
Grover’s Algorithm

Yinzhen Li1, Varun Vora1, and Jacob White1

Purdue University
{li2850, vora18, white570}@purdue.edu

Abstract. Grover’s algorithm is a relatively simple and well-known quantum unstructured
search algorithm that has an extremely wide variety of applications. In this report, we briefly
introduce the basics of quantum computing and key details for how Grover’s algorithm works.
Then, we use clarifying examples to demonstrate how quantum computers can solve some
problems more efficiently than their classical counterparts, presenting insights, limitations, and
further questions that highlight the importance of Grover’s algorithm across a wide variety of
applications and even entire subfields of research.

1 Introduction

In quantum computing, the quantum unstructured search algorithm refers to finding a unique
input to some black-box oracle function f that produces a particular output with high probability.
A quantum computer can achieve this by using just O(

√
N) evaluations of the black box function,

where N = 2n is the size of the function’s domain and n is the number of bits used to represent its
elements. This algorithm was introduced by Lov Grover in 1996 [Gro96] and is commonly referred to
as Grover’s algorithm. It was also proved that any solution to the problem is required to evaluate
the function at least Ω(

√
N) times[Ben+97], showing that Grover’s algorithm is asymptotically

optimal.

2 Background

The idea behind quantum computing is to take advantage of quantum mechanical phenomena to
perform some computation, applying rules of probability theory and linear algebra to modify the
final state in such a way that it is likely to produce the correct result once measured. The current
understanding of quantum physics allows for the state of a perfectly isolated system to be modelled
by a unit vector of complex numbers.

2.1 Quantum Bits

In classical computers, bits can be in state 0 or 1. In contrast, however, quantum computer’s state
is represented by quantum bits– or qubits– which can simultaneously exist in a superposition of
states. One common way of representing a qubit is by a unit vector of complex numbers. State 0
and State 1 qubits are called the computational basis states.

|0⟩ := [1, 0] |1⟩ := [0, 1]

All other qubits can be represented as a linear combination of these two basis states.

|ψ⟩ = α |0⟩+ β |1⟩

where α and β are the probability amplitudes of the two basis states. When a qubit is measured,
however, it collapses into one of these basis states. The probability that it collapses to the |0⟩ state
is |α|2 and the probability that it collapses to the |1⟩ state is |β|2. Since the qubit is a unit vector,
it also follows that |α|2 + |β|2 = 1 [Aar16].
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2.2 Quantum Gates

Similar to logic gates in classical computing, quantum gates can be arranged to manipulate qubits
to perform quantum computations. These quantum gates are often represented by unitary matrices,
which offer two conceptually different but logically equivalent representations for designing quantum
algorithms. The following figure shows common quantum gates with their name, abbreviation,
circuit form(s) and the corresponding matrix representation.

2.3 Quantum Circuit Model

The quantum logic gates can be arranged to build quantum circuits. Quantum circuits offer one
model for quantum computation, where the horizontal axis is time. Quantum computations can
be modelled by Quantum Turing Machines (QTMs) as well. Though there are many strategies
for modelling quantum computations, they are all mathematically equivalent. The following figure
shows a quantum circuit made up of Hadamard gates with three qubits in the input. Note in
particular that, immediately before measuring the quantum circuit at the end, it can be reversed
to provide the input again. This, along with its equivalent representation as a sequence of unitary
matrices, is a necessary property required by every quantum circuit.

2.4 Notation

The n-dimensional quantum state is defined as a unit vector (aka ”ket”) in the Hilbert space Cn.
Suppose there are N = 2n distinguishable states |1⟩ , |2⟩ , ..., |N⟩. The quantum superposition of
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these states is denoted by |ψ⟩ = α1 |1⟩ + α2 |2⟩ + ... + αN |N⟩, with N states and
∑N

i=1 |αi|2 = 1.

The conjugate transpose (aka ”bra” or Hermitian adjoint) of a state is denoted by ⟨ψ| = |ψ⟩† =[
α1 . . . αN

]
, where αi is the complex conjugate. Given two states |ψ⟩ =

∑N
i=1 αi |i⟩ and |ϕ⟩ =∑N

i=1 βi |i⟩, the inner product (aka ”braket”) is denoted by ⟨ψ|ϕ⟩ =
∑N

i=1 αiβi. The outer product
of the two states (aka ”ketbra”) is denoted by |ψ⟩⟨ϕ|, an N×N matrix with (i, j)-entry αiβj .[Aar16]

3 Grover’s Algorithm

3.1 Search problem

Consider the following search problem. Suppose there is a domain D of size N = 2n, and a function
f . For all but one element in this domain, f(x) = 0. For exactly one element, f(ω) = 1. Now the
task is to find this ω. How many times do we need to call f?

Since we assume the domain is unstructured, we are not allowed to leverage any properties of f or
the problem statement that it encodes– that is, it is a ”black-box” oracle. Classically, the only way
to solvle this is to try every element in the search space by ”brute-force”. The worst case time for
a classical algorithm is N − 1, where we check all but one elements and only the last one checked
is the target. The average time is N

2 , which is not much better. How can we improve on this using
quantum computations?

3.2 Grover’s Algorithm: an intuition

Quite simply, we call f on a superposition of states. Quantum mechanics allows us, in some sense,
to call f for all inputs x simultaneously. Unfortunately, however, this is not quite as simple as
calling f in a single step, as we shall soon see.

Because we don’t yet know which of the elements in the domain have been marked with f(x) = 1,
we begin by considering all candidate states to be equally likely to occur after being measured.
That is, the algorithm begins by forming a uniform superposition of all N states in the domain D.

(Figures cited from Qiskit)

Then, informally speakaing, we call f on this superposition. More formally, we apply a quantum
circuit, the oracle, which implements the function f on this superposition, resulting in a new
superposition:

https://qiskit.org/textbook/ch-algorithms/grover.html
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Here, the phase of the target is flipped, while the phase of all other candidates remain the same.
Intuitively, this is like negating the input x iff f(x) = 1, doing nothing otherwise.

However, note that this is still a uniform superposition, since the amplitude of all candidates are
still equal. Therefore, if we were to measure it now, all candidate states would still be equally likely
to be obtained. While it is not immediately apparent, however, this step is crucial. Next, we use
another quantum circuit g, the diffuser, to obtain yet another superposition:

Informally speaking, what this does is slightly reduce the amplitude of every non-target of f , adding
them to the target of f . This result seems much more promising because, if we measure to measure
the quantum state now, we would have a higher probability of obtaining the target. However, this
is not sufficient, since the probability is still significantly less than 1. However, simply repeating
the process by calling f ◦ g approximately O(

√
N) times will result in significant amplification of

the amplitudes of f ’s targets.
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Finally, we now measure this superposition, giving a very high probability of collapsing to the
correct target state that makes f(x) = 1.

3.3 Grover’s algorithm: formal description

For simplicity, suppose N = 4 and n = 2. Then we have 2 qubits, where the the candidate states
are represented by |00⟩, |01⟩, ..., |11⟩. Let us also assume the target ω = |11⟩.

As noted before, we start with the uniform superposition

|s⟩ = 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)

In this basic example, the quantum circuit for f can trivially be represented by the unitary matrix

Uf :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Note that the position corresponds to the position of the desired target ω. In practice, while we
are able to implement it by quantum circuit, we wouldn’t actually know this position in the matrix
where it is equal to -1. In a real application, this unitary matrix would be much too complicated
to simply observe the the unitary matrix itself to find the target.

After its application, our superposition becomes

|s1⟩ =
1

2
(|00⟩+ |01⟩+ |10⟩ − |11⟩)

As discussed in the Section 3.2, the next step is to apply a general quantum gate g, whose matrix
representation is given by

Ug :=


−1

2
1
2

1
2

1
2

1
2 −1

2
1
2

1
2

1
2

1
2 −1

2
1
2

1
2

1
2

1
2 −1

2


After applying UgUf , our superposition becomes |s2⟩ = |11⟩, which is exactly the target.

As a final remark, note that the diffuser Ug and its oracle Uf are entirely separate; we don’t leverage
the structure of f whatsoever to find the target. Furthermore, wherever the target is, this matrix
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will have same desired effect, namely, giving us the clear state of the target. This is the precise
meaning of ”unstructured”, as highlighted in Section 3.2. It will be very helpful to compare this
with the matrix representation of f , which strongly depends on the position of the target.

This is for the case of N = 4. This case, to be clear, is a very easy example: after one iteration, we
arrive exactly at the target state. For much larger quantum circuits, which work with n qubits and
N = 2n states, it is more efficient to follow this process of using Grover’s algorithms to sequentially
lead the probability of the target being very close to 1, so that if we measure the superposition we
will have very high probability of obtaining the target. In general, we need Θ(

√
N) iterations to

arrive at such a good state. The process is a simple generalization of the example given above so
we omit the details.

3.4 Number of executions

We have outlined how Grover’s algorithm works. However, we have (intentedly) ignored a very
important point so far. It’s difficult to fully address this issue in this 10-page paper, but we find it
necessary to at least point it out here.

Ask yourself the question: why not just finish the whole process in one single step? I mean, we can
define a function h as the

√
N times composition of f ◦ g. This h is a valid quantum gate, and if

we apply it on the uniform superposition at the very beginning, we will immediately arrive at the
final ideal superposition. Why can’t we just do that and claim that we have discovered an exciting
O(1) algorithm?

We can only provide a partial answer here: quantum mechanics allows us to directly call f and g
on a superposition, but it does not allow us to directly call this h. In other words, while it is quite
reasonable to say we can implement f and g in O(1) time, we have to use O(

√
N) to implement

h. To fully understand this, one have to do some research on how we build a quantum circuit to
implement f and g in reality, which we don’t have time to cover here.

4 Applications

Many of the following applications rely on extensions of Grover’s algorithm; see Section 5.1.

4.1 Finding a satisfying assignment for SAT

Recall that Grover’s algorithm is able to search for a satisfying input to f (that is, a marked element
x∗ such that f(x∗) = 1) without relying on the particular structure of the oracle for the problem
or its instances. And so, Grover’s algorithm can easily be leveraged to find a satisfying assignment
for Boolean formulas in SAT and many of its variants. All this requires is to relax the assumption
that there exists a unique input to f , instead allowing for any number of elements to be marked.
Then, Grover’s algorithm almost trivially becomes a decider for SAT (albeit exponential-time).
In particular, if we let x ∈ {0, 1}n represent a particular assignment for n Boolean variables in ϕ
and implement the oracle f as a quantum circuit or unitary matrix representing the statement ϕ,
Grover’s algorithm simply needs to find an x such that f(x) = 1 after at most O(

√
N) queries,

which it does with high probability. By the amplification lemma, this can be repeated as many
times as necessary to lower the error bound further, if desired, before accepting the input ϕ iff it
most often chose assignments x such that f(x) = 1.
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An interesting consequence of Grover’s algorithm providing a quadratic speedup for unstructured
search is that, because SAT is NP -Complete, Grover’s algorithm works for any NP problem where
the search domain contains the problem’s instances. As a result, Grover’s applies very broadly.

4.2 Cryptanalysis on one-way functions

Grover’s algorithm, in essence, can be considered a function inversion algorithm– that is, finding a
pre-image x such that f(x) = 1– and so applies broadly to one-way functions which are otherwise
assumed difficult to invert. While the existence of one-way functions would imply, among other
things, that P ̸= NP [Rud88], conjectured one-way functions are useful in many areas of cryptog-
raphy. From this perspective, the existence of an algorithm (i.e. Grover’s) that can broadly invert
them in at most O(2n/2) time instead of O(2n) is of particular concern to cryptography as a whole.

Due to Grover’s algorithm being able to run in O(
√
N) time, it is commonly accepted in the

folklore of cryptographic literature that an adversary with access to sufficiently powerful quantum
computation can essentially halve the number of bits they need to search through to find a desired
secret value1. This is especially useful for breaking cryptosystems, which often assumes classical
adversaries who can only brute-force search for these values in Ω(N) time2. Even if the cryptosystem
itself would not be broken in other means by advances in quantum computing, then, the number of
bits of security should regardless be at least doubled to ensure the same level of security as assumed
in a classical model. Encryption and hashes are two classic examples that demonstrate its impact.

Recovering private keys. Arguably one of the most popular examples of one-way functions
is in encryption schemes. While we will not go into detail about their many and precise security
definitions and instantiations, at a high level they consist of three algorithms: KeyGen : 1λ 7→ k,
Enck : M → C, and Deck : C → M where λ is the number of bits of security (often, |k| := λ), M is
the message space, C is the ciphertext space. Dec is designed to only return the original message m
if it uses the same key k used to encrypt it, and does so deterministically with Deck(Enck(m)) =
m ∀m ∈ M. However, if the format of the message m is known by or can be influenced by the
adversary3, Grover’s algorithm can recover the key k that decrypts the ciphertext c to a recognizable
message m in O(2λ/2) time without even leveraging any of the mathematical details behind its
design! This time complexity even holds when extending block ciphers implemented with various
encryption modes [CNS17]. If λ is chosen to be particularly small (e.g. 256-bits)– which is especially
common when using elliptic curve cryptography– Grover’s algorithm can thus grant significant
computational power for an adversary to subvert security of cryptosystems2.

Finding pre-images of hashes. Another very common example of one-way functions used in
cryptography are hash functions H : {0, 1}∗ → {0, 1}m which, given any input, produce a ”random-
looking” m-bit output that varies drastically with even minor changes to the input. Because there
could potentially be more than m bits passed as input, however, by the pigeonhole principle some
pairs of inputs (x, x′) must collide, producing the same hash H(x) = H(x′). While hashing algo-
rithms are specifically designed to be resistant against such collisions, quantum algorithms such as
Grover’s have the potential to more quickly find some pre-image x′ that collides. An interesting
caveat here is that the size of the domain here is technically infinite, as it allows for an arbitrary-
length bitstring to be passed as input. If we know the maximum size of the input being hashed,

1 Note that some sources challenge the accuracy of this notion in either direction, arguing that the nature of this
result is much more nuanced that the folklore result seems to suggest; see [Flu17; CNS17].

2 Despite also being exponential-time, even a quadratic speedup for brute-force search can be hugely impactful on
the practical security of a cryptosystem.

3 This is a necessary part of the threat model for any modern and secure encryption scheme, and is by no means an
unreasonable assumption: for example, the HTML format of a webpage, or a protocol-specific query.
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however (e.g. password length, disk sector size, or the length m of another hash) we can reduce
our search space to, say, n ≥ m bits and still be guaranteed to find one such pre-image x′ that
hashes to the same value H(x′) = H(x)4. Grover’s algorithm should find such a pre-image x′ in at
most O(2n/2) time by encoding f to return f(x′) = 1 iff the pre-image results in a collision [Zha18].
As an even tigher upper bound, if we take into account the fact that multi-target quantum search
applies here and also consider potential time and space complexity from implementing the oracle f
to realize a practical implementation of Grover’s algorithm, in practice this gives a time and space
complexity of Õ(22n/5) and Õ(2n/5) respectively (relative to poly(n)) using O(n) qubits [CNS17].

4.3 Machine learning

In the field of machine learning, we often have a dataset of inputs and outputs and the goal is
learn a model function that accurately maps the inputs to the output. Much of the effort goes
into coming up with an algorithm to learn the model. Quantum computing offers many prospects
for learning algorithms, ranging from reduced computation, hyperparameter tuning and improved
generalization performance.

Quantum K-nearest neighbors algorithm. The K-nearest neighbour (KNN) is one of the
simplest algorithms for classifications problems with unsupervised learning. Without the outputs
in the dataset, KNN attempts to classify the data into K clusters by measuring similarity between
data points. However, KNN and its improved variants have require a large amount of computa-
tion and have a high complexity. The quantum KNN algorithm (QKNN) mitigates this problem
using Grover’s algorithm. It uses quantum superposition of states to achieve parallel computing of
similarity using the quantum minimum search algorithm [Dan+18].

Quantum Genetic Algorithms. Genetic algorithms are a class of heuristic algorithms in Ma-
chine Learning inspired by the natural evolution. They are used in search and optimization problems
using biologically-inspired operators such as mutation, crossover and selection. The chromosomes
of an individual are usually represented as a bit-string. The aim of the heuristic is to find the
desired solution by finding the fittest individual. Quantum search algorithms offer an optimization
to this approach. Quantum genetic algorithms can use the qubit representation to encode an entire
generation of individuals as a superposition. Finding the fittest individual from the superposition
can be reduced to a Grover search [UPV06].

5 Discussion

5.1 Related work

Grover’s algorithm is an optimal quantum unstructured search algorithm, requiring at least
⌈
π/4

√
N
⌉
∈

O(
√
N) oracle lookups to have the greatest probability of finding the marked element [Ben+97;

Boy+98; Zal99a]. However, it is only possible to parallelize Grover’s algorithm by splitting the
search space across multiple quantum computers [Zal99a], and so practical improvements to the
core algorithm are highly unlikely.

There are many extensions and generalizations to Grover’s algorithm with greatly expand the range
of applications it has (see Section 4). For example quantum partial search, which finds blocks which
contain a k-bit target, is much more efficient, requiring about O(

√
N/K) queries where K = 2k

[GR05]. Performing a partial search, then, is significantly more efficient then searching for the
entire marked element passed as input into f . Another extension involves utilizing randomness to

4 The pre-image x′ may or may not be equal to the original x that generated the hash.
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construct a Quantum-RP algorithm which can find 1 of t marked elements in f for some unknown
number of elements t, removing the simplifying assumption of the original algorithm that there
must be a unique input x∗ such that f(x∗) = 1. This requires about π/4

√
N/t oracle queries, and

is in fact more efficient than assuming a unique input [Zal99b].

Analysis of Grover’s algorithm has shown that any quantum Turing machine relative to a bounded-
error oracle caannot solve either NP nor NP ∩co−NP in polynomial time [Ben+97]; while Grover’s
algorithm provides quadratic speedup over classical brute-force search, it’s still exponential-time in
the length of the input. This result in quantum computing is somewhat analogous to the theorem of

Baker, Gill, and Solovay [BGS75], who proved that P
?
= NP in the classical world cannot be proven

using relativization techniques with oracles. In a similar way, the optimality of Grover’s algorithm
for any black-box NP oracle implies that relativization can’t be used to show that specifically
BQP = NP . This, alongside the fact that no polynomial-time quantum algorithms are known for
any NP -hard problem, lends credit to the conjecture that quantum computers do not have the
power to efficiently solve NP -hard problems [Ben+97]. It is possible, however, that breakthroughs
in quantum mechanics would allow for relaxations of a quantum-computing models which would
result in BQP containing NP -Complete problems or even beyond [Aar+16].

Not every relaxation of constraints in the quantum computing model would allow for quantum
computers to efficiently solve NP -hard problems, however. For example, even if it were possible to
measure a quantum state without collapsing its superposition, Grover’s algorithm could only be
improved to require anywhere from Ω(N1/4) to Õ(N1/3) queries. While this would make Grover’s
algorithm slightly more efficient, it would still require exponential time relative to an oracle, and
so even a breakthrough such as this would not be sufficient to show that NP ⊆ BQP [Aar+16].

5.2 Future work

While Grover’s algorithm has been proven to be optimal for quantum unstructured search– at least
to the extent of our current understanding of quantum mechanics– it would be interesting to see
whether there exists another quantum algorithm with similar asymptotic performance, but is more
efficient in practice. Such an algorithm could give opportunity for parallelization, smaller constants
and/or number of qubits to implement, etc. The goal should be to remain just as generalizable
as Grover’s algorithm itself in performing black-box search, since other faster quantum algorithms
already exist to solve more specific problems such as breaking the SHA-2 hashing algorithm [Ber09]
or integer factorization [Sho94]. Finding a more parallelizable quantum black-box searching algo-
rithm could be a PhD thesis project, depending on how bold of a practical improvement the authors
would choose to strive for. Due to the complexity of quantum mechanics and especially quantum
complexity as fields, and the sheer depth of existing literature on Grover’s algorithm, many other
open questions in this field would likely require decades of effort to conclusively answer.

Another avenue of research, though, would be to find even more useful applications of Grover’s
algorithm, especially for how one would implement the quantum circuit for f in practice and its
resulting impact on time and space complexity. This could very easily be a PhD thesis project.
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