x) = (1 − x)(2α+1)/4(1 + x)(2β+1)/4π

(α,β)
n (x),

(3.4)

whereq = max(α, β). Since we later considerq to be an independent parameter, we include
it in the constantcn as one of three parameters. Notice that

cn(α, β, q) = cn(β, α, q), (3.5)

regardless of howq = q(α, β) is defined so long asq(α, β) = q(β, α).

4. The infinity norm ‖Fn‖∞ of Fn. We now wish to compute‖Fn‖∞ = max−1≤x≤1

|Fn(x)|. Since by the reflection formula for Jacobi polynomials,

‖F (α,β)
n ‖∞ = ‖F (β,α)

n ‖∞, (4.1)

it suffices to considerβ ≥ α, and since‖F (α,β)
n ‖∞ = ∞ if 2α + 1 < 0, we may assume

β ≥ α ≥ −1/2. (4.2)

Computing‖Fn‖∞ amounts to computing the local extrema ofFn in the interior of the
interval[−1, 1] along with|Fn(±1)|. With regard to the former, we have

F ′
n(x) = 1

2 (1−x)(2α−3)/4(1+x)(2β−3)/4{[β−α−(α+β+1)x]π(α,β)
n (x)+2(1−x2)π(α,β)′

n (x)},

so that the local extrema occur at those roots of the equation[β−α−(α+β+1)x]π
(α,β)
n (x)+

2(1 − x2)π
(α,β)′
n (x) = 0 that are inside(−1, 1), that is, dividing byπ(α,β)

n and noting (3.2),
at the respective roots of

f(x) = 0, f(x) = β − α − (α + β + 1)x + 2(1 − x2)

n
∑

r=1

1

x − xr
. (4.3)

There can be at mostn + 1 real roots. To discuss their location, we first observe that

f(−1) = 2β + 1, f(1) = −(2α + 1). (4.4)

It is clear from from (4.3) that

f(xr + 0) = +∞, f(xr − 0) = −∞, r = 1, 2, . . . , n, (4.5)
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and on each interval(xr, xr+1), r = 1, 2, . . . n − 1, the functionf descends monotonically
(cf. §5) from +∞ to −∞. It therefore crosses the real line exactly once, accounting for
n − 1 internal extrema. We distinguish three cases with regard tothe parameterα. If, first,
2α + 1 > 0, and hence by (4.2) also2β + 1 > 0, thenf(−1) > 0 andf(1) < 0, so that
there are two more roots, one each in(−1, x1) and(xn, 1), accounting for two more internal
extrema, and thus for a complete set ofn + 1 extrema. If, secondly,2α + 1 = 0, there are
two subcases:2β + 1 > 0 and2β + 1 = 0. In the former, there is still a local extremum
in (−1, x1), but none in(xn, 1); in the latter, both these lateral intervals are devoid of local
extrema (in fact, this is one of the trivial cases noted in§1, in whichcn‖Fn‖∞ = 1.) Finally,
in the third case,2α + 1 < 0, as was already mentioned,‖Fn‖∞ = ∞.

5. Computing‖Fn‖∞ in terms of local extrema. To compute a local extremum ofFn,
say in the interval(a, b), −1 ≤ a < b ≤ 1, we use Newton’s method applied to the equation
(4.3), with the midpoint of the interval(a, b) as the initial approximation,

x(i+1) = x(i) − f(x(i))

f ′(x(i))
, i = 0, 1, 2, . . . , x(0) = (a + b)/2. (5.1)

Since the interval(a, b) in our application is small andf rapidly descending from+∞ to−∞
(i.e.,f ′ is large negative), Newton’s iteration (5.1) converges very quickly. The derivative of
f is easily computed from (4.3),

f ′(x) = −(α + β + 1) − 2

n
∑

r=1

x2 − 2xrx + 1

(x − xr)2
. (5.2)

Sinceα + β + 1 ≥ 0 by (4.2), and the discriminants of the quadratics in the numerator on
the right are−4(1 − x2

r) < 0, each term of the sum is positive andf ′(x) < 0 on (a, b), as
already noted in the previous section. Thus we arrive at the following

Computational procedure. If α > −1/2, apply (5.1) to the intervals
(a, b) = (xr, xr+1), r = 0, 1, 2, . . . , n (where x0 = −1, xn+1 = 1),
giving ξr = x(∞). Then, since Fn(±1) = 0,

‖Fn‖∞ = max
0≤r≤n

|Fn(ξr)|, 2β + 1 ≥ 2α + 1 > 0. (5.3)

If α = −1/2 and β > −1/2, do the same, but in (5.3) let r run only up to
n − 1, and compute

‖Fn‖∞ = max

{

Fn(1), max
0≤r≤n−1

|Fn(ξr)|
}

, 2β + 1 > 0 = 2α + 1.

(5.4)
If α = β = −1/2, put cn‖Fn‖∞ = 1.

The Matlab scriptbernstein.m listed in the Appendix implements this procedure and
for any givenn, α, β, q outputsρn(α, β, q) = cn(α, β, q)‖F (α,β)

n ‖∞.

6. Numerical results. In this section we present numerical results for the square|α| ≤
1/2, |β| ≤ 1/2. We determineρ+

D andρ−D (cf. §1) on the domainD = {n = [5 10 20 50 100],
α = −.5 : .01 : .5,β = α : .01 : .5, q}, where in turnq = q+ = max(α, β) = β, q = q− =
min(α, β) = α, q = −.75 : .25 : 1. The results are shown in Table 5.1.
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q → q+ q− 0 .25 .5 .75 1
ρ+
D 1.0000 1.0000 1.0230 1.0169 1.0000 .9997 .9988

ρ−D .9978 .9978 .9754 .9468 .9091 .8639 .8128

q → −.25 −.5 −.75

ρ+
D 1.0174 1.0000 1.0000

ρ−D .9532 .9167 .8707

Table 5.1 Sharpness of (1.2) on the square|α| ≤ 1/2, |β| ≤ 1/2
with selected values ofq

It was observed that the sequence{ρn(α, β, q)} is monotone, either increasing or de-
creasing. Therefore, ifn0 ≤ n ≤ n1, it would suffice to computeρn for n = n0 and
n = n1, sincemaxn0≤n≤n1

ρn = max(ρn0
, ρn1

) andminn0≤n≤n1
ρn = min(ρn0

, ρn1
).

Consequently,ρ+
D = max(maxD ρn0

, maxD ρn1
) andρ−D = min(minD ρn0

, minD ρn1
). In

other words, if monotonicity in fact holds true,D = {n0 ≤ n ≤ n1, . . . } may be replaced
by D = {n = {n0, n1}, . . . }. In all our experiments we have verified that indeed the results
for ρ+

D andρ−D are the same whether we restrictn to the smallest and largest value, or include
intermediate values as well.

It can be seen from Table 5.1 that the choicesq = q+ andq = q− yield by far the
best degrees of sharpness, both choices being essentially identical in quality. Naturally, if we
lower n0 = 5 to n0 = 1, the sharpness deteriorates (toρ−D = .9406 for both choices ofq),
while increasingn0 to, say,n0 = 10 improves sharpness (toρ−D = .9994 for both choices of
q).

7. Bernstein’s inequality on larger domains. We now explore the sharpness resp. va-
lidity of (1.2) in the larger regionsRs = {−1/2 ≤ α ≤ s,−1/2 ≤ β ≤ s}, where, to begin
with, s = 1, 2, 5, and 10. We define

D = Ds = {n = [5 10 20 50 100], (α, β) ∈ Rs}, s ≥ 1/2. (7.1)

We found thatρ−Ds
= ρ−D1/2

for all s > 1/2, and computations based on successively finer

screenings near the minimum point(α−, β−) ∈ R1/2 for ρ−D1/2
yielded

ρ−D1/2

= .997780002408 (where q = q+),

ρ−D1/2
= .997804307519 (where q = q−).

(7.2)

For ρ+
Ds

we found, whens = 1, 2, 5, 10, regardless of whetherq = q+ or q = q−, that the
maximumρ+

Ds
= maxDs ρn is always attained at the upper right-hand corner(α, β) = (s, s)

of the squareRs. Assuming this to be true in general, we computed Table 5.2 for ρ+
Ds

and
(cf. §1) ρ̂−Ds

= ρ−Ds
/ρ+

Ds
, where we used the first of the two values forρ−Ds

= ρ−D1/2
in (7.2).

(The other value, of course, gives very similar results.)

It can be seen that the sharpness of the inequality, even fors = 10, is still well within
one order of magnitude. What is remarkable is also that the results are exacly the same if we
let n go up to 200, so that the results are likely to be valid for alln ≥ 5.
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s ρ+
Ds

ρ̂−Ds

1.0 1.038670463288 .960631920975
1.5 1.077936370739 .925639053930
2.0 1.119905216638 .890950401502
2.5 1.166112996124 .855646070084
3.0 1.217697600829 .819398840672
3.5 1.275581233437 .782215962616
4.0 1.340588974513 .744284804200
5.0 1.495211643984 .667316902208
6.0 1.688484850743 .590932161440
7.0 1.928648600010 .517346707121
8.0 2.225950341336 .448248994544
9.0 2.593289070919 .384754639811

10.0 3.046949165887 .327468542495

Table 5.2 Sharpness of (the modified) Bernstein’s inequality (1.2)
with the right-hand side multiplied byρ+

Ds
on the

square−1/2 ≤ α ≤ s, −1/2 ≤ β ≤ s

As a final experiment, we recomputed the second column of Table 5.2 withDs =
{n = [5 24 43 62 81 100], {(α, β)} ⊂ Rs }, where{(α, β)} is a set of 1,000 randomly gen-
erated pairs(α, β) in Rs. We verified that the results are all strictly smaller than those in Table
5.2, the smallest and largest deviations being3.0770×10−5 (for s = 3.5) resp.6.2961×10−3

(for s = 9).

We remark that the property of the maximumρ+
Ds

being attained atα = β = s has been
verified also ifn =[1:10, 20, 25, 50, 75, 100] in the definition ofDs and also formaxn

√
γncn

× ‖Fn‖∞ in (1.5). The property, therefore, is likely to hold for anyn ≥ 1 and anys ≥
1/2; if so, it would allow to extend the upper bound formax−1≤x≤1(1 − x)α+1/2(1 +

x)β+1/2[P̂
(α,β)
n (x)]2, proved forα = β ≥ (1 +

√
2)/4 in [4, eq (4)] to arbitraryα > −1/2,

β > −1/2, lending added support for the validity of the Erdélyi–Magnus–Nevai conjecture.
Indeed, further calculations along the lines reported on inTable 5.2, but forn ≥ 1, in partic-
ular the computation forα = β = s of the quantitymaxn γnc2

n‖Fn‖2
∞/ max

(

1, (2s2)1/4
)

for s = [.5 : .01 : 1 2 : 10 20 50] ands = .706 : .0001 : .708 reveals that it attains a global
maximum .66198126. . . ats = 1/

√
2. This suggests that the best constant implied in the

Erdélyi–Magnus–Nevai conjecture (1.4) is .66198126. . . .
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Appendix.

In the following Matlab script, the routinesr jacobi andgauss are part of a software
packageOPQ, which can be downloaded, along with the routine below, auxiliary routines,
and a driver, from

http://www.cs.purdue.edu/archives/2002/wxg/codes

by clicking onBIJ .

% BERNSTEIN Sharpness of Bernstein’s inequality for
% Jacobi polynomials P n(a,b; ·) with b>=a>=-1/2.
% The output is c n || F n ||.
%
function rho=bernstein(n,a,b,q)
if a<-1/2 | b<-1/2 | b<a

disp(’parameters a and/or b not in range’)
return

end
tol=1e2*eps;
pnum=1; pden=1; p2=1;
for nu=1:n

pnum=(1+(n+a+b)/nu)*pnum;
pden=(1+q/nu)*pden;
p2=(1-1/(2*nu))*p2;

end
c0=pnum/2ˆ(n+(a+b+1)/2);
c1=(n+(a+b+1)/2)ˆ(q+1/2)/(gamma(1+q)*pden);
c2=sqrt(pi)*c1*p2;
c=sqrt(pi)*c0*c1;
extr=zeros(n+1,1);
%
% When applying this routine for the same values
% of a and b, but many different values of n, the
% following command, for better efficiency, should
% be called outside the n-loop with n set equal to
% the largest n-value in the loop and the array ab
% included among the input parameters of this routine.
%
ab=r jacobi(n,a,b);
xw=gauss(n,ab);
x=xw(:,1);
x1=[-1 x’ 1]’;
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k0=1; k1=n+1;
if a==-1/2

if b>-1/2
k1=n;

else
rho=1;
return

end
end
for k=k0:k1

t0=0; t1=(x1(k)+x1(k+1))/2;
while abs(t1-t0)>tol

t0=t1;
t1=t0-fbern(t0,a,b,x)/f1bern(t0,a,b,x);

end
p=prod(t1-x);
extr(k)=(1-t1)ˆ(a/2+1/4)*(1+t1)ˆ(b/2+1/4)*abs(p);

end
rho=c*max(extr);
if a==-1/2

if c2>rho
rho=c2;

end
end

% FBERN A function f needed in Bernstein’s inequality
% for Jacobi polynomials
%
function y=fbern(t,a,b,x)
y=b-a-(a+b+1)*t+2*(1-tˆ2)*sum(1./(t-x));

% F1BERN The function f’ needed in Bernstein’s inequality
% for Jacobi polynomials
%
function y=f1bern(t,a,b,x)
y=-(a+b+1)-2*sum((tˆ2-2*t*x+1)./(t-x).ˆ2);


