
BIRD: Generalizable Backdoor Detection and
Removal for Deep Reinforcement Learning

Xuan Chen1, Wenbo Guo1, 2, Guanhong Tao1, Xiangyu Zhang1, Dawn Song2

1Purdue University
2UC Berkeley

{chen4124, henrygwb, taog, xyzhang}@cs.purdue.edu
{henrygwb, dawnsong}@berkeley.edu

Abstract

Backdoor attacks pose a severe threat to the supply chain management of deep
reinforcement learning (DRL) policies. Despite initial defenses proposed in recent
studies, these methods have very limited generalizability and scalability. To address
this issue, we propose BIRD, a technique to detect and remove backdoors from a
pretrained DRL policy in a clean environment without requiring any knowledge
about the attack specifications and accessing its training process. By analyzing
the unique properties and behaviors of backdoor attacks, we formulate trigger
restoration as an optimization problem and design a novel metric to detect back-
doored policies. We also design a finetuning method to remove the backdoor,
while maintaining the agent’s performance in the clean environment. We evaluate
BIRD against three backdoor attacks in ten different single-agent or multi-agent
environments. Our results verify the effectiveness, efficiency, and generalizability
of BIRD, as well as its robustness to different attack variations and adaptions.

1 Introduction

Recent studies [59, 20, 49, 8] demonstrate that an attacker can inject a backdoor into a DRL agent’s
policy. In particular, the attacker adds a trigger into the environmental state during the training
process and forces the agent to take a backdoored/poisoned action that diminishes its total reward
given by the environment. To accomplish this, they manipulate the agent’s reward function and assign
a high reward whenever the agent takes a poisoned action at a poisoned state. We denote the original
reward given by the environment as the actual reward and the attacker-manipulated reward function
as the poisoned reward function. As a result, the agent learns to take poisoned actions at these states,
expecting the environment to assign a high actual reward to it. However, taking the poisoned actions
actually diminishes the agent’s actual reward and even causes the agent to fail its corresponding tasks.

Given that a backdoored agent performs normally at clean states, it is challenging to detect and remove
the backdoor from a pretrained policy without accessing the training process, having knowledge about
the attack specifications (i.e., trigger, poisoned actions, poisoned reward function), and accessing
the poisoned states during testing. Most existing backdoor defenses do not consider the sequential
decision-making nature of DRL policies [46, 48, 16, 28, 13, 9, 25, 61, 30, 42, 51, 52] or assume access
to the agent training process [11, 66, 56, 66]. Only a few methods provide defense for pretrained
policies [2, 15]. However, they have several limitations that hinder their practicality. Specifically, the
method proposed in [2] can only be applied to attacks with a perturbation patch as the trigger and
cannot detect whether a policy is backdoored or not. Similarly, the defense proposed in [15] is only
applicable to attacks where the trigger is an adversarial agent’s specific actions.

We propose a generalizable backdoor detection and removal method for DRL policies. Given a
pretrained agent’s policy network and value function, along with the corresponding clean environment,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

we first formulate trigger restoration as an optimization problem. The objective function is crafted
as searching for a perturbation to the state representation that forces the agent to take actions that
maximize its value function. Since a backdoored agent is trained using a poisoned reward function
that assigns high values when the trigger is present, maximizing its value function should identify
the trigger. Second, we design a novel metric to detect whether the agent is backdoored or not using
the resolved perturbation (denoted as restored trigger). As we will detail in Section 3.3, adding the
restored trigger to the clean environment will cause the backdoored agent to receive a much lower
actual reward from the environment but increase or not affect the clean agent’s actual reward. Based
on this behavior difference, we design our metric as the actual reward difference of the agent before
and after adding the restored trigger to the environment. Finally, we propose a novel finetuning
method to remove the detected backdoor. We design additional regularization terms to the finetuning
objective function to maintain the finetuned agent’s actual reward in the clean environment. We also
introduce a neuron re-initialization mechanism to ensure the backdoor can be successfully removed
even when the restored trigger is not exactly the same as the ground truth one in shape and size.

We denote our method as BIRD (Backdoor Identification and Removal for DRL). We extensively
evaluate BIRD in ten single-agent or multi-agent RL environments against three prevalent backdoor
attacks. First, our results demonstrate that BIRD outperforms existing backdoor detection methods
designed for supervised learning in detecting backdoored policies. Moreover, we show the superiority
of BIRD over existing methods in removing the backdoor while maintaining the agent’s actual reward
in the original clean environment. Second, we verify the effectiveness of our key design choices
through ablation studies, especially our backdoor detection metric. We demonstrate that compared
with the widely used trigger size metric, our metric enables much higher detection accuracy without
requiring subtly tuning the threshold. Third, we demonstrate the computational efficiency of BIRD
and its insensitivity to hyper-parameter choices. Furthermore, we verify the robustness of BIRD
against different variations in attack and two possible adaptive attacks. To the best of our knowledge,
BIRD is the first DRL backdoor defense that can detect and remove backdoors in a clean environment
without requiring access to the attack specifications and policy training process. Furthermore, BIRD
is applicable to all kinds of existing attacks, making it a highly generalizable defense mechanism.

2 Related Work

Attacks. Recent research works propose backdoor attacks against single-agent DRL [59, 20, 50, 8].
These attacks, denoted as perturbation-based attacks, add a small perturbation patch to the victim
agent’s state as the trigger. A backdoored policy performs normally in a clean environment but takes
poisoned action at poisoned states, leading to task failure. A follow-up work considers a two-agent
setup with an adversarial agent and a victim agent [49]. Rather than perturbing the states, they
leverage the adversarial agent’s certain actions as the backdoor trigger (denoted as adversarial agent
attack). More recent works generalize both perturbation-based attacks and adversarial agent attacks
to multi-agent cooperative RL with a team of victim agents [8, 7].

Detection and Defenses. As mentioned in Section 1, only two existing defenses are developed
to mitigate backdoors for a pretrained DRL policy. One method, proposed by [2], uses a trigger
filter technique that maps possibly poisoned states back to their corresponding clean states. This
method is designed for perturbation-based attacks and cannot be applied to adversarial agent attacks.
Additionally, it relies on singular value decomposition, which limits its scalability in complicated RL
environments with high-dimensional state spaces. Another method [15] also has limited generaliz-
ability in that it is only applicable to adversarial agent attacks.

Some other research works also extend adversarial sample attacks [4, 14] to DRL and propose testing-
phase perturbation attacks [17, 32, 36, 63, 26, 40, 19], which perturb the environment at certain
states to fail a pretrained agent. To defend against such attacks, researchers either generalize existing
adversarial defenses designed for supervised learning to DRL [63, 62, 31, 55, 22, 57, 56] or model
the attack and defense as a two-player game and train a robust agent to find the Nash equilibrium
point [33, 60, 64]. Similarly, some robust RL methods also propose robust training techniques against
random perturbations to the agent’s observations [65, 66], actions [33, 44], or reward functions [67].
Due to differences in attack setups, these methods cannot be directly applied to our problem.

2

3 Methodology

3.1 Problem Setup

Formulation. Consider a Markov Decision Process (MDP) M = (S,A, P,R, γ), where S and A
are the continuous or discrete state and action space. P is the state transition function, R is the reward
function, and γ is the discount factor. Without facing any attack, the agent’s goal is to learn an optimal
policy π that maximizes its expected long-term reward, η(π) = E[

∑
t γ

tR(st, π(st))]. We also
define a stationary state occupancy distribution for π, denoted as ρπ(s) = (1− γ)

∑
t γ

tp(st = s|π),
and η(π) can also be expressed as Es∼ρπ [Vπ(s)], where Vπ(s) is the state-value function.

Attack model. We follow existing attacks and assume the attacker injects one backdoor into the victim
agent’s policy. We add a superscript ′ to indicate a backdoored/poisoned entity, and the backdoored
policy is denoted as π′. We consider all three types of existing attacks: single-agent perturbation-based
attacks [20], two-agent adversarial-agent attacks [49], and multi-agent perturbation-based attacks [8].
In the following, we use single-agent perturbation-based attacks to derive our technique, and later
we discuss the extension of our approach to the other attacks. Under perturbation-based attacks, the
attacker designs the trigger as a small perturbation patch denoted as ∆̂. At any time t, the attacker may
add ∆̂ to the current state representation st, causing the backdoored agent to perceive the poisoned
state s′t and taking a poisoned action a′t = π′(s′t). We follow existing works [2, 20] and assume
the attacker only perturbs the state representations perceived by the victim agent (victim agent’s
observation) without altering the actual state (underlying physical state). As such, the state transition
still depends on the actual state rather than the perceived/poisoned one, i.e., st+1 ∼ P (st, a

′
t). To

inject the backdoor, the attacker needs to manipulate the victim agent’s reward function, assigning
the agent an ultra-high poisoned reward when it takes the poisoned action at poisoned states.

Defense assumption and goals. We do not assume access to the attack training process. Instead, we
are provided with an agent with a pretrained policy π and the corresponding state-value network Vπ(s)
or action-value network Qπ(s, π(s)), and lacks the knowledge of whether the policy is backdoored or
not. We are also given a clean environment for testing and debugging purposes. This setup simulates a
practical scenario where the defender needs to verify an agent’s robustness and safety before deploying
it in a potentially poisoned environment, especially in critical fields. We further assume access to
limited computational resources that support testing or finetuning a given policy but not training a
policy from scratch. We also do not assume any knowledge about attack specifications, including
the ground-truth trigger, the poisoned actions, or the reward manipulation strategy employed by the
attacker. We aim to develop a full-stack defense with the following three steps: 1) Trigger restoration
- restore the potential trigger(s) from the given policy in the clean environment, 2) Backdoor detection
- determining whether the restored trigger is associated with an injected backdoor and thus detect
whether the given policy is backdoored or not, and 3) Backdoor removal - unlearning the detected
backdoor from the backdoored policy without affecting its performance in the clean environment.

3.2 Trigger Restoration

Key insights. We derive the intuition from the training process of backdoor attacks. Recall that the
attacker needs to poison the victim agent’s reward function. Under the poisoned reward function,
the agent receives a high total reward, denoted as η(π′) =

∑
s ρ

π′
(s)

∑
a′ π′(a′|s′)R′(s′, a′), when

taking trigger actions at the poisoned states. This indicates that given an agent with a fixed policy,
adding a proper perturbation (trigger) to its state will activate the backdoor, resulting in a significant
increase in the agent’s total poisoned reward under the poisoned reward function.

Intuitively, we can restore the backdoor trigger by searching for a small perturbation to the states
that maximizes the agent’s total poisoned rewards under the poisoned reward function. Since we do
not assume accessing to the poisoned reward function, we use the agent’s state-value or action-value
function to compute the total reward, which is also poisoned during the attack training. Formally, this
perturbation can be obtained by solving the following objective function for a given policy π

max∆

∑
s

ρπ(s)
∑
a

π(s+∆)Qπ(s+∆, π(s+∆)) , (1)

∆ has the same dimension as s, where each element in ∆ represents the perturbation to the corre-
sponding element in s. Solving Eqn. (1) yields a potential trigger for a backdoored policy but not for

3

a clean policy. Given that a clean agent’s reward and value function is not poisoned, solving Eqn. (1)
would likely produce a universal perturbation that guides the agent to take better actions to further
increase its reward. However, this is typically challenging for complicated environments where the
agent’s task is difficult. Besides, we integrate specific designs to eliminate these noisy perturbations.

Technical details. We follow existing perturbation-based attacks [20, 8] and consider the state
representation as the snapshot of the current environment, s ∈ Rp×q with each element sij is
normalized to [0, 1]. Directly solving Eqn. (1) likely results in noisy perturbations for both backdoored
and clean policies. To eliminate these noises, we propose two regularization terms to constrain the
search space. First, given that the attacker typically uses a small trigger size to stay stealthy, we
constrain R1(∆) = ||∆||1, which yields a ∆ with a small number of non-zero elements. This
regularization rules out noisy perturbations with large sizes. Second, all existing perturbation-based
attacks use dense patches as triggers because they are easily applicable in the physical world. In
contrast, noisy perturbations are typically scattered. We add another regularization to constrain the
smoothness/density of ∆, R2(∆) =

∑
i,j(∆i+1,j −∆i,j)

2+
∑

i,j(∆i,j+1−∆i,j)
2. This additional

regularization term further rules out more noisy perturbations that are small and scattered.

Besides adding regularizations, we also design the perturbation ∆ to be produced by a generative
model. As demonstrated in previous works [5], assuming a generative model gives a more stable
and less noisy result than directly solving the values in an unknown perturbation to neural network
input. Since s is normalized to [0, 1], this constrains the maximum allowed perturbation to be 1 or
−1, indicating ∆ij ∈ [−1, 1]. Since there is no common distribution with a value range of [−1, 1],
we satisfy this constraint by introducing a set variable {pij}i=1:p,j=1:q. We define pij to follow a
Beta(αij , βij) distribution, parameterized by αij and βij . Given that pij ∈ [0, 1], we then compute
∆ij = 2pij − 1, which naturally guarantees ∆ij lies within the range of [−1, 1]. The objective
function can be rewritten as maxα1:p,1:q,β1:p,1:q

Ep∼B[
∑

s ρ
π(s)

∑
a π(s + 2p − 1)Qπ(s + 2p −

1, π(s+ 2p− 1))], where p ∈ Rp×q and B stands for the joint distribution
∏

i,j Beta(αij , βij). By
sampling perturbations from the beta distribution and computing the mean as the final result, we
can reduce noise and obtain a trigger with higher fidelity. With this generative model, we double
the number of parameters needed to be resolved. Given that the beta distribution’s output sparsity
depends more on the difference between α and β than their actual value. We further fix the value of
α and design βij = eij + α, e ∈ Rp×q , to reduce the number of parameters in our objective function.
Supplement S1 provides more insights about this parameter reduction design and Supplement S4
shows our method is not sensitive to the choice of α.

So far, we consider the trigger’s location and pattern to be fixed across different states (time steps). A
straightforward attack adaption could change the trigger’s location and even its shape at different
states. To handle this scenario, we design e as a function of each state fθ(s), parameterized by θ.
This design is also applicable to the original attack, where all the states have the same output for
fθ(·). Putting all designs above together, we obtain the trigger restoration objective function.

maxθJ(θ) = Es∼ρπ [Eps∼Bs [ηs(π(ps)) + λ1R1(ps) + λ2R2(ps)]], Bs =
∏
i,j

Beta(α, α + (fθ(s))ij) ,

ηs(π(ps)) =
∑
a

π(s + 2ps − 1)Qπ(s + 2ps − 1, π(s + 2ps − 1)) ,
(2)

where λ1 and λ2 are hyperparameters. ps and Bs is specific for each state s. Eqn. (2) can not be
directly solved because ps is sampled from an unknown distribution Bs. We leverage the policy
gradient method [21, 18] to compute the gradient ∇θJ(θ) and solve the Eqn. (2) following the
typical on-policy REINFORCE algorithm [41]. Our final perturbation for each state s is ∆s =
2(α

2α+fθ(s)
)− 1, where α

2α+fθ(s)
is the mean of the joint beta distribution Bs.

To ensure that the perturbations we compute actually influence the agent’s actions and affect its
reward during execution, rather than generating simple adversarial examples for the value network
that cannot affect the agent’s actions, we only use the agent’s value network to compute average
rewards. We do not compute the gradient of θ with respect to the value network or update the value
network itself. Supplement S1 provides a detailed algorithm for solving Eqn. (2) and also discusses
further why we are not solving adversarial examples for the value network.

3.3 Backdoor Detection

Key insights. Our backdoor detection methods draw insights from the unique behaviors of backdoored
policies, which perform well in clean environments but poorly in poisoned ones. For a backdoored

4

policy, if its restored trigger ∆ has similar efficacy as the ground-truth trigger ∆̂, adding it back to
the clean environment will significantly reduce the agent’s total actual reward. However, this is not
the case for a clean agent trained using the actual reward function. Since the value function of a clean
agent is not poisoned, solving Eqn. (2) will either result in a perturbation that guides the agent to
select better actions and increase its reward or a perturbation that cannot significantly impact the
agent’s performance, if the agent is already well-trained or the environment is too complicated. In
both cases, adding the perturbation to the environment will not reduce the agent’s actual reward.

As such, we propose a novel metric to distinguish between backdoored and clean policies, which
is based on the agent’s actual reward reduction before and after poisoning the environment with
restored perturbations. This approach differs from existing detection methods designed for supervised
classifiers (e.g., [4, 48, 38, 42]), which rely on the trigger size (||∆||0) as the metric. This metric
is sensitive to the ground-truth trigger size. Our detection method is designed based on the unique
behaviors of backdoor attacks in DRL and is more accurate and robust (demonstrated in Section 4).

Technical details. Given an agent’s policy π, we first run it in the environment for K rounds
and record the agent’s average actual reward given by the environment, denoted as η̄(π) =
1
K

∑(k)
t R(s

(k)
t , π(s

(k)
t)). We then simulate an extreme attack case by adding the restored per-

turbation ∆s to the agent’s policy input at each time step, run the agent for K rounds, and record
the average actual reward, denoted as η̄(π,∆) = 1

K

∑(k)
t R(s

(k)
t , π(s

(k)
t +∆st)). For adversarial

agent attacks, since ∆ corresponds to the state representation of the adversarial agent’s trigger action,
adding ∆st to st simulates the trigger action. Here, η̄(π,∆) = 1

K

∑(k)
t R(s

(k)
t +∆st , π(s

(k)
t +∆st)),

given that the trigger action indeed changes the actual state of the environment. Next, we compute the
reward reduction rate ϕ(π,∆) = (η̄(π,∆)− η̄(π))/ηmax, where ηmax is a normalization term, repre-
senting the maximum reward difference of the environment. ϕ(π,∆) ∈ [−1, 1]. If ∆ is similar to the
ground-truth trigger, it will result in a very large reward reduction and thus a negative ϕ(π,∆) near
−1. Conversely, a ∆ restored from a clean policy will produce a positive ϕ(π,∆) or a ϕ(π,∆) ≈ 0.

Therefore, we treat π as a backdoored policy and ∆ as the trigger if ϕ(π,∆) ≤ ϵ. We consider a
practical scenario where we do not have a set of clean policies to help select a proper threshold.
Instead, we need to make a decision for each individual policy by hand. We set an aggressive value
with ϵ = −0.9 to rule out false positives. Here, we consider all of the clean policies and backdoored
policies are well-trained, i.e., their reward in the clean environments are nearly optimal. In case
that there are some sub-optimal agents that are backdoored, the detection threshold should be more
conservative. More discussions on the detection threshold under different situations can be found
in Supplement S2. Later, in Section 4, we demonstrate that, due to the significant performance
difference between backdoored policies and clean policies under our restored perturbation, even
setting ϵ = −0.9 introduces only negligible false negatives and thus provides a nearly perfect
detection performance. Supplement S1 presents our detection algorithm.

3.4 Backdoor Removal through Unlearning

+

+

Poisoned
action: go left

Restored
trigger

Ground-truth
trigger

Backdoored
policy

=

=

Figure 1: Overlapped shortcuts between the restored trigger
and the ground truth one. The bar plot shows the overlapping
percentage among the top X neurons with the highest value.

Naive solutions and pitfalls. A naive solu-
tion for backdoor removal is to add the re-
stored trigger to the state and retrain the pol-
icy under the actual reward function, which
penalizes poisoned actions a′. We test this
solution and find that it indeed improves the
agent’s performance when presented with
the restored trigger. However, the retrained
policy remains vulnerable to the ground-
truth trigger due to differences between the
restored and ground-truth trigger. We try to
address this issue by varying the restored
trigger (e.g., adding random noise) during the training. Our empirical findings suggest that the ground
truth trigger is only unlearned when the restored one is very similar to it, which is not always the
case. Furthermore, we discover that the performance of retrained policies in the clean environment
oftentimes decreases after retraining. These initial explorations highlight two challenges: (1) how to
remove the ground-truth trigger when the restored one has some differences from it, and (2) how to
maintain the retrained agent’s performance in the clean environment.

5

Our Designs. As extensively studied in existing research [54, 53, 10], injecting a backdoor in neural
networks is equivalent to building one or a few shortcuts from the backdoor trigger to the target
out. In DRL, these shortcuts connect the poisoned states with the poisoned action. When the trigger
is presented, only the neurons on the shortcuts get activated. Given that our restored trigger could
indeed trigger similar poisoned actions as the ground truth one, we hypothesize that even if the
restored trigger is not highly similar to the ground truth one, their corresponding shortcuts may have
some overlap. To test this hypothesis, we conduct an empirical test where we compared the neurons
activated by the restored trigger with those activated by the ground truth trigger. As shown in Fig. 1,
the neurons with high activation values have a large overlap for these two triggers, confirming our
hypothesis. Guided by this intuition, we propose to remove these most vulnerable and overlapping
shortcuts instead of directly unlearning the trigger. In particular, we first add the restored trigger to
the backdoored policy input and record the activation values of all the neurons. We select the top L
neurons with the highest activation value and re-initialize their weights to erase the most vulnerable
shortcuts. Finally, we retrain the policy in the environment poisoned with the restored trigger under
the actual reward function. The objective function can be written as maxϕ η(πϕ,∆) , where πϕ

denotes the retrained policy. We retrain the entire policy network rather than only the reset neurons to
give the policy enough capacity to let the agent learn how to perform in the poisoned environment.
See Supplement S2 for more details about our neuron selection and re-initalization process.

The second challenge can be addressed by incorporating an additional regularization term, i.e,
|η(πϕ)− η(π′)| ≤ ϵ1, where π′ is the original backdoored policy. This ensures that the total reward
difference between the retrained policy and the original policy is within a certain threshold ϵ1. This
constraint helps to maintain the retrained agent’s performance in the clean environment, given that the
original backdoored agent should have performed well in a clean environment by design. However,
this regularization is not feasible as |η(πϕ)| is intractable during training. To overcome this, we
propose to use the KL divergence between πϕ and π′ as a proxy since it is much easier to compute.
The following inequality states the relationship between KL divergence and value difference.

|η(πϕ)− η(π′)| ≤ Cmaxs∼ρπ
′KL(πϕ(s)∥π′(s)). (3)

See Supplement S1 for the derivation. Based on Eqn. (3), constraining the KL divergence between π
and π̂ can bound |η(πϕ)− η(π′)|. Then, our final retraining objective function can be written as

max
ϕ

η(πϕ,∆) , s.t. KL(πϕ(s)∥π′(s)) ≤ ϵ1 . (4)

We leverage the state-of-art PPO algorithm [37] to solve Eqn. (4), which guarantees a fast convergence.
During retraining, we periodically add ∆ to simulate the poisoned states and keep a certain portion
of clean states to compute KL(πϕ(s)∥π′(s)). Supplement S1 shows the detailed algorithm of our
backdoor removal methods. Supplement S2 states our implementation and hyper-parameter choices.

Note that our proposed defense (from trigger restoration to backdoor removal) can be directly applied
to adversarial agent attacks [49] and multi-agent perturbation-based attacks [8] (See Supplement S1
for a detailed discussion).

4 Evaluation

We compare BIRD with three state-of-the-art backdoor DRL attacks: TrojDRL [20], Backdoorl [49],
and Marnet [8]. Following their papers, we select the environments and used their default attack setups
to train backdoor policies (see Supplement S2 for more details). For TrojDRL, we select six Atari
games from the OpenAI Gym [3]: Breakout, SpaceInvaders (SI), Qbert, and Seaquest, CrazyClimber,
Pong. Due to limited space, we put the results of CrazyClimber and Pong in Supplement S3. TrojDRL
considers targeted and non-targeted attacks based on whether the backdoored action is prespecified or
not. In this section, we report the results of non-targeted attacks, where detection is more challenging,
and leave the results of targeted attacks in Supplement S3. For Backdoorl, we choose the You-Shall-
Not-Pass (YSNP), Sumo-Humans (SH), and Run-To-Goal-Ants (RTGA) games from the MuJoCo
environment [45]. We select the SMAC environment [47] for Marnet and conduct two attacks, one
against the policies trained by QMIX [35] (a multi-agent Q-learning algorithm), and the other against
the policies trained by COMA [12] (a multi-agent policy gradient algorithm). Note that by default, all
the perturbation-based attacks consider the trigger with a fixed shape/size/location, and adversarial
agent attacks set the trigger as a sequence of fixed actions taken at the beginning of each game. We
include the performance of BIRD against a more recent attack [6] in Supplement S3.

6

Table 1: Performance of different defenses in the nine attack scenarios. “Clean” and “poisoned” refer to the
original clean environment and an environment poisoned by the ground truth trigger. The numbers in each
element are mean±std. “-” means that the method is not applicable to the corresponding attack. The Atari
games’ results are rewards and the rest are winning rates. Supplement S3 shows the p-value for each attack
scenario is smaller than 0.001.

Environments Methods Breakout SpaceInvaders Qbert Seaquest QMIX COMA YSNP SH RTGA

Clean

Original 298±37 610±97 13488±1897 1719±107 74.4%±2.5% 93.0%±2.2% 52.8%±4.5% 28.9%±3.6% 49.7%±4.8%

PD 142±32 238±94 4941±1428 932±97 - - - - -

Finetuning 317±39 614±104 13151±2233 1785±98 73.6%±2.6% 90.5%±5.4% 53.5%±1.7% 30.1%±2.8% 50.6%±4.4%

BIRD 320±35 529±92 13389±2452 1741±73 70.2%±1.3% 89.2%±3.8% 48.2%±1.8% 27.2%± 1.3% 44.2%± 3.2%

Poisoned

Original 8.0±4.8 19±87 150±12 146±49 6.5%±1.4% 1.3%±2.7% 16.5%±3.4% 11.2%±2.8% 22.5%±1.8%

PD 140±9 325±53 6180±1817 853±162 - - - - -

Finetuning 10.6±0.9 21±65 173±24 159±63 6.7%±1.5% 5.31%±8.3% 18.4%±2.1% 12.5%±3.3% 21.5%±1.6%

BIRD 269±49 543±52 12694±2194 1686±83 70.9%±4.8% 90.7%±3.0% 46.7%±3.9% 25.1%±2.6% 43.1%±6.5%

4.1 Trigger Restoration and Backdoor Detection

Baselines. There are no existing works on detecting backdoored policies.1 Therefore, we select
two backdoor detection techniques designed for supervised classifiers. The first is the widely used
NC method [48], and the other is the state-of-the-art method, Pixel [42]. They can be applied to
perturbation-based attacks (TrojDRL and Marnet), where the action space is discrete. In particular,
we collect a set of states and actions of a given policy and run these methods by treating each possible
action as the target class. We then apply their detection method (i.e., using the trigger’s l0 norm as
the metric to find if there is an outlier trigger) to decide whether the policy is backdoored or not.

Breakout SI Qbert Seaquest QMIX COMA YSNP SH RTGA
Attack Scenarios

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 sc

or
e

NC Pixel BIRD

Figure 2: Backdoor detection F1 scores of the selected methods
in the nine attack setups. “SI” stands for the Atari SpaceInvaders
environment.“QMIX” and “COMA” stands for the attack against
QMIX and COMA policies in the SMAC environment. Given that
NC and Pixel cannot be applied to adversarial agent attacks, we do
not report their results for those attacks.

Design and Metric. For each of
the nine attack scenarios, we trained
10 policies, with five of them be-
ing backdoored policies, five being
well-trained clean policies. We ap-
plied BIRD (with ϵ = −0.9) and the
baseline methods to identify the back-
doored policies from the 10 policies,
and reported the F1 score of the detec-
tion result. Both BIRD and the base-
line methods make the detection deci-
sion for each individual policy with-
out relying on other policies. There-
fore, the total number of policies does
not affect the detection process.

Results. Fig 2 shows the backdoor de-
tection performance of all three meth-
ods in the nine attack scenarios. The
figure first shows that the baseline methods perform poorly in all the attacks where they can be applied.
This result confirms that without considering the sequential decision-making nature of DRL, these
baseline methods have limited generalizability in detecting DRL backdoor attacks. In contrast, BIRD
has a much higher (in some cases perfect or near perfect) F1 score in each setup, demonstrating the
effectiveness of our method and its superior advantage over existing methods. As we will elaborate
in Section 4.3, both our trigger restoration technique and novel detection metric contribute to this
remarkable result. Additionally, we show in Supplement S3 that the triggers obtained from BIRD
have higher fidelity than those restored by the comparison baselines.

4.2 Backdoor Removal

Baselines. We select two baseline methods: 1) direct finetuning of the backdoored policy in the
corresponding clean environment, denoted as “Finetuning”, and 2) an existing DRL backdoor defense

1Existing DRL defense method [2] applies their defense procedure to each policy without distinguishing
whether it is backdoored or not.

7

Table 2: Ablation study results. “NR” refers to
neuron re-initialization. For ||∆||0, we carefully
tune the threshold and report the best result.

Attack
scenario

F1 score Poisoned

ϕ(π,∆) ||∆||0 w. NR w/o. NR

Qbert 0.909 0.571 12694±2194 0.0%±0.0%
COMA 1.000 0.347 90.7%±3.0% 6.7%±2.1%
YSNP 0.667 0.263 46.7%±3.9% 29.5%±4.1%

Table 3: BIRD against attack variations. Each column
represents one variation (e.g., Col.3 means circle, 3 × 3,
0.1). “Clean” and “Poisoned” refer to the performance in
clean and poisoned environments.

Default
setup

Shape Size PR

circle triangle 5× 5 7× 7 0.2 0.4

F1 score 1.0 0.909 1.0 0.833 0.889 1.0 0.889
Clean 529±29 536±68 609±36 601±85 636±93 540±56 471±83

Poisoned 543±52 501±47 575±24 557±61 629±72 544±61 428±33

designed for single-agent perturbation-based attacks - Provable Defense (PD) [2]. We do not consider
another existing defense [15] as it is still a pre-print paper without a public implementation. We
also do not include the large body of backdoor unlearning techniques designed for supervised
classifiers [34, 25, 24, 61, 39, 68], which cannot be directly applied to our problem.

Design and Metric. For each attack scenario, we apply the selected methods to defend the 5
backdoored policies trained in Section 4.1. We use the agent’s average reward/winning rate over 1000
game rounds as the evaluation metric. We report the mean and standard deviation of the metrics over
the five policies in the clean and poisoned environment before and after applying the defense. We
construct the poisoned environment by adding the ground truth trigger to every state. To demonstrate
the statistical significance of our results, we also conduct a paired t-test to compare BIRD with the
selected baselines and report the p-value. For BIRD , we select the number of reinitialized neurons
L ∈ [10, 30] for each policy based on the retraining performance in the first few iterations. We
reinitialize the values of the selected neurons as zero.

Results. Table 1 presents the defense results of the selected methods. First, we observe that policies
directly fine-tuned in clean environments still perform poorly in the poisoned environment, indicating
that the backdoor is not removed. Second, PD demonstrates certain defense efficacy, as it increases
the agent’s reward in the poisoned environments. However, PD significantly reduces the agent’s
performance in clean environments. We suspect that this is due to the fact that PD project s every
state to a possible clean state. This is problematic when PD cannot correctly project the organically
clean states, which lowers the quality of the projected states and thus reduces the agent’s performance
in clean environments. Additionally, PD involves computing singular value decomposition when
conducting the projection, which is computationally expensive. The average run time of PD is at least
2× larger than BIRD. Finally, the policies retrained by BIRD demonstrate the highest reward/winning
rate in poisoned reward across all attacks, which is almost similar to the original backdoored agent’s
performance in the clean environment, verifying BIRD successfully removed the backdoor. Moreover,
BIRD can well maintain the agent’s performance in a clean environment. In conclusion, BIRD is
much more effective, efficient, and generalizable than existing defenses in robustifying a backdoored
policy and maintaining its utility in a clean environment. In addition, we also show that BIRD
outperforms two other alternative defenses, where we use the trigger restored by NC and Pixel and
apply our backdoor removal method to retrain the backdoored policies (See Supplement S3).

4.3 Ablation Studies

In this experiment, we conduct three ablation studies to verify the efficacy of our three key designs:
generative model (Section 3.2), detection metric (Section 3.3), and neuron re-initialization (Sec-
tion 3.4). We select one game from each attack for this experiment: Qbert (non-targeted attack) and
COMA for the perturbation-based multi-agent attack and YSNP for the adversarial agent attack. In
the following, we discuss our ablation studies on the detection metric and neuron re-initialization
while leaving the experiment on the generative model to Supplement S3.

Detection metric. For each attack scenario, we reuse the ten policies and their restored triggers from
Section 4.1. We then replace our reward-based metric ϕ(π,∆) with the commonly used metric –
||∆||0 and deem the policy with ||∆||0 smaller than a certain threshold as the backdoored one. Table 2
(Col. 2&3) shows that using our proposed metric leads to significantly higher detection rates than
||∆||0, verifying the effectiveness of our design. As mentioned in [48, 16], detecting backdoors using
trigger size is difficult because noisy perturbations or adversarial examples can also have a small size.
In contrast, our metric is designed based on behavioral differences between clean and backdoored
policies, making it more robust to noisy perturbations. Furthermore, BIRD are insensitive to the
threshold ϵ, significantly improving its practicality (See Supplement S4).

8

Neuron Re-initialization. We reuse the five backdoored policies from the three attacks and compare
the effectiveness of our proposed neuron re-initialization method against directly retraining the entire
policy network with the restored trigger using Eqn. (4). Table 2 (Col. 4&5) shows the retrained
policies’ performance in the environment poisoned by the ground truth trigger with and without
neuron re-initialization. Comparing Col. 2&3 can reflect the efficiency of using total reward as
the detection metric and comparing Col. 4&5 can reflect the efficiency of neuron re-initialization.
Our results demonstrate the importance of neuron re-initialization in backdoor removal. This also
confirms our claim in Section 4.2 that directly retraining the policy with the restored trigger may not
fully eliminate the ground truth trigger when they are not very similar.

4.4 Attack Variations and Adaptive Attacks

We evaluate the robustness of BIRD against different attack variations and two potential adaptive
attacks in the SpaceInvaders environment of the non-targeted perturbation-based attack.

Attack variations. Based on the default attack setup, where the trigger is a 3× 3 square, and the
state poisoning rate is 0.1, we vary the trigger shape (circle and triangle), size (5 × 5, 7 × 7), and
poisoning rate (0.2, 0.4). For each variation, we train five backdoored policies, apply BIRD to detect
them from the five clean policies mentioned in Section 4.1, and report the detection performance in
Table 3. The results show that BIRD maintains a high and stable detection performance when dealing
with these variations. Table 3 also presents the backdoor removal performance of BIRD on these
attacks, which is consistent with the detection result.

Adaptive attack-1. We first consider a straightforward adaptive by allowing the trigger to vary its
shape and locations at different states. However, even after carefully tuning the training parameters,
the attack was unable to achieve comparable performance as it is in the static setting. For SpaceIn-
vaders, the agent’s average reward in the poisoned environment is only reduced from 580 to 510
for non-targeted attack and (to 445 for targeted attack). This motivates future work to design more
effective backdoor attacks with dynamic triggers. Nevertheless, even if such an attack succeeds, as
discussed in Section 3, BIRD is designed to be robust against it.

Adaptive attack-2. We further consider an adaptive attack against our neuron re-initialization
mechanism, a key design for backdoor removal. When training the backdoored policy, we add an
additional regularization to constrain the l2 norm of the policy weights, which avoids neurons with
ultra-high activation values. We train five backdoored policies with this attack, apply BIRD , and
record the backdoor removal performance. The policies’ average reward in the clean environment
before and after applying BIRD is 582 and 563, respectively, and the average reward in the poisoned
environment is 170 (before) and 512 (after). These results demonstrate the robustness of BIRD
against this adaptive attack (See Supplement S2 for more implementation details).

Additionally, we discuss generalizing BIRD to a setup where we do not assume accessing the agent’s
value networks, or a more challenging scenario where the attacker intentionally attaches a benign
value network instead of the backdoored one to make the attack more stealthy(See Supplement S3).
Moreover, we also demonstrate the computational efficiency of BIRD and its insensitivity to subtle
variations in key hyper-parameters (α, detection threshold ϵ, and the number of reinitialized neurons
L). We present these experiments in Supplement S4.

5 Conclusion and Future Works

We present BIRD, a method for detecting and removing backdoors in DRL policies. By analyzing
the attack process and unique behaviors of backdoor agents, we formulate the trigger restoration
as an optimization problem and design a novel metric to detect backdoored policies. We also
propose a novel finetuning method to remove the identified backdoor. Extensive experiments against
various attacks demonstrate the effectiveness, efficiency, and generalizability of BIRD, as well as its
robustness to different attack variations.

This work points to several promising directions for future research. First, we evaluate two adaptive
attacks in Section 4. Our future work will explore other possible attacks (e.g., using watermark
triggers) and extend BIRD to defend against these attacks. Second, while our trigger restoration
technique may not always yield a restored trigger that perfectly matches the ground-truth trigger,
it is still effective in achieving a decent detection and removal performance. We plan to refine our

9

trigger restoration technique to improve its restoration fidelity in future work. Third, in addition to
the detection and unlearning mechanism utilized in BIRD, we will explore alternative solutions to
render the backdoor ineffective. For example, we can filter out the trigger before feeding the state
representation to the backdoored agent without finetuning it. Fourth, we acknowledge that besides the
neuron re-initialization method discussed in Section 3.4, existing works also design other techniques
to identify and remove the backdoor shortcuts (e.g., neuron pruning [27, 53, 58], [51]). In future work,
we will explore the effectiveness of integrating these techniques into our approach. Fifth, as discussed
in Section 2, BIRD differs from other robust RL methods in terms of attack/problem setups. As part
of future work, we will investigate generalizing these defenses designed for other attack setups to
defend against backdoor attacks. Finally, while we evaluate BIRD in various game environments, we
plan to further extend the backdoor attacks and defenses to broader types of environments, such as
multi-agent competitive environments [29, 43] and extensive-form environments [23, 1].

Acknowledgements

This project was supported, in part by ARL Grant W911NF-23-2-0137, IARPA TrojAI W911NF-19-
S0012, NSF 1901242 and 1910300, ONR N000141712045, N000141410468 and N000141712947.
We also thank the Center for AI Safety for their support of the Compute Cluster. Any opinions,
findings, and conclusions in this paper are those of the authors only and do not necessarily reflect the
views of our sponsors.

References
[1] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song,

Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi
challenge: A new frontier for ai research. arXiv preprint arXiv:1902.00506, 2019.

[2] Shubham Kumar Bharti, Xuezhou Zhang, Adish Singla, and Xiaojin Zhu. Provable defense
against backdoor policies in reinforcement learning. In NeurIPS, 2022.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[4] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
S&P, 2017.

[5] Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image
classifiers by counterfactual generation. In ICLR, 2019.

[6] Jinyin Chen, Xueke Wang, Yan Zhang, Haibin Zheng, Shanqing Yu, and Liang Bao. Agent
manipulator: Stealthy strategy attacks on deep reinforcement learning. Applied Intelligence,
2022.

[7] Shuo Chen, Yue Qiu, and Jie Zhang. Backdoor attacks on multiagent collaborative systems.
arXiv preprint arXiv:2211.11455, 2022.

[8] Yanjiao Chen, Zhicong Zheng, and Xueluan Gong. Marnet: Backdoor attacks against coop-
erative multi-agent reinforcement learning. IEEE Transactions on Dependable and Secure
Computing, 2022.

[9] Edward Chou, Florian Tramer, and Giancarlo Pellegrino. Sentinet: Detecting localized universal
attacks against deep learning systems. In IEEE Security and Privacy Workshops (SPW), 2020.

[10] Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxiang
Gu, Tong Sun, and Xia Hu. Towards interpreting and mitigating shortcut learning behavior of
nlu models. arXiv preprint arXiv:2103.06922, 2021.

[11] Min Du, Ruoxi Jia, and Dawn Song. Robust anomaly detection and backdoor attack detection
via differential privacy. arXiv preprint arXiv:1911.07116, 2019.

[12] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI, 2018.

10

[13] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
Strip: A defence against trojan attacks on deep neural networks. In ACSAC, 2019.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[15] Junfeng Guo, Ang Li, and Cong Liu. Backdoor detection in reinforcement learning. arXiv
preprint arXiv:2202.03609, 2022.

[16] Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du, and Dawn Song. Towards inspecting
and eliminating trojan backdoors in deep neural networks. In ICDM, 2020.

[17] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[18] Sham M Kakade. A natural policy gradient. In NeurIPS, 2001.

[19] Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul Rolland, Cheng Shi, and
Volkan Cevher. Robust reinforcement learning via adversarial training with langevin dynamics.
NeurIPS, 33:8127–8138, 2020.

[20] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. Trojdrl: Trojan attacks on
deep reinforcement learning agents. arXiv preprint arXiv:1903.06638, 2019.

[21] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In NeurIPS, 1999.

[22] Aounon Kumar, Alexander Levine, and Soheil Feizi. Policy smoothing for provably robust
reinforcement learning. In ICLR, 2022.

[23] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, et al.
Openspiel: A framework for reinforcement learning in games. arXiv preprint arXiv:1908.09453,
2019.

[24] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor
learning: Training clean models on poisoned data. In NeurIPS, 2021.

[25] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural at-
tention distillation: Erasing backdoor triggers from deep neural networks. arXiv preprint
arXiv:2101.05930, 2021.

[26] Yongyuan Liang, Yanchao Sun, Ruijie Zheng, and Furong Huang. Efficient adversarial
training without attacking: Worst-case-aware robust reinforcement learning. arXiv preprint
arXiv:2210.05927, 2022.

[27] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In RAID, 2018.

[28] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang.
Abs: Scanning neural networks for back-doors by artificial brain stimulation. In CCS, 2019.

[29] Ryan Lowe, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In NeurIPS, 2017.

[30] Wanlun Ma, Derui Wang, Ruoxi Sun, Minhui Xue, Sheng Wen, and Yang Xiang. The"
beatrix”resurrections: Robust backdoor detection via gram matrices. arXiv preprint
arXiv:2209.11715, 2022.

[31] Tuomas Oikarinen, Wang Zhang, Alexandre Megretski, Luca Daniel, and Tsui-Wei Weng.
Robust deep reinforcement learning through adversarial loss. In NeurIPS, 2021.

[32] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary.
Robust deep reinforcement learning with adversarial attacks. arXiv preprint arXiv:1712.03632,
2017.

11

[33] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial
reinforcement learning. In ICML, 2017.

[34] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via generative distribution
modeling. In NeurIPS, 2019.

[35] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In ICML, 2018.

[36] Alessio Russo and Alexandre Proutiere. Optimal attacks on reinforcement learning policies.
arXiv preprint arXiv:1907.13548, 2019.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[38] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson, Larry S Davis, and Tom Goldstein.
Universal adversarial training. In AAAI, 2020.

[39] Guangyu Shen, Yingqi Liu, Guanhong Tao, Qiuling Xu, Zhuo Zhang, Shengwei An, Shiqing
Ma, and Xiangyu Zhang. Constrained optimization with dynamic bound-scaling for effective
nlp backdoor defense. In ICML, 2022.

[40] Yanchao Sun, Ruijie Zheng, Yongyuan Liang, and Furong Huang. Who is the strongest enemy?
towards optimal and efficient evasion attacks in deep rl. arXiv preprint arXiv:2106.05087, 2021.

[41] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NeurIPS, 1999.

[42] Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and
Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In CVPR, 2022.

[43] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:
Gym for multi-agent reinforcement learning. In NeurIPS, 2021.

[44] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and
applications in continuous control. In ICML, 2019.

[45] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IROS, 2012.

[46] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In
NeurIPS, 2018.

[47] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Kuttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782,
2017.

[48] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y. Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In S&P, 2019.

[49] Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn Song. Backdoorl:
Backdoor attack against competitive reinforcement learning. arXiv preprint arXiv:2105.00579,
2021.

[50] Yue Wang, Esha Sarkar, Wenqing Li, Michail Maniatakos, and Saif Eddin Jabari. Stop-and-go:
Exploring backdoor attacks on deep reinforcement learning-based traffic congestion control
systems. IEEE Transactions on Information Forensics and Security, 2021.

[51] Zhenting Wang, Hailun Ding, Juan Zhai, and Shiqing Ma. Training with more confidence:
Mitigating injected and natural backdoors during training. In NeurIPS, 2022.

12

[52] Zhenting Wang, Kai Mei, Hailun Ding, Juan Zhai, and Shiqing Ma. Rethinking the reverse-
engineering of trojan triggers. arXiv preprint arXiv:2210.15127, 2022.

[53] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
In NeurIPS, 2021.

[54] Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, and Xingjun Ma. Skip connections
matter: On the transferability of adversarial examples generated with resnets. In ICLR, 2020.

[55] Fan Wu, Linyi Li, Zijian Huang, Yevgeniy Vorobeychik, Ding Zhao, and Bo Li. Crop: Certifying
robust policies for reinforcement learning through functional smoothing. In ICLR, 2022.

[56] Fan Wu, Linyi Li, Chejian Xu, Huan Zhang, Bhavya Kailkhura, Krishnaram Kenthapadi, Ding
Zhao, and Bo Li. Copa: Certifying robust policies for offline reinforcement learning against
poisoning attacks. arXiv preprint arXiv:2203.08398, 2022.

[57] Junlin Wu and Yevgeniy Vorobeychik. Robust deep reinforcement learning through bootstrapped
opportunistic curriculum. In ICML, 2022.

[58] Kaidi Xu, Sijia Liu, Pin-Yu Chen, Pu Zhao, and Xue Lin. Defending against backdoor attack
on deep neural networks. arXiv preprint arXiv:2002.12162, 2020.

[59] Zhaoyuan Yang, Naresh Iyer, Johan Reimann, and Nurali Virani. Design of intentional back-
doors in sequential models. arXiv preprint arXiv:1902.09972, 2019.

[60] Jing Yu, Clement Gehring, Florian Schäfer, and Animashree Anandkumar. Robust reinforcement
learning: A constrained game-theoretic approach. In L4DC, 2021.

[61] Yi Zeng, Si Chen, Won Park, Z Morley Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning
of backdoors via implicit hypergradient. arXiv preprint arXiv:2110.03735, 2021.

[62] Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

[63] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-
Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on state
observations. In NeurIPS, 2020.

[64] Kaiqing Zhang, Tao Sun, Yunzhe Tao, Sahika Genc, Sunil Mallya, and Tamer Basar. Robust
multi-agent reinforcement learning with model uncertainty. In NeurIPS, 2020.

[65] Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Robust policy gradient against
strong data corruption. In ICML, 2021.

[66] Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Corruption-robust offline reinforce-
ment learning. In AISTAT, 2022.

[67] Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive reward-poisoning attacks
against reinforcement learning. In ICML, 2020.

[68] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on
channel lipschitzness. In ECCV, 2022.

13

	Introduction
	Related Work
	Methodology
	Problem Setup
	Trigger Restoration
	Backdoor Detection
	Backdoor Removal through Unlearning

	Evaluation
	Trigger Restoration and Backdoor Detection
	Backdoor Removal
	Ablation Studies
	Attack Variations and Adaptive Attacks

	Conclusion and Future Works

