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Abstract—The distance between two classes for a deep learning
classifier can be measured by the level of difficulty in flipping
all (or majority of) samples in a class to the other. The class
distances of many pre-trained models in the wild are very
small and do not align well with humans’ intuition (e.g., classes
turtle and bird have smaller distance than classes cat and
dog), making the models vulnerable to backdoor attacks, which
aim to cause misclassification by stamping a specific pattern to
inputs. We propose a novel model hardening technique called
model orthogonalization which is an add-on training step to
pretrained models, including clean models, poisoned models,
and adversarially trained models. It can substantially enlarge
class distances with reasonable training cost and without much
accuracy degradation. Our evaluation on 5 datasets with 22
model structures show that our technique can enlarge class
distances by 177.63% on average with less than 1% accuracy loss,
outperforming existing hardening techniques such as adversarial
training, universal adversarial perturbation, and directly using
generated backdoors. It reduces 80% false positives for a state-
of-the-art backdoor scanner as the enlarged class distances allow
the scanner to easily distinguish clean and poisoned models, and
substantially outperforms three existing techniques in removing
injected backdoors.

I. INTRODUCTION

A backdoor in a deep learning model makes any inputs
stamped with a specific pattern to be misclassified to a target
class. While adversarial sample attack requires generating
perturbations on the fly to cause an input sample, e.g., a video
frame, to be misclassified, backdoor attack can have prompt
effect by simply stamping a pattern. While backdoors can be
injected through various methods, such as data poisoning [1]–
[5], clean label poisoning [6]–[9], and neuron hijacking [10],
they widely exist in naturally trained models (see Section II).
We call them natural triggers. Natural triggers could be due to
(1) the similarity between classes, e.g., a small fixed patch on
any dog images can make the classifier predict cat, and (2) the
model undesirably learning strong low-level features. We will
show in Section II that there is a small backdoor between the
turtle and bird classes even though they are unlike in humans’
eyes. With the increasing applications of deep learning models
in security-critical tasks such as autonomous driving [11], [12],
surveillance [13], [14], access control [15], etc., backdoors are
becoming a prominent security threat.

Existing defense techniques can be categorized to backdoor
scanning that determines if a model has an injected back-
door [16]–[24], backdoor attack detection that determines on-
the-fly if an input contains a backdoor pattern [24]–[35], and

backdoor elimination that removes an injected backdoor [36]–
[39]. Most these techniques focus on defending injected
backdoors. For example, backdoor scanners Neural Cleanse
(NC) [40] and ABS [41] rely on the assumption that injected
backdoors tend to be small as they want to be stealthy.
Backdoor attack detection techniques such as NIC [25] and
SCAn [26] rely on the observation that an input sample
stamped with a backdoor likely causes different model internal
behaviors than a clean sample. Elimination techniques such
as NAD [39] rely on benign samples to suppress injected
backdoors. Detailed discussion of these techniques can be
found in Section VII. However, they are much less effective
for natural backdoors which are not injected but rather due to
problems in training and even the nature of data. For example,
natural backdoors cause a lot of false warnings for scanners as
they cannot distinguish natural and injected backdoors [42]; a
sample with a natural backdoor may likely evade detection
as natural backdoors are usually benign features that may
not induce abnormal internal behaviors; and using clean data
cannot eliminate natural backdoors which are rooted exactly
in the clean data.

Adversarial training is a widely used technique for model
hardening which can force a model to unlearn unrobust (low-
level) features. It aims to enforce any input undertaking adver-
sarial perturbations in an Lp bound to be correctly classified
by the hardened model. According to our studies (Section II
and Section V), the improved robustness can help mitigate
backdoors including natural backdoors. However, due to its
Lp bounded training, which only considers local perturbations
around individual samples, the protection against backdoors
is limited. Also, it is known that adversarial training may
cause non-trivial model performance degradation. In addition,
our study shows that directly using backdoors generated
by scanners to adversarially train a model does not work
well due to either the extremely high computation cost or
the longer convergence time. Intuitively, using a backdoor
(which denotes much larger perturbations compared to those
in adversarial samples) in adversarial training is like imposing
a substantial displacement of the decision boundary. If not
done properly, the decision boundary will oscillate. And since
natural backdoors could exist in between any pair of classes,
the training has quadratic complexity, which is very costly
when the number of classes is large.

We propose a novel model hardening method to improve
resilience to backdoors. It is an add-on training step for pre-



trained models, including adversarially pre-trained models. It
substantially suppresses backdoors, including both injected
and natural backdoors, making backdoor attacks more difficult
(e.g., having to use much larger patterns and/or easier to be
detected by scanners), with reasonable training cost and with-
out substantial accuracy degradation. Specifically, we consider
the minimal backdoor between two classes (that flips samples
in a victim class to a target class) the distance between the
classes. As such, we aim to achieve the possible maximum
distances for all class pairs. Intuitively, if we project all high
dimensional data points to a 2-dimensional space, a decision
boundary allows the maximum distance between two classes
when it is perpendicular to the line between the centers of
mass of the two classes (visualization and more explanation
in Section III). We hence call the process of finding such
a decision boundary model orthogonalization. Our technique
hardens all class pairs for a model. For each pair a and b,
it repetitively generates the minimal backdoors from a to
b and from b to a and adversarially trains the model with
the two backdoors. In other words, it forces the model to
gradually unlearn the low-level backdoor features (and focus
on high-level features with more semantics). The symmetric
training of the two directions of a pair substantially alleviates
oscillation and improve effectiveness. To address the high
computation cost induced by the quadratic complexity, our
technique features a scheduler that selects a most promising
pair to harden in each training round based on the potential of
distance enlargement. It leverages the observation that different
class pairs have different distance capacities. For example, a
pair of turtle and bird has more potential than a pair of cat
and dog as the latter two are so close that their distance is
hard to enlarge no matter how much training effort is spent. A
number of methods are further used to speed up the training
process such as reusing backdoors from previous rounds and
dynamically adjusting bounds. Details are in Section IV.

Our contributions are summarized as follows.
• We intuitively and formally define the problem of model

orthogonalization, which is an add-on training step. As
part of it, we define the distance between a pair of classes,
which serves as the basis for the hardening process.

• We devise a new training process to achieve orthogonal-
ization. It features symmetric training (training the two
directions of a pair together), pair scheduling, and a few
other designs.

• We develop a prototype MOTH (Model OrTHogonaliza-
tion). Our evaluation on four standard datasets and six
different model structures shows that MOTH can improve
class distance for naturally trained models by 119.87%
and adversarially trained models by 52.87% with less
than 1% accuracy degradation on average. With similar
hardening performance, our technique is 9x faster than a
baseline that does not use scheduling. It achieves 29.72%
more distance improvement than a baseline that does
not perform symmetric training. It can achieve 95.80%
more distance improvement and 2.58x faster than using
universal adversarial perturbations [43]. We also con-

duct experiments on 30 pre-trained models downloaded
from the TrojAI competition [42], a competition for
backdoor scanning. MOTH improves the class distance
by 232.39% over the original models and is 11x faster
than the baseline. We apply MOTH in two applications
including reducing false positives for backdoor scanning
and eliminating injected backdoors in existing models.
It can reduce false positives by 81.25% for the first
application. Regarding the second application, the attack
success rate (ASR) of injected backdoors is reduced (by
orthogonalization) from almost 100% to 1% on average,
outperforming three state-of-the-art backdoor elimination
approaches with the best performance of reducing ASR to
26.75% on average. MOTH is publicly available at [44].

Threat Model. We consider backdoors between individual
pairs. That is, a backdoor can flip samples from a victim
class to a target class, called label-specific backdoor in the
literature [40], [41], [45], which is more general than universal
backdoor that flips any sample of any class to a target class. We
consider backdoors that are either injected (in a poisoned/hi-
jacked model) or naturally present (in a clean model). We
consider both are equally harmful. Our goal is to enlarge
class distances such that it is more difficult to find backdoors,
without sacrificing much accuracy. That is, to launch attack,
the attacker needs to use a large pixel pattern that may already
possess a lot of semantic features of the target class.

In this paper, we only consider static backdoors, in which
the backdoor patterns are input agnostic, like patch back-
doors [1]. There are dynamic backdoors such as reflection
backdoors [3], composite backdoors [4], and feature space
backdoors [46]. We conduct a preliminary study on a few
dynamic backdoors and MOTH can reduce the ASR to some
extent (see Section VIII). We will leave more exploration to
our future work. We argue that our contributions are still very
valuable because model hardening for static backdoors is still
an open problem. Finally, we assume only a subset of the
original training dataset (5%) is available when MOTH is used
to remove injected backdoors.

II. MOTIVATION

Figure 1 shows sample images from a normally trained
ImageNet model downloaded from a widely-used model repos-
itory [47] and its natural backdoors (derived using NC [40]).
The first column shows the backdoors, with the first row
flipping dog images to cat, the second one turtle to bird, and
the third one cat to bird. The second and third columns show
the victim class samples; the fourth and fifth columns the
victim class samples stamped with the backdoor patterns; the
sixth column the target class samples, and the last column the
size of backdoor in terms of the aggregated pixels in the R,
G and B channels (i.e., L1 norm). For instance, a trigger of
size 615 (second row) has around 615/3 = 205 ≈ 14 × 14
changed pixels. This is a very small backdoor compared to
an input image of 224× 224 pixels for ImageNet models. In
other words, the model is very vulnerable, even though it is
not poisoned by dirty data. In fact, over 90% of the samples
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Fig. 1: Natural backdoor versus injected backdoor. The left figure shows natural backdoors (1st column) generated by a model
scanner (i.e., NC) for a benign ImageNet model. The right figure presents three poisoned models with injected backdoors with
different colors/shapes (1st column). Columns Size denote the size of generated backdoors.

in the victim classes are misclassified to the target class when
they are stamped with the small backdoors. Also observe that
these backdoors seem to be very low level features that do not
constitute any meaningful features in humans’ eyes. The model
might have overfitted on these low level (strong) features of the
target class, causing the natural backdoors. We observe that the
backdoor sizes do not meet our intuitions of the distances of
these classes. For example, intuitively cat and dog have more
similarity than turtle and bird. However, this is not reflected by
the sizes of natural backdoors. In some sense, we can say the
model is not “orthogonal” (more discussion in Section III).

Similar information is presented for three poisoned Ima-
geNet models from [41]. Each model is poisoned in a way that
all samples of the victim classes (the third column) stamped
with the backdoors in the first column are misclassified to the
target class as shown in fifth column. While the models were
poisoned with the backdoors shown in the first column, the
models overfit on some low-level features of the backdoor
patterns used in poisoning such that after poisoning, the
injected backdoors are just the small pixel patterns shown in
the second column. The last column shows the backdoor sizes.
Observe that they are not distinguishable from the sizes of
natural backdoors. In the TrojAI multi-round competitions for
backdoor scanning organized by IARPA [42], regularly trained
clean models have a large number of small natural backdoors
whose sizes are not distinguishable from the injected ones in
the round 2 competition, which is a round dedicated to finding
backdoors in image classification models. As a result, many
performers suffered from a large number of false positives (i.e.,
reporting a clean model as poisoned). On the other hand, if a
pretrained model used the hardening technique proposed in the
paper and had the hardened class distances published as part
of the model specification, the substantially enlarged distances
would make stealthy poisoning attempts of the hardened model
easily detectable (Section V-C).
Existing Technique I: Adversarial Training. Adversarial
training is the most widely used model hardening technique.
It aims to train a subject model in such a way that sam-
ples in a Lp bound of each training input have the same
classification result, with the sacrifice of some classification

accuracy. It can move the decision boundary to make the
model robust. It can enlarge class distances. In fact, since
round 3 of the TrojAI competition, the red team (by NIST)
responsible for producing the clean and poisoned models for
performers to classify uses adversarial training to suppress
natural backdoors. In Figure 2, we show some backdoors for
an adversarially trained ImageNet model (downloaded from
existing work [48]) in the second column. We use the same
three class pairs as in Figure 1, with each pair taking two
rows. The natural backdoors are in the second column with
their sizes presented on the top of the backdoor images in red
in the odd rows. The backdoors are also enlarged in the even
rows. The classification confidence of a stamped sample (in
the third column) is depicted on the sample.

Comparing to the class distances in Figure 1, it is evident
that adversarial training can enlarge class distance (e.g, from
1058 to 1598 for the dog→cat pair). In addition, the backdoors
start to possess some human perceptible features. For instance,
the backdoor for dog→cat resembles a cat face and the
backdoor for turtle→bird has the beak of bird. However, due to
the nature of adversarial training, the accuracy has nontrivial
degradation (see Section V). Moreover, the order of class
distances still does not align well with our intuitions of the
two class pairs dog→cat and turtle→bird, indicating that it
may not have achieved the maximum class distances. More
discussion of the reasons of such insufficiency can be found
in Section III.
Existing Technique II: Universal Adversarial Perturbation.
While adversarial training generates adversarial perturbations
separately for each sample, universal adversarial perturbation
(UAP) aims to derive common adversarial perturbations for
a (large) set of samples from different classes such that
the derived UAPs can cause misclassification when they are
applied to any samples. Similar to adversarial training, UAPs
are usually derived using L∞. As such, a straightforward idea
is to use UAP to adversarially train a model to harden it
like in [43]. Figure 3 shows the results. Observe that the
derived UAPs in column 1 have noise-like pixel patterns.
UAPs can enlarge class distances (e.g, from 1058 to 1118
for the dog→cat pair) to some extent. However, the distance
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Fig. 2: Adversarial training vs. our training. The 2nd and 4th
columns present the generated backdoors for an adversarially
trained model and our model, respectively. The patterns high-
lighted in red boxes are enlarged in even rows. The sizes of
backdoors are marked on the top in red. The numbers in 3rd
and 5th columns are prediction confidences to the target labels.

enlargement is small. This is because UAPs are untargeted,
meaning that a UAP for a victim class may flip samples
of the class to different target classes. Also note that due
to its use of L∞ bound, targeted UAPs are very difficult
to derive. They either cannot be found within the bound or
the enlarged bound leads to substantial accuracy degradation
after hardening. Natural backdoors, on the other hand, do not
have any constraints on the magnitude of perturbations. They
can easily achieve a high ASR for a specific target, which
can reveal vulnerabilities of the decision making between two
classes of a subject model.
Technique III: Directly Using Generated Backdoors in
Training. Another method is to directly use optimization to
derive the smallest backdoor between a pair of classes, e.g.,
by adapting optimizations in NC [40] and ABS [41]. The
training is enhanced such that any samples stamped with the
backdoor should retain their ground truth classifications. As
we will show in Section V, such a method is expensive as its
complexity is quadratic. In addition, its training loss fluctuates
a lot (see Section IV-B), causing inferior results in distance
improvement compared to ours (with 30% performance differ-
ence as shown in Section V-D). Note that the Pairwise baseline
evaluated in Section V is already more sophisticated than
simply using generated backdoors in hardening as described
above. It leverages symmetric hardening and speedup methods
discussed later in this section and in detail in Section IV.
Our solution. We propose a novel training method that can
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Fig. 3: Universal adversarial perturbation. The 1st column
shows the generated UAPs for three different victim classes in
the 2nd and 3rd columns. The last column presents the sizes of
backdoors generated for a hardened model by UAP training.

effectively enlarge class distances without sacrificing much
accuracy. We call it model orthogonalization (see Section III).
Different from adversarial training that independently perturbs
individual inputs, our training considers individual pairs of
classes. Specifically, for a pair such as a and b, it derives a
minimal backdoor from a to b and another backdoor from b
to a. Intuitively, the former can be considered the distinctive
(low level) feature of b with respective to a, and vice versa.
It then stamps samples with these backdoors and ensures
the classification results do not change, which essentially
expels these low level features and forces the model to learn
high level and more semantic features distinguishing the pair.
The two directions of a pair are hardened together, which
we call the symmetric hardening. As will be discussed in
Section IV-B, asymmetric hardening, i.e., hardening only one
side or hardening the two sides in separate batches, leads to
inferior results. Considering each class pair uniformly (with a
total of O(n2) pairs for an n-class model) is not cost-effective
as different class pairs have different distance capacities. Some
pairs quickly reach their maximum distance (e.g., cat and dog)
and others need more training to get there. We hence develop
a scheduler that schedules the most promising pairs for each
batch, substantially improving cost-effectiveness. The training
also features a few special designs such as gradually growing
optimization bounds and reusing backdoors to speedup the
process. Details are in Section IV. The fourth and fifth columns
of Figure 2 present example results using our training (on
the adversarially trained model). The class distances are sub-
stantially enlarged without further accuracy degradation. The
distances are much larger compared to the regularly trained
model in Figure 1. With hardened distances, the data poisoning
in Figure 1 can be easily detected, as the compromised classes
would have much smaller distances than the hardened ones.
Further, we observe that the order of the distances of the
three pairs aligns well with our intuition after hardening. The
zoomed-in trigger patterns in the even rows clearly exhibit
high level semantic features of the target classes (e.g., the
whole body of a bird). In other words, the model learns
high level features of individual classes, which substantially
mitigates its vulnerabilities to (natural) backdoors.
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(a) Natural Training (b) Adversarial Training (c) Our Training

Fig. 4: A conceptual illustration of standard vs. adversarial vs.
our decision boundaries. Green and blue dots are samples of
two classes. The black straight line is the standard decision
boundary separating these two sets of samples. The orange
arrows in (a) and (c) denote the backdoor transformation that
can move a set of samples to the other side of the boundary.
The red curly line in (b) is the adversarial decision boundary.
The red line in (c) is the decision boundary after our training.

III. PROBLEM DEFINITION

Intuitively, a backdoor from a victim class to a target class
is a (uniform) transformation function that transforms an input
of the victim class such that it is classified to the target class by
the subject model. A backdoor ought to be stealthy otherwise
it can be easily detected by automatic techniques or humans.
For instance, replacing majority of a victim class input with a
target class input likely causes the intended misclassification.
However, such a “large and obvious” backdoor can hardly
constitute a meaningful attack. The level of stealthiness is
proportional to the magnitude of the transformation. One way
of measuring such magnitude is to use Lp distance between
the original sample and its transformed version.

As demonstrated in Section II, even clean models are
vulnerable to natural backdoors. Such backdoors are so small
that stealthy attacks can be easily conducted. In these attacks,
the Lp distances introduced by the (uniform) transformations
are small. Adversarial training can enlarge the Lp norm of
the needed backdoor transformation but it cannot achieve the
maximum distance. Intuitively, we define the Lp norm of the
minimum backdoor from the victim class to the target class
their class distance. Note that such distance is directional
and usually asymmetric, that is, the distance from a to b is
different from that from b to a. Our goal is hence to enlarge
class distances such that models become less vulnerable to
backdoor attacks without sacrificing classification accuracy.

Figure 4(a) illustrates the intuition. The blue and green
points are samples of two classes and the black line denotes
the decision boundary by the subject model that achieves the
minimum cross-entropy loss. The orange arrows denote the
backdoor transformations. Intuitively, most the green points
undertaking the displacement denoted by the arrow starting
from the green star (a.k.a. the center of mass of green points)
fall into the other side of the decision boundary. Similarly,
most the blue points can be moved to the other side by the
arrow starting from the blue star. Observe the two arrows
have different lengths. Figure 4(b) shows that adversarial
training allows the Lp ball of each sample to have consistent
classification results. Consequently, the decision boundary is
altered as shown by the red line. It enlarges the arrow lengths.

Figure 4(c) shows our technique. The red curve denotes the
new decision boundary after our training, with which the solid
arrows are much longer than before (the dashed arrows). We
say a classifier is orthogonal when all its class pairs have
the maximum distance and the training to achieve this effect
model orthogonalization. Intuitively, as shown by Figure 4(c),
in order to maximize both the distances from a to b and from
b to a, the decision boundary tends to be perpendicular to the
line linking the two centers, namely, orthogonal.

An important observation is that maximum class distances
are bounded and different class pairs may have completely
different distances. As demonstrated in Section II, the maxi-
mum distance from cat to dog is smaller than that from turtle
to bird. This is determined by the nature of these classes.
As such, while we can use special training methods like the
one proposed in this paper to enlarge such distances, the
enlargement is bounded by the natural differences of classes.

Next, we formally define these concepts. Considering a
typical classification problem, where the samples x ∈ Rd

and the corresponding label y ∈ {0, 1, . . . , n} jointly obey
a distribution D(x, y). A classifier M : Rd → {0, 1, . . . , n}
with parameter θ is supposed to satisfy the following property
argmaxθ P(x,y)∼D[M(x; θ) = y].

Definition III.1. Given two classes a and b, the backdoor from
a (the victim class) to b (the target class) is a transformation
T : Rd → Rd that transforms any sample of a, denoted as
for all (x, y = a), such that M(T(x); θ) = b. A backdoor is
stealth if ∥T(x)− x∥ is small.

A backdoor could be natural (when the model is normally
trained) or injected (e.g., by data poisoning [1], [3]–[5]). A
backdoor may be dynamic, meaning that the perturbations
are different for different inputs (e.g., feature space back-
doors [46]), or static, meaning that the perturbations are input
agnostic, like patch backdoors [1]. In this work, we focus on
static backdoors.

Definition III.2. Given two classes a and b, the distance from
a to b, denoted as ∥a → b∥, is minT(E(∥T(x) − x∥)) with
(x, y = a) a sample of a and T a backdoor from a to b.

Intuitively, class distance is determined by the smallest
backdoor. In practice, the expectation E(∥T(x) − x∥) is ap-
proximated by a set of samples. Note that for static backdoors,
∥T(x) − x∥ is constant for different samples (i.e., only a
property of the two classes).

Our definition of class distance differs from existing class
separation notions [49], [50] in two ways: (1) the distance
measure in this work is carried out for a set of samples,
which measures the distance from the center of sample mass
to the decision boundary as shown in Figure 4(c), whereas the
measures in existing works are performed for every sample
to obtain the smallest distance from a sample to the deci-
sion boundary (the margin). The notion of class distance is
intrinsically related to the underlying trigger inversion method,
which is modular, meaning any suitable inversion method
can be leveraged for measuring class distance; (2) our class
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distance does not measure the robustness of models under
input-specific adversarial attacks. As class distance does not
consider the smallest distance for every sample, the hardened
model does not defend against adversarial examples. As shown
in Figure 4(c), there are blue and green dots that are close
to the decision boundary (after our hardening) and hence the
model may still be vulnerable to traditional adversarial attacks.
We consider the two kinds of measures complementary.

Definition III.3. Model orthogonalization aims to derive a
classifier M : Rd → {0, 1, . . . , n} with parameter θ such that
argmaxθ P(x,y)∼D[M(x; θ) = y] and argmaxθ

∑
(a,b) ∥a →

b∥.

Intuitively, model orthogonalization aims to derive a clas-
sifier that has the highest accuracy and the largest aggregated
class distance. While the first condition can be ensured by
a cross-entropy loss, the second condition cannot be easily
represented as a loss function as it entails deriving the distance
of each pair of classes, having quadratic complexity. In the
following sections, we explain the design of MOTH.

IV. DESIGN

A. Overview

Figure 5 illustrates the whole training procedure. Given a
pre-trained model and training data, MOTH first initiates a
warm-up phase, where each class is treated as the target class
for generating universal backdoors (the top rectangle). That is,
for a set of samples not in the target class, we aim to generate a
backdoor that can flip their predictions to the target class. Dur-
ing the optimization process for each target class, the changes
of loss for different source classes are recorded for updating
a prior-selection matrix (the bottom rectangle). Details are
discussed in Section IV-C. Once all the classes are warmed up,
we start the main training process. This phase consists of four
steps as shown in Figure 5. Based on the prior-selection matrix,
step 1 uses a K-arm scheduler for selecting a promising class
pair that will likely have the largest class distance increase.
Assume the model has N classes. We create N × (N − 1)/2
arms (i.e., all the pairwise combinations without direction).
Intuitively, an arm represents the optimization objective for
a pair. The scheduler then selects the most promising arm.
In step 2 , MOTH applies a symmetric backdoor generation
algorithm (for the selected pair) to yield two backdoors, which
are stamped on samples of the classes. The modified training
batch is used for updating model parameters according to the
cross-entropy loss. The entries for the selected pair in the post-
selection matrix are updated in step 3 to record the distance
variations. For the next training round, we rely on a reward
function (see Section IV-C) that combines both the prior-
selection and post-selection matrices for class pair selection
(step 4 ). MOTH iterates this process. It terminates when the
model accuracy degradation reaches a preset bound. Finally,
it outputs the hardened model that has larger class distances.
We discuss individual components and algorithms in detail in
the following sections.

Input Model&Data Warm-up Model Orthogonalization Output Model

Scheduler

①

②

③

④

Fig. 5: MOTH overview

B. Symmetric Hardening

For a class pair a and b, there are two directions for
generating backdoors. The goal of class distance hardening is
to enlarge distance by training with the generated backdoors.
A straightforward design is to leverage a backdoor generation
method (e.g., NC) to produce a backdoor for one direction
(e.g., from a to b), and stamp it on the samples of class a
for training. In the next iteration, it randomly chooses another
pair direction for training. However, such a design, we call
it asymmetric hardening, can lead to undesirable oscillation
of class distances during training. Figure 6b shows the class
distances of airplane and deer using such a design. The x-
axis denotes the training iteration, and the y-axis denotes the
class distance. Observe that between iteration 250 and 400,
the class distance from airplane to deer decreases while the
other direction continues to grow. We show a closer look
for this period in Figure 6c. It is evident that asymmetric
hardening causes the two directions of a pair competing and
leads to oscillation of class distances. As such, we propose
a symmetric hardening method, where we harden the two
directions of a pair simultaneously. In Figure 6a, observe
that the symmetric hardening has continuous growth for both
directions. We also evaluate class distances of all pairs using
symmetric hardening and asymmetric hardening, and compare
them with those of the original model. Figure 7 illustrates the
differences of class distances for the two hardening methods.
The heat map on the left is for symmetric hardening and the
right for asymmetric hardening. Each cell in the heat map
denotes the class distance improvement from a source class
(row) to a target class (column). The brightness of the color
denotes how much of the class distance is increased compared
to the original model (the brighter the larger). We can clearly
see bright colors for most cells in the symmetric heat map.
The asymmetric heat map has many cells with dark colors. In
addition, the distances from other classes to a class may have
large improvement (e.g., the penultimate column of the ship
class), but not the other direction (e.g., the penultimate row).
As illustrated in Figure 4(c), the hardening procedure aims to
push the decision boundary towards the opposite side. If only
one direction is hardened at one time, the decision boundary
will skew towards one side. It is hence pushed back and forth
through multiple rounds, causing oscillation as demonstrated
in Figure 6b.

Many existing backdoor generation methods follow an op-
timization procedure like NC [40]. It aims to flip a set of
samples from a victim class to the target class, which can be
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formalized as follows.

∀x ∈ X, min
m,δ

L
(
M(x′), yt

)
+ λ · ∥m∥1, (1)

T(x,m, δ) = x′ = (1−m) · x+m · δ, (2)

where L(·) is the loss function of model M(·); yt is a target
label different from the ground truth of input x; λ adjusts the
weight of the second objective; T(·) is the transformation that
applies the generated backdoor to an input x; m is a mask
matrix whose values range from 0 to 1; δ is the backdoor,
which has the same shape and value range as input x. A
straightforward way for symmetric hardening is to run some
existing backdoor generation method twice. However, this will,
on one hand, introduce an extra optimization step that doubles
the training cost, and on the other hand, fail to consider
both directions such that the generated backdoors may be too
aggressive in pushing the boundary, causing oscillation. We
hence devise a two-sided backdoor generation method that
generates two backdoors for a class pair at once. Algorithm 1
illustrates our method. Input parameter X denotes a set of
inputs belonging to class a or b and p is an indicator vector of
these inputs, with 1 denoting class a and 0 class b. We initialize
the backdoor variables with the input values if available or
random values otherwise (lines 2-6). In line 7, the target
labels are set to the opposite of ground truth labels (of the
class pair). During the optimization, backdoors are stamped
on the samples of the corresponding class (lines 10-11). Line
13 computes the loss for both directions together. This is
the key as the backdoor generation along either direction is
constrained by loss from both directions, avoiding any bias to
one side. Attack success rates are computed for individual
classes (line 14). For each backdoor, we check whether it
reaches the desired attack success rate and also has a smaller
size compared to the previous result. If so, we record the best
results and apply random perturbation (ξ = 0.01) to backdoor
variables to avoid local minima (line 16-20).

C. Pair Scheduling

A naı̈ve method is to train each pair to their maximum
distance in turn. However, this often leads to substantial
accuracy degradation. Another simple method is to do it
iteratively and randomly by selecting a pair in each iteration.
However, this is suboptimal as well because different pairs
have various capacities. For instance, deer and horse are close
by their nature, spending a lot of optimization cycles on this
pair may not be as productive as spending on deer and bird.
As such, we prioritize the promising pairs using a scheduler.

Algorithm 1 Two-sided Backdoor Generation
1: function BIGENERATION(model M , data X , label (a, b), class p, initialization

(minit, δinit))
2: if minit is not None and δinit is not None then
3: m, δ ←minit, δinit

4: else
5: m, δ ← random init with twice shape of x ∈ X
6: end if
7: yt = p · b + (1− p) · a
8: for step in 0...max steps do
9: Xn ← a batch of x ∈ X ▷ use all x for simplicity

10: X′
n = p ·

(
(1−m[0]) ·Xn + m[0] · δ[0]

)
11: +(1− p) ·

(
(1−m[1]) ·Xn + m[1] · δ[1]

)
12: y′

n = M(X′
n)

13: minimize the loss defined in Equation 1
14: acc = [p· equal(y′

n,yt), (1− p)· equal(y′
n,yt)]

15: for i in {0, 1} do
16: if acc[i] >= asr and ∥m[i]∥1 < size[i] then
17: size[i],mbest[i], δbest[i]← ∥m[i]∥1,m[i], δ[i]
18: m[i] = m[i]+ Uniform(−ξ, ξ)
19: δ[i] = δ[i]+ Uniform(−ξ, ξ) · 255
20: end if
21: end for
22: end for
23: return mbest, δbest

24: end function

We say a pair is promising if the return (i.e., the growth of
class distance) of spending a fixed number of optimization
cycles is larger than others. To validate our hypothesis, we
select three class pairs and study their distance changes during
training. We use the CIFAR-10 dataset and a naturally trained
ResNet20 model as our subject. Figure 8 shows the results.
Observe that for a close pair like deer and horse (the orange
line in the figure), the class distance does not grow much over
time. It is hence not cost-effective to spend a lot of cycles
on this pair. In contrast, the class distance of bird→horse
(the blue line), increases from 37 to 61 within 38 iterations.
Such a pair is more cost-effective as its class distance can be
improved quickly. We also observe that after iteration 38, there
is no further improvement (or degradation) for bird→horse,
meaning it reaches the maximal. Continuous training this pair
does not bring in more benefits. Our scheduler predicts the
potential of a pair on-the-fly based on its past performance.
We discuss details in the following.

Warm-up. Initially, there is not enough information to predict
promising pairs. We hence generate backdoors for all the
pairs first before further selective training. A straightforward
idea is to warp up all class pairs by running a few rounds
of optimization for each pair. However, such an idea is
expensive due to the quadratic complexity. We hence resort to
an approximate approach, which only has a linear complexity.

Specifically, instead of optimizing individual class pairs, we
leverage a universal backdoor generation step to probe the
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potential for each source class to a target class. The universal
trigger generation aims to generate a trigger that can flip
samples of all the classes (other than the target class) to the
target class yt. Formally,

M(x′i) = M(T(xi,m, δ)) = yt ̸= yi,∀xi ∈ X, (3)

where x′i is acquired by optimizing Equation 1 and yi is the
ground truth label of input xi. Since the universal trigger
applies to all the source classes, the optimization needs to find
a backdoor that can flip the hardest class, which is far from the
target class. As such, this pair has good potential and should be
prioritized. To measure the level of difficulty of forcing a class
to the target class, we leverage the change of loss during the
optimization. Classes distinct from the target will have large
initial loss values as they are quite different from the target
class. Once the predictions of all the samples are successfully
flipped, the loss values are small for all classes. We use a set
of samples for each source class to approximate their distance
to the target class, which is denoted in the following.

us→t =
1

m

m∑
i,yi,s ̸=yt

liniti − lfinali , (4)

where s and t are the source and target classes; m is the
number of samples; liniti and lfinali are the initial and final
loss values for sample i, whose label yi,s is different from
the target class yt. Here, a cross entropy loss function is
adopted for calculating the loss value. We set the number of
samples m = 10 unless stated otherwise. The warm-up phase
repeats the above process for each class (i.e., considering it
the target class) and computes a prior-selection matrix. We use
U to denote the matrix. Each entry represents the loss change
computed by Equation 4. For instance, the entry at row 0 and
column 1 of matrix U denotes the loss value change from
class 0 to class 1, i.e., U [0, 1] = u0→1. All the entries on the
diagonal are initialized with −∞. This prior-selection matrix
will be used for pair selection in the later steps.

Scheduling. We introduce a K-arm scheduler [51] for pair
selection. As discussed earlier, we use the variation of distance
to identify promising pairs. Assume there are N classes. We
then create K = N × (N − 1)/2 arms (i.e., all the pairwise
combinations without direction). At each training iteration, the

scheduler selects a promising arm to optimize. Our goal is
to prioritize pairs that have fast class distance improvements.
As such, we use local class distance changes in a batch to
guide selection (since we only have a batch of samples at
each iteration). The local distance may not fully align with
the global distance (over all examples), inducing uncertainty
during arm selection. To handle such an issue, we leverage
the ϵ-greedy algorithm [52] to introduce randomness in our
selection. Specifically, a random sample is drawn from a
uniform distribution over [0, 1). If the sample is greater than
a threshold ϵ, the selection is based on an objective function;
otherwise, a random arm (class pair) is selected. Formally, we
have the following scheduling policy.

P =

 argmax
(a,b)

W , s > ϵ

rand(K) , s < ϵ
, with s ∼ U(0, 1), (5)

where P is the selected class pair. W is the objective func-
tion for selecting the promising class pair. ϵ determines the
level of randomness. Equipped with this ϵ-greedy method,
even if a globally-promising but not locally-promising pair
is not selected in the early stage, it can still be picked up
in the following iterations with a probability of ϵ. We set
ϵ = 0.3. The objective function W is the combination of
two components: prior-selection matrix U and post-selection
matrix V . The prior-selection matrix U stores the loss changes
in the warp-up phase as discussed earlier. The post-selection
matrix V monitors and records the class distance change for
every pair during training. As shown in Figure 8, some pairs
have a large distance increase within a few iterations and
we aim to prioritize those pairs. As such, we select a class
pair that has the largest increase of class distance between
two iterations. From the figure, observe that the class distance
oscillates during training even for a pair with great potential.
It indicates that only looking at the difference between two
iterations, the scheduler will miss class pairs with potential.
We hence consider an accumulated class distance change with
exponential decay for early changes as follows.

vs→t =

q∑
i=1

(
1

2
)q−i · d

i
s→t − di−1s→t

di−1s→t

, (6)

where q is the number of times a pair being selected up to
the current iteration; dis→t is the L1 norm of the backdoor
mask matrix m from a source class s to a target class t
at iteration i, denoting their distance. We use the sizes of
universal backdoors during warm-up phase as the initial d0s→t.
Entries in the post-selection matrix V are updated every
iteration with Equation 6. The meaning of each entry in V is
similar to U , where rows denote source classes and columns
denote target classes. For instance, V [0, 1] = v0→1 denotes
the accumulated class distance change from class 0 to class 1.
At the early stage of training, since we have not explored many
class pairs, we rely on prior-selection matrix U as guidance for
selecting pairs. With the training iteration grows, more class
pairs are explored, whose distance changes in V represent
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their priority of being selected. Hence, the objective function
W combines these two together as follows.

W = (1− α) ·U + α · V , where α = min(
i− n

1000
, 1). (7)

Parameter α controls how much the scheduler relies on the
information from the two phases; i is the number of training
iterations and n is the number of classes. Since the warm-
up phase goes through n target classes (in n iterations), we
exclude those iterations in the objective function.

D. Speeding-up Training
The hardening procedure discussed earlier requires gener-

ating minimal backdoors for stamping on training samples.
Usually, it takes several hundred steps of optimization to
obtain a minimal backdoor for a set of samples. Our scheduler
reduces the number of iterations for training as it proactively
prioritizes promising pairs. However, it still suffers from high
training cost due to the need of generating a minimal backdoor
for each iteration. Recall that the backdoor generation aims
to find a minimal mask m and a pattern δ that can induce
misclassification to the target class for a set of samples (see
Equation 1 and 2 in Section IV-B). There are two objectives
in Equation 1, which are the cross entropy loss and the L1

norm of m. The first objective is to induce misclassification
and the second to obtain a minimal backdoor. If the first
objective can be satisfied, the optimization will then focus
on reducing the size of a backdoor. The common practice of
generating backdoors starts from a randomly initialized mask
m and pattern δ, which usually has low or zero attack success
rate (ASR). It means the backdoor generation needs to spend
time on the first objective to achieve a high ASR, which slows
down the process for minimizing the backdoor size. If there
exists a backdoor that has a reasonable ASR, the optimization
can quickly concentrate on reducing the backdoor size.

We study the ASR of backdoors generated during training.
Particularly, we are interested in the performance of prior
backdoors (backdoors generated in the previous training it-
erations). Figure 9 shows the ASR of backdoors for five class
pairs. The x-axis denotes the training iteration, and the y-axis
denotes the ASR. Each dot in the figure denotes the ASR of
applying a backdoor from the last iteration on samples in the
current batch. The figure on the right shows distributions of
ASR for different pairs. Observe that many dots have higher
than 0.4 ASR. It is clearer from the distribution figure on
the right, where the peaks for different pairs are between 0.4
and 0.6 with pair airplane-automobile having the largest value
0.6. This indicates that leveraging backdoors from previous
iterations can give us a reasonable ASR, which can reduce
the cost of backdoor generation. Based on this observation, we
hence make use of a previous backdoor as the initialization for
generating the current backdoor. We also enlarge the weight λ
in Equation 1 for minimizing the backdoor size as the first
objective is easier to satisfy with backdoor reuse. We set
λ = 0.001 for generating the initial backdoor and λ = 0.2 for
the follow-up ones. In case no successful backdoor is found,
we rollback to the smaller λ for the next iteration.

V. EVALUATION

The evaluation is conducted on various standard datasets
and model structures. We also leverage pre-trained models
from the TrojAI competition [42] with a variety of classifi-
cation tasks and model types in the experiment. For different
design choices discussed earlier, we carry out an ablation study
to understand effects of different components of MOTH. Most
experiments were conducted on a server equipped with two
Intel Xeon Silver 4214 2.20GHz 12-core processors, 256 GB
of RAM, and eight NVIDIA Quadro RTX 6000 GPU cards.

A. Experiment Setup

Datasets and Models. We employ four standard datasets in the
evaluation: CIFAR-10, SVHN, LISA, and GTSRB. We also
conduct experiments on 30 pre-trained models from round 4
of the TrojAI competition [42]. Details of the setup can be
found in Appendix X-A.

Baselines. Three techniques discussed in Section II, namely,
adversarial training, universal adversarial perturbation (UAP),
and directly applying generated backdoors in training (Pair-
wise), are employed as baselines to compare with our harden-
ing approach MOTH. We also include training with universal
backdoors (flipping all classes to the target class) as our
baseline (Universal). Since our technique can be applied to any
trained models in computer vision, we further harden adversar-
ially trained models for evaluation. Please see detailed settings
in Appendix X-A. Note that the Pairwise baseline is already
more sophisticated than simply using generated backdoors in
hardening as it hardens the two directions of a pair together
(which could lead to 30% performance difference as shown
in Section V-D) and uses the speedup methods discussed in
Section IV-D. In addition to the above baselines, we also study
two existing backdoor-erasing approaches, namely, NC [40]
and NAD [39] in hardening class distance. NC first determines
if a model has a backdoor by checking if an exceptionally
small backdoor can be found. If so, it stamps the generated
backdoor on 20% of the available training set for retraining
the model. It is suitable for mitigating injected backdoors
(see Section VI-B). In contrast, MOTH enlarges distances
for all class pairs, aiming at general hardening. Symmetric
hardening, pair scheduling, etc. are hence needed to achieve
our purpose. NAD uses a model finetuned on the poisoned
model as the teacher network, and the poisoned model as
the student network. It then minimizes the internal feature
differences between the teacher and the student networks to
update the student network. NAD produces the student model
as the final output. All the trained models are considered valid
based on their normal accuracy drop. For TrojAI models, we
do not consider UAP as it is expensive to train from scratch for
such large models. Our evaluation on the four standard datasets
already shows the ineffectiveness of UAP (see Section V-B).

Metrics. We consider the following criteria in the evaluation.
The prediction accuracy on the test set is used for measuring
normal functionalities. For adversarially trained models, we
measure model robustness within the given L∞ bound. As
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stated in Section III, the goal of orthogonalization is to enlarge
the aggregated class distances for all pairs. We use the relative
improvement of pair-wise class distance as the metric. That is,
we compute the improvement percentage for every class pair
and obtain the average, which is defined as follows.

1

n× (n− 1)

n∑
i=1

n∑
j=1,j ̸=i

d̂i→j − di→j

di→j
, (8)

where n is the number of classes; di→j and d̂i→j are the class
distances from i to j for the original model and the hardened
model, respectively. We leverage an existing backdoor gener-
ation method NC [53] to measure the distance. Specifically,
we randomly select 100 samples from the validation set of
class i and apply NC for 1,000 epochs to generate a backdoor
that can flip 90% of those samples to the target class j. As
a backdoor is randomly initialized during generation, to avoid
the bias from randomness, we run NC on the same pair for 3
times and use the smallest backdoor size as the class distance.
As the distance is approximated by the above process, we
further study the stability of the measurement using different
sets/numbers of samples. Our experiment on CIFAR-10 for
a naturally trained ResNet20 model shows that the distance
measured on 100 samples with 100 random runs is 57.48 with
a standard deviation of 4.56, which is quite stable. We also
study using another backdoor generation method ABS [41]
for measuring distance. Our results show that ABS can be a
reasonable alternative. Details are in Appendix X-B. We show
the average relative improvement along with the average class
distance in the following results. In addition, the training time
(in minutes) of each method is also measured.

B. Evaluation on Standard Datasets
We conduct experiments on both naturally trained and

adversarially trained models for the four standard datasets, and
the results are presented in Table I and Table II, respectively.
Results for LISA and GTSRB are shown in Table V and Ta-
ble VI in Appendix X-C. As hardening with universal adver-
sarial perturbation needs to train a model from scratch [43],
we only evaluate it in comparison with other techniques on
naturally trained models. From Table I, we can observe that
with a very small accuracy drop, MOTH can improve the class
distance from 55.21% to 190.40% (the largest increase on
ResNet32 model with SVHN dataset) compared to the original
model. We also evaluate the robustness (using PGD) for a nat-
urally trained ResNet20 model on CIFAR-10 before and after
applying MOTH. The robustness does not change. Baseline
UAP can only harden the class distance on a few datasets and
models. For some models such as Network in Network (NiN)
on CIFAR-10, UAP is not able to increase the class distance.
The average class distance is even smaller than the original
model (57.56 vs. 60.67), rendering UAP ineffective for class
distance hardening. Training with universal backdoors has rea-
sonable improvement over the original models, from 18.88%
to 113.92%. However, it is inferior to MOTH, with 46.68%
improvement difference on average. Pairwise considers all
class pairs equally for hardening and has similar results as

TABLE I: Comparison of different methods on hardening
class distance for naturally trained models. First three columns
denote different datasets (D), models (M) and training methods
for the evaluation. The fourth column denotes model accuracy
on the test set. The fifth column shows the training time in
minutes. The sixth column shows the average class distance
across all class pairs. The seventh column denotes the im-
provement of pairwise class distance by different techniques
compared to that of original models (Natural). The last column
shows the degradation of test accuracy.

D M Method Accuracy Time (m) Distance Increase Degrad.

C
IF

A
R

-1
0

R
es

N
et

20

Natural 91.52% 56.77 53.49 - -
NC 89.95% 84.96 60.57 14.26% 1.57%

NAD 91.09% 3.06 55.80 4.84% 0.43%
UAP 90.04% 243.11 96.00 81.57% 1.48%

Universal 90.57% 65.00 93.54 78.16% 0.95%
Pairwise 88.78% 120.47 111.09 112.84% 2.74%

MOTH 90.34% 29.68 109.70 108.62% 1.18%

N
iN

Natural 88.09% 68.30 60.67 - -
NC 87.18% 40.38 67.40 14.39% 0.91%

NAD 83.68% 1.14 62.04 4.35% 4.41%
UAP 86.61% 196.67 57.56 -5.22% 1.48%

Universal 86.76% 33.90 90.69 54.09% 1.33%
Pairwise 86.35% 64.51 120.38 104.13% 1.74%

MOTH 86.81% 36.63 121.64 107.60% 1.28%

V
G

G
19

Natural 92.30% 68.42 61.14 - -
NC 91.23% 134.08 52.87 -11.07% 1.07%

NAD 91.51% 3.83 45.08 -25.17% 0.79%
UAP 90.78% 226.55 77.20 29.53% 1.52%

Universal 91.71% 95.80 71.17 18.88% 0.59%
Pairwise 90.01% 243.96 99.32 61.83% 2.29%

MOTH 91.48% 44.80 92.93 55.21% 0.82%

SV
H

N

N
iN

Natural 95.61% 10.50 64.63 - -
NC 94.39% 24.75 65.76 8.12% 1.22%

NAD 92.48% 1.42 59.36 -4.93% 3.13%
UAP 94.63% 45.47 69.31 6.99% 0.98%

Universal 95.03% 53.40 107.15 65.97% 0.58%
Pairwise 95.16% 152.63 113.64 79.20% 0.45%

MOTH 94.99% 47.77 131.39 102.56% 0.62%

R
es

N
et

32

Natural 95.15% 26.70 55.11 - -
NC 94.09% 31.59 60.04 12.31% 1.06%

NAD 93.91% 0.89 53.68 -2.03% 1.24%
UAP 93.16% 228.95 49.40 -8.86% 1.99%

Universal 94.60% 109.30 120.20 113.92% 0.55%
Pairwise 94.74% 530.43 126.60 129.21% 0.40%

MOTH 94.49% 172.63 160.65 190.40% 0.66%

Average

Natural 92.53% 46.14 59.01 - -
NC 91.37% 63.15 61.33 7.60% 1.16%

NAD 90.53% 2.07 55.19 -4.59% 2.00%
UAP 91.04% 188.15 69.89 20.80% 1.49%

Universal 91.73% 71.48 96.55 66.20% 0.80%
Pairwise 91.01% 222.40 114.21 97.44% 1.52%

MOTH 91.62% 66.30 123.26 112.88% 0.91%

MOTH. However, due to its poor cost-effectiveness, Pairwise
can take up to 1683.52 minutes to train a model, which is
22.75 times slower than MOTH (see results on a NiN model
for GTSRB in Table V in Appendix X-C). The two backdoor-
erasing techniques have limited improvements on class dis-
tance, with 7.60% for NC and -4.59% for NAD on average.
This is reasonable as these backdoor-erasing approaches were
originally designed for removing potential backdoors injected
in the model. They are supposed to have little impact on
benign models and hence do not enlarge class distances for
normal pairs. Overall, MOTH outperforms NC, NAD, UAP and
Universal in terms of class distance hardening, and Pairwise
in terms of efficiency with similar distance improvement.
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Fig. 10: Comparison of the average class distance

We have similar observations on adversarially trained models
as shown in Table II. Adversarially trained models usually
have large accuracy degradation compared to their naturally
trained counterparts. Their class distances are much larger.
However, those class distances are still not optimal. MOTH
can further improve the class distance by 53.18% with only
0.58% accuracy degradation and no robustness degradation on
average. We observe a slight robustness drop (0.30%) for a
NiN model on CIFAR-10. This is because there may still exist
data points close to the decision boundary and hence the model
is vulnerable to adversarial attacks as discussed in Section III.
Universal has a similar performance on adversarially trained
models as on natural ones. It can increase class distance
from 19.02% to 57.85% with an average 16.73% lower than
MOTH. Pairwise has low efficiency as discussed earlier. For
adversarially trained models, it has a even larger time cost,
with a maximum training time of 2122.95 minutes, which is
around one and a half days (see Table VI in Appendix X-C). Its
class distance improvement is similar to MOTH. NC and NAD
have slightly better performances on adversarially trained
models than naturally trained models, with an average of
10.91% and 4.84%, respectively, which are inferior to other
baselines and MOTH. Since Pairwise has a similar performance
on both naturally trained and adversarially trained models
to MOTH, we further study their efficiency for producing a
hardened model. Please see details in Appendix X-D.

We also compare the class distances of the naturally trained,
adversarially trained models, and their hardened versions by
MOTH. Figure 10 presents the average class distance for
the different models. For CIFAR-10, we observe that MOTH
can improve the class distances of both the naturally and
adversarially trained models. But the hardened models based
on the natural models have smaller distances compared to the
adversarial models. This is because these adversarial models
have a low accuracy from 73.94% to 78.45% as shown in Ta-
ble II, whereas the hardened models have 86.81% to 91.48% as
shown in Table I. For the SVHN and GTSRB datasets, observe
that the hardened models based on the natural models have
larger class distances than the adversarially trained models.
The accuracy of the hardened models is also higher than that
of the adversarial models, e.g., 94.99% vs. 91.63% for NiN
on SVHN (see Table I and Table II). This is consistent with
our discussion in Section III that adversarial training can alter
the decision boundary to have larger class distances. However,
it may not achieve maximum as shown in Figure 4(b). On
the other hand, orthogonalization can achieve much larger
distances starting from robust models, with the sacrifice of

TABLE II: Comparison of different methods on hardening
class distance for adversarially trained models. The fifth col-
umn (Rob.) denotes model robustness on the validation set.
The last two columns (ADeg. and RDeg.) show the degrada-
tion of test accuracy and model robustness, respectively.
D M Method Acc. Rob. Time Dist. Increase ADeg. RDeg.

C
IF

A
R

-1
0

R
es

N
et

20

Adversarial 74.87% 42.80% 462.50 209.59 - - -
NC 74.96% 42.50% 78.73 210.73 2.99% 0.00% 0.30%

NAD 74.29% 42.50% 2.61 212.16 2.39% 0.58% 0.30%
Universal 73.92% 43.30% 73.00 259.93 25.62% 0.95% 0.00%
Pairwise 73.34% 43.70% 128.46 288.12 39.90% 1.53% 0.00%

MOTH 74.04% 43.00% 38.71 270.57 32.16% 0.83% 0.00%

N
iN

Adversarial 73.94% 41.40% 430.39 189.49 - - -
NC 73.75% 38.00% 43.41 188.32 3.90% 0.19% 3.40%

NAD 73.61% 39.50% 1.26 192.24 1.23% 0.33% 1.90%
Universal 73.54% 41.10% 35.60 221.53 19.02% 0.40% 0.30%
Pairwise 73.46% 40.50% 75.66 271.83 47.97% 0.48% 0.90%

MOTH 73.47% 41.10% 25.57 276.93 51.18% 0.47% 0.30%

V
G

G
19

Adversarial 76.00% 41.30% 1166.18 201.07 - - -
NC 75.37% 41.60% 141.38 226.70 17.13% 0.63% 0.00%

NAD 73.81% 39.90% 4.12 210.16 5.53% 2.19% 1.40%
Universal 75.06% 42.90% 113.42 298.06 41.56% 0.94% 0.00%
Pairwise 75.31% 42.30% 322.68 359.57 62.19% 0.69% 0.00%

MOTH 75.08% 42.50% 81.54 326.85 53.33% 0.92% 0.00%

SV
H

N

N
iN

Adversarial 91.63% 51.20% 132.00 90.10 - - -
NC 92.02% 41.50% 27.38 91.62 4.35% 0.00% 9.70%

NAD 88.73% 31.10% 1.42 102.76 16.39% 2.90% 20.10%
Universal 92.10% 51.80% 56.00 124.04 38.18% 0.00% 0.00%
Pairwise 91.55% 51.10% 156.10 126.88 42.01% 0.09% 0.10%

MOTH 91.40% 52.30% 51.42 136.96 54.10% 0.24% 0.00%
R

es
N

et
32

Adversarial 92.94% 58.30% 300.08 78.27 - - -
NC 92.25% 49.90% 43.20 95.08 26.17% 0.69% 8.40%

NAD 90.02% 48.70% 5.81 75.93 -1.32% 2.92% 9.60%
Universal 92.74% 58.90% 111.42 123.73 57.85% 0.20% 0.00%
Pairwise 92.34% 57.10% 365.30 124.26 58.27% 0.59% 1.20%

MOTH 92.52% 58.90% 111.74 137.68 75.12% 0.42% 0.00%

Average

Natural 81.88% 47.00% 498.23 153.70 - - -
NC 81.67% 42.70% 66.82 162.49 10.91% 0.21% 4.30%

NAD 80.09% 40.34% 3.04 158.65 4.84% 1.79% 6.66%
Universal 81.47% 47.60% 77.89 205.46 36.45% 0.41% 0.00%
Pairwise 81.20% 46.94% 209.64 234.13 50.07% 0.68% 0.06%

MOTH 81.30% 47.56% 61.80 229.80 53.18% 0.58% 0.00%

accuracy (due to adversarial training).

C. Evaluation on TrojAI Models
The models from the TrojAI competition were trained by

NIST [42] with various model structures and classification
tasks. These models have already been hardened by adversarial
training as described in the experiment setup. We download a
random set of 30 models from the official website [42] (see
Appendix X-E for how these models are selected) and study
whether we can further improve class distance. Detailed results
can be found in our supplementary material [44]. We have the
same observation as in Table II. Universal can improve the
class distance to some extent with an average of 154.70%
improvement over the original models, inferior to MOTH with
232.39% improvement. TrojAI models are larger and more
complex than the ones used in the previous section. Universal
has lower efficiency, taking 167.92 minutes on average to
train a model, which is 42% slower than MOTH (118.10).
Pairwise has a similar performance (239.98%) on hardening
class distance as MOTH. But it suffers from low efficiency
(1121.97 minutes on average), 10.81 times slower than MOTH.
The results delineate the effectiveness and the efficiency of
MOTH on hardening class distance for pre-trained models.
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TABLE III: Ablation study on effects of design choices.
Method Accuracy Time (min) Distance Increase Degrad.

Natural 91.52% 56.77 53.49 - -
MOTH 90.34% 29.68 109.70 108.62% 1.18%
w/o symmetric 90.69% 35.40 (+19%) 94.16 78.90% 0.83%
w/o dynamic adjustment 90.65% 44.72 (+51%) 103.45 95.59% 0.87%
w/o approx. warm-up 90.44% 52.00 (+75%) 105.28 99.53% 1.08%
w/o scheduler 88.78% 120.47 (+306%) 111.09 112.84% 2.74%

D. Ablation Study

MOTH features a few design choices to effectively and
efficiently improve class distance. We study each component
individually to understand the effects of those designs. In
detail, we consider four major parts in MOTH, namely, (1)
symmetric hardening; (2) backdoor reuse and weight adjust-
ment; (3) warm-up through approximation by loss changes;
(4) K-arm scheduler. We conduct an ablation study using a
ResNet20 model on CIFAR-10. Table III shows the effects of
these design choices. Row Natural denotes the original model.
MOTH is the final result of our technique. The following
four rows correspond to the aforementioned four components
that are excluded individually during training. Observe that
without symmetric training, the overall improvement degrades
by 30%, rendering its importance. This is consistent with
our discussion in Section IV-B. The training time without
symmetric hardening also increases as the training needs
to consider both directions of a pair separately. Excluding
dynamic adjustment, the training cost increases by 51% from
29.68 min to 44.72 min. The class distance improvement also
degrades by 10%, indicating that backdoor reuse indeed boosts
performance. The result in the sixth row of Table III shows
that without the approximation of warm-up, the training cost
grows substantially by 75%. The situation can deteriorate for
tasks with more classes. We also investigate the final pairwise
class distances for different warm-up strategies and the results
are almost identical (see details in Appendix X-F). The result
in the last row evidently demonstrates the effectiveness the
scheduler in reducing training cost. Equipped with the sched-
uler, MOTH has a 4x speedup over the one without it, and the
distance improvement is similar.

VI. APPLICATIONS

In this section, we evaluate MOTH in two applications
including reducing false positives for backdoor scanning and
eliminating injected backdoors in existing models.

A. Reducing False Positives

In the TrojAI multi-round competitions for backdoor scan-
ning, performers are asked to identify poisoned models from
a large set consisting of both clean and poisoned models.
As discussed in Section II, due to the existence of small
natural backdoors in clean models, performers struggled in
reducing false positives (i.e., reporting clean models as poi-
soned), especially for round 2. The TrojAI organizer then
leveraged adversarial training to mitigate this issue in the
following rounds, e.g., round 4. However, the top performer
still reports 32 clean models as poisoned in round 4. We
apply MOTH to harden the 32 clean models. The accuracy

(a) Class 1 (b) Class 20 (c) Backdoor
Fig. 11: Example images of class 1 and class 20 from model
ID 905. The backdoor is generated by the top performer.

degradation is unnoticeable (0.13% on average). Details can
be found in our supplementary material [44]. The distance
improvement is similar to that shown in Section V-C and
elided. After orthogonalization, we apply the top-performers’
scanner downloaded from their site [54] to the round 4
datasets again (with the 32 models hardened). The number
of false positives is reduced from 32 to 6, without losing
any true positives. For the remaining 6 false positive models,
we observe that some classes are very similar. We show an
example case of model ID 905 in Figure 11. The first and the
second images are from classes 1 and 20, respectively. The
two signs in the foreground look very similar to each other,
with only one arrow difference in the center. The last image
shows the backdoor generated by the top performer, which
has only small black dots in the center. The class distance
of the pair is 1842 for the original model, and 3964 for the
hardened model. Although MOTH has already improved the
distance by 115%, it is still too small as it corresponds to
around 3964/3 ≈ 36 × 36 pixel changes (224 × 224 for the
input image), which is not distinguishable from the injected
backdoor whose size is 4215. The class distance is bounded
by the natural similarity between the two classes. This further
stresses the importance of publishing orthogonalized class
distances as part of the model specification such that the users
are aware of the inevitable security risks of natural backdoors
between these classes.

B. Eliminating Injected Backdoors

To achieve stealthiness, injected backdoors are usually
small. The essence of such data poisoning is to bring the
victim and target classes close to each other, namely, only
separated by the small backdoor. MOTH hence can be utilized
to eliminate such backdoors since it enlarges class distance for
all pairs. We utilize 59 randomly selected poisoned models
(see selection details in Appendix X-E) from the TrojAI
competition (round 4), where the models were poisoned by
stamping a polygon (with size ranging from 903 to 6021) to
foreground objects. We follow the same setup as in existing
work [39] for eliminating backdoors, where only 5% of the
original training set is used. We use three existing backdoor-
erasing approaches, namely, Standard Finetuning, NC [40],
and NAD [39], as the baselines. Standard Finetuning is a
standard approach that was originally designed for transfer
learning. It uses a small learning rate to update model pa-
rameters based on a small set of training samples. It is the
same finetuning baseline from NAD [39]. Please see detailed
descriptions of NC and NAD in Section V-A. We strictly
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NC Standard Finetuning NAD MOTH

Fig. 12: Attack success rate of poisoned models before/after repair.

follow the setup of the baselines in the original papers [39],
[40] and choose the best results by testing on different settings.
The attack success rate of poisoned models before and after
applying each technique is presented in Figure 12. The x-
axis denotes the model IDs and the y-axis denotes the attack
success rate (ASR). Bars in the light colors denote the ASR of
the injected backdoors before erasing/hardening and the dark
color after. Observe that NC (blue bars) can only successfully
eliminate 7 (out of 59) backdoors and reduce ASR to below
25% for another 4 backdoors. The poisoned models in round
4 have injected backdoors only effective when stamping on
a specific class. NC generates the smallest backdoor once
and uses it in hardening. It is not iterative. Moreover, the
smallest backdoor may not be the injected backdoor (but rather
a natural backdoor). Standard Finetuning (the orange bars)
is effective for seven cases as the injected backdoors were
trained with clean samples. Finetuning only on clean samples
may not affect the backdoor patterns learned by the poisoned
models. NAD is built on top of Standard Finetuning, whose
performance will be constrained by Standard Finetuning. From
the green bars in Figure 12, we can observe that some models
still have a high ASR after finetuning, and NAD reduces
the ASRs to some extent but cannot eliminate the backdoors
(e.g., ID 28 and ID 60). MOTH, on the other hand, can
eliminate all the backdoors with an average ASR down to
1%. The accuracy degradation on clean samples is minimal
for all the approaches on average (< 0.2%). See details in our
supplementary material [44].

VII. RELATED WORK

Backdoor Attack and Defense. Existing attacks either poison
the training set using backdoor injected samples with the target
label like patch attacks [1], [2], or with the original label like
clean label attacks [6]–[9]. There is another type of backdoor
attacks that craft different backdoors for different inputs [45],
[55]. Backdoor attacks can be launched on models with
various applications [56]–[66]. To identify whether a model
is poisoned [16]–[18], Existing works inverse backdoors [40],
[41], use the difference between poisoned models and clean
models when reacting to input perturbations [19]–[21]. Beside
identifying poisoned models, existing techniques also detect
and reject inputs stamped with backdoors [24]–[35]. These
works are orthogonal to our technique as they do not consider
natural backdoors. There are also works focusing on elimi-
nating backdoors by pruning out compromised neurons [36]
or retraining leveraging data augmentation technique [38].
A state-of-the-art technique NAD [39] makes use of the

teacher-student training procedure to remove backdoors. Our
evaluation in Section VI-B shows that MOTH outperforms
NAD. In addition, it does not handle natural backdoors.
Adversarial Training. There are a large body of works on
adversarial training aiming for better robustness and effi-
ciency [53], [67]–[70]. They can enlarge class distances and
on the other hand MOTH can further add to their improve-
ment. Universal adversarial perturbation (UAP) differs from
conventional adversarial attacks targeting individual samples.
It aims to fool models on a set of samples with a universal
perturbation [71], [72]. Researchers proposed to use UAP to
improve model robustness [43]. Our results show that UAP’s
effectiveness on improving class distances is limited.

VIII. DISCUSSION

The main focus of this paper is computer vision tasks. We
discuss possible extensions of MOTH to other domains. Specif-
ically, we discuss a possible proposal of leveraging a sigmoid
function to approximate the discrete value (e.g., characters in
natural language processing (NLP) and the executability of
code in Android apps) for backdoor generation. Details are
in Appendix X-G. Although the threat model of our paper
focuses on static backdoors, we also test MOTH on other
backdoor types, including reflection backdoors [3], composite
backdoors [4], and filter backdoors [41]. MOTH is effective
in defending against these attacks using the default metric.
In addition, we investigate a different metric for the filter
attack, which can be used for hardening and improves the
effectiveness of MOTH. Please see details in Appendix X-G.

IX. CONCLUSION

We develop a novel model hardening technique that can
enlarge class distances, making models resilient to backdoor
attacks. Our evaluation on 5 datasets with 15 model structures
show that it can improve class distance by 149.9% on average
with only 1% accuracy loss, outperforming existing hardening
techniques. It reduces 80% false positives for a state-of-the-art
backdoor scanner and substantially outperforms three recent
techniques in removing injected backdoors.
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X. APPENDIX

A. Detailed Experiment Setup

CIFAR-10 is an object recognition dataset for a 10-class
classification task, which contains 60,000 images. We split the
whole dataset into three sets: 48,000 images for training, 2,000
for validation and 10,000 for testing. Four different models are
utilized for this dataset: ResNet20 [73], Network in Network
(NiN) [74], VGG19 [75], and ResNet50 [73].
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Fig. 13: Mean and standard deviation of class distances for 100
different sets of 100 random samples for a naturally trained
ResNet20 model on CIFAR-10.

SVHN (Street View House Numbers) dataset contains house
(digital) numbers extracted from Google Street View images,
which consists of 73,257 training images and 26,032 test
images. We further split the original training set into 67,257
samples for training and 6,000 samples for validation. We
employ two models, NiN [74] and ResNet32 [73].
LISA is a U.S. traffic sign dataset that contains 47 different
road signs [76]. However, the number of samples of different
classes is not well-balanced, with some classes having very
few images. We use the same setting as in existing work [77]
by choosing 18 most common classes based on the number
of training examples, and split the dataset into 5,635 training
samples, 704 validation samples and 704 test samples. We use
two model structures for this dataset: A CNN model [77] that
consists of three convolutional layers and one fully-connected
layer, and a ResNet20 [73].
GTSRB (German Traffic Sign Recognition Dataset) contains
43 different traffic signs, which is designed for training models
in self-driving scenarios. We divide the dataset into three parts:
35,289 signs for training, 3,920 for validation, and 12,630 for
testing. We use an NiN [74] model for this dataset.

We also conduct experiments on 89 pre-trained models (30
benign ones and 59 poisoned ones) from round 4 of TrojAI
competition [42]. In this round, TrojAI models utilize 16 dif-
ferent structures such as DenseNet121 [78], InceptionV3 [79],
MobileNetV2 [80], etc. Each model is trained to classify
synthetic street signs into between 15 and 45 classes. Input
images are created by compositing a foreground object, e.g., a
synthetic traffic sign, with a random background image from
five different datasets including three categories from KITTI
dataset [81], Cityscapes dataset [82] and Swedish Roads
dataset [83]. Random transformations, such as shifting, titling,
lighting, blurring, and weather effects, are applied during
training to improve dataset diversity. Adversarial training with
PGD (Projected Gradient Descent) [67] and FBF (Fast is
Better than Free) [53] is leveraged to improve model quality.

For adversarial training, we leverage PGD to harden models,
with L∞ bound of 8/255 for CIFAR-10 dataset, 0.03 for
SVHN and GTSRB, and 0.1 for LISA. For training with
universal adversarial perturbation (UAP), we utilize an ex-
isting work [43] for hardening models. The L∞ bound for
UAP training is determined according to the normal accuracy
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TABLE IV: Comparison of distance measures by differ-
ent backdoor generation methods. The fifth and seventh
columns show the average class distance measured by NC and
ABS [41], respectively.

D M Method Accuracy DistanceNC IncreaseNC DistanceABS IncreaseABS

C
IF

A
R

-1
0

N
iN

Natural 88.09% 60.67 - 166.12 -
NC 87.18% 67.40 14.39% 270.83 86.27%

NAD 83.68% 62.04 4.35% 206.09 42.97%
MOTH 86.81% 121.64 107.60% 490.25 289.68%

drop. We use L∞ bound of 4/255 for CIFAR-10, 0.05 for
SVHN, and 0.03 for LISA and GTSRB. For directly applying
generated backdoors in training (Pairwise), we harden every
class pair for 100 iterations.

B. Stability of Class Distance

We study the stability of class distance by using different
sets/numbers of samples on CIFAR-10 and SVHN. Specif-
ically, we select 100 different sets of 100 random samples
from the validation set, and apply NC [40] to measure the
distance as described in Section V-A. We also study using
200 samples. We employ a naturally trained ResNet20 model
for CIFAR-10 and a naturally trained NiN model for SVHN.
Figure 13 shows the results for CIFAR-10 using 100 random
samples. Results of using 200 random samples for CIFAR-
10 and results for SVHN can be found in our supplementary
material [44]. The heat map on the left denotes the means of
class distances for all pairs and the heat map on the right
denotes the standard deviations. Observe that the standard
deviations of class distances are small for using 100 random
samples (4.56) for the measurement (4.50 for 200 random
samples), rendering the class distance measure quite stable.
The average distances are slightly larger for using 200 samples
(61.31) than using 100 samples (57.48). The observation is the
same for SVNH using 100 samples (69.25±5.42) and using
200 samples (73.43±5.15).

We also study using another backdoor generation method
ABS [41] for measuring the distance. The experiment is
conducted on a naturally trained NiN model on CIFAR-
10. Models hardened by three methods, namely, NC [40],
NAD [39], and MOTH, are also considered for studying the
distance by ABS [41]. Table IV shows the distances and
relative improvements over the original model by different
methods. ABS does not merge original pixels with trigger
pixels. Instead, it either completely replaces them or keeps
them untouched. As such, the class distance measured by
ABS is larger than NC. When comparing the distances of
different hardened models (by NC, NAD, and MOTH), the
relative order is the same for the distance measure by NC and
ABS. NAD has the smallest improvement (42.97%), and NC
has a relatively large improvement (86.27%). MOTH achieves
the best performance (289.68%) regardless of the measure.
This delineates ABS an alternative tool for distance measure.

C. More Results on Standard Datasets

We evaluate on more models and datasets for both naturally
trained and adversarially trained models, which are presented

TABLE V: Comparison of different methods on hardening
class distance for naturally trained models.

D M Method Accuracy Time (m) Distance Increase Degrad.

C
IF

A
R

-1
0

R
es

N
et

50

Natural 92.71% 74.11 57.80 - -
NC 91.54% 183.00 67.65 18.65% 1.17%

NAD 92.65% 6.01 57.75 0.60% 0.06%
UAP 91.83% 345.61 98.94 73.29% 0.88%

Universal 91.69% 145.02 97.30 69.74% 1.02%
Pairwise 90.43% 209.00 112.46 93.57% 2.28%

MOTH 91.25% 51.69 113.46 98.79% 1.46%

L
IS

A

C
N

N

Natural 97.30% 0.15 68.47 - -
NC 82.67% 8.27 74.94 14.21% 14.63%

NAD 95.45% 0.15 67.70 0.20% 1.85%
UAP 95.60% 1.79 65.90 -1.23% 1.70%

Universal 96.45% 11.34 101.48 46.13% 0.85%
Pairwise 97.16% 204.98 193.41 166.57% 0.14%

MOTH 96.31% 13.09 178.31 158.35% 0.99%

R
es

N
et

20

Natural 98.86% 1.70 72.05 - -
NC 98.44% 34.42 73.61 3.08% 0.42%

NAD 96.59% 0.72 81.42 11.79% 2.27%
UAP 96.16% 6.33 97.11 36.32% 2.70%

Universal 98.30% 25.37 113.35 53.38% 0.57%
Pairwise 98.72% 738.92 192.70 168.74% 0.14%

MOTH 98.30% 38.75 177.41 144.92% 0.57%

G
T

SR
B

N
iN

Natural 95.28% 4.60 56.93 - -
NC 95.65% 110.51 51.99 -2.61% 0.00%

NAD 93.63% 0.51 57.56 7.93% 1.65%
UAP 95.25% 20.55 53.97 4.27% 0.03%

Universal 95.22% 25.20 78.66 47.69% 0.06%
Pairwise 95.68% 1683.52 167.42 201.81% 0.00%

MOTH 95.55% 74.01 117.30 112.34% 0.00%

Average

Natural 96.04% 20.14 63.81 - -
NC 92.08% 84.05 67.05 8.33 3.96%

NAD 94.58% 1.85 66.11 5.13 1.46%
UAP 94.71% 93.57 78.98 28.16% 1.33%

Universal 95.42% 51.73 97.70 54.24% 0.62%
Pairwise 95.50% 709.11 166.50 157.67% 0.54%

MOTH 95.35% 44.39 146.62 128.60% 0.69%

in Table V and Table VI, respectively. From Table V, we
can observe that with a very small accuracy drop (0.69%),
MOTH can improve the class distance by 128.60% on average
compared to the original model. Baseline UAP can only
harden the class distance on a few datasets and models. For
some models such as CNN on LISA, UAP is not able to
increase the class distance. Training with universal backdoors
has reasonable improvement over the original models, from
46.13% to 69.74%. However, it is inferior to MOTH, with
74.36% improvement difference on average. Due to its poor
cost-effectiveness, Pairwise can take up to 1683.52 minutes to
train a model (on GTSRB), which is 22.75 times slower than
MOTH. The two backdoor-erasing techniques have limited
improvements on class distance, with 8.33% for NC and 5.13%
for NAD on average. Overall, MOTH outperforms NC, NAD,
UAP, and Universal in terms of class distance hardening, and
Pairwise in terms of efficiency with similar distance improve-
ment. We have similar observations on adversarially trained
models as shown in Table VI. MOTH can improve the class
distance by 52.49% with only 0.37% accuracy degradation
and no robustness degradation on average. Universal has a
similar performance on adversarially trained models as on
natural ones. It can increase class distance from 16.26% to
37.13% with an average 23% lower than MOTH. Pairwise has
low efficiency as discussed earlier. For adversarially trained
models, it has a even larger time cost, with a maximum training
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Fig. 14: Comparison of Pairwise and MOTH in terms of
training cost. The x-axis denotes different models, where the
first letter denotes the dataset (C for CIFAR-10, S for SVHN, L
for LISA, and G for GTSRB) and the remaining letters denote
the model structure. The y-axis denotes the training time in
minutes. The numbers on top of bars show the speedup of
MOTH over Pairwise.

time of 2122.95 minutes, which is around one and a half
days. Its class distance improvement is similar to MOTH. NC
and NAD have slightly better performances on adversarially
trained models than naturally trained models, with an average
of 13.09% and 7.21%, respectively, which are inferior to other
baselines and MOTH.

D. Efficiency of MOTH

Since Pairwise has a similar performance on both naturally
trained and adversarially trained models to MOTH, we fur-
ther study their efficiency for producing a hardened model.
Figure 14 shows the training time of Pairwise and MOTH.
The x-axis denotes the models and the y-axis denotes the
training time in minutes. The numbers on top of each bar
show the speedup of MOTH over Pairwise. Observe that MOTH
has a speedup of 1.8 to 22.8 for natural models and 3.0 to
29.8 for adversarial models. Moreover, Pairwise is extremely
slow on datasets with many classes. For instance, the LISA
datasets have 18 classes and the GTSRB dataset has 43 classes.
Pairwise is 17x-19x slower on LISA and 22x-29x slower on
GTSRB than MOTH. This is due to the quadratic complexity of
orthogonalization, which becomes very expensive for models
with a large number of classes if scheduling is not in place.
MOTH, on the other hand, is efficient even for models with
many classes and has a competitive performance with Pairwise
on class distance improvement.

E. Selection of TrojAI Models

We evaluate on 30 randomly selected TrojAI benign models
from the official website [42] and study the performance of
different methods on hardening class distance. We use random
seed 1030792629 to choose from the list of benign models
from TrojAI round 4. We also use random seed 186270393 to
select 59 poisoned models for the study in Section VI-B. We
use Python 3.6.9 and NumPy 1.19.5.

As discussed in Section V-A, the class distance measure-
ment is conducted for all class pairs, which is computationally
expensive, especially for models with many classes. We also
run 3 times on each model to have a more accurate measure-
ment of class distances. For TrojAI models, it usually takes
days to evaluate one single model (including MOTH and all

TABLE VI: Comparison of different methods on hardening
class distance for adversarially trained models.
D M Method Acc. Rob. Time Dist. Increase ADeg. RDeg.

C
IF

A
R

-1
0

R
es

N
et

50

Adversarial 78.45% 42.30% 973.47 195.90 - - -
NC 77.21% 42.70% 155.98 224.85 27.84% 1.24% 0.00%

NAD 77.60% 44.50% 6.11 201.52 3.73% 0.85% 0.00%
Universal 77.60% 42.10% 150.53 262.28 37.13% 0.85% 0.20%
Pairwise 77.63% 42.50% 399.74 276.04 43.32% 0.82% 0.00%

MOTH 77.63% 41.70% 91.90 297.40 55.19% 0.82% 0.60%

L
IS

A

C
N

N

Adversarial 75.43% 25.00% 5.00 213.70 - - -
NC 73.44% 24.43% 8.54 228.81 16.05% 1.99% 0.57%

NAD 70.17% 23.57% 0.14 198.26 3.51% 5.26% 1.43%
Universal 74.15% 33.14% 4.00 270.17 29.08% 1.28% 0.00%
Pairwise 76.85% 33.71% 258.99 312.77 59.74% 0.00% 0.00%

MOTH 74.72% 31.14% 17.47 278.11 59.01% 0.71% 0.00%

R
es

N
et

20

Adversarial 80.54% 36.57% 17.40 215.07 - - -
NC 78.13% 41.86% 79.76 233.03 11.06% 2.41% 0.00%

NAD 80.97% 40.00% 0.93 245.20 15.27% 0.00% 0.00%
Universal 79.69% 42.29% 26.28 251.59 16.26% 0.85% 0.00%
Pairwise 81.25% 41.71% 770.11 265.71 27.58% 0.00% 0.00%

MOTH 81.25% 41.00% 43.34 283.53 35.00% 0.00% 0.00%

G
T

SR
B

N
iN

Adversarial 90.96% 68.70% 54.98 88.51 - - -
NC 91.55% 63.60% 111.72 85.79 -2.60% 0.00% 5.10%

NAD 88.12% 54.30% 0.50 95.25 6.34% 2.84% 14.40%
Universal 90.25% 69.70% 26.00 118.41 35.47% 0.70% 0.00%
Pairwise 91.62% 72.60% 2122.95 162.12 76.89% 0.00% 0.00%

MOTH 90.32% 70.50% 71.29 142.10 60.76% 0.64% 0.00%

Average

Natural 81.35% 43.14% 262.71 178.30 - - -
NC 80.08% 43.15% 89.00 193.12 13.09% 1.27% 0.00%

NAD 79.22% 40.59% 1.92 185.06 7.21% 2.13% 2.55%
Universal 80.42% 46.81% 51.70 225.61 29.49% 0.93% 0.00%
Pairwise 81.84% 47.63% 887.95 254.16 51.88% 0.00% 0.00%

MOTH 80.98% 46.09% 56.00 250.29 52.49% 0.37% 0.00%
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Fig. 15: Comparison of different warm-ups for naturally
trained ResNet20 on CIFAR-10.

the baselines). We hence resort to measuring on 100 randomly
selected class pairs for studying the class distance. We set the
random seed to be the sum of 165838010 and the model id, in
order to avoid selecting the same set of class pairs for models
with the same number of classes.

F. Comparison of Warm-up Strategies

We present the final pairwise class distances for different
warm-up strategies in Figure 15. Each cell in the heat map
denotes the class distance improvement from a source class
(row) to a target class (column). The brightness of the color
denotes the class distance (the brighter the larger). Observe
that the two heat maps are almost identical, meaning our
approximation is effective in solving the cold-start problem.

G. Extensions to Other Settings

Extension to Other Domains. The main focus of this paper
is computer vision tasks. Backdoors in other domains have
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TABLE VII: Evaluation on other backdoor types.

Backdoor
Attack

Subject
Original NAD MOTH

Accuracy ASR Accuracy ASR Accuracy ASR

Reflection

GTSRB 71.22% 83.33% 65.28% 20.83% 87.50% 0.00%
CIFAR ID 1 86.13% 96.60% 78.63% 75.17% 82.30% 8.92%
CIFAR ID 2 84.45% 95.78% 76.59% 92.56% 83.11% 15.33%
CIFAR ID 3 84.93% 99.10% 77.83% 97.16% 81.30% 11.67%

Composite

MNIST 99.51% 99.51% 99.31% 97.10% 98.39% 17.60%
FMNIST 93.09% 97.20% 90.90% 92.10% 90.04% 38.00%
CIFAR 82.70% 87.60% 79.09% 46.80% 80.42% 44.50%
SVHN 94.90% 89.24% 93.49% 66.15% 91.67% 37.00%

different definitions of being stealthy and semantic-aware.
For example, in natural language processing (NLP) domain,
backdoors are usually characters or words that do not change
the overall meaning of original sentences. We can define
the class distance as the number of characters or words of
generated backdoors. As characters or words are discrete (i.e.,
either in the sentence or not), existing backdoor generation
techniques may not be directly applicable. A possible proposal
is to use a sigmoid function to approximate the discrete value
such that existing optimization methods can be leveraged to
generate minimal backdoors. The training process can then
follow MOTH by inserting minimal backdoors in normal sen-
tences. The measure of backdoors in domains such as Android
apps [84] requires domain-specific constraints such as the
injected code not being executed [84]. These constraints may
be considered in the loss function during backdoor generation,
similar to minimizing the L1 norm of the mask. For instance,
we can use a sigmoid function to approximate the executability
of a piece of code (which is discrete) and add this to the loss
function. A large weight can be applied on this loss part to
encourage the loss to be zero. We will leave the experimental
exploration to our future work.
Application to Other Backdoors. Although the threat model
of our paper focuses on static backdoors, we also test MOTH
on other backdoor types, including reflection backdoors [3],
composite backdoors [4], and filter backdoors [41]. For the
reflection attack, we download a pre-trained poisoned model
from the original GitHub repository [85] and also train another
three poisoned models. For the composite attack, we use the
open-source repository from the original paper [86] to generate
four poisoned models. For the filter attack, we leverage 28
poisoned models from the TrojAI round 4 dataset [42]. We use
the same random seed as in Section VI-B for the selection.
The experimental results on reflection and composite attacks
are shown in Table VII. The first column denotes different
backdoor attacks. The second column presents subject models
for evaluation. The third and fourth columns show the accu-
racies and ASRs of poisoned models. The following columns
show the results after applying NAD [39] and MOTH. We can
observe that MOTH is effective against the reflection attack,
reducing the ASR down to 8.98% on average, whereas NAD
can only reduce the ASR to 71.43% on average. For the
composite attack, MOTH is able to eliminate around half of
the backdoor effect (reducing the ASR from 87.60-99.51%
to 17.60-44.50%). NAD, on the other hand, is only able to
reduce one model on CIFAR to 46.80%. The other three

NAD MOTH MOTHfilter

Fig. 16: ASRs of filter-poisoned models before/after repair.

models after applying NAD still have more than 65% ASR,
rendering NAD ineffective against complex backdoor attacks
such as composite backdoors. The experimental results on
the filter attack are shown in Figure 16. The x-axis denotes
the model IDs and the y-axis denotes the attack success rate
(ASR). Bars in the light colors denote the ASR of the injected
backdoors before erasing/hardening and the dark color after.
Filter backdoors are more pervasive than static backdoors
by transforming all the pixels on an input image. Model
hardening using minimal static backdoors may not eliminate
filter backdoors. In our results, for 23 out of the 28 filter-
poisoned models, MOTH can still reduce the ASR down to
<3.1%. For five other cases (ID 54, ID 467, ID 747, ID 817,
and ID 982), MOTH is able to reduce the ASRs by 48.44-80%.
The accuracy degradation on clean samples is minimal for all
the approaches on average (< 0.3%) and omitted.

As filter backdoors are dynamic, meaning that the backdoor
transformation is input-specific. The class distance measured
by static backdoors may not be optimal for filter backdoors.
We hence resort to a different measurement for the filter
case. Specifically, we use the magnitude of mean and standard
deviation for transforming a set of samples as the distance in
the following.

∀x ∈ X, min
µ,σ

L
(
M(x′), yt

)
+ λ · (|µ− µ̄X |+ |σ − σ̄X |),

T(x,µ,σ) = x′ = (x− µx)/σx · σ + µ,

where µ and σ are the mean and standard deviation for
the backdoor transformation, respectively. µx and σx are
the mean and standard deviation of individual inputs, and
µ̄X and σ̄X are the averages across all the samples. Instead
of minimizing the L1 of the mask in Equation 1, here we
minimize the change of the mean and standard deviation with
respect to those of input samples, i.e., |µ− µ̄X |+ |σ− σ̄X |.
This is the distance measurement for the filter scenario. Note
that such a measurement does not change the definition of
class distance minT(E(∥T(x)−x∥)) in Definition III.2, where
the distance is the expectation of some measurement between
transformed data T(x) and original data x for a set of
samples. Based on the above measurement, we modify the
original MOTH by replacing the optimization in Equation 1
and Equation 2 with the above two equations. The results
in green bars in Figure 16 show that the modified version
MOTHfilter can reduce the ASRs from 100% to nearly 0% for
27 models and to around 10% for one model (ID 817). These
results demonstrate the capability of MOTH when extended to
eliminate other types of backdoors. We plan to study more
diverse backdoor types in the future.
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