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1 Introduction

Signal [1] is an end-to-end encrypted (E2EE) and open-source messaging protocol which
aims to preserve the privacy and security of communications without inherently relying
on a trusted third party’s servers to preserve the confidentiality and integrity of commu-
nications data. While Signal Messenger LLC maintains their own open-source messaging
application [2] that itself uses the Signal protocol, many other E2EE messaging applications
have incorporated their own closed-source implementations of the Signal protocol, including
WhatsApp [3], Facebook Messenger [4], Skype [5], and Android Messages [6].

Because the Signal protocol acts as a de-facto standard for many of the secure E2EE messag-
ing applications that are commonly used today, the security of the protocol deserves further
analysis. See Sections 2 and 3 for more details regarding the cryptographic design of the core
Signal protocol. As Signal protocol specifications only provide an informal discussion about
security goals, design, and limitations [1], Section 4 surveys the various analyses and discov-
eries from the existing academic literature regarding the security of and possible extensions
to the protocol, starting with [7]. While the core Signal protocol itself is theoretically proven
to be secure, many implementations trade strong security protections for efficiency, however;
see Sections 4 and 5 for more details for the security of Signal implementations in theory
and in practice, respectively.

2 Preliminaries

2.1 Notation

For any value x, let x represent its byte-encoding with corresponding bit length |x|. Let
a←A denote a uniformly random sampling of some value a from an arbitrary set A. Let p
denote a sufficiently large prime order for a corresponding finite field Zp. For any a ∈ Zp,
let a−1 denote the multiplicative inverse of a when a ̸= 0, and 0 otherwise.

Let an elliptic curve E be described by a set of points P = (x, y) containing coordinates
x, y ∈ Zp. The elliptic curve is equipped with an addition operator over points, with additive

1



inverse −P and identity point I. Furthermore, the elliptic curve is equipped with a scalar
field Zq with prime order q and base point B such that q < p and qB = I. k-times addition
of P is equivalent to scalar multiplication by k ∈ Zq, i.e., P +P + . . .+P = kP as expected.

Hereafter, assume unless otherwise specified that E is a twisted Edwards curve. See [8, 9]
for more details about how twisted Edwards points P can be compressed then encoded into
an equivalent b-bit point defined by a single (b−1)-bit coordinate y and a sign bit s ∈ {0, 1}.
Twisted Edwards curves are birationally equivalent to a corresponding Montgomery curve
with points P ′ = (u, v) and associated function u to y mapping P ′ to P [8, 10].

Let H be a secure cryptographic hash function such as SHA-256 [11]. Unless specified
otherwise, let public-private keypairs be denoted by e.g. (k, k∗), where k is the public key.

2.2 Cryptographic Assumptions

For the discrete logarithm problem to hold in an elliptic curve E, it should have sufficiently
large embedding degree k with k > (q− 1)/100 [12, 13]. The Signal protocol can relax these
requirements somewhat, however, as it uses stronger Diffie-Hellman based assumptions:

Assumption (CDH; Computational Diffie-Hellman). Suppose that an elliptic curve E is
defined over finite field Zp. Given the Montgomery points P, αP, βP , where α, β←Zq are
independently random scalars, it is computationally difficult to compute αβP .

Assumption (DDH; Decisional Diffie-Hellman). Suppose that an elliptic curve E is defined
over finite field Zp. Given the Montgomery points P, αP, βP, P ′, where α, β←Zq are random
scalars and P ′ := αβP , P ′ is computationally indistinguishable from γP where γ←Zq.

Assumption (GDH; Gap Diffie-Hellman). Even provided black-box access to a DDH oracle,
it is computationally difficult to compute αβP when given (αP, βP ).

The strongest cryptographic assumption that the Signal protocol relies on is GDH assump-
tion where, essentially, the DDH problem is easy but the CDH problem is hard. The proof of
security relies on random oracle model (ROM), wherein all KDFs return uniformly-random
outputs [14].

The Signal protocol relies on many more informal security assumptions regarding key com-
promise, however; see Sections 3.1 and 4 for a more detailed analysis of such assumptions.

2.3 Cryptographic Primitives

2.3.1 Elliptic curve

The Signal protocol allows the choice of either Curve25519 or Curve448 to instantiate the
elliptic curve E; however, the Signal protocol must all use the same associated Diffie-Hellman
function (X25519 or X448, respectively) and parameters throughout for every key generated
by the protocol [15]. The twisted Edwards curve equation for Curve25519 is defined as
−x2 + y2 = 1 + dx2y2, with curve constant d and birational map u to y(u) = (u − 1) ·
(u+ 1)−1 mod p. Similarly, the twisted Edwards curve equation for Curve448 is defined as
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x2 + y2 = 1 + dx2y2, with u to y(u) = (1 + u) · (1− u)−1 mod p [8, 10]. See RFC 7748 for
more details regarding the secure instantiation of both of these curves [12].

2.3.2 Hash-to-point

Using a secure cryptographic hashing algorithm H such as SHA-256, it is possible to hash
an integer r into a Montgomery point coordinate u which can, in turn, be converted into a
twisted Edwards point P with y := u to y(u) and the appropriate s bit. Finally, multiplying
P by a cofactor c ∈ Zq ensures that it lies within the correct order-q subgroup [8, 16].

2.3.3 Elliptic-curve digital signatures

As a part of its protocol, Signal defines custom digital signature schemes which are compatible
with EdDSA ([17, 9]) but are non-deterministic and instead rely on X25519 and X448 [8].

At a high level, the XEdDSA digital signature scheme consists of the following algorithms:

XEdDSA.Sign(k,M,Z)→ (R ∥ s) Given a Montgomery private key k, the byte sequence of
message M , and 64 bytes of secure random data Z, outputs a 2b-bit signature where R
is a twisted Edwards point and s ∈ Zq.

XEdDSA.Ver(u,M, (R ∥ s))→ T/F Given the encoded Montgomery public key u, the byte
sequence of messageM , and the signature, outputs whether or not the signature verifies.

The VXEdDSA signature scheme is defined similarly, except also producing a b-bit byte
encoding of verifiable random function (VRF) output v:

VXEdDSA.Sign(k,M,Z)→ (V ∥h ∥ s),v Given the same inputs as in XEdDSA.Sign, outputs
a 3b-bit signature where V is a point and h, s ∈ Zq encodes the VRF output v.

VXEdDSA.Ver(u,M, (V ∥h ∥ s))→ v/F Given the same inputs as in XEdDSA.Ver (but with
a different signature encoding), outputs v if the signature verifies, and F otherwise.

Unlike standard DSA, these variants—which hash the secret and unique random value Z
along with the private key and message into an internal signed value r— prevents collisions
on r and the derived signature (R ∥ s) with high probability, assuming that a cryptographic
hash is employed and Z is unique for each signature. Therefore, these non-deterministic
variants of DSA allow for the private key k and corresponding public key u to be used in
the long-term alongside the unique key Z. See [8] for more details regarding these signature
schemes, including the elliptic-curve conversions and hashing to a point on the curve.

2.3.4 HMAC-based key derivation functions (HKDF) and KDF chains

As described in RFC 5869 [18], given a secure cryptographic hashing algorithm H it is
possible to create a secure keyed HMAC function ([19]) which instead takes a salt value and
key material as input and outputs a pseudorandom key [18].

Using HKDF as a primitive, the Signal protocol defines a KDF chain as a cryptographic
function which, given an initial KDF key and input data, outputs pseudo-random data which

3



is split into the next KDF chain key and a new output key. Each KDF evaluation to generate
a new output key is considered a “ratchet step”. See Section 3.3 for more details.

2.3.5 Elliptic-curve Diffie-Hellman key agreement

As described in RFC 7748 [12], it is possible to use elliptic-curve Diffie-Hellman (ECDH)
functions X25519 and X448 with the Diffie-Hellman protocol to agree on a shared secret
key in the elliptic-curve setting. X25519 and X448 must have the properties specified in
Section 2.2 for the Diffie-Hellman key agreement to remain secure.

2.3.6 Authenticated Encryption with Associated Data (AEAD)

An AEAD scheme is similar to standard authenticated-encryption (AE) schemes, except
that AE schemes provide stronger privacy by both encrypting and authenticating all data;
AEAD schemes contain associated data (AD) which is only authenticated along with the
ciphertext [20]. Signal employs the Encrypt-then-MAC and ciphertext translation/header
methods of instantiating the AEAD primitive [21], both of which are proven secure in [20].

3 The Signal Protocol

We now introduce the Signal protocol for sending end-to-end encrypted messages between
two parties. Due to the complexity of analyzing the many extensions and implementations
of the Signal protocol, in this section we only consider analysis of the core cryptographic
protocol [1].

Without loss of generality, the Signal protocol considers Alice to be the party A initiating
communication, and Bob the (perhaps offline) registered party B receiving her initial mes-
sage. The initiation process is facilitated by a set of Signal servers S which are conceptually
modeled as a single server for simplicity.

3.1 Security Goals and Threat Model

The Signal protocol is designed to remain secure within a fully adversarially-controlled net-
work, where device compromise in the presence of passive adversaries is possible [22]. The
intantiation was also carefully chosen to be amenable to constant-time implementations and
resilient as a whole against side-channel analysis [8, 17]. Furthermore, to protect the privacy
of its users, the X3DH protocol used by Signal offers cryptographic deniability (i.e. repudia-
tion) of messages by default. However, if desired, the protocol can support non-repudiation
as well [15]. Its informal security goals are as follows:

Confidentiality. Confidentiality guarantees that authorized individuals can only view
messages sent between the desired parties. Further, non-intended recipients cannot view the
message; this is primarily accomplished using encryption schemes.
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Origin Integrity. Origin Integrity is a security goal which guarantees that when a user,
Alice, receives a message from another user, Bob, Alice knows this message came from Bob;
this can be accomplished by the use of cryptographic signatures over the party’s keys.

Authenticity. Message Authenticity guarantees that a message between two parties has
not been altered in any way by an unauthorized party; this can be accomplished by using
message authentication codes (MACs) and authenticated encryption.

Forward Secrecy. Forward secrecy is a feature of key agreement protocols indicating
that an adversary who compromises the message keys of a victim cannot decrypt messages
from before a certain time.

Future Secrecy. (aka break-in recovery or post-compromise secrecy) Future secrecy is
a much less common feature of key agreement protocols indicating that an adversary who
compromises the message keys of a victim cannot decrypt messages after a certain time from
the last key compromise.

(Optional) Deniability. (aka repudiation). Message repudiation relies on the encryption
and authentication of message transcripts and the fact that Signal servers do not store
conversation metadata. As a result, any participant can deny that they have sent a particular
message.

3.2 Extended Triple Diffie-Hellman (X3DH) Key Agreement

The Extended Triple Diffie-Hellman (X3DH) key agreement protocol [15] is an extension of
elliptic-curve Diffie-Hellman (ECDH) key agreement which supports mutual authentication,
forward secrecy, and cryptographic deniability over a channel alongside Alice and Bob’s usual
agreement on a shared secret key for bidirectional communication.

Prior to engaging in the protocol, Alice holds keypairs with corresponding public keys
(IKA, EKA), where IK is a long-term identity public key and EKA is an ephemeral pub-
lic key unique to each run of the X3DH protocol. Bob holds keypairs with corresponding
public keys (IKB, SPKB, OPKB), where SPKB is a periodically-refreshed signed prekey

and OPKB =
{
OPK

(j)
B

}
is a set of one-time public prekeys unique to each run of the

X3DH protocol. Bob must first publish his public keys, along with prekey signature σSPK :=
Sign(IKB

∗,SPKB), to server S prior to executing the protocol.

Alice initiates by querying server S for Bob’s prekey bundle (IKB, SPKB, σSPK , OPK
(j)
B ).

The server optionally provides one of Bob’s one-time prekeys OPK
(j)
B and deletes it; if no

remaining one-time prekeys exist, then she receives OPK
(j)
B := nil.

After receiving Bob’s prekey bundle, Alice uses the elliptic curve’s Diffie-Hellman function
as in RFC 7748 [12] and HKDF as in RFC 5869 [18] to calculate the session key SK as in
Figure 1. DH1 and DH2 facilitate mutual authentication via long-term identity keys IK.
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DH1 = DH(IKA, SPKB);
DH2 = DH(EKA, IKB);
DH3 = DH(EKA, SPKB);

if OPK
(j)
B ̸= nil then

DH4 = DH(EKA, OPK
(j)
B );

end
SK = KDF(DH1 ∥DH2 ∥DH3 ∥DH4?);

Figure 1: The X3DH protocol.

DH3 and (optionally) DH4 facilitate forward secrecy via the Bob periodically refreshing the

medium-term signed prekey SPKB and the one-time key OPK
(j)
B , respectively.

Alice then deletes EKA
∗ and the DH outputs, calculates associated dataAD = IKA ∥ IKB ∥ . . .

identifying the parties, then sends Bob the initial message (IKA, EKA, iSPK , j, c) where c is
an AEAD encryption of the first post-X3DH message with respect to AD and keyed by SK.

Once Bob is online, he parses Alice’s initial message and looks up the corresponding private
keys for the public keys that Alice identified. Bob then repeats the same ECDH and AD
calculations as Alice, using the resultant SK to attempt to decrypt the initial message. If

the decryption succeeds, Bob deletes OPK
(j)
B

∗
for forward secrecy and the X3DH protocol

is complete; alternatively, failed decryption indicates that mutual authentication has failed,
in which case Bob should abort and delete SK.

When computing AD, Alice and Bob must somehow compare their identity keys IKA, IKB

and perhaps other identifying information such as usernames or certificates over an authenti-
cated channel to cryptographically ensure mutual authentication; the Signal protocol leaves
PKI out-of-scope. Furthermore, Alice and Bob must use the shared secret key SK in a con-
trolled manner post-X3DH to preserve forward secrecy as well as mitigate the consequences
of protocol replays and key reuse. See [15] and Section 3.3 for more details.

3.3 Double Ratchet Algorithm

The Double Ratchet algorithm [21] uses a shared secret key SK and associated data AD
to establish a session for exchanging encrypted messages while preserving forward secrecy
and minimizing session key reuse. At a high level, the parties use ECDH and multiple KDF
chains to reliably and asynchronously derive new symmetric keys for each message.

Initially, both Alice and Bob both initialize their root chain with the shared secret input
RK0 := SK and with Bob’s initial keypair as (SPKB, SPKB

∗) in the post-X3DH instantia-
tion. The Diffie-Hellman ratchet proceeds as follows, assuming Bob’s view of the protocol by
symmetry. Alice and Bob alternate in generating a new ratchet keypair. When Bob receives
a new public key from Alice in the (plaintext) message header, he uses his old private key
and her sent public key as ECDH inputs to generate a unique input to the root chain. Using
this DH output, he advances the root chain to generate a new root key and initial chain
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key CKR, instantiating a new receiving chain1. Bob immediately proceeds by using his new
private key and her sent public key as ECDH inputs, advancing the root chain again to
generate the next root key RK ′ and initial sending chain key CKS. He will publish his new
public key in the header of the next message sent to Alice, which allows her to instantiate
her own receiving-then-sending chain keys when she executes the next DH ratchet step. This
allows the state of Alice’s initial sending chain key and Bob’s initial receiving chain key to
be identical, and vice versa. After each of Alice and Bob have performed a single DH ratchet
step, the high-level interaction with Bob’s chain key computations are as follows [15]:

Now, consider Alice’s perspective of the protocol by symmetry. Every time Alice receives /
sends a new message with the old ratchet public key still in the header, she then performs
a symmetric ratchet step in the receiving / sending chain, generating a new chain key CK ′

and message key Bi / Aj).

To mitigate lost or out-of-order messages when Alice sends the X3DH initial message and

1Alice excludes this first part of the DH ratchet step when she sends her initial message.
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ensure that the parties’ chains remain synchronized, however, Alice may need to repeatedly
send that same message until she receives Bob’s first response. Thereafter, through careful
state management, this allows Bob’s sending chains to directly correspond with Alice’s re-
ceiving chains at any point in the message transcript, and vice versa. Furthermore, having
message-specific session keys and regularly deleted-then-refreshed ratchet keypairs supports
both forward and future security, ensuring that even after KDF key compromise, keys suffi-
ciently far into both the past and future will still appear random. Thus, an adversary who
compromises a key from the KDF chain is unable to decrypt past or future messages after
the party refreshes that corresponding key. See [21] for more details regarding proper state
management and reference implementation, and Section 4.3 for more details regarding the
security limitations of this algorithm.

3.4 Sesame Protocol

The Sesame algorithm [22] allows for asynchronous and multi-device session management
for message encryption algorithms such as the X3DH-based Double Ratchet algorithm in-
stantiation described in Section 3.3. While not a cryptographic protocol itself, the manner
in which the Signal protocol manages consistent multi-device and multi-party session states
in the midst of asynchrony and device compromise nevertheless warrants discussion.

Sesame can be instantiated such that the identity keypairs (IK, IK∗), can be bound either
per-user or per-device; the Signal implementation defaults to the latter. Regardless, each
device stores a set of UserRecords, indexed by a correspondent’s UserID. Each UserRecordmay
contain associated DeviceRecords, similarly indexed by unique DeviceID. The Signal server S
manages an (unreliable) “mailbox” for each registered device, from which the device can fetch
messages that are pending delivery. Since each session is initiated with particular identity
public keys, messages can only be encrypted and decrypted from within the matching session
context. Therefore, the Sesame protocol must manage how to switch between active and
inactive sessions in a manner that preserves the consistency of the message transcript both
between user devices and between communicating users, even after ad-hoc device registration,
deletion, or desynchronization. At a high level, the Sesame algorithm operates as follows:

Updating Devices.
• If all sessions in a DeviceRecord are deleted or all DeviceRecords in a UserRecord are
deleted, the record that contained them is also deleted.

• A session inserted into a DeviceRecord automatically becomes an active session.

• Activating a session requires moving the previously-active session to the head of
DeviceRecord’s inactive sessions list; this list can delete old sessions if it grows too large.

• Records corresponding to a deleted user or device can be marked as stale, allowing
decryption of delayed messages; while Signal recommends deleting stale records after
exceeding mailbox’s MAXLATENCY, stale records cannot be expected to honor this.

• A device can conditionally update its (UserID,DeviceID, IK) tuple by adding and/or
replacing a new record if it does not exist or the received IK ′ ̸= IK for the associated
user or device. A device does not contain its own DeviceRecord, however.

• Prior to encrypting to (UserID,DeviceID, IK), the relevant records are deleted and up-
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dated. A new and active initiating session is added if no session is currently active.

In the interests of presenting the Sesame algorithm in a more organized manner than in the
Signal specifications, we have decided to reformulate the algorithm itself as pseudocode:

Sending Messages. Send encrypted message to all devices, including sender; see Figure 2.

Input: Plaintext M and recipient UserIDs (including sender)
State: Updates relevant records to current, or no changes on error (⊥)
Output: N/A

foreach uid ∈ UserIDs do
if non-stale ur := UserRecords[uid] then

foreach non-stale (did : dr) ∈ DeviceRecords (∈ ur) with active session s do
Encrypt message C[did] := AEAD Enc(M ;AD) with respect to s;

end

end
Collect all encrypted messages C, keyed by associated DeviceIDs;
Send (uid, C,DeviceIDs) to server S;
/* If active uid and all current DeviceIDs, the server S adds to relevant mailboxes.

Otherwise, S rejects with ⊥, including any necessary updates to be made. */

if S accepts then repeat, iterating to next uid;
else

if Exceeded max # re-attempts for uid then handle ⊥;
if uid does not exist then

Update uid as indicated;
Mark UserRecords[uid] as stale;
Repeat, iterating to next uid;

end
else

foreach outdated did do mark DeviceRecords[did] as stale;
foreach new (did, IK) do

Prepare records for (uid, did, IK) as necessary;
Repeat with current uid;

end

end

end

end

Figure 2: An algorithm for sending encrypted messages to all devices of correspondent users.

Receiving Messages. Receive encrypted message from sender via server S; see Figure 3.
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Input (Mailbox): Encrypted message c and sender’s uid, did from server S
State: Updates relevant records and device session, or no changes on error (⊥)
Output: Decrypted plaintext M or error (⊥)
if c is initial msg ∧ (dr := DeviceRecords[did] = ∅ ∨ no matching session s ∈ dr) then

Extract new IK from header of message c;
Prepare records for (uid, did, IK) as necessary;
Create a new session s ∈ dr using initial message c;

end
Decrypt message M := AEAD Dec(c;AD) with respect to s;
Mark s as active in dr;
return M

Figure 3: An algorithm for fetching received encrypted messages for a user’s device.

The manner by which Signal server(s) S deliver messages via the mailbox to specific devices
is left out-of-scope. If any errors occur in parsing input, updating records, or sending or
receiving messages, the device discards all state changes and the encrypted message it was
processing; state updates are atomic. Furthermore, the user must bound the loop for pro-
cessing updated UserIDs to prevent non-termination, and all lists should be appropriately
bounded by a max number of entries and/or expiration. See [22] for more details regarding
assumptions, design decisions, optional features, and other implementation considerations.

4 Survey of Related Work

4.1 Extensions

zkgroup is a recent extension to Signal which allows for private group chats in which user
permissions are also managed in a completely end-to-end manner. While there exist both
game-based and simulation-based security proof sketches for this extension, there is little
precedent in the academic literature for what security properties a private group messaging
protocol should capture [23, 24]. Furthermore, as Signal servers are often exposed to a
significant amount of metadata about the messages being sent between parties, the Signal
Foundation is implementing a “sealed sender” extension which minimizes metadata retention
further by also hiding the communicating parties [25, 26].

There are many extensions which attempt to improve upon the security of the Signal protocol
however; see the following section for more details.

4.2 Formal Security Analysis

The core Signal protocol (i.e. X3DH + Double Ratchet) has been proven theoretically
secure under the GDH problem and ROM using a game-theoretical model which attempts
to capture the informal design goals of Signal [7, 14]. Others in the academic literature
have leveraged various automation tools as an alternative means of analyzing the security
of Signal implementations, beyond simply the protocol itself [27]. Dion Van Dam [28] also
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wrote a thesis detailing his process for performing both manual and automated analysis of
the Signal implementation using state machines.

A different instantiation of the Signal protocol using generalized Double Ratchet and avoiding
elliptic-curve and Diffie-Hellman based primitives reveals that the core Signal protocol can
extend into the post-quantum setting. Fortunately, this generalization of the protocol does
not even rely on the quantum variant of the random oracle model to remain secure [29].

As stated in the specifications, anyone who wishes to offer non-repudiation instead of denia-
bility can modify the Signal protocol by requiring a third party to verify cryptographic proofs
during the protocol [15]. On the other hand, if deniability is a desirable security property
for a particular application of Signal, the X3DH’s deniability not only formally holds, but
also extends to any message within a Signal communication session.

4.3 Limitations

As the Signal specifications only provide very informal discussions regarding the security
goals for the protocol, it is difficult to formally model and analyze security of the protocol
in a way that captures its intended usage [14, 24]. Formal analyses are most often limited to
the core protocol itself, and do not capture the many extensions that are used by the app in
practice [14]. Furthermore, while the Signal Foundation chose to instantiate the protocol in
a manner that is resilient to constant-time analysis, there exists few analyses in the academic
literature verifying that this is the case [8, 17].

While Signal allows for message repudiation, there is no clear mechanism for preserving
session repudiation built into the protocol. It is likely limited in the sense that it cannot offer
deniability regarding session establishment [30]. It is even conjectured that communication
protocols can only choose 2 of 1) online non-repudiation, 2) weak forward secrecy or 3)
non-interactivity [31], implying that extending Signal must use an online third-party if non-
repudiation were to be included as a feature; the strength of this conjecture, however, remains
unclear.

The majority of the focus regarding Signal’s security goals in the academic literature an-
alyze its resiliency against key compromise. Identity keys are shared between both X3DH
key agreement and signing prekeys, leading to potential risk regarding key reuse (although
practical attack is known) [14]. One primary limitation is that the Signal protocol leaves
verification and authentication of identity keys and medium-term signed prekeys to be out-of-
band [14]. Furthermore, if clients do not keep a cache of ephemeral keys along with identity
keys used by sender, key reuse during the X3DH protocol run is still possible when the op-
tional one-time prekey is not used [27]. Furthermore, Bob’s both long-term identity key and
signed pre-key are compromised (e.g. the device itself is compromised), message authentic-
ity is violated as an attacker is able to forge messages on behalf of Alice [27]. Out-of-order
messages also leads clients to store old message keys until they arrive, and cannot be deleted.
Elongating the lifetime of session-relevant keys in this manner inhibits forward security[21,
14]. These limitations as well as certain countermeasures have since been acknowledged in
the Signal specifications [15].

The Signal protocol specification’s choice of parameters, in alignment with RFC 7748 [12],
do not closely match the models from which it has been proven secure. The likely moti-
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vation for this decision is to improve efficiency of the protocol for mobile devices, and thus
remain usable to general users [12, 14]. This choice of parameters and other implementation
decisions may result in many Signal implementations having notably weaker future secrecy
guarantees against active adversaries; in the event that a user’s full state and keys are com-
promised and cloned for impersonation, for example, clone detection is difficult and varies
by implementation [32].

5 Novel Analyses of Signal Implementation

In this section, we provide our own comparisons of the core Signal protocol with other similar
E2EE messaging protocols, guided by the protocol limitations discussed in Section 4.3.

5.1 Comparison with WhatsApp

The E2EE protocol implementation used by WhatsApp is essentially a fork of the Signal
protocol [3] as described in Section 3. However, there are notable differences to the imple-
mentation of the protocol used by Signal Messenger.

As a consequence of Signal’s Sesame algorithm and how it handles the sending and receiving
of messages to devices, a user who registers a new device under the same user ID will be
unable to see prior messages sent by other devices, only syncing up message keys following
the device’s registration. By contrast, WhatsApp deviates from Signal’s Sesame algorithm
by offering more user reliability, instead regenerating all prior session keys after it detects a
newly-registered device then re-encrypting all old messages using these new keys. This poses
a significant security risk however; if the adversary falsely registers a compromised device
under a victim user ID, they can compromise all prior keys and catastrophically violate
forward secrecy. One possible attack vector which exploits this vulnerability could involve
compromising the out-of-band backup keys2 to obtain the full state of the victim device’s
sessions [33]. See Figure 4 for a visual demonstration of how this attack can occur.

Signal Messenger avoids this by only allowing new devices under the same user to sync
on future messages, and so cloning a compromised device does not inherently compromise
forward secrecy as WhatsApp does.

An adversary who obtains state from backups can violate future secrecy in this manner as
well [33]. Another attack vector impacting future secrecy that applies to both WhatsApp
and Signal Messenger implementations, however, involves de-synchronization issues in the
underlying Double Ratchet algorithm. If the protocol cannot re-sync session states between
multiple devices quickly enough, the messaging apps– and, in turn, the victims– may not
notice that an adversary is using a compromised key to send and receive messages on behalf
of the victim, acting in essence as a cloned device. Furthermore, they can even leverage
this to impersonate as the other party in the communication session [32]. While the Sesame
algorithm (or other session management protocols) are able to partially mitigate these issues
through the regular deletion of keys, this exploit has been demonstrated in practice on
multiple messaging applications which have implemented the Signal protocol [32].

2Some implementations of Signal store session backups in plaintext, including key material...
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Figure 4: WhatsApp’s lack of forward secrecy in the event of malicious device registration.

5.2 Comparison with MTProto

MTProto is a set of cryptographic protocols created by Telegram which are designed for
implementing fast, scalable, and secure message exchange without relying on the security
of an underlying transport protocol. Telegram uses these protocols to create shared keys
between clients and servers and session keys between two clients for end-to-end encryption
in secret chats, allow rekeying of secret chats, encrypt each message [34]. MTProto provides
two different encryption protocols for cloud chats and secret chats. As of December 2017,
Telegram began to phase out the MTProto 1.0 in favor of MTProto 2.0, bringing important
changes such as using SHA-256 instead of SHA-1, and using 12..1024 padding bytes instead
of 0..15 bytes [35].

As our interest is in the comparison of end-to-end encryption, in this section we will refer to
MTProto as MTProto’s secret chats, if not explicitly specified otherwise.

Cryptographic Primitives Both Signal and MTProto use 256-bit AES encryption3

with SHA-256. Signal uses one of two elliptic curves to implement X3DH: curve X25519 or
curve X448, while MTProto instead uses a 2048-bit RSA key for DH.

Forward Secrecy Signal renews the keys used for message encryption after Alice receives
a message from Bob. In contrast, ‘official Telegram clients’ using MTProto will initiate re-
keying once a key has been used to decrypt and encrypt more than 100 messages, or has
been in use for more than one week provided the key has been used to encrypt at least
one message [36]. In Signal, compromising the current key will only compromise a set of

3libsignal uses CBC encryption mode, while MTProto’s encryption mode is unspecified [26]...
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messages until the next message from the other party arrives, perhaps even none. In Telegram
(MTProto), however, up to 100 messages can be recovered using a compromised key.

Asynchronous Communication To cope with the situations when users are not online
at the same time, two different approaches have been developed: Signal Protocol uses a
Key Distribution Server solution where servers are intermediaries who only store and relay
information to let the communication be feasible and secure between the parties providing
End-to-End Encryption. The encrypted messages are deleted once the device fetches it
from the server. MTProto, however, relies on cloud functionality for its servers to function,
where servers also compute encryptions and decryptions, storing and forwarding data to the
interested users. The two different methods bring to light one of the main differences between
these applications, i.e. the fact that in Telegram it is possible to access all conversations from
different devices with the same account and expose the data via cloud storage. Since Signal
stores all session data locally for each unique client, however, these potential features (or,
from a privacy perspective, potential vulnerabilities) are not possible in Signal Messenger.

6 Conclusion

We compared and found implementation differences in the protocol specifications and be-
tween industry messaging applications like WhatsApp and Signal Messenger. We found a
simple attack in which an adversary can steal user’s identification just by getting OTP to
register as user and then violate the privacy of the user by seeing all the group chats and
members associated with that group chat. We also performed a comparison between Signal
protocol and Telegram’s MTProto protocol to show how both differ in terms of cryptography,
implementation and security goals for the users.

While formally evaluating Signal against its informal design goals is outside the scope of this
report, we believe both through our own analysis and through consensus of the academic
literature that the implementation of the Signal protocol in Signal Messenger is mostly
secure. However, its resilience against key compromise, while impressive in its own right, is
not as foolproof as the specifications seem to imply. In either case, any implementation of
the Signal protocol must carefully follow the provided specifications, and must take great
care if the protocol must be modified in the interests of efficiency or usability.

Future work involves further analysis of extensions of the protocol, as well as more practical
demonstrations of attacks in concrete implementations.
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