
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Hard-label Black-box
Universal Adversarial Patch Attack

Guanhong Tao, Shengwei An, Siyuan Cheng, Guangyu Shen,
and Xiangyu Zhang, Purdue University

https://www.usenix.org/conference/usenixsecurity23/presentation/tao

Hard-label Black-box Universal Adversarial Patch Attack

Guanhong Tao, Shengwei An, Siyuan Cheng, Guangyu Shen, Xiangyu Zhang

Purdue University

Abstract
Deep learning models are widely used in many applications.
Despite their impressive performance, the security aspect of
these models has raised serious concerns. Universal adver-
sarial patch attack is one of the security problems in deep
learning, where an attacker can generate a patch trigger on
pre-trained models using gradient information. Whenever the
trigger is pasted on an input, the model will misclassify it
to a target label. Existing attacks are realized with access to
the model’s gradient or its output confidence. In this paper,
we propose a novel attack method HARDBEAT that generates
universal adversarial patches with access only to the predicted
label. It utilizes historical data points during the search for an
optimal patch trigger and performs focused/directed search
through a novel importance-aware gradient approximation to
explore the neighborhood of the current trigger. The evalua-
tion is conducted on four popular image datasets with eight
models and two online commercial services. The experimen-
tal results show HARDBEAT is significantly more effective
than eight baseline attacks, having more than twice high-ASR
(attack success rate) patch triggers (>90%) on local models
and 17.5% higher ASR on online services. Three existing ad-
vanced defense techniques fail to defend against HARDBEAT.

1 Introduction

Deep learning (DL) has become an integral part of many
critical systems, such as face recognition [47], autonomous
driving [9, 10], and drug discovery [12]. For example, Tesla
vehicles [33] fully rely on DL-based computer vision models
to recognize traffic signs, road conditions, etc., without the
assistance of LiDAR [10]. DL models are also widely used
in security applications, such as malware detection [66],
forensics [23, 58], binary reverse-engineering [48, 65], etc.
Recent ChatGPT [44] demonstrates great potential in serving
a wide range of applications.

While the success of deep learning is astonishing, the secu-
rity concerns of those models haven’t eased off. They are sus-
ceptible to universal adversarial patch attacks [4,8,20,32,64],

where an attacker generates a patch trigger on a pre-trained
model. The model will misclassify any input inserted with the
trigger to a target label. Universal adversarial patches have a
prompt attack effect as the attacker only needs to stamp the
generated patch (e.g., a sticker) on unseen inputs, which dif-
fers from traditional adversarial attacks that require generating
perturbations for each input [11,40]. Existing attacks [4,8,32]
assume white-box access to the model, allowing them to com-
pute the gradient from the model output (e.g., the prediction
confidence) to the patch trigger for optimization. Later stud-
ies [20, 64] show that it is viable to craft universal adversarial
patches even if the attacker cannot access the model weight
parameters but only knows the output confidence/probability,
which is called soft-label or score-based attacks.

A natural question one would ask is “can we craft universal

adversarial patches without access to the model internals and

the output confidence?” More specifically, if the attacker can
only query the model and obtain the predicted label for each
query, is it feasible to construct a patch that can cause mis-
classification for a large set of unseen samples? This would
be a severe security problem for DL models if such an attack
is realizable. We aim to answer the question in this paper.

There is a line of work studying hard-label black-box adver-
sarial attacks. These attacks focus on generating per-instance
perturbations with access only to the predicted label. For
example, HSJA [13] and QEBA [36] leverage gradient esti-
mation to generate adversarial examples. They start from a
target-class image and gradually reduce the adversarial ex-
ample’s distance to the victim image (by adding adversarial
perturbations). The final adversarial example is visually simi-
lar to the victim image while being misclassified to the target
label. GRAPHITE [25] and SparseEvo [57] aim to perturb a
small number of pixels on the victim image such that it can be
misclassified in a black-box setting. They search for critical
adversarial pixels using a binary search or an evolutionary al-
gorithm. These hard-label black-box adversarial attacks share
many similarities with black-box universal adversarial patch
attacks, such as the access only to the predicted label and
causing misclassification to the target label. Hence, they can

USENIX Association 32nd USENIX Security Symposium 697

be extended to construct patch triggers.
The essence of existing black-box adversarial attacks is

similar to that of the Metropolis-adjusted Langevin Algo-

rithm (MALA) [5], a Markov chain Monte Carlo (MCMC)
method [27]. It constructs a Markov chain to approximate
(high-dimensional) probability distributions. Specifically, it
starts from a random point and chooses a candidate from the
neighborhood of the current sample by adding a perturbation
drawn from a distribution (e.g., a 0-mean Gaussian distri-
bution). With a probability, the candidate is accepted as the
current sample if it is more valuable; or discarded otherwise.
MALA leverages gradients when perturbing the sample. As
gradients are inaccessible in the black-box attack setting, ex-
isting attacks estimate the gradient information by randomly
sampling perturbations in a 0-mean Gaussian distribution and
measuring which perturbation could cause misclassification.

MCMC methods, however, are known to require exten-
sive initial steps in order to achieve good performance. The
Markov property of MCMC methods implies that they are
state-less, where a new sample is only dependent on the cur-
rent sample. In other words, they do not leverage historical
information. Although this is less of a problem in traditional
MCMC applications, which often have a very large sampling
budget, it is not ideal for black-box universal adversarial patch
attacks that have a limited sampling budget. Another design
proposal is to leverage stateful search algorithms such as the
Genetic Algorithm (GA) [3]. GA maintains a pool of past sam-
ples and continuously updates these samples using cross-over

and mutation operations as an evolution process. It thus takes
advantage of historical samples. However, its performance
in black-box attacks is still limited (see Section 6.2). This
is because each evolution step requires a large number of
queries to derive new samples, although many new samples
are not sufficiently good and are therefore excluded.

We propose to take advantage of both MCMC and GA
methods. Given the limited query budget, instead of discard-
ing previous query results, we utilize historical samples, simi-
lar to GA methods. Our method hence is stateful. Moreover,
we also perform focused/directed gradient-direction search
as in MALA, which helps avoid less effective evolution steps
in GA that produce low-quality offsprings. In addition to
searching in the neighborhood of the current sample, with a
probability, we also explore the neighborhood of certain pre-
vious local minima. That is, we identify and record past good
samples, and linearly interpolate between two local minima.
Since two minima are often connected by a ridge, we call it
ridge interpolation.

The novelty of this paper lies in leveraging historical
high-ASR (attack success rate) data points and interpolat-
ing local minima, which have not been studied in existing
attacks [13, 20, 25, 30, 51, 57, 64]. Our gradient estimation is
specially designed for misclassifying multiple samples, which
has rarely been explored in hard-label black-box adversarial
attacks targeting individual inputs. Our importance-aware es-

timation adaptively adjusts weights on gradient directions for
different samples, which is novel and effective, and can be
generalized to other universal hard-label black-box attacks.

Our contributions are summarized as follows.
• We identify the limitations of existing hard-label black-

box attacks and propose a new method that possesses the
advantages of both MCMC and GA types of methods.

• We propose to explore the neighborhood of previous
high-ASR samples by interpolating between two close-
by local minima.

• We introduce an importance-aware gradient-direction es-
timation method that better approximates the directions
from diverse model inputs.

• We implement an attack prototype called HARDBEAT
(Hard-label black-box universal adversarial patch
attack), which is publicly available at [1]. We evaluate
the attack performance of HARDBEAT on four popular
image datasets, with two models for each dataset. Com-
pared to eight baseline black-box attacks, HARDBEAT
generates more than twice as many patch triggers with a
high ASR (>90%) using the same query budget. We also
apply HARDBEAT to two online commercial services,
Microsoft Azure [41] and Clarifai [18]. It achieves an av-
erage ASR of 74%, outperforming the baseline by 17.5%.
Regarding possible countermeasures against HARD-
BEAT, we employ a state-of-the-art certifiable defense,
a query-based defense, and a universal adversarial patch
detection approach. The results show existing defense
techniques can hardly defend against HARDBEAT.

2 Related Work on Black-box Attacks

Existing black-box adversarial attacks can be categorized into
substitute model based attacks and query-based attacks.
Substitute Model Based Attacks. This type of attacks aims
to build a substitute model to conduct the attack. It either
assumes access to the training data of the victim model or
uses synthetic data to query the model for labeling. With
the labeled data, the attacker can train a substitute model
to approximate the victim model. The adversarial examples
are generated on the substitute model and transferred to
the victim model [22, 26, 28, 39, 45, 46]. Many works focus
on improving the transferability of generated adversarial
examples such that they can have a high misclassification
rate on the victim model [21, 31, 38, 60, 62].
Query-based Attacks. Different from substitute model
based attacks, query-based attacks directly optimize
adversarial examples by iteratively querying the victim
model [2, 6, 15, 42, 56]. Specifically, they usually start from
a target-class image and aim to reduce its distance to the
victim image by adding adversarial perturbations. The goal
is to have an adversarial example visually similar to the

698 32nd USENIX Security Symposium USENIX Association

victim image while being misclassified to the target label.
This is achieved by adding random noises on the input
and iteratively querying the victim model to approximate
the direction for perturbing the input. This type of attacks
can achieve performance comparable to white-box attacks.
Based on the knowledge of the attacker, query-based attacks
can be further divided into two categories: soft-label (or
score-based) attacks [14, 16, 20, 29, 30, 30, 42] and hard-label

(or decision-based) attacks [7, 13, 36, 63]. Soft-label attacks
have access to the output confidence from the victim model,
while hard-label attacks can only obtain the predicted label.

In this paper, we study hard-label black-box attack. Bound-
ary attack [7] uses random noises to perturb a target-class
image and gradually reduces the noise magnitude to make it
closer to the victim image. HSJA [13] leverages gradient ap-
proximation to estimate the direction for perturbing the input
at each step. QEBA [36] improves HSJA by estimating a core
subset of the gradient direction. Policy-Driven [63] proposes a
policy network to learn the best optimization direction at each
step. GRAPHITE [25] and SparseEvo [57] are L

0 based at-
tacks. They aim to have a small number of perturbed pixels for
generating adversarial examples. GRAPHITE uses a binary
search to reduce the number while SparseEvo leverages an
evolutionary algorithm. As we focus on hard-label black-box
universal adversarial patch attacks, we adapt several represen-
tative black-box adversarial attacks as our baselines.

3 Threat Model

We describe the attacker’s goal, knowledge, and capabilities
in this section.

Attacker’s Goal. The attacker aims to find universal adver-
sarial patches in a pre-trained clean image classifier such that
pasting the patch trigger on any input samples can cause the
classifier to predict the attacker-chosen target label. The trig-
ger shall have a prompt effect, meaning once crafted, it can be
directly applied on any new image (without modification) and
cause target-class misclassification. This requires the patch
trigger to be persistent and robust when deployed on unseen
inputs. The attack success rate to the target label shall be
>1/C, where C is the number of classes in the classifier. Since
the trigger is stamped on input images, it shall not signifi-
cantly affect the visibility of the original input. Otherwise, it
will raise suspicion and be easily detected by human inspec-
tors or automatic tools. The goal is to craft a small universal
adversarial patch that occupies <5% of the input image.

Attacker’s Knowledge and Capabilities. We consider the
hard-label black-box attack setting. The attacker has no knowl-
edge of the victim classifier, including its weight parameters,
hyper-parameters, the training procedure, the original training
data, etc. This means the attacker cannot observe the behavior
of the model or its gradient. The attacker also does not have
access to the confidence of predicted labels or their rankings.

The only feedback that the attacker can obtain from the victim
classifier is the predicted label of a given input image.

We assume the attacker has a small set of images (100
samples) for crafting universal adversarial patches. He/she
can query the victim model to obtain the predicted label.
The attacker can repeatedly query the model. In practice, the
attacker has constraints on computational resources. Online
services also prevent excessive model queries. We consider a
budget for the number of queries 50k to carry out the attack,
following the literature [13, 15, 20].

4 Attack Intuition

The attack goal is to find a universal adversarial patch such
that pasting it on any samples from a class causes misclassifi-
cation to a target label. This can be seen as an optimization
problem, where the changing variable is the patch trigger and
the objective is to have target-class predictions for a set of
input samples (inserted with the trigger).

argmax
mmm,ppp

Exxx⇠X
h

f
�
(1�mmm)� xxx+mmm� ppp

�
= yt

i
, (1)

where mmm and ppp are trigger variables, with mmm denoting the lo-
cation of the trigger and ppp representing the trigger pattern; f

is the subject model; xxx is an input sample from a set X and yt

is the target label. Figure 1a illustrates the optimization objec-
tive. It displays the landscape of the objective loss with the x-y
plane denoting input features and z the loss value on the target
label. Note that the figure illustrates the average loss for a set
of samples, as a valid universal adversarial patch ought to be
able to flip a large set of samples. A small loss value denotes
that many samples are misclassified by the subject model to
the target label. Observe that there are multiple plummets on
the loss surface, representing local minima. The goal is to
reach the optimal (lowest) point in the middle red plummet,
leading to the maximum number of misclassified samples.

Assuming a white-box scenario where the model parame-
ters are known, a typical approach is to construct a loss func-
tion (e.g., cross-entropy loss) to describe the objective in Fig-
ure 1a. The attack can hence leverage the fine-grained loss
change and the gradient information from back-propagation
(by computing the gradient of the loss function w.r.t. the input
in Equation 1) to find the optimal patch trigger. It is often
able to avoid getting stuck in the local minima by adjusting
the learning rate or with the assistance of advanced optimiza-
tion algorithms. In Figure 1a, from the initial A, the gradient
points to B as it leads to a smaller loss value. Since there is
a local minimum near B, it wanders a bit in the region. Then
it escapes the local minimum with learning rate variations
(see the longer arrow from C to D) and eventually finds the
optimal point denoted by the red star.

The problem, however, becomes much harder in the black-
box setting, especially with only access to the predicted label.

USENIX Association 32nd USENIX Security Symposium 699

A
BCD

Z

X
Y

(a) White-box

AB
CD

E
F

Z

X
Y

(b) HSJA [13]

A

C

D
B

F
E

(c)

AB

C

D

E

Z

X
Y

F

(d) HARDBEAT

Figure 1: Illustration of the loss landscape of different attack methods. The x-y plane denotes input features and z the loss value
on the target label. The top figure of (c) is the zoomed-in view of (b) and the bottom figure is the zoomed-in view of (d).

This is also known as the hard-label or decision-based black-

box attack. The knowledge of the adversary is particularly
limited. He/she can only query the subject model by providing
an input and then obtain a predicted label. In other words, the
attacker can only observe the number of misclassified samples.
Each region with the same color in the 2-dimensional surface
on the bottom of Figure 1b denotes the same number of
misclassified samples. In other words, the attacker can only
determine the region into which a data point (i.e., a potential
patch trigger) falls, without knowing its gradient.

Searching for a good universal adversarial patch in such a
setting is hence challenging. Existing attacks [13,36]1 approx-
imate the direction to change the patch trigger by sampling
a set of random points (around the current data point). The
points that lead to more misclassifications are considered pos-
itive directions and otherwise negative directions. Figure 1c
(the top figure) illustrates this concept. For the trigger at A,
four random perturbations, denoted by the four black arrows,
are individually added onto the trigger. The perturbed trig-
ger is applied to the set of input samples, and the number of
misclassifications is measured. Observe the arrows point in
different directions. The dashed arrow indicates that the addi-
tive noise cannot cause more misclassifications (as it remains
in the same blue region), so its opposite direction on the top
is used. Three out of the four noises are able to increase the
number of misclassified samples. The four arrows are then
aggregated to form the red arrow, which represents the final
direction for mutating the trigger at A. Note that the negative
direction for the dashed arrow is necessary, as many times
all the additive noises are unable to cause more misclassifi-
cations. In such cases, the negative directions indicate those
that the trigger mutation should avoid.

However, it is not easy to determine the magnitude of the
added noise. Unlike adversarial perturbations in which per-
pixel changes are commonly bounded by L

2 or L
•, there are

no such constraints on pixels within the trigger area. A large
value of random noise causes the search to overshoot poten-

1To our knowledge, hard-label black-box universal adversarial patch at-
tack has not yet been explored in the literature. We adapt existing hard-label
black-box adversarial attacks to this new setting as they share a lot of simi-
larities.

tial optimal regions, and a small value can hardly change the
model prediction. For example in Figure 1b, the attack starts
from A (the black triangle) and continues along the path de-
noted by the letters in alphabetical order. At each point (e.g.,
A), the direction of the arrow is estimated through random
noises, as described above and illustrated in Figure 1c. Ob-
serve that the attack misses the regions along the path from C

to D and from D to E. The optimal region lies between D and
E, which is not reached by the attack. Finally, it ends up at a
local minimum denoted by a red star besides F . One possible
proposal is to try dynamically adjusting the magnitude of
added noises during the search. For instance, one can increase
or decrease the noise magnitude when the number of misclas-
sified samples does not change. However, the randomness
in the increment or decrement may hinder any real improve-
ment. Having a substantial number of random samples for
direction estimation could improve the attack but entail too
many queries to the subject model, which is a critical metric
for black-box attacks.

Our Idea. As discussed in the introduction, existing black-
box attacks follow a procedure similar to the Metropolis-

adjusted Langevin Algorithm (MALA) [5], a MCMC
method [27]. However, it is well-known that MCMC methods
require expensive burn-ins, namely, the initial steps of ran-
dom walks in order to achieve good results, especially in high-
dimensional spaces. Constrained by the number of queries to
the subject model, performing large burn-ins is prohibitively
expensive in our context. An alternative is to perform stateful
exploration of the space, which involves choosing the next
sample based on all (or a subset) of previous samples, such as
the Genetic Algorithm (GA) [3]. GA has been used in black-
box attacks [57]. However, based on our experiments in Sec-
tion 6.2, its performance is also limited. The reason is that
each evolution step in GA requires a large number of queries
to derive new samples, but many of these new samples are
not discarded. As a result, the query budget quickly runs out.

The overarching idea of our technique is hence to leverage
the advantages of both MCMC and GA methods. That is,
we utilize historical samples so that every query result can
be fully leveraged given the limited query budget. We also

700 32nd USENIX Security Symposium USENIX Association

perform focused/directed search to avoid the cost-ineffective
evolution steps in GA that generate many low-quality off-
springs. In addition, with a probability, HARDBEAT also ex-
plores the neighborhood of some previous local minima by
linear interpolation between two of them.

Figure 1d illustrates how HARDBEAT works for the
example. Starting from A, it gets to B and then C, following
the approximated gradient directions. Due to the uncertainty
in gradient approximation, instead of finding the global
minimum, it goes to D. HARDBEAT identifies that C and D

denote two close-by local minima and speculates the area
in between may be worth exploring. It hence samples an
interpolated point E in between, that is, walking the ridge
between C and D (see the bottom part of Figure 1c). The
gradient approximation from E easily points to F , the global
minimum. Note that when it reaches D, with a probability,
HARDBEAT does not continue from D. Instead, it picks
a historical point or an interpolated point, E in this case.
Moreover, the interpolation between close-by minima allows
exploring the hot area around E and F .

5 Attack Design

Our idea of black-box universal adversarial patch attack is to
utilize historical samples such that previous query results can
be fully leveraged given the limited query budget. We also
perform focused/directed search through gradient approxima-
tion to explore the neighborhood of the current sample. The
overall attack procedure consists of the following three steps.

• Step 1: Given a set of inputs and a target label, we ini-
tialize the location and the pattern of the patch trigger
through random sampling, based on the attack success
rate (ASR) to the target label on the input set. We then
fix the trigger location and aim to find a better trigger
pattern with a higher ASR. This substantially reduces
the search space.

• Step 2: We select a data point for further exploration.
With probabilities, the selection could be one of the
three: (1) the current data point if its ASR exceeds a
certain threshold; (2) a historical data point with a top-k
ASR; (3) an interpolated data point between a historical
top-k data point and its neighbor with a high ASR (a
ridge point).

• Step 3: Gradients are approximated by sampling
perturbations from a normalized uniform distribution.
The perturbations are then applied to the data point
selected at step 2. We leverage the importance of
different inputs during gradient estimation. Gradient
directions from samples that can increase ASR are
enlarged, while other directions are reduced. The next
data point is hence derived by mutating the selected
point using the aggregated gradient direction.

Algorithm 1 Universal Adversarial Patch Trigger Generation
1: function TRIGGERGEN(decision function f , input xxx, target label yt ,

trigger size s)
2: DDD,w TRIGGERINIT(f , xxx, yt , s) . Algorithm 2
3: histDDD,histw add DDD,w . Record historical pattern and ASR
4: Initialize a similarity matrix GGG . Record pairwise pattern similarities
5: for step in 0 ...max_steps do
6: /*** Pick a trigger ***/
7: [w]topk, [DDD]topk TopK(histw,histDDD)
8: DDDtop, idx Select from [DDD]topk with the probability [w]topk

9: P min(1,histw[idx]/histw[step])
10: u Draw a uniform random variable from U(0,1)
11: if u P then
12: DDD DDDtop

13: /*** Ridge interpolation ***/
14: if u 0.5 then
15: DDDneighbor Select a neighbor of DDD based on GGG and ASR
16: a Draw a uniform random variable from U(0,1)
17: DDD = a ·DDD+(1�a) ·DDDneighbor

18: end if
19: end if
20: /*** Gradient-direction estimation ***/
21: ddd GRADESTIMATE(f , xxx, yt , DDD) . Algorithm 3
22: DDD = Optimizer(DDD,ddd)
23: Evaluate ASR and update histw, histDDD, GGG

24: end for
25: return DDD
26: end function

Algorithm 1 describes our overall universal adversarial
patch trigger generation method. We first initialize the trigger
using Algorithm 2, which will be discussed in the next
section. At each generation step, HARDBEAT gathers the
top-k triggers with the highest ASR (line 7). We use k = 4
in the paper and study other choices in Appendix D. A top
trigger is then randomly selected from this set based on their
probabilities, which are their ASRs (line 8). HARDBEAT
compares the ASR of the top trigger to that of the current-step
trigger (line 9). It then draws a uniform random variable u

from U(0,1) (line 10). If u is no larger than the probability,
we choose the top trigger (lines 11-12). With the selected
trigger, HARDBEAT further picks one of its neighbors and
then interpolates between the two (lines 15-17). We then
estimate the direction for perturbing the trigger and leverage
an optimizer to update it (lines 21-22). Adam optimizer [34]
is used in this paper. Other suitable optimizers can also
be adopted. HARDBEAT iterates the process for a number
of steps and finally outputs a trigger with high ASR. The
initialization is discussed in Section 5.1; the neighbor selec-
tion is discussed in Section 5.2; and the importance-aware
gradient-direction estimation is in Section 5.3.

5.1 Initializing Patch Trigger

At the very beginning of the attack, there is no prior knowl-
edge of where the trigger shall be located and what it looks
like. Here, we consider a square-shaped trigger such as a
4⇥4 patch for discussion simplicity. We study different trig-
ger sizes and shapes in Section 6.3. A straightforward idea is

USENIX Association 32nd USENIX Security Symposium 701

Algorithm 2 Trigger Initialization
1: function TRIGGERINIT(decision function f , input xxx, target label yt ,

trigger size s)
2: for step in 0 ...max_steps1 do
3: posx, posy Sample random values < (input_size� s+1)
4: if step > l ·max_steps1 then
5: posx, posy Mutate the best position in the neighborhood
6: end if
7: Set mask mmm to 1 at position (posx, posy) with size s (0 otherwise)
8: ppp Random values from clipped uniform distribution U(�4,4)
9: Obtain average ASR of (1�mmm)� xxx+mmm� ppp and record the best

10: end for
11: for step in 0 ...max_steps2 do
12: Fix mask mmm and add random noise on pattern ppp

13: Record mmm and ppp with a better ASR
14: end for
15: return (mmm, ppp), ASR
16: end function

to randomly sample a few locations and patterns, and choose
a combination of the two with the highest ASR. This is not
query-efficient as the search space is massive. For an input
with a shape of 32⇥32, there are (32�4)2 = 784 locations
to consider, not to mention the large number of color pattern
combinations (2564⇥4⇥3 where 256 denotes the pixel value
choices from 0 to 255 and 3 denotes the RGB channels).

We divide the initial search into two stages as shown in Al-
gorithm 2. In the first stage (lines 2-10), we mainly focus on
finding a reasonable trigger location. We then focus on finding
the optimal trigger pattern in the second stage (lines 11-14).

To determine whether a location is good, it is common to
randomly sample a set of patterns at that location and exam-
ine the average ASR for this set. However, it is inefficient
to traverse all possible locations and perform the aforemen-
tioned testing. We observe that trigger positions are not totally
independent, meaning that a valid trigger likely achieves a
high ASR for many positions within a region due to the con-
tinuity of deep learning models. Therefore, instead of blind
search, we apply a local search near the (possibly) best trigger
position after a few iterations (lines 4-6). We use l = 0.7 and
the neighborhood range [�2,2] in the paper and study other
options in Appendix D.

As mentioned earlier, the quality of a trigger location also
relies on sampled patterns (for the measurement). It is straight-
forward to draw patterns from a uniform distribution U(0,1)
(see Figure 2a), meaning every pixel in the trigger pattern
has the same probability of being from 0 to 1. (Here, we nor-
malize the pixel values to range [0,1] for simplicity.) Most
pattern pixel values fall in the normal image distribution (e.g.,
[0.2,0.8]), to which the subject model may not be sensitive.
We observe that sampling the pattern from extreme values
can better cause the misclassification. For example, we use
uniform distribution U(�4,4) and then clip the values to
[0,1], which is shown in Figure 2b. Observe the two peaks at
the two ends (extreme values). By applying this distribution
for trigger initialization, we can improve the ASRs of initial
triggers. Figure 3 compares the ASRs of initial triggers using

(a) Uniform U(0,1) (b) Clipped U(�4,4) (c) Normed U(�1,1)

Figure 2: Uniform distribution. The x-axis shows the sampled
value and the y-axis the frequency of the corresponding value.

Uniform Clipped

Figure 3: ASR of initial trig-
gers using different uniform
distributions. The x-axis de-
notes the class pair in CIFAR-
10 and the y-axis is the attack
success rate.

Figure 4: Average decision
values during gradient estima-
tion for the baseline (top) and
ours (bottom). The x-axis is
the generation step. Decision
1 means the target prediction.

different distributions. The y-axis denotes the ASR. Each dot
in the figure denotes a trigger for a class pair in CIFAR-10
(flipping the prediction from one class to another), where the
blue ones are sampled from the standard uniform distribution
U(0,1) and the orange ones from the clipped uniform dis-
tribution U(�4,4) shown in Figure 2b. The right-hand side
sub-figure shows the ASR distributions for the two sets of
triggers. Observe that there are more orange dots with high
ASRs than the blue ones. The orange ASR distribution is
shifted towards a higher ASR value compared to the blue
one. Therefore, we use the clipped uniform distribution for
initializing trigger patterns (line 8 in Algorithm 2). Note that
the initialized trigger pattern here also serves as the starting
point for further trigger generation in Algorithm 1. It is hence
important to have a pattern with a relatively high ASR.

After the initial search, a location mmm is found and fixed. The
next stage is to search for a good trigger pattern at the location.

5.2 Neighbor Selection

According to Algorithm 1, HARDBEAT may decide to inter-
polate between a historical data point with a top-k ASR and
one of its neighbors. In this subsection, we discuss how the
neighbor is selected. Specifically, we compute the (cosine)
similarity between every pair of (queried) triggers during the
attack and maintain a similarity matrix GGG, which is used to
measure their distances. We also need to consider the ASR
when choosing the neighbor (in order to form a ridge). The

702 32nd USENIX Security Symposium USENIX Association

Class A

Class B Class B

Class A

(a) Baseline estimation

Class A

Class B Class B

Class A

(b) Importance-aware estimation

Figure 5: Illustration of gradient direction estimation

selection criterion is formulated as follows.

argmax
DDD0

GGG[DDD][DDD0] ·ASR[DDD0], (2)

GGG[DDD][DDD0] =
�

cos(DDD,DDD0)+1
�
/2, (3)

where DDD is the current trigger and DDD0 its neighbor; cos(·)
calculates the cosine similarity between two vectors.

5.3 Importance-aware Gradient Estimation
In this section, we discuss how to estimate the gradient di-
rection for perturbing a trigger (at line 21 in Algorithm 1).
Existing attacks [13, 25, 36] use the Monte Carlo estimation
to approximate the direction of gradient. In specific, they ap-
ply a set of random noises on the trigger and see whether
these noises can change the prediction. The average of these
perturbation directions are averaged as the final direction for
mutating the trigger. However, such a design is not efficient.
Figure 5a illustrates the concept. The blue and green circles
denote samples in two classes A and B. The black straight
line denotes the decision boundary of the victim model. The
orange arrows show the gradient directions estimated for in-
dividual samples and the length denotes the magnitude. The
attack goal is to move all the blue samples across the decision
boundary to class B. Observe that the arrows in the top point
to the opposite direction of those on the left and in the bot-
tom. There are only a very few arrows pointing towards the
decision boundary. Most gradient directions are canceled out
with each other and the attack result can hardly be improved.

We propose an importance-aware direction estimation
method. We adaptively adjust the weights for different sam-
ples, based on how these sampled noises can cause the target-
class misclassification. Specifically, we leverage the improve-
ment on average decision value (1 means the target prediction
and �1 otherwise) of the current direction over the one from
the previous trigger generation step as the direction impor-
tance. As illustrated in Figure 5b, the lengths of those arrows
pointing towards the decision boundary are greatly increased
while the others are reduced. The overall direction is hence
more focused towards the boundary compared to the baseline
in Figure 5a. The bottom plot in Figure 4 shows the results of
applying our importance-aware estimation method and the top

Algorithm 3 Importance-aware Gradient-direction Estima-
tion
1: function GRADESTIMATE(decision function f , input xxx, target label yt ,

trigger DDD)
2: Initialize historical average decision values histw for each sample
3: mmm, ppp DDD
4: for i in 0 ...n do . Number of samples n

5: [ppp0]b Add a set of random noises to ppp and clip to [0,1]
6: for j in 0 ...b do
7: xxx

0
i j
= (1�mmm)� xxxi +mmm� ppp

0
j

8: hhh j = xxx
0
i j
� xxxi�mmm� ppp . Perturbation by the trigger

9: end for
10: [y0]b f (xxx0,yt) . Whether the prediction is the target 2 {1,�1}
11: w = mean([y0]b)
12: dw = w�histw[i] . Decision value compared to the history
13: if dw > 0 then
14: dw = exp(dw)
15: if w is 1 then dw = dw/g
16: end if
17: else
18: dw = ln(dw +3)
19: end if
20: if w equals to 1 or -1 then . Estimate the gradient direction
21: dddi = w ·mean([hhh]b)
22: else
23: dddi = mean(([y0]b�w) · [hhh]b)
24: end if
25: dddi = dw ·dddi/||dddi||2
26: Update histw[i] w
27: end for
28: return mean([ddd]n)
29: end function

plot shows the baseline. The x-axis denotes the trigger gener-
ation steps and the y-axis the average decision value for a set
of samples (the larger, the better). Observe that the average
decision values are significantly improved with the value at
the final step close to 1 (the target prediction). For a class pair
cat!dog from CIFAR-10, the baseline estimation only ob-
tains 20.9% attack success rate, while our method can achieve
80.1% ASR, delineating the effectiveness of our estimation.

Algorithm 3 formally describes our importance-aware es-
timation of the gradient direction for perturbing the patch
trigger. It computes the importance values of n samples and
then the gradients. For each sample i, it adds random noises
to the trigger and creates b samples with perturbed triggers
(lines 6-9). The importance of i is updated by comparing its
averaged decision value w with the prior (lines 10-19), which
is used to compute the gradients (lines 20-26). The order of
the n samples can be shuffled at each attack iteration. The
following explains the details and intuitions for important
parts of the algorithm.

As we aim to estimate the landscape near the given patch
pattern ppp in Algorithm 3, the added noises shall be small. Oth-
erwise, the perturbed pattern will be far from the current one,
which cannot be used to accurately approximate the gradient
direction. We hence use a normalized uniform distribution
u ·exp(u�1),u⇠U(�1,1) (at line 5), whose shape is shown
in Figure 2c. Other distributions such as Gaussian distribu-
tion can also be employed here. For those additive noises, we

USENIX Association 32nd USENIX Security Symposium 703

measure whether they can cause the target prediction using
a decision function (line 10), which yields 1 for the target
prediction and �1 otherwise. Using �1 for the non-target
prediction is because although going along the opposite di-
rection of the additive noise may not imply the desired target
prediction, it is still the best option [13]. Using value 0 may
waste the opportunity of trying other directions and a small
negative value leads to limited exploration. The empirical
comparison of using different values is shown in Appendix D.

As illustrated in Figure 5b, we aim to lift the importance of
directions that can lead to misclassification and reduce others,
which is realized using the equations at lines 14 and 18, respec-
tively. Many times, the direction from already-misclassified
samples may overwhelm the direction from other samples.
We decrease their importance by a factor g (line 15). We use
g = 5 in the paper and evaluate other values in Appendix D.
The direction improvement dw is the difference between the
current decision value and the prior, which can be as small
as �2 (= �1�1). The value 3 at line 18 is to prevent ln(·)
being smaller than 0. The resultant dw will be mostly smaller
than 1, denoting a small weight on gradient directions that
cannot increase the chance of producing the target label.

The gradient direction for each sample is estimated by the
weighted average of additive noises (lines 20-24). Lines 20-21
handle the case where all the noises lead to misclassification
or not. If only some perturbations cause the target prediction,
we subtract the average decision value from individual ones
and multiply them with their corresponding noises at line 23.
This is to ensure the weights on different noises do not deviate
too much away from the average as it denotes the quality of
the current trigger. Note that the case in lines 20-21 cannot be
combined with line 23 as w = mean([y0]b) (line 11). The term
[y0]b�w will be zero, which wastes the estimated gradient
direction that leads to the target prediction.

6 Evaluation

The evaluation is conducted on various datasets and model
architectures. We compare the attack performance of HARD-
BEAT with eight baseline attacks. We also carry out our attack
on two online commercial services. To study the attack fac-
tors, we consider different numbers of attack samples, trigger
sizes and shapes. A set of ablation studies are also conducted.

6.1 Experiment Setup
Datasets & Models. We adopt four popular image datasets,
including CIFAR-10 [35], SVHN [43], STL-10 [19], and GT-
SRB [52] (details in Appendix A). For each dataset, we
evaluate the attack performance on two models with dif-
ferent architectures. For CIFAR-10, we use ResNet18 and
VGG11, with an accuracy of 93.07% and 92.39%, respec-
tively. For SVHN, a ResNet18 model with 95.03% accuracy
and a ResNet34 model with 95.42% accuracy are utilized. We

employ GoogleNet and DenseNet121 for STL-10, which have
71.03% and 69.64% accuracy, respectively. For GTSRB, Mo-
bileNet_v2 with 97.70% accuracy and ResNet50 with 96.60%
accuracy are considered for evaluation.
Online Commercial Services. Other than the experiments
on local models, we also conduct experiments on two online
commercial services, Microsoft Azure [41] and Clarifai [18].
This is to demonstrate the feasibility of launching HARDBEAT
in real-world settings. We make use of the SVHN dataset
and upload it to the two commercial services, respectively.
We then train one image classifier using each service. The
model trained by Azure has an accuracy of 94.8% and the one
by Clarifai has 89.0% accuracy. We use the prediction API
provided by each service to query the model for carrying out
hard-label black-box universal adversarial patch attacks.
Baselines. To our knowledge, there does not exist a hard-label
black-box universal adversarial patch attack in the literature.
We adapt eight existing black-box attacks to our setting. In
particular, we consider three state-of-the-art hard-label black-
box adversarial attacks (HSJA [13], GRAPHITE [25], and
SparseEvo [57]), three well-known soft-label black-box at-
tacks (Bandits [30], SPSA [51], and Sparse-RS [20]), and two
baselines based purely on MCMC [27] and GA [3] respec-
tively. Details of these baselines are described in Appendix B.
Metrics. Two standard metrics are used for evaluating attack
performance. Attack success rate (ASR) measures the per-
centage of clean samples injected with the same generated
universal adversarial patch that are predicted as the target la-
bel by the victim model. The ASR is measured on the whole
test dataset. We evaluate the attack performance on every
class pair of a victim model. That is, we generate a patch trig-
ger that can cause misclassifications for images from a victim
class to a target class. We then count the number of class pairs
that the attack can achieve a certain ASR. The L

0 norm of the
generated trigger is utilized to measure the stealthiness.
Attack Settings. For all the attacks, we assume 100 images
from the victim class are available. As some classes in the
GTSRB dataset have less than 100 test images, we use 50
images for attack. GRAPHITE and SparseEvo have access to
a target-class image to conduct the attack. For the remaining
baselines and HARDBEAT, a size of 7⇥ 7 patch (taking up
4.79% of the input) is used. We do not constrain the number
of queries for GRAPHITE as its binary search requires a fixed
number of queries. Otherwise, it cannot reduce the trigger size.
For the remaining attacks, we allow 50k (25k for GTSRB)
model queries in total. We study the impact of different attack
factors in Section 6.3.

6.2 Attack Performance
6.2.1 Comparison with Hard-label Attacks

We report the main attack results for HARDBEAT in Table 1
and compare attack performance with prior works. We use

704 32nd USENIX Security Symposium USENIX Association

a fixed trigger size that occupies 4.79% of the input. For
GRAPHITE and SparseEvo that generate larger triggers, we
reduce the sizes of their triggers. The results on their full-size
triggers are reported in Table 9 (see Appendix C). For all the
models except those on GTSRB, the attack is conducted on
all class pairs (90 pairs in total). The GTSRB dataset has 43
classes, constituting 1,806 pairs. Baseline GRAPHITE takes
around 12 minutes to generate a trigger for a class pair. Run-
ning on all pairs requires 15 days of computation. We hence
use a random seed 714725708 to choose 200 pairs for evalu-
ation. We also show the results on all GTSRB class pairs for
attacks other than GRAPHITE in Table 8 (see Appendix C).

Columns 4-12 in Table 1 present the number of class pairs
whose attack success rate (ASR) is above the correspond-
ing threshold shown in the table head. The more class pairs
are in the higher ASR range, the better the attack perfor-
mance is. Observe that baseline attacks cannot find any >90%
ASR trigger in many cases. For example, on CIFAR-10 with
ResNet18, all three baselines have zero pair with >90% trigger.
HARDBEAT can successfully attack 7 class pairs with >90%
ASR. Furthermore, HARDBEAT has 11 pairs with >80% ASR,
whereas baselines still do not have any successful pairs. For
lower ASR ranges such as >50%, HARDBEAT has signifi-
cantly more attacked pairs than existing attacks (25 vs. the
best result 7 by HSJA). On GTSRB, the baselines are able to
generate a few high-ASR triggers. For ResNet50, HSJA has
8 pairs with >90% ASR, GRAPHITE and SparseEvo both
have two pairs. This may be because the traffic signs are more
structured and the victim model only needs to learn simple
features. Baseline attacks hence are able to craft feasible patch
triggers. HARDBEAT greatly outperforms them with 2 times
more successful pairs achieving >90% ASR. Overall, existing
hard-label attacks can hardly generate high-ASR universal
adversarial patches. HARDBEAT is able to construct success-
ful high-ASR triggers for more than twice pairs compared
to baselines. Although the total number does not cover all
class pairs, it is still critical to these models as it is analogous
to finding multiple vulnerabilities in a software. Any of the
identified problems can be exploited.
Detailed Attack Results. The previously discussed table only
shows the number of pairs above a certain ASR threshold.
Here, we report the exact ASR for each class pair. We show
the attack results on CIFAR-10 with ResNet18 in Figure 6 and
on other datasets and models in Appendix C due to page limit.
Each cell in the heat map denotes the ASR for a generated
universal adversarial patch flipping all the test samples from
a victim class (row) to a target class (column).

Observe that HSJA has a very limited number of pairs hav-
ing a reasonable ASR. The best ASR it has is 77% for pair
frog!bird. For the 7 pairs with >50%, HSJA outperforms
GRAPHITE and SparseEvo. This denotes the gradient approx-
imation method in HSJA is able to find some local minima
compared to the other two baselines. Both GRAPHITE and
SparseEvo have low attack performance, with most pairs hav-

Table 1: Attack performance in comparison with hard-label
attacks when the universal adversarial patch occupies 4.79%
of the input. Columns 4-12 denote the number of class pairs
whose attack success rate is above the corresponding thresh-
old. All the attacks except GRAPHITE take 25k queries on
GTSRB, and 50k on other datasets. GRAPHITE on average
takes 54k queries on GTSRB, and 120k-160k queries on the
remaining datasets.
D M Attack >90% >80% >70% >60% >50% >40% >30% >20% >10%

C
IF

A
R

-1
0

R
es

N
et

18 HSJA 0 0 3 4 7 8 8 9 14
GRAPHITE 0 0 0 0 1 3 7 10 18
SparseEvo 0 0 0 0 0 0 0 2 14
HARDBEAT 7 11 17 19 25 33 40 46 60

V
G

G
11

HSJA 0 3 5 8 9 10 13 19 21
GRAPHITE 1 3 3 3 5 8 9 13 17
SparseEvo 0 0 0 0 0 2 2 5 13
HARDBEAT 12 20 21 22 26 28 35 40 48

SV
H

N R
es

N
et

18 HSJA 0 0 2 4 9 15 18 25 35
GRAPHITE 0 0 0 0 1 2 6 11 31
SparseEvo 0 0 0 0 0 3 14 31 55
HARDBEAT 4 9 14 21 34 48 57 64 74

R
es

N
et

34 HSJA 0 1 2 8 12 16 21 30 40
GRAPHITE 0 0 0 0 1 1 6 14 32
SparseEvo 0 0 0 0 0 1 8 26 58
HARDBEAT 3 12 20 23 33 43 50 62 70

ST
L-

10 G
oo

gl
eN

et HSJA 4 5 8 12 12 12 18 22 38
GRAPHITE 0 0 0 1 1 5 6 10 15
SparseEvo 0 0 0 1 2 3 4 13 23
HARDBEAT 12 16 22 28 35 44 44 50 58

D
en

se
N

et HSJA 0 2 3 4 6 7 8 14 24
GRAPHITE 0 0 0 0 0 2 3 6 14
SparseEvo 0 0 1 2 3 7 8 12 20
HARDBEAT 3 4 9 14 21 27 31 45 60

G
TS

R
B

M
ob

ile
N

et HSJA 4 4 9 10 12 15 16 27 31
GRAPHITE 1 1 2 3 4 7 13 20 31
SparseEvo 0 0 1 5 10 17 25 32 47
HARDBEAT 8 17 22 29 38 46 56 64 77

R
es

N
et

50 HSJA 8 8 11 14 17 18 24 26 31
GRAPHITE 2 4 4 6 9 13 15 22 37
SparseEvo 2 6 8 11 17 21 25 32 51
HARDBEAT 20 28 34 44 49 53 65 74 92

ing less than 20% ASR. These two attacks mainly rely on
the target-class image. In the adversarial attack setting, they
only need to find a few pixels to flip the prediction of a victim
image. This is fairly easy as existing adversarial attacks show
only one pixel can cause misclassification [53]. In the univer-
sal adversarial patch attack scenario, however, the problem is
much harder. The attack needs to find a persistent trigger that
can flip the predictions for a set of samples. The pixels from
the target-class image may not have such a property. Even
with the boosting of gradient estimation as in GRAPHITE, it
still cannot achieve a good attack performance.

HARDBEAT has the best results compared to existing at-
tacks. Most successful pairs are for target classes car, bird,
and cat. This may be due to the victim model only learning
low-level features such as a few pixel colors. HARDBEAT can
easily find such features and construct a successful trigger.
There still exist pairs for which HARDBEAT has near-zero
ASR. By inspecting the generation process, we find the sam-
pled random noises are not able to cause misclassification

USENIX Association 32nd USENIX Security Symposium 705

Figure 6: Attack results on CIFAR-10 with ResNet18. GRAPHITE on average takes 128k queries. Other attacks take 50k queries.
Each cell denotes ASR for a universal patch trigger flipping all the samples from a victim class (row) to a target class (column).

Table 2: Attack performance in comparison with adapted soft-
label attacks with a patch size of 4.79% of the input.
D M Attack >90% >80% >70% >60% >50% >40% >30% >20% >10%

C
IF

A
R

-1
0

R
es

N
et

18 Bandits 0 0 0 0 3 3 4 7 14
SPSA 1 3 3 3 5 7 8 10 19

Sparse-RS 3 5 6 7 9 10 11 13 23
HARDBEAT 7 11 17 19 25 33 40 46 60

SV
H

N
R

es
N

et
18 Bandits 0 0 1 1 2 2 4 12 25

SPSA 1 1 1 2 6 8 12 20 29
Sparse-RS 0 0 1 3 4 5 6 10 15
HARDBEAT 4 9 14 21 34 48 57 64 74

on input images. Without the guidance of positive directions
(from misclassification), the black-box attack has no infor-
mation on how to mutate the trigger. We tried leveraging
a target-class image as the guidance. The result is still not
promising. For these pairs, a white-box attack with access to
the model weight parameters also has limited ASR. We think
they are intrinsically more robust. Using a larger number of
queries or a larger trigger size may increase ASR. We believe
this is a big challenge and worth exploring in future work.

6.2.2 Comparison with Adapted Soft-label Attacks

Soft-label black-box attacks leverage the change of output la-
bel probabilities as the guidance to approximate the direction
for perturbing the input. We adapt them to the hard-label set-
ting where they can only observe the change of the predicted
label. Table 2 reports the attack results for three adapted soft-
label attacks. Observe that these attacks have a limited num-
ber of high-ASR (>90%) triggers. Bandits and SPSA have
no more than one trigger that achieves >90% ASR. Sparse-
RS is slightly better on CIFAR-10 with 3 high-ASR triggers
but ineffective on SVHN. The observation is the same for
the results in other ASR ranges. This is understandable as
these attacks were originally designed for the soft-label set-
ting, where rich information such as label probability change
can be used for crafting the perturbation. It is much harder in
the hard-label setting as the attack can only observe whether
the prediction is the target label. Overall, HARDBEAT has
significantly better attack performance with more than twice
successful triggers than these baselines.

Table 3: Results of baseline attacks based purely on MCMC
and GA with a patch size of 4.79% of the input.
D M Attack >90% >80% >70% >60% >50% >40% >30% >20% >10%

C
IF

A
R

R
sN

et
18 MCMC 0 1 3 3 4 6 9 9 14

GA 0 1 2 3 4 5 6 9 22
HARDBEAT 7 11 17 19 25 33 40 46 60

SV
H

N
R

sN
et

18 MCMC 0 2 2 5 6 11 16 20 32
GA 0 1 2 3 7 10 18 25 43

HARDBEAT 4 9 14 21 34 48 57 64 74

6.2.3 Comparison with Other Baselines

HARDBEAT takes advantage of both MCMC [27] and GA [3]
in generating universal adversarial patches. Here, we study
the attack performance of purely using each base method
and report the results in Table 3. As expected, these base-
lines have limited attack performance with zero >90% trig-
ger. HARDBEAT generates 3 times more triggers in most
ASR ranges. This demonstrates the necessity of considering
both focused/directed search as in MCMC and historical data
points as in GA for achieving good attack results in hard-label
black-box universal adversarial patch attack.

6.3 Studying Attack Factors
In this section, we study three major attack factors, namely,
number of model queries, number of attack samples, and trig-
ger size and shape. We use existing hard-label attacks (HSJA
and SparseEvo) as baselines in the study. The observations
on adapted soft-label attacks are similar and hence elided.
Number of Model Queries. In the last section, we limit the
number of queries to 50k (25k for GTSRB) for all the attacks.
Here, we study the relation between number of queries and
the attack success rate (ASR). As we have seen earlier that
there exist pairs having low ASR, it is not informative to study
those pairs. We hence select pairs with >80% ASR as the sub-
ject. Due to page limit, we use the results on CIFAR-10 with
ResNet18 as an example and refer readers to Appendix C
for results on other datasets. Observe that in Figure 7a, for
pairs deer!bird, dog!cat, and frog!bird, HSJA is able to
quickly find good patch triggers and have >50% ASR using

706 32nd USENIX Security Symposium USENIX Association

(a) HSJA (b) SparseEvo (c) HARDBEAT

Figure 7: Attack success rate versus number of model queries on CIFAR-10 with ResNet18

Table 4: Attack performance using different numbers of attack
samples
#Samples Attack >90% >80% >70% >60% >50% >40% >30% >20% >10%

10
HSJA 1 3 4 4 6 11 14 14 19

SparseEvo 0 0 0 1 2 4 5 14 33
HARDBEAT 2 4 8 10 12 15 19 25 35

30
HSJA 2 5 5 8 9 10 11 13 19

SparseEvo 0 0 0 0 0 2 6 12 31
HARDBEAT 4 7 9 15 19 22 29 37 54

50
HSJA 2 3 5 7 9 9 9 10 13

SparseEvo 0 0 0 0 0 1 1 8 23
HARDBEAT 3 8 13 14 22 26 33 42 56

just 10k queries. For other pairs on the bottom of the figure,
it however fails to generate successful triggers even given the
50k query limit. This demonstrates that HSJA works when
the surrounding area of the minima is flat. If the optimal
region has a plummet like the one shown in the middle of Fig-
ure 1b, HSJA is not able to find a good trigger. SparseEvo
has very low ASR when using 50k queries and the results
are similar when fewer queries are used. For HARDBEAT
in Figure 7c, half of the studied pairs have more than 70%
ASR with only 10k queries. For harder cases such as pair
frog!dog (light blue line), HARDBEAT is able to gradually
improve the trigger with the increase of queries. It achieves
60% ASR when 25k queries are used and 95% ASR with 50k
queries. These harder cases may be due to a more rugged loss
surface, making HARDBEAT take longer to reach the optimal.
This demonstrates the effectiveness of our gradient approxi-
mation algorithm compared to HSJA. HARDBEAT is able to
maneuver on a wrinkled search surface and finally reach the
optimal point as illustrated in Figure 1d.

Number of Attack Samples. The goal of universal adver-
sarial patch attack is to cause misclassification for as many
samples as possible. To achieve this, the attack needs to lever-
age a set of samples such that the trigger can be persistent and
robust on unseen test images. We used 100 samples in previ-
ous experiments. Here, we study the effect of using smaller
numbers of samples, denoted as attack samples. The study
is conducted on CIFAR-10 with ResNet18 and the results
are shown in Table 4. The first column shows the number of
attack samples. With only 10 attack samples, HSJA is able to

Table 5: Attack performance with different patch shapes (pos-
sible rectangle shapes that consist of <5% image pixels) and
multiple patches (two 2.5%-pixel square patches)
Trigger Attack >90% >80% >70% >60% >50% >40% >30% >20% >10%

3⇥3 HSJA 0 0 0 0 0 1 3 4 8
HARDBEAT 0 1 1 3 5 7 11 12 23

5⇥5 HSJA 0 0 1 3 3 4 5 6 9
HARDBEAT 3 5 8 11 13 17 21 26 36

7⇥7 HSJA 0 0 3 4 7 8 8 9 14
HARDBEAT 7 11 17 19 25 33 40 46 60

3⇥16 HSJA 0 0 2 2 6 7 8 10 16
HARDBEAT 3 7 12 18 25 29 36 44 53

5⇥10 HSJA 1 1 2 3 6 6 8 8 16
HARDBEAT 5 8 13 15 20 26 36 42 55

Two HSJA 0 2 3 5 6 7 9 12 18
5⇥5 HARDBEAT 3 9 17 23 24 27 35 40 47

generate 4 triggers with >70% ASR. HARDBEAT has twice
as many pairs. SparseEvo has only 1 pair with >60% ASR.
When increasing the number of attack samples, the attack
performance of HSJA and SparseEvo slightly decreases. This
is because more samples mean more diverse input features.
Baselines are not able to balance among those features when
estimating the gradient direction. HARDBEAT, on the other
hand, has better attack performance when more samples are
used. The number of pairs with >70% ASR is increased from
8 to 13. With more samples considered, our novel gradient
approximation is able to leverage more information to bet-
ter balance across multiple samples. We also show the ASR
of HARDBEAT for the pairs from Figure 7 when different
numbers of attack samples are used. Please see Appendix C.

Trigger Size and Shape. We used a fixed shape with size
of 7⇥7 as the trigger for HSJA and HARDBEAT previously.
We study their attack performance using different sizes and
shapes of the trigger. As SparseEvo dynamically determines
the size and shape of the trigger during generation, we exclude
it here. Table 5 reports the results. Increasing the trigger size
from 9 (3⇥ 3) to 49 (7⇥ 7), both HSJA and HARDBEAT
have better attack results, which is expected. We also change
the shape of the trigger from a square (7⇥ 7) to different
rectangles (3⇥16 and 5⇥10). We observe variations on the
attack performance but most are similar. HSJA has a slightly

USENIX Association 32nd USENIX Security Symposium 707

Table 6: Attacking online services. The patch trigger occupies
4.79% of the input. All the attacks take 240 queries.
Service Attack 0->4 0->5 1->2 1->7 2->3 3->2 3->9 4->1 6->4 9->2 Avg.

Azure HSJA 76% 74% 38% 63% 53% 39% 58% 83% 81% 38% 60%
HARDBEAT 90% 76% 59% 74% 70% 63% 75% 88% 84% 57% 74%

0->4 1->4 2->4 3->4 5->3 6->3 7->4 8->3 8->4 9->4 Avg.

Clarifai HSJA 70% 87% 53% 55% 32% 30% 63% 27% 48% 60% 53%
HARDBEAT 90% 93% 74% 85% 65% 54% 76% 56% 78% 71% 74%

better result using the 5⇥10 trigger and HARDBEAT has the
best result with the square trigger. In addition, we study a
trigger with two square patterns (two 5⇥5). It produces more
>80% pairs for HSJA and more >60% pairs for HARDBEAT
compared to the 7⇥ 7 trigger. Overall, a larger trigger size
can improve attack performance and different trigger shapes
have marginal effect. We also show the ASR of HARDBEAT
for the 11 pairs from Figure 7 when different trigger sizes are
used. Please see Figure 10 in Appendix C.

6.4 Attacking Online Services

To demonstrate the feasibility of launching attacks in the
real world, we employ two online commercial services Azure
and Clarifai, and apply HSJA and HARDBEAT to attack their
trained models. Note that these models were not deployed
and can only be accessed by authors (through the prediction
API). It hence does not pose a real societal threat. We use
the same trigger size and shape (7⇥ 7) but with a reduced
number of attack samples (10 images) and model queries
(240 queries). This is to show a practical attack scenario.
We test the ASR for generated triggers on 100 test images.
Table 6 reports the attack results of HSJA and HARDBEAT
on 10 class pairs. Observe that HARDBEAT can achieve 90%
ASR on pair 0!4 on both Azure and Clarifai. It also has
93% ASR on pair 1!4 on Clarifai. This shows HARDBEAT
is very effective in generating high-ASR triggers with such
a limited number of attack samples and queries, delineating
its practicality. On average, HARDBEAT has 74% ASR on
both platforms, substantially outperforming baseline HSJA
(60% on Azure and 53% on Clarifai).

6.5 Ablation Study

There are three main components in the design of HARD-
BEAT: (1) using historical data points with high ASR, (2)
using interpolated data points of previous local minima, and
(3) the importance-aware gradient estimation. Our ablation
study shows the interpolation between previous local minima
and the importance-aware gradient estimation have large im-
pacts on the final attack results, delineating their importance.
We also study the impact of different choices for the decision
value denoting the non-target prediction (used in Algorithm 3).
Value �1 has the best results. See details in Appendix D.

There are several hyper-parameters in HARDBEAT includ-
ing l in Algorithm 2 (line 4) that balances the exploration of
more random positions and the vicinity of the best trigger po-
sition; the neighborhood range used in Algorithm 2 (line 5) to
mutate the current best trigger position; the parameter k for se-
lecting top-k historical triggers in Algorithm 1 (line 7); and g
for adjusting the impact of directions of already-misclassified
samples in Algorithm 3 (line 15). Our experimental results
show different hyper-parameters have a slight impact on the fi-
nal attack performance. The overall results are similar. Please
see details in Appendix D.

7 Countermeasures

We employ a state-of-the-art certifiable defense against ad-
versarial patches PatchCleanser [61], a query-based defense
against black-box attacks Blacklight [37], and a universal
adversarial patch detection approach SentiNet [17] for mea-
suring HARDBEAT’s attack performance.

7.1 Certifiable Defense
Certifiable defense aims to have a correct prediction for a
given input regardless how the input is adversarially perturbed
within the threat model (e.g., adding a fixed-size patch at
random locations). PatchCleanser [61] is a state-of-the-art
certifiable defense against adversarial patches. It uses double-
masking to certify the prediction. Specifically, it traverses
all the positions on the input and adds a mask (i.e., a black
patch) for each position. If the predictions are consistent,
it considers this the final output. Otherwise, PatchCleanser
applies a second round of masking (on top of the first round
mask). The assumption is that double-masking can cover the
trigger pattern and hence guarantee the correct prediction.

We apply PatchCleanser to certify all class pairs on CIFAR-
10 and SVHN. Specifically, we apply HARDBEAT to generate
triggers for each class pair, and then run PatchCleanser to
certify the trigger-injected images. The average certified ro-
bust accuracy is 0.17% for CIFAR-10 and 0.0% for SVHN.
This is because PatchCleanser is not designed for adversarial
patches with a large trigger size. An important assumption is
that double-masking does not change the predictions of clean
inputs. However, in order to cover the trigger pattern, a large
mask is needed for PatchCleanser, which cannot guarantee the
correct prediction for clean samples. As the double-masking
can cover the trigger, we report the prediction accuracy of the
victim model before and after applying PatchCleanser. The
results show it cannot improve prediction accuracy in most
cases. Please see details in the supplementary material [1].

7.2 Query-based Defense
Query-based defense is specifically designed for detecting
malicious queries by black-box attacks. Blacklight [37] is a

708 32nd USENIX Security Symposium USENIX Association

Table 7: Bypassing query-based defense. The patch trigger
occupies 4.79% of the input. All the attacks take 240 queries.

Metric 0->4 1->4 2->4 3->4 5->3 6->3 7->4 8->3 8->4 9->4 Avg.

ASR 85% 92% 78% 80% 47% 41% 97% 48% 64% 68% 70%
Detection 0.0% 0.0% 0.0% 0.0% 0.0% 1.3% 0.0% 0.4% 0.4% 0.0% 0.2%

state-of-the-art defense technique that detects black-box at-
tacks based on the similarity among queries. Specifically, it
uses a fixed window size and traverses all the positions on
the input to obtain a set of image segments. It then generates
a hash value for each image segment. A hash representa-
tion is then created for each incoming query. A new query
is regarded as adversarial if its hash representation matches
any prior queries. Blacklight heavily relies on the similar-
ity between two images in consecutive queries. Black-box
adversarial attacks need to gradually reduce the adversarial
perturbation during the attack, masking consecutive query
images very similar to each other. Universal adversarial patch
attacks, on the other hand, do not rely on the similarity among
attack samples. Instead, a diverse set of images may even
improve attack performance. There are two options. We can
either augment attack samples by adding random noises or
use different images for each query. We choose the former
one and conduct the experiment.

Table 7 shows the results, with the first row denoting the
ASR by HARDBEAT and the second row denoting the detec-
tion rate by Blacklight. Observe that Blacklight can hardly
detect the attack. There are only 3 out of 10 class pairs having
non-zero detection rate. Further inspection shows fewer than
3 queries are detected as malicious by Blacklight and all of
them happened after 160 queries (240 queries in total), mean-
ing HARDBEAT almost finished the attack. Figure 8 shows
original inputs (row 1) and trigger-injected images in two
consecutive generation iterations (rows 2-3). Observe that
the images in two iterations are very similar and yet Black-
light cannot detect them. Our observation is consistent with
the literature [24] that Blacklight can be evaded by adding
noise/changing noise variance on the input. In addition, com-
pared to the results reported in Table 6, the ASRs actually
increase for pairs 2!4 (from 74% to 78%) and 7!4 (from
76% to 97%). Adding random noises on attack samples can
indeed improve the attack performance of HARDBEAT. There-
fore, Blacklight can hardly defend against HARDBEAT.

7.3 Universal Adversarial Patch Detection
Universal adversarial patch detection approaches focus on
inspecting and rejecting a given input injected with a univer-
sal patch trigger. One of the well-known detection methods
SentiNet [17] cuts out the feature on a given input A that is
responsible for the prediction, and pastes it on a set of clean
inputs B. It inspects the confidence of cut A and the prediction
of B to determine whether A is a malicious input. We apply
SentiNet on attacked samples by HARDBEAT for all >60%

Input

Iter 6

Iter 7

Figure 8: Query images from two consecutive attack iterations
(iterations 6 and 7) when evading Blacklight on Clarifai. Row
Input shows the original 10 images used for the attack.

ASR class pairs from CIFAR-10. The average detection ac-
curacy is 50.53%. According to the original paper [17], the
detection rate of SentiNet on attacked samples by a white-box
counterpart of HARDBEAT (Adversarial Patch [8]) is 98.5%.
This is because HARDBEAT’s patch regions have weaker cor-
relations with the target class due to its black-box nature.

7.4 Alternative Defense

Adversarial training is one of the most effective defense tech-
niques against adversarial attacks [40,49,59]. The problem of
current adversarial training is that it may greatly affect normal
functionality (causing non-trivial accuracy degradation). Ex-
isting works [54, 55] demonstrate that fine-tuning the subject
model using generated triggers can improve model robust-
ness while maintaining the accuracy. It is possible to leverage
HARDBEAT to generate universal adversarial patches and
then apply existing methods to harden the model. We leave
the experimental exploration to future work.

8 Conclusion

Deep learning models are susceptible to universal adversarial
patch attacks. In this paper, we show that even under the most
restricted scenario (with access only to the predicted label),
the attacker can still generate high-ASR triggers. Our pro-
posed attack HARDBEAT achieves 74% ASR on two online
commercial services, delineating the severity of the problem.
The evaluation on existing state-of-the-art defenses reveals
that more advanced techniques are urgently needed to defend
against strong attacks such as the one proposed in this paper.

Acknowledgments

We thank the anonymous reviewers for their constructive com-
ments. This research was supported, in part by IARPA TrojAI
W911NF-19-S-0012, NSF 1901242 and 1910300, ONR
N000141712045, N000141410468 and N000141712947.
Any opinions, findings, and conclusions in this paper are
those of the authors only and do not necessarily reflect the
views of our sponsors.

USENIX Association 32nd USENIX Security Symposium 709

References
[1] HardBeat. https://github.com/Gwinhen/HardBeat,

2023.

[2] Maksym Andriushchenko, Francesco Croce, Nicolas Flam-
marion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In ECCV,
pages 484–501, 2020.

[3] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D
Francone. Genetic programming: an introduction: on the

automatic evolution of computer programs and its applications.
Morgan Kaufmann Publishers Inc., 1998.

[4] Philipp Benz, Chaoning Zhang, Tooba Imtiaz, and In So
Kweon. Double targeted universal adversarial perturbations.
In ACCV, 2020.

[5] Julian Besag. Comments on “Representations of knowledge in
complex systems” by U. Grenander and MI Miller. Journal of

the Royal Statistical Society, 1994.

[6] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. Prac-
tical black-box attacks on deep neural networks using efficient
query mechanisms. In ECCV, pages 154–169, 2018.

[7] Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks against
black-box machine learning models. In ICLR, 2018.

[8] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi,
and Justin Gilmer. Adversarial patch. arXiv preprint

arXiv:1712.09665, 2017.

[9] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin
Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, and Bo Li.
Invisible for both camera and lidar: Security of multi-sensor
fusion based perception in autonomous driving under physical-
world attacks. In S&P, 2021.

[10] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won
Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and Z Morley
Mao. Adversarial sensor attack on lidar-based perception in
autonomous driving. In CCS, 2019.

[11] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In IEEE S&P, 2017.

[12] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olive-
crona, and Thomas Blaschke. The rise of deep learning in drug
discovery. Drug discovery today, 23(6):1241–1250, 2018.

[13] Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hop-
skipjumpattack: A query-efficient decision-based attack. In
S&P, 2020.

[14] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-
Jui Hsieh. Zoo: Zeroth order optimization based black-box
attacks to deep neural networks without training substitute
models. In AISec, pages 15–26, 2017.

[15] Minhao Cheng, Simranjit Singh, Patrick H Chen, Pin-Yu Chen,
Sijia Liu, and Cho-Jui Hsieh. Sign-opt: A query-efficient hard-
label adversarial attack. In ICLR, 2019.

[16] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun
Zhu. Improving black-box adversarial attacks with a transfer-
based prior. In NeurIPS, 2019.

[17] Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sen-
tinet: Detecting localized universal attack against deep learning
systems. SPW, 2020.

[18] Clarifai. Clarifai. https://www.clarifai.com/.

[19] Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning. In
AISTATS, 2011.

[20] Francesco Croce, Maksym Andriushchenko, Naman D Singh,
Nicolas Flammarion, and Matthias Hein. Sparse-rs: a versatile
framework for query-efficient sparse black-box adversarial
attacks. In AAAI, 2022.

[21] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton,
Jeremy D Bernstein, Jean Kossaifi, Aran Khanna, and Ani-
mashree Anandkumar. Stochastic activation pruning for robust
adversarial defense. In ICLR, 2018.

[22] Bao Gia Doan, Minhui Xue, Shiqing Ma, Ehsan Abbasnejad,
and Damith C Ranasinghe. Tnt attacks! universal naturalistic
adversarial patches against deep neural network systems. IEEE

TIFS, 17:3816–3830, 2022.

[23] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In CCS, 2017.

[24] Ryan Feng, Ashish Hooda, Neal Mangaokar, Kassem Fawaz,
Somesh Jha, and Atul Prakash. Investigating stateful de-
fenses against black-box adversarial examples. arXiv preprint

arXiv:2303.06280, 2023.

[25] Ryan Feng, Neal Mangaokar, Jiefeng Chen, Earlence Fernan-
des, Somesh Jha, and Atul Prakash. Graphite: Generating
automatic physical examples for machine-learning attacks on
computer vision systems. In EuroS&P, 2022.

[26] Lianli Gao, Qilong Zhang, Jingkuan Song, Xianglong Liu, and
Heng Tao Shen. Patch-wise attack for fooling deep neural
network. In ECCV, 2020.

[27] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter.
Markov chain Monte Carlo in practice. CRC press, 1995.

[28] Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, and Jinwen
He. Drmi: A dataset reduction technology based on mutual
information for black-box attacks. In USENIX Security, 2021.

[29] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin.
Black-box adversarial attacks with limited queries and infor-
mation. In ICML, 2018.

[30] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior
convictions: Black-box adversarial attacks with bandits and
priors. In ICLR, 2019.

[31] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is
bert really robust? a strong baseline for natural language attack
on text classification and entailment. In AAAI, 2020.

[32] Danny Karmon, Daniel Zoran, and Yoav Goldberg. Lavan:
Localized and visible adversarial noise. In ICML, 2018.

[33] Andrej Karpathy. Tesla use per-pixel depth estimation
with self-supervised learning, 2020. https://youtu.be/

hx7BXih7zx8?t=1334.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015.

710 32nd USENIX Security Symposium USENIX Association

https://github.com/Gwinhen/HardBeat
https://www.clarifai.com/
https://youtu.be/hx7BXih7zx8?t=1334
https://youtu.be/hx7BXih7zx8?t=1334

[35] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[36] Huichen Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and
Bo Li. Qeba: Query-efficient boundary-based blackbox attack.
In CVPR, 2020.

[37] Huiying Li, Shawn Shan, Emily Wenger, Jiayun Zhang, Haitao
Zheng, and Ben Y Zhao. Blacklight: Scalable defense for
neural networks against query-based black-box attacks. In
USENIX Security, 2022.

[38] Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and
John E Hopcroft. Nesterov accelerated gradient and scale
invariance for adversarial attacks. In ICLR, 2019.

[39] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delv-
ing into transferable adversarial examples and black-box at-
tacks. In ICLR, 2017.

[40] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018.

[41] Microsoft. Azure. https://azure.microsoft.com/en-us/
services/cognitive-services/.

[42] Seungyong Moon, Gaon An, and Hyun Oh Song. Parsimo-
nious black-box adversarial attacks via efficient combinatorial
optimization. In ICML, 2019.

[43] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images
with unsupervised feature learning. 2011.

[44] OpenAI. ChatGPT. https://openai.com/blog/chatgpt/.

[45] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh
Jha, Z Berkay Celik, and Ananthram Swami. Practical black-
box attacks against machine learning. In ASIACCS, 2017.

[46] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and
Ananthram Swami. Distillation as a defense to adversarial
perturbations against deep neural networks. In S&P, 2016.

[47] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman.
Deep face recognition. In BMVC, 2015.

[48] Kexin Pei, Jonas Guan, David Williams-King, Junfeng Yang,
and Suman Jana. Xda: Accurate, robust disassembly with
transfer learning. In NDSS, 2021.

[49] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John
Dickerson, Christoph Studer, Larry S Davis, Gavin Taylor, and
Tom Goldstein. Adversarial training for free! NeurIPS, 2019.

[50] Congzheng Song, Alexander M Rush, and Vitaly Shmatikov.
Adversarial semantic collisions. In EMNLP, 2020.

[51] James C Spall. A one-measurement form of simultaneous
perturbation stochastic approximation. Automatica, 33(1):109–
112, 1997.

[52] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Chris-
tian Igel. Man vs. computer: Benchmarking machine learn-
ing algorithms for traffic sign recognition. Neural networks,
32:323–332, 2012.

[53] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai.
One pixel attack for fooling deep neural networks. IEEE Trans-

actions on Evolutionary Computation, 23(5):828–841, 2019.

[54] Guanhong Tao, Yingqi Liu, Guangyu Shen, Qiuling Xu, Sheng-
wei An, Zhuo Zhang, and Xiangyu Zhang. Model orthogonal-
ization: Class distance hardening in neural networks for better
security. In S&P, 2022.

[55] Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qi-
uling Xu, Shiqing Ma, Pan Li, and Xiangyu Zhang. Better
trigger inversion optimization in backdoor scanning. In CVPR,
2022.

[56] Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan
Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-Ming Cheng. Au-
tozoom: Autoencoder-based zeroth order optimization method
for attacking black-box neural networks. In AAAI, 2019.

[57] Viet Vo, Ehsan M Abbasnejad, and Damith Ranasinghe. Query
efficient decision based sparse attacks against black-box deep
learning models. In ICLR, 2022.

[58] Guozhu Wang, Yiwen Cui, Jie Wang, Lihua Wu, and Guanyu
Hu. A novel method for detecting advanced persistent threat
attack based on belief rule base. Applied Sciences, 11(21):9899,
2021.

[59] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than
free: Revisiting adversarial training. In ICLR, 2020.

[60] Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and
Xingjun Ma. Skip connections matter: On the transferability
of adversarial examples generated with resnets. In ICLR, 2020.

[61] Chong Xiang, Saeed Mahloujifar, and Prateek Mittal. Patch-
Cleanser: Certifiably robust defense against adversarial patches
for any image classifier. In USENIX Security, 2022.

[62] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu
Wang, Zhou Ren, and Alan L Yuille. Improving transferability
of adversarial examples with input diversity. In CVPR, 2019.

[63] Ziang Yan, Yiwen Guo, Jian Liang, and Changshui Zhang.
Policy-driven attack: learning to query for hard-label black-
box adversarial examples. In ICLR, 2021.

[64] Chenglin Yang, Adam Kortylewski, Cihang Xie, Yinzhi Cao,
and Alan Yuille. Patchattack: A black-box texture-based attack
with reinforcement learning. In ECCV, 2020.

[65] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. Deepdi: Learn-
ing a relational graph convolutional network model on instruc-
tions for fast and accurate disassembly. In USENIX Security,
2022.

[66] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue.
Droid-sec: deep learning in android malware detection. In
SIGCOMM, 2014.

USENIX Association 32nd USENIX Security Symposium 711

https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://openai.com/blog/chatgpt/

Appendix

A Setup

CIFAR-10 [35] is an image classification dataset with 10
classification classes. It consists of 60,000 images and is
divided into a training set with 50,000 images and a test set
with 10,000 images.
SVHN [43] is a dataset containing house digital numbers
extracted from Google Street View images. It has 73,257
training images and 26,032 test images. We divide the
original training set into 67,257 images for training and 6,000
images for validation.
STL-10 [19] is an image recognition dataset with 10
classification classes. It consists of 5,000 training images and
8,000 test images.
GTSRB [52] is a German traffic sign recognition dataset
with 43 classes. We split the dataset into a training set
(35,289 images), a validation set (3,920 images), and a test
set (12,630 images).

B Details of Baselines

HSJA [13] leverages gradient estimation to generate L
2/L•

based adversarial examples. It starts from a target-class image
and gradually reduces the adversarial example’s distance to
the victim image. The final adversarial example is visually
similar to the victim image while being misclassified to the
target label. We adapt it to generate universal adversarial
patches, where the perturbation is restricted within a certain
area (e.g., a 7⇥7 square) and not bounded by L

2 or L
• norms.

A small set of input samples instead of one single image are
used for constructing the patch.

GRAPHITE [25] and SparseEvo [57] are state-of-the-art L
0

adversarial attacks. They aim to perturb a small number of pix-
els on the input such that it can be misclassified. GRAPHITE
assumes a target-class image and uses a mask to interpolate
it with the victim image, i.e., mmm� xxxt +(1�mmm)� xxxv, where
xxxt is the target-class image and xxxv is the victim image. The
attack goal is to reduce the L

0 norm of the mask, i.e., number
of perturbed pixels. It leverages binary search to find areas
where the pixel values of the victim image can be retained.
After there is no more area for reducing the mask, it then
applies an existing gradient approximation method to fur-
ther mutate adversarial pixels for improving the attack result.
SparseEvo shares a similar design and leverages an evolution-
ary algorithm to reduce the mask size. These two attacks can
be naturally extended to universal adversarial patch attack.
We hence provide a set of victim samples to the attacks and
use them to generate universal adversarial patches.

Bandits [30] and SPSA [51] are soft-label black-box
attacks that estimate the gradient for perturbing an input
sample by adding/subtracting a noise vector on/from the

Table 8: Attack performance on all class pairs. All the attacks
take 25k queries.
D M Attack >90% >80% >70% >60% >50% >40% >30% >20% >10%

G
TS

R
B

M
ob

ile
N HSJA 28 42 63 77 103 147 173 222 276

SparseEvo 16 29 48 69 99 146 208 297 447
HARDBEAT 70 127 173 231 293 377 452 551 673

R
es

N
t5

0 HSJA 74 91 103 131 157 183 214 249 289
SparseEvo 26 40 62 89 127 174 237 321 462
HARDBEAT 156 238 314 371 428 496 557 635 725

input and observing the output difference (e.g., the change
on the target label probability). The output change served
as a coefficient is multiplied with the noise vector, which is
utilized as the estimated gradient for updating the adversarial
perturbation. Bandits [30] also considers the gradient
information from previous attack iterations and from near-by
pixel positions as priors for better estimation. Sparse-RS [20]
is a soft-label black-box L

0 adversarial attack. It uses random
search by greedily perturbing pixels to search for a successful
perturbation. Particularly, at every step, it randomly selects
a set of pixels and applies random mutations to them.
Sparse-RS accepts the perturbation if the cross-entropy loss
is reduced and rejects it otherwise. As these three attacks are
soft-label, we adapt them to the hard-label setting, where they
can only observe the predicted label change as the output
difference. We also provide a set of input samples so as to
generate universal adversarial patches.

Baseline attacks based purely on MCMC [27] and GA [3]
have been discussed in Section 1 and Section 4, and hence
omitted here.

C More Results

Comparison with Baseline Attacks. Table 8 shows the
results on all class pairs of GTSRB. We do not report the
results for GRAPHITE because it is very slow as explained
in Section 6.2. Observe that in the table, HARDBEAT has
more than twice pairs with >90% ASR. In particular, it is
able to generate 156 triggers on ResNet50 that have >90%
ASR, significantly outperforming baselines with 74 triggers
at best. More than 400 pairs on ResNet50 (293 pairs on
MobileNet_v2) have a non-trivial ASR (>50%), delineating
the effectiveness of HARDBEAT.

Figure 13-Figure 17 (in the supplementary material [1])
present the exact ASR for models on CIFAR-10, SVHN, and
STL-10. The results on GTSRB are omitted as it has more
than 1,800 pairs, which is not feasible to show here. Baseline
attacks have a very limited number of successful triggers
on CIFAR-10 and STL-10. HSJA is able to generate a few
>80% ASR triggers. For those pairs, HARDBEAT can usually
have >90% ASR. The results are slightly better for baselines
on SVHN. Especially, SparseEvo has a reasonable number
of non-zero triggers. But the ASRs are mostly around 30%.
HARDBEAT, on the other hand, has many >50% ASRs.

712 32nd USENIX Security Symposium USENIX Association

Table 9: Attack performance with full-size trigger.
GRAPHITE on average takes 54k queries on GTSRB, and
120k-160k queries on other datasets. Other attacks take 25k
queries on GTSRB, and 50k on the remaining datasets.
D M Attack Size# >90% >80% >70% >60% >50% >40% >30% >20% >10%

C
IF

A
R

-1
0

R
es

N
t1

8 GRAPHITE 170 1 1 1 2 6 9 18 27 37
SparseEvo 95 0 0 0 0 0 0 1 2 20
HARDBEAT 49 7 11 17 19 25 33 40 46 60

V
G

G
11 GRAPHITE 128 4 4 5 7 8 12 15 16 27

SparseEvo 178 0 0 0 0 0 1 3 8 23
HARDBEAT 49 12 20 21 22 26 28 35 40 48

SV
H

N
R

es
N

t1
8 GRAPHITE 97 0 0 1 1 4 6 15 31 57

SparseEvo 62 0 0 0 0 2 10 30 57 76
HARDBEAT 49 4 9 14 21 34 48 57 64 74

R
es

N
t3

4 GRAPHITE 95 0 0 0 2 4 7 20 37 57
SparseEvo 60 0 0 0 0 3 9 24 51 79
HARDBEAT 49 3 12 20 23 33 43 50 62 70

ST
L-

10
G

oo
gl

eN GRAPHITE 265 0 1 2 2 3 6 7 12 15
SparseEvo 271 0 2 2 3 4 6 9 18 25
HARDBEAT 49 12 16 22 28 35 44 44 50 58

D
en

se
N GRAPHITE 265 1 1 1 2 2 5 8 13 22

SparseEvo 362 0 0 1 3 7 8 12 14 20
HARDBEAT 49 3 4 9 14 21 27 31 45 60

G
TS

R
B

M
ob

ile
N GRAPHITE 92 1 3 4 8 12 23 33 45 69

SparseEvo 75 4 9 13 17 25 41 52 66 89
HARDBEAT 49 8 17 22 29 38 46 56 64 77

R
es

N
t5

0 GRAPHITE 99 2 3 3 8 11 18 24 38 63
SparseEvo 77 6 16 21 26 31 40 54 65 90
HARDBEAT 49 20 28 34 44 49 53 65 74 92

Comparison on Full-size Trigger. Baselines GRAPHITE
and SparseEvo aim to reduce the number of perturbed pixels
during the attack. They may not be able to reduce the size
to an L

0 of 49 (4.79% of the input). The results in Table 1
(Section 6.2.1) are obtained by reducing the trigger size to 49
after it is generated. Table 9 presents the attack results for the
two baselines when their full-size triggers are used. Column
4 shows the average trigger size. Observe that the generated
triggers by GRAPHITE and SparseEvo are much larger than
49. For CIFAR-10 with VGG11, the average trigger sizes by
GRAPHITE and SparseEvo are respectively 2.6 times and
3.6 times larger than HARDBEAT’s. GRAPHITE however
has only 4 pairs with >90% ASR and SparseEvo has zero.
HARDBEAT, on the other hand, obtains 12 successful pairs.
Even with such a large trigger size, baselines still cannot
generate many high-ASR triggers. The observations are the
same on other three datasets, delineating the effectiveness of
HARDBEAT.

Studying Attack Factors. Figure 18-Figure 20 (in the sup-
plementary material [1]) show the relation between number
of queries and the ASR on SVHN, STL-10, and GTSRB. The
observations are similar to that on CIFAR-10. For some pairs,
baselines are able to quickly find good universal adversarial
patch triggers. But for most pairs, they fail to generate success-
ful triggers even with the maximum query limit. HARDBEAT
can generate triggers with reasonable ASR using a small num-
ber of queries for most pairs. For a very few pairs, it needs
more queries to get a high ASR. Overall, HARDBEAT con-

Figure 9: Attack performance with different numbers of attack
samples. The experiment is conducted on CIFAR-10 with
ResNet18. The trigger occupies 4.79% of the input and the
attack takes 50k queries.

Figure 10: Attack performance with different trigger sizes.
The experiment is conducted on CIFAR-10 with ResNet18
and the attack takes 50k queries.

verges much faster than baselines and has much higher ASR.
Figure 9 and Figure 10 report effects of number of attack

samples and trigger size on HARDBEAT, respectively. Ob-
serve that in Figure 9, HARDBEAT can achieve >70% ASR
for most pairs by using just 20 images. The two pairs in light
blue and green are harder. It requires 70-80 attack samples
for HARDBEAT to achieve high ASR. Regarding the trigger
size, the ASRs are all above 60% using a trigger larger than
5⇥5. The relation between the trigger size and the ASR is
positively correlated.

D Ablation Study

Design Choices. There are three main components in the
design of HARDBEAT: (1) using historical data points with
high ASR, (2) using interpolated data points of previous local
minima, and (3) the importance-aware gradient estimation.
We remove each component from HARDBEAT and evaluate
each ablated version on CIFAR-10. The results are reported
in Table 10. Using historical high-ASR data points has an
impact on pairs in the low ASR ranges (e.g., decreased from
33 to 25 for >40% ASR). The interpolation between previous
local minima and the importance-aware gradient estimation
have large impacts on the final attack results. Without them,

USENIX Association 32nd USENIX Security Symposium 713

Table 10: Impact of different design choices
Attack >90% >80% >70% >60% >50% >40% >30% >20% >10%

w/o History 7 10 16 17 20 25 31 42 52
w/o Interpolation 3 8 9 11 14 16 18 26 35
w/o Importance 2 6 8 9 9 10 13 23 36

HARDBEAT 7 11 17 19 25 33 40 46 60

Table 11: Impact of the decision value for non-target predic-
tions

Value >90% >80% >70% >60% >50% >40% >30% >20% >10%

-0.1 6 8 10 13 19 23 30 36 47
0 6 9 13 19 20 27 35 40 50
1 7 11 17 19 25 33 40 46 60

Table 12: Impact of l
l >90% >80% >70% >60% >50% >40% >30% >20% >10%

0.5 5 8 15 17 19 26 33 42 55
0.6 5 8 11 16 22 24 28 44 58
0.7 7 11 17 19 25 33 40 46 60
0.8 4 9 12 14 17 22 37 45 55

the number of successful patch triggers significantly decreases
(by half) in all ASR ranges, highlighting their importance.

In Algorithm 3, we use the value �1 for the decision func-
tion f to denote the added noises that are not able to cause
the target prediction. Here, we study the impact of different
choices of this value on the final attack results. Table 11 shows
that using the value 0 or a small negative value �0.1, reduces
the number of successful patch triggers in all ASR ranges.
This is because using the value 0 may waste the opportunity
to try other directions and a small negative value leads to
limited exploration.

Hyper-parameters. There are several hyper-parameters in
HARDBEAT and here we study the impact of each param-
eter while fixing others. l in our Algorithm 2 balances the
exploration of more random positions and the vicinity of the
best trigger position. Table 12 reveals our attack performance
w.r.t l. With too small l (such as 0.5 and 0.6), our method fo-
cuses too much on the exploration of the neighborhood of the
current best trigger position (which can be a local optimum)
and misses the global optimum. On the other hand, too large
l (such as 0.8) leads to too much random targetless search
and thus harms the performance. Therefore, we set l = 0.7
in our main experiments. The neighborhood range used in
Algorithm 2 to mutate the current best trigger position has
a similar effect as l. As shown in Table 13, [�1,1] is too
small to efficiently probe the neighborhood while [�3,3] is
large enough to deviate from the good neighborhood. Both
of them degrade the performance so we use [�2,2]. Another
parameter is k for selecting the top-k elements in Line 7 of
Algorithm 1. Its effect on the performance is listed in Table 14.
A larger k allows for re-selection from more historical patterns
with high performance, but may also reduce the probability
of selecting the best historical pattern. This is reflected by

Table 13: Impact of the neighborhood range
Range >90% >80% >70% >60% >50% >40% >30% >20% >10%

[�1,1] 6 11 15 18 24 30 36 43 58
[�2,2] 7 11 17 19 25 33 40 46 60
[�3,3] 4 10 16 18 21 29 38 46 55

Table 14: Impact of top k

k >90% >80% >70% >60% >50% >40% >30% >20% >10%

3 5 11 14 18 22 25 34 44 60
4 7 11 17 19 25 33 40 46 60
5 6 9 14 18 25 29 41 45 58

Table 15: Impact of g
g >90% >80% >70% >60% >50% >40% >30% >20% >10%

1 5 9 14 20 26 30 37 51 59
4 6 10 18 20 24 33 39 48 60
5 7 11 17 19 25 33 40 46 60
6 6 9 15 18 25 31 40 48 58

larger numbers in the columns from >50% to >10% of rows
k = 4 and k = 5 compared to k = 3, and smaller numbers in
the columns from >90% to >60% of rows k = 3 compared
to k = 4. Hence we set k = 4 as a trade-off. g is used to ad-
just the impact of directions of already misclassified samples
(Line 15 of Algorithm 3). A proper g should be set so that we
can get sufficient yet not overwhelming guidance from the
directions of successful samples. As shown in Table 15, in-
creasing g from 1 (not changing the weight) to 5 (dividing the
weight by 5) benefits our attack performance by preventing
the over-dominance of successful samples. However, dividing
the weight by 6 over suppresses those samples, makes the
guidance less informative, and thus diminishes the ASR. So
we use g = 5 in our main experiments.

E Discussion

Pre-defined Trigger Pattern. For certain universal patch
attacks, it might require the attacker to pre-define the trigger
pattern (e.g., as a sticker to put on the traffic signs) and then
compute the trigger location and size. For this attack scenario,
our Algorithm 2 can be used for finding the location. That
is, we fix the trigger pattern and run lines 2-10 (except line
8) to search for the location. After obtaining a promising
location, we then model the width and height of the trigger
as two parameters and apply Algorithm 3 to approximate the
gradients for mutating them. We leave it to future work.
Generalization to Other Classifiers. This paper focuses on
studying image classifiers as described in our threat model.
For classifiers in other fields such as natural language pro-
cessing (NLP), HARDBEAT can leverage off-the-shelf word
embeddings, and search for a set of embeddings that cause
misclassification using the proposed gradient estimation. The
embeddings can be mapped back to words using softmax [50].
Empirical exploration can be a future study.

714 32nd USENIX Security Symposium USENIX Association

	Introduction
	Related Work on Black-box Attacks
	Threat Model
	Attack Intuition
	Attack Design
	Initializing blackPatch Trigger
	Neighbor Selection
	Importance-aware Gradient Estimation

	Evaluation
	Experiment Setup
	Attack Performance
	Comparison with Hard-label Attacks
	Comparison with Adapted Soft-label Attacks
	Comparison with Other Baselines

	Studying Attack Factors
	Attacking Online Services
	Ablation Study

	Countermeasures
	Certifiable Defense
	Query-based Defense
	Universal Adversarial Patch Detection
	Alternative Defense

	Conclusion
	Setup
	Details of Baselines
	More Results
	Ablation Study
	Discussion
	Impact of PatchCleanser on Prediction of Trigger-Injected Samples

