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1 Introduction

Sponge constructions and the closely-related duplex constructions (together, sponge paradigm)
are an intriguing alternative to block cipher-based modes of operation. First introduced
by [BDPV07, BDPV08] and later popularized by both the winner of NIST’s SHA-3 compe-
tition Keccak [BDPV12c], the sponge paradigm has seen an explosion of academic work
(e.g. [BKL+11, CHS19, Nai16, DJS19, BDPV08, Saa14, SY15, BDPV10]). Since sponges
and duplexes can be constructed with only a permutation or transformation function and
one can use the sponge paradigm to construct a wide range functions that are useful in
symmetric cryptography (including hashes, authenticated encryption, MACs, PRFs, and
PRNGs) [BDPV11], it serves as an extremely versatile basis for cryptosystems. Further-
more, incorporating the sponge paradigm in many ways eases the burden of analyzing the
security of sanely-constructed cryptosuites, in part due to its potential as a reference model.
Essentially, the sponge paradigm can act as a near-equivalent to a random oracle (ROM) up
to the negligible potential for inner collisions [BDPV08] (also see e.g. [Saa14]).

Indeed, many proposed candidates in the NIST Lightweight Cryptography (LWC) com-
petition were constructed using the sponge paradigm due to the ease of creating efficient
constructions for a multitude of cryptographic functions. One candidate in particular,
Ascon [DEMS21], very recently won the NIST LWC competition and is currently in the
process of standardization. Unlike most constructions in the sponge paradigm, Ascon de-
fines logically distinct a- and b-round random permutations pa, pb, respectively, but otherwise
builds on techniques learned from analyses of similar constructions in the sponge paradigm.

However, most formal analyses of both the security bounds and attacks on the sponge
paradigm in the literature have presumed a generic sponge using a random function (trans-
formation or permutation), which does not adequately capture real-life scenarios where the
function description is public and can be evaluated in finite-memory by the attacker. As
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many analyses and attacks against the sponge paradigm treat its permutations as a (mostly)
black-box random oracle, many authors such as [CGH98, MRH04, FGK22] have shed doubt
on the idea that true random oracles can be implemented or even provide tight bounds on the
advantage of some applications in this light. Indeed, the Ascon authors themselves explic-
itly acknowledge that their scheme’s permutations need not be random or ideal [DEMS21],
lending credibility to the idea that tight analyses on duplex constructions should consider
additional models which assume an adversary has access to non-uniform hints about the
distribution of these functions, such as in the bit-fixing and auxiliary-input preprocessing
models.

While models capturing attackers’ capabilities for preprocessing attacks have recently re-
ceived more attention from the literature on block ciphers, only a few recent papers have
attempted to analyze the impact of preprocessing attacks against the sponge paradigm it-
self [CDG18, FGK22], and analyses on duplexes specifically are even more sparse. For this
project, we were inspired by a similar line of work specifically on sponge constructions and
their applications to hash functions, aiming to “bridge the gap” in these analyses by extend-
ing formal analyses of duplex constructions (e.g., for AEAD security) into an appropriate
preprocessing attack model as well.

2 Preliminaries

In this section, we will more formally introduce the necessary primitives and models which
we will be using in this project.

2.1 Sponge Paradigm

First introduced by the Keccak team [BDPV07, BDPV08], constructions in the sponge
paradigm employ a fixed-length, invertible random permutation (or transformation1) f as
an underlying primitive. The inputs and outputs of these permutations are split into two data
streams: an r-bit rate which will process the desired input and output blocks—interleaved
by applications of f—and a c-bit capacity which exists to deter attackers from inverting the
permutation. Sponges are typically defined as having an internal b-bit state, where b = r+ c
and the initial state is σ0 = 0b. While sponges can take on many forms, a common approach
is to update the state σ by XORing and then permuting the internal state with the next
r-bit message block mi. That is, for a given permutation π:

σ
(1)
0

∥∥σ(2)
0 := 0r+c

σ
(1)
i

∥∥σ(2)
i := π

(
(σ

(1)
i−1 ⊕mi)

∥∥σ(2)
i−1

)
.

However, Ascon defines their sponge constructions slightly differently. Most notably, they
permute before XORing to update the internal state. Furthermore, the initial state is defined
as being a fixed IV, key, and random nonce (in essence, operating as a salted and keyed

1For simplicity of analysis, we will only consider permutation-based constructions in this report.
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sponge) instead of 0b. That is:

σ
(1)
0

∥∥σ(2)
0 := IV ∥K∥N (1)

σ
(1)
i

∥∥σ(2)
i := π

(
σ
(1)
i−1

∥∥σ(2)
i−1

)
⊕ (mi∥0c) (2)
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Figure 1: An example of the sponge paradigm as used in the Ascon ciphersuite. Ascon
hashes use the sponge construction (shown above), and Ascon AEAD uses duplex construc-
tions for both encryption and decryption (shown below). Diagrams courtesy of [EDMS].

There are two largely equivalent ways to represent constructions in the sponge paradigm. The
original sponge construction splits data processing into distinct phases, absorbing/injecting
input blocks then squeezing/extracting output blocks from the r-bit rate of the internal
state using XOR. The Keccak authors later generalized this construction into a so-called
duplex sponge construction where these data processing operations can be arbitrarily inter-
leaved [BDPV12a] (i.e., blocks can be absorbed or squeezed in any order). See Figure 1 for
a concrete example of how these constructions differ.

To aid in our analysis, we also use the definitions in [BDPV12a] for common patterns of
representing permutation calls within the sponge. Let a blank call denote a permutation call
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which takes as input the internal stated XORed with a preceding input block of all-zeroes.
That is, for some permutation π and internal state σ ∈ {0, 1}b, we have: σi := π(σi−1⊕0b) =
π(σi−1). Similarly, let a mute call denote a permutation call which has an output bit length
of ℓi = 0: i.e., the call does not expose any bits of the intermediate state as output.

Duplex as cascading sponges. The initial work on duplex constructions [BDPV12a] also
formally proved that one can simulate an arbitrary duplex construction by representing it
as a cascade of sponges. As such, duplex constructions benefit from analysis on sponge con-
structions as well, informally inheriting the same security properties of sponges via reduction.
Informally, the reduction to simulate a duplex with sponges is as follows:

Lemma 1 (Duplex-to-sponge reduction). By the original (Keccak) definition of duplexes,
a duplex which makes n permutation calls can be simulated as a cascade of sponges with only
O(n2) permutation calls and minimal memory overhead.

Proof (Sketch). Let D be a duplex construction with a b-bit state, where b = r + c. Let the
input string be denoted as r-bit blocks with m = m1∥m2∥ . . . ∥ms, where all mi are padded
as necessary to ensure that |mi| = r for all blocks of the input. By the duplexing-sponge
lemma [BDPV12a], the i-th output block of the duplex D.duplexing(mi, ℓi) is equivalent
to the ℓi-bit output of sponge(m0∥m1∥ . . . ∥mi, ℓi). Equivalence of the duplex and sponge
simulation immediately follows by induction on the input blocks mi. Intuitively, we can
represent the output of a duplex construction D by considering a cascade of sponges that
are evaluated on the first i input blocks before returning the resulting r-bit output block.
For n calls to a permutation f in an arbitrary duplex D, simulating the duplex purely with
sponges requires at most

∑n
i=1 i = n(n+ 1)/2 ∈ O(n2) calls to f .

Additionally, this reduction is memory-tight. This is because the first part of the computa-
tion of every sponge in the cascade is identical, so one only needs to keep track of the index
i (i.e., O(log n) memory) to the next output block and count permutation calls as necessary
as additional memory, rewinding back to the initial constant-size state after each sponge has
finished computing.

2.2 Modelling Preprocessing Attacks

Bit-fixing model (BF). Unruh [Unr07] gave a model for analyzing the lower bounds of
security of the random oracle model (ROM) and related models under preprocessing attacks.
In this model, a computationally-unbounded attacker A1 fixes at most P input/output pairs
of the oracle O and outputs an S-bit hint: the remaining inputs are assumed to be uniformly
random. The online attacker A2 takes this S-bit hint and can make at most T queries.

Auxiliary-input model (AI). Starting with Unruh [Unr07] and later expanded upon by
e.g. [CDG18, FGK22], the auxiliary-model relaxes the assumption that A1 fixes P input/out-
put pairs of the oracle, and instead can freely analyze the oracle function in a non-uniform
manner to arrive at an S-bit hint for A2. While this makes it much more difficult to an-
alyze directly compared to e.g. BF, there are easy methods for converting upper-bounds
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on advantages in the (much easier to analyze) BF-ROM/RPM/ICM/GGM models to the
corresponding AI-ROM/RPM/ICM/GGM models.

Transformation. The seminal result ?? describes how to convert concrete analysis in the
Bit-fixing model to the auxiliary input model, which we will explore further later in our
analysis. Concretely, since we are analyzing the authentication and integrity application of
ASCON-AEAD, we looked the unpredictability aspect of the theorem in particular.

Theorem 1 (Bit-fixing to Auxiliary Input [CDG18]). Let P,K,N,M ∈ N, N ≥ 16, and
γ > 0. Moreover, let

(AI, BF) ∈ {(AI− IC(K,N), BF− IC(P,K,N)), (AI− GG(N,M), BF− GG(P,N,M))}.

Then,

1. if an application G is ((S, T, p), ϵ′)-secure in the BF-model, it is ((S, T, p), ϵ)-secure in
the AI-model, where

ϵ ≤ ϵ′ +
12(S + log γ−1) · T comb

G

P
+ 2γ;

2. if an unpredictability application G is ((S, T, p), ϵ′)-secure in the BF-model for

P ≥ 6(S + 2 log γ−1) · T comb
G ,

it is ((S, T, p), ϵ)-secure in the AI-model for

ϵ ≤ 2ϵ′ + 2γ,

where T comb
G is the combined query complexity corresponding to G.

3 ASCON analysis under nonce-reuse

Formalization. The Ascon scheme defined as ASCONπ,IV,K,N(·) uses the sponge as an
ideal permutation π, with key K, initialization vector IV , key K, and the nonce N . We
further denote by σ−1 := σ

(1)
−1||σ

(2)
−1 where |σ(1)

−1| = r where r is the sponge rate, and |σ(2)
−1| = c

where c is the capacity of the sponge. The σ−1 is initialized to IV ||K||N . The initial state
of the sponge is calculated as σ0 := π(σ−1)⊕ 0r||0∗||K.

It’s input consists of messages M := (m1,m2, . . . ,mt) and associated data A := (A1, . . . , As).

The encryption scheme then computes σi := π
((

σ
(1)
i−1 ⊕ Ai−1

)
||σ(2)

i−1

)
for i ∈ [s] where the

associated data is absorbed into the sponge. In the end of the absorb phase, a bit is added
to σs := σs||0∗||1 to indicate the start of the squeezing phase. The squeezing phase then

computes σi := π
((

σ
(1)
i−1 ⊕mi−s

)
||σ(2)

i−1

)
for i ∈ [s + 1, t]. Finally the output cipher text is

σ
(1)
s+1 ⊕m1, . . . , σ

(1)
s+t ⊕mt and the tag T := σs+t+2 ⊕K.
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Figure 2: Ascon encryption scheme ASCONπ,IV,K,N(·)

Figure 3: MonkeyDuplex construction.

Nonce-reuse. MonkeyDuplex [BDPV12b] is a reduced-round variant of Keccak, similar
to Ascon. One key difference with this scheme, however, is that if the associated data
and the nonce are the same for two messages, then an attacker can distinguish between a
random string and the encrypted contents in the unpredictability game. Figure 3 presents
their construction. It is clear that the nonce cannot be reused from their construction since
the σs will be the same, and therefore C1 ⊕ C∗

1 = P1 ⊕ P ∗
1 for two messages P1 and P ∗

1 with
the same associated data. If associated data are added to MonkeyDuplex näıvely, then the
associated data will also behave like the nonce, and security mandates that A1 ̸= A∗

1 for two
authenticated data of any two messages. The modifications in Ascon (in fig. 2), weaken the
nonce-reuse attack requirements. Ascon only requires that the nonce is not re-used, but
allows the authenticated data to be re–used.

6



4 ASCON AEAD preprocessing analysis via duplex-

to-sponge reduction

4.1 Extensions of the duplex definition

One crucial difference between MonkeyDuplex duplexes and other duplex constructions and
analyses in the literature is that different absorb input blocks, permute, and squeeze output
blocks from the state in a different order within each duplexing call. And, while many of these
papers imply or implicitly assume that these different representations of duplex constructions
are effectively equivalent for the purposes of analysis we wanted to try and formalize this
notion.

And so, we first prove that regardless of the order of injecting input and permuting the state,
these duple x constructions are very closely related and, in many cases, admit essentially
equivalent constructions.

Lemma 2. Full-state duplexes, as originally introduced by [BDPV12a], are invariant in the
order of input injection ( absorbing), permutation calls, and output extraction ( squeezing).
Changing the order into a regular form requires either 0 or 2 permutation calls per sponge,
with no effect on the computation itself.

Proof (Sketch). The only operations which affect the internal state of the sponge are input
injection and permutation calls: thus, we need not consider the order of output extraction
for the purposes of this proof.

Repeated input extractions (via XOR, by definition) of arbitrary input blocks m1,m2, . . .
can be represented as a single XOR of m1 ⊕m2 ⊕ . . . (padded as appropriate to a multiple
of b) with the state σ by associativity:

(. . . ((σi ⊕mi,1)⊕mi,2) . . .)⊕mi,j = σi ⊕ (mi,1 ⊕mi,2 ⊕ . . .⊕mi,j)

Furthermore, permutation calls with no preceding input extraction since the previous per-
mutation call can be represented as injecting the all-zeroes block 0b, leaving the state unaf-
fected since σi ⊕ 0b = σi. Furthermore, since the r-bit rate and c-bit capacity of the state
is fixed, we can (up to resp. padding) distribute over XOR and concatenation if the input

mi = m
(1)
i

∥∥m(2)
i is injected into both the rate and capacity channels:(

σ
(1)
i ⊕m

(1)
i

)∥∥(σ(2)
i ⊕m

(2)
i

)
=
(
σ
(1)
i

∥∥σ(2)
i

)
⊕
(
m

(1)
i

∥∥m(2)
i

)
Thus, we can represent arbitrarily repeated logical XORs on the r-bit rate and c-bit capacity
to inject input into the full-state duplex with exactly 1 XOR between each permutation call.

Lastly, it suffices to prove that whether input injection or permutation calls are first (re-
spectively, last), the duplex can be transformed into an equivalent construction in which the
other operation is first (last). If a duplex begins (ends) with a permutation, it can be repre-
sented with an injected input 0b before the first (after the last) permutation. Conversely, if
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a duplex begins (ends) with an input injection, it can be represented with a permutation on
the end by prepending (appending after input) the permutation call π followed by a blank
call to its inverse π−1. By the properties of XOR, permutation inverses, and induction, the
state—and thus all output blocks—remain unaffected at every output block.

Therefore, WLOG an arbitrary duplex which injects inputs via XOR on any part of its b-bit
state (assuming fixed b = r+ c) and calls permutation(s) π in any order can be equivalently
represented as one that alternates between permutation and input injection (or vice versa)
with at most 2 additional permutation calls.

This supports conjectures provided in other duplex analyses (such as [DMA17]) that one can
re-phase the original “XOR-then-permute” definitions of keyed duplexes from the Keccak
authors, extending the definition and scope of existing duplex definitions to other modes of
input extraction and permutation (such as the one used by Ascon).

It directly follows as a special case of Lemma 2, then, that simulating a permute-then-
XOR duplex (Ascon-like) as a standard XOR-then-permute duplex (Keccak-like) is trivial:
simply treat the first permutation call on the initial state as a blank call, XORed with all
zeroes (equivalently, with initial state 0b and first block IV ∥K∥N). As a result, many existing
theoretical analyeses of Keccak-family duplex constructions can transfer nearly directly to
Ascon with no additional overhead.

4.2 Simulating duplexes with sponges

In the remainder of this section, we will analyze the duplex construction used by Ascon for
AEAD encryption. As described in Section 2.1, it is a relatively straightforward process to
simulate a duplex with sponges. In particular, each sponge constructs some i-th block of
output by re-computing the absorbing phase on each sponge and muting all output blocks
except for the desired i-th block. By repeating this process for each block, one can generate
duplexes using separate sponges for each output block, each with their own absorbing and
squeezing phases.
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Figure 4: Ascon AEAD encryption, represented as a cascade of sponges.

Without loss of generality, consider the duplex construction given for Ascon encryption.
Given s blocks of associated data Ak and t blocks of plaintext Pi, a simple combinatorial
argument shows that the original Ascon encryption duplex requires 1 + s + t permutation
calls. It follows by the duplex simulation algorithm, then, that the cascade of sponges
simulating Ascon duplexes requires t2

2
+ st+ 3t

2
+ s+1 ∈ O(t2+ st) permutation calls. Note

that this result is consistent with Lemma 1 for all t, s ≥ 0.

4.3 Applying preprocessing analyses to sponge simulation

Now that we have a way to simulate any duplex with a cascade of sponges, the key insight
for our attempt at analyzing Ascon AEADs with this method is that we can directly apply
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existing results such as [CDG18] to analyze the unpredictability of sponge constructions (in
particular, the bit-fixing to auxiliary-input transformation described in Theorem 1 above).

If we take the random permutation model (RPM) as our point of comparison, we can take the
PRF security of the AEAD cipher using this analysis directly, even for sponge constructions.
Using Appendix C.2 of [CDG18] as our point of reference, we can define the unpredictability
game GPRF−S′ and corresponding challenger CPRF−S′ as follows, this time on a duplex of
multiple simulated sponges:

1. Challenger CPRF−S′ picks a random bit b ← {0, 1} and a key k ← {0, 1}c (chosen as
such since the r-bit rate is known to the adversary through much of the game).

2. When the attacker queries the r-bit blocks of the message m = m1 ·mt

(a) If b = 0, the challenger answers with the output of the sponge on that corresponding
key k and message m.

(b) If b = 1, the challenger answers with a randomly-chosen value for each m.

3. The attacker wins iff they correctly guess b.

As proven in [CDG18], they first analyze in the bit-fixing model, making a distinction be-
tween construction queries (here, to the duplex, the complexity of which remains unchanged
from the original proof) and between primitive queries to the underlying permutation(s) and
their inverses pa, p−a, pb, p−b (for simplicity, consider only a single permutation π, π−1).

Incrementally, adversary A2 can build node and supernode graphs with edges corresponding
to primitive queries, fixing at most P query/answer pairs as edges for π. In the event that
there is a unique path from the supernode containing key k to any other reachable supernode
after the i-th edge is added and this clashes with primitive queries to the permutation oracle.
With all other parameters considered constant (e.g. upper bound on number of queries q,
upper bound on length of queries messages ℓ, space S), we conjecture that the bit-fixing
analysis remains the same with the cascade of similar sponges with the sole exception that
now T is O(ℓ2) in the number of permutation calls (where ℓ is proportion to the maximum
number of blocks in the associated data and message s + t) instead of O(ℓ). Otherwise, we
conjecture that the same analysis holds. That is, the game GPRF−S′ should remain secure in
the same manner for the bit-fixing model, with upper bound:

O

(
(T + qℓ)2 + (T + qℓ)P

2c

)
. Then, applying Theorem 1 as described before, we get the following upper bound in the
auxiliary input model as well, which should also hold with this caveat of the increase of the
number of permutation calls assumed in T :

Õ

(
(T + qℓ)2

2c
+

√
S(T + qℓ)2

2c

)
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5 Related Work

[CDG18] proved tight (but impractical) bounds of Θ(ST 2/2c + T 2/2r) for the advantage of
finding large collisions of length Ω(T ) in the sponge construction, as well as an optimal attack
with Θ(T 2/2c + T 2/2r) for finding short hashing collisions of B = 1 blocks in the Merkle-
Damg̊ard (MD) paradigm. Along with the observation that shorter collisions are harder to
find, these results inspired a very recent paper which used bit-fixing in the AI-RPM model
as well as compression techniques to provide more optimal attacks and advantage bounds
for finding (small) B-block sponge collisions [FGK22]. The authors did not close the gap
between the best attacks and upper bounds on advantage, but suggested sponge compression
techniques to further tighten advantage bounds for B = 1, 2, noting that short collisions such
as these are much more difficult to analyze and produce tight bounds for.

On the other hand, Daemen et al. [DMA17] consider an adaptive multi-user scenario that
demonstrates strong security bounds for duplex constructions such as Ascon AEAD, ac-
counting for adversaries either misusing or respecting nonces. However, no formal analyses
we could find on the security of duplex constructions looked at the impact of preprocessing
attacks or time-space tradeoffs analogous to [FGK22] for Ascon (et al.) sponge hashing. It
is well-known that duplex constructions can be easily simulated by evaluating sponge func-
tions on the same parameters [BDPV12a] though, which motivated the work in this paper
as an easy way to extend analyses of sponge constructions to duplex constructions.

Lastly, Ascon’s AEAD construction is incredibly similar to that of MonkeyDuplex [BDPV12b],
with the primary difference that Ascon uses stronger keyed initialization and finalization
stages to prevent leakage of internal state from revealing the key or winning the unpre-
dictability game. In our work, we wanted to gain some insight into why Ascon fared better
compared to e.g. MonkeyDuplex from the perspective of nonce reuse / misuse.

6 Future Work

The work we presented in this report involved an exploratory analysis into various aspects
of nonce collision and preprocessing attacks on duplex constructions which—to the best of
our knowledge—were not comprehensively explored by the literature, especially in relation
to the Ascon AEAD cryptosystem. With this in mind, there are other approaches which
we had considered for future analysis but did not have time to address:

1. Based on prior work analyzing the the security of Ascon AEAD and other duplex
constructions under more standard assumptions, we considered adapting preprocessing
analyses to duplexes directly—ala [CDG18] with sponges—without the intermediate
step of simulating the duplex with a cascade of sponges.

2. Use a similar technique to analyze the preprocessing security of various other crypto-
graphic primitives and cryptosuites that use duplexes besides Ascon and Keccak, as
they not only work for AEAD but also PRFs, PRNGs, etc. One particular area which we
noticed didn’t receive much attention in the literature are constructions which employ
more general transformations and not just permutations.
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3. One could attempt to produce tighter bounds in the preprocessing security model by
leveraging compression techniques instead of using the bit-fixing and auxiliary input
models. However, we concur with the observations noted by [CDG18] that analyses
using this technique may not transfer as broadly into other schemes which require
additional security assumptions (e.g., discrete-log) and are likely much more difficult.
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Varici, and Ingrid Verbauwhede. Spongent: A lightweight hash function. In
Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS,
pages 312–325. Springer, Heidelberg, September / October 2011.

[CDG18] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds in
the random-permutation, ideal-cipher, and generic-group models. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 693–721. Springer, Heidelberg, August 2018.

12



[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In 30th ACM STOC, pages 209–218. ACM Press,
May 1998.

[CHS19] Jan Czajkowski, Andreas Hülsing, and Christian Schaffner. Quantum indistin-
guishability of random sponges. In Alexandra Boldyreva and Daniele Miccian-
cio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 296–325.
Springer, Heidelberg, August 2019.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
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Ascon specification. https://ascon.iaik.tugraz.at/specification.html.

[FGK22] Cody Freitag, Ashrujit Ghoshal, and Ilan Komargodski. Time-space tradeoffs for
sponge hashing: Attacks and limitations for short collisions. Cryptology ePrint
Archive, Paper 2022/1009, 2022. https://eprint.iacr.org/2022/1009.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, im-
possibility results on reductions, and applications to the random oracle method-
ology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39.
Springer, Heidelberg, February 2004.

[Nai16] Yusuke Naito. Sandwich construction for keyed sponges: Independence between
capacity and online queries. In Sara Foresti and Giuseppe Persiano, editors,
CANS 16, volume 10052 of LNCS, pages 245–261. Springer, Heidelberg, Novem-
ber 2016.

[Saa14] Markku-Juhani O. Saarinen. Beyond modes: Building a secure record pro-
tocol from a cryptographic sponge permutation. In Josh Benaloh, editor, CT-
RSA 2014, volume 8366 of LNCS, pages 270–285. Springer, Heidelberg, February
2014.

[SY15] Yu Sasaki and Kan Yasuda. How to incorporate associated data in sponge-based
authenticated encryption. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048
of LNCS, pages 353–370. Springer, Heidelberg, April 2015.

13



[Unr07] Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, edi-
tor, CRYPTO 2007, volume 4622 of LNCS, pages 205–223. Springer, Heidelberg,
August 2007.

14


