
b01lers
Purdue University

Jacob White
Siddharth Muralee
Muhammad Ibrahim
Bo-Shiun Yen
Ashwin Nambiar
Abhishek Reddypalle

1

Advisors :
Dr. Antonio Bianchi
Dr. Aravind Machiry

Outline

● Design Overview
○ Design Philosophy
○ Threat Model
○ System Design
○ Improvements

● Attack Phase
○ Stack Leak
○ Weak PRNG
○ Common Attacks

● Final Comments and Lessons Learned

2

Design Phase

3

Design Philosophy

● Define a comprehensive threat model, especially for buffer overflows and
side-channels

● Avoid over-engineering our protocols, to reduce risk of introducing
vulnerabilities

● Limit the impact and scope of exploits, even if compromise does occur

4

System Design

5

Feature
Password

Pairing
PIN

Host Tools

Feature
Password

Symmetric
Key

Car
Pairing

PIN

Paired Fob
Symmetric

Key

• Replay attacks
• Secure PRNG + many entropy sources
• Large random unlock challenge
• Paired fob proves by decrypting with key

• Buffer overflows
• memset uninitialized + unused data to 0
• Known lengths for UART + processing

• Side channels
• Use side-channel resilient cryptography
• No secret-dep. computation or branching
• EEPROM Layout Randomization

• Brute force
• Salt PIN hash to prevent guessing if leaked
• Persistent ~5 sec. timeout on any error

6

Attacker Goal /
Capability

Brute forcing
pairing Pin

Unauthorized car
unlock

Unauthorized car
features

Unauthorized fob
duplication

Access to car No PIN on car Symmetric keys on
car/fob

Unique feature
passwords No PIN on car

Temporary fob
access Delay Unique

challenge-response
Unique feature

passwords
Salt-then-hash pairing

PIN
Access to car with

features No PIN on car Symmetric keys on
car/fob

Unique feature
passwords No PIN on car

Threat/Capability Matrix

Protocol Overview

7

Unlock
Car

• Symmetric key AEAD Encryption using ASCON
• Randomized challenge-response by car to fob

Pair Fob

• Salted and hashed 6-digit pairing PIN
• Persistent 4 sec. timeout on each PIN attempt

Enable
Feature

• Unique 32-bit feature password for each car
• Salted and hashed feature stored on car

EEPROM Layout Randomization (ELR)

8

Our manufacturing process involves the creation of a randomized
EEPROM layout for each car produced. This security measure

ensures that any attacker who gains access to the EEPROM will
be unable to discern the location and content of stored data

without reversing the code.

CAR 1

KEY

SEED

HASH

SALT

CAR 2

SALT

KEY

SEED

HASH

CAR 3

KEY

SALT

HASH

SEED

Possible
Improvements
to Design

9

Binary Layout Randomization (Compile-Time). Modifying our
defense strategy to encompass randomized layout for other
sections, such as the .text and .stack, would have resulted in a
more formidable challenge for teams seeking to attack our design.
Better PRNG entropy and implementation. We could have
looked harder for an existing PRNG implementation instead of
rolling our own. We could have improved entropy by sampling
(smallest bit of) temperature and sourcing from many samples.
Mutual car-fob and fob-fob authentication. We didn't fully
capture the impact of authenticating fobs in the protocols, or how
AEAD encryption supports this on unlock. Using signatures or
even HMACs would have made it harder to impersonate fobs.
Digitally sign features. Instead of relying on the uniqueness of
feature passwords and minimal number of cars when authorizing
each car's features, we could have digitally signed a unique
feature ID.
Prevent fault injection attacks. Verify each of the conditional
checks multiple times to prevent any possibility of glitching.

Attack Phase

10

Stack
Leak
● Boards with flags can only run

signed firmware images. However,
the attacker can flash any
correctly signed firmware at any
point on the car/fob.

● By flashing a vulnerable and a
victim firmware on the car/fob, we
leveraged the vulnerable firmware
to extract sensitive data left
behind from victim firmware
images. By leveraging these leaks, we successfully extracted private

keys and pairing pins on the test boards. However, this attack
did not work on keyed boards since the bootloader clears the
SRAM and removes any sensitive data left by the victim team.

Attack Highlight

Countermeasure to Stack Leak
● Countermeasure: Ensure that variables stored on stack are wiped when not

needed

12

Attack Highlight

Weak
PRNG
● Secure cryptography requires good randomness. However, the attacker effectively has a save

state of the car through the distributed firmware.
● By flashing a vulnerable car/fob, we reset the PRNG to the same initial state if the team doesn’t

design it properly.
● We can first flash the car/fob, observe the PRNG output through the challenges, then re-flash

the car/fob and get the same challenge.
● Countermeasure: Introduce entropy on flash / first boot / first randomness output. There are

several sources of good entropy on board that can be used to seed the PRNG, which mitigates
the issue.

Attack Highlight

Common Attacks

● Shared Secrets : Shared secrets allowed reusing fobs on other cars.

● Brute Force : No limits on the number of attempts allowed to brute force the
PIN on the fob.

● Buffer Overflow : We wrote exploits to leak flags and pins from various
teams.

14

Final Comments

● What features of opponents’ systems made things difficult for you as an
attacker?

○ Secure designs with high-entropy RNG
○ Inconsistency between comments, docs, and code

■ This is NOT a recommendation to use security by obscurity…
○ Memory-safe Rust

● Would some of your attacks also be successful against your own system?
○ Likely, replay attacks on weak PRNG
○ Stack leak is also potentially possible against our system

15

Final Comments

● With more time and resources, what other things would you have done?
○ Design Phase: Prevent fault injection attacks, digitally sign features, randomize binary

layout, compile with Checked C, thoroughly audit crypto libraries + code
○ Attack Phase: Side-channel attacks, automate common attacks

● What was the most valuable thing you learned during the competition?
○ Read the rules properly (Strategy is very important)

○ Prep infra/tools for attack phase earlier

16

17

Questions?

