Attacks Meet Interpretability: Attribute-steered Detection of Adversarial Samples

Guanhong Tao, Shiqing Ma, Yingqi Liu, Xiangyu Zhang
Understanding Adversarial Samples

Pixel-wise Differences (x50 times)

Legitimate input

C&W$_2$ attack

Model

Isla Fisher

A.J. Buckley
Understanding Adversarial Samples

Model

Legitimate input

C&W attack

Pixel-wise Differences (x50 times)

Isla Fisher

A.J. Buckley

Human
Understanding Adversarial Samples

- Legitimate input
- C&W$_2$ attack
- Model
- Human
- Isla Fisher
- A.J. Buckley

Pixel-wise Differences (\times50 times)
Understanding Adversarial Samples

Pixel-wise Differences (×50 times)

Legitimate input

C&W\(_2\) attack

Model

Human

Isla Fisher

A.J. Buckley

Model
Understanding Adversarial Samples

- Legitimate input
- C&W$_2$ attack
- Model
- Human
- Isla Fisher
- A.J. Buckley

Pixel-wise Differences (\times50 times)
Understanding Adversarial Samples

Pixel-wise Differences (×50 times)

Legitimate input

C&W₂ attack

Model

Human

Isla Fisher

A.J. Buckley
Understanding Adversarial Samples

- Idea: is the classification result of a model mainly based on human perceptible attributes?
Architecture of Aml
Architecture of Aml
Architecture of Aml

Input → Landmark generation
Architecture of Aml

1. Input
2. Landmark generation

✓ Left eye
✓ Right eye
✓ Nose
✓ Mouth
✓ …

Attribute annotation
Architecture of Aml

1. Input
2. Landmark generation
3. Attribute annotation
 ✓ Left eye
 ✓ Right eye
 ✓ Nose
 ✓ Mouth
 ✓ …
3. Attribute witness extraction
Architecture of Aml

1. Input
2. Landmark generation
 - ✓ Left eye
 - ✓ Right eye
 - ✓ Nose
 - ✓ Mouth
 - ✓ …
3. Attribute annotation
4. Attribute witness extraction
 - Attribute-steered model
Architecture of Aml

1. Input
2. Landmark generation
 ✓ Left eye
 ✓ Right eye
 ✓ Nose
 ✓ Mouth
 ✓ ...
3. Attribute annotation
4. Attribute witness extraction
 Attribute-steered model
 Original model
Architecture of Aml

1. Input
2. Landmark generation
 ✓ Left eye
 ✓ Right eye
 ✓ Nose
 ✓ Mouth
 ✓ …
3. Attribute annotation
4. Attribute witness extraction
5. Attribute-steered model
 Original model
 Consistency observer
Architecture of Aml

1. Input
2. Landmark generation
 - Left eye
 - Right eye
 - Nose
 - Mouth
 - …
 - Attribute annotation
3. Attribute witness extraction
4. Attribute-steered model
5. Consistency observer

Original model
Challenges

• Are there correspondences between attributes and neurons?

• If yes, how to extract corresponding neurons?
Challenges

• Are there correspondences between attributes and neurons?

• If yes, how to extract corresponding neurons?

• Propose: Bi-directional reasoning
Challenges

• Are there correspondences between attributes and neurons?

• If yes, how to extract corresponding neurons?

• **Propose: Bi-directional reasoning**
 ‣ Forward: attribute changes —> neuron activation changes
Challenges

• Are there correspondences between attributes and neurons?

• If yes, how to extract corresponding neurons?

• **Propose: Bi-directional reasoning**
 ‣ Forward: attribute changes \rightarrow neuron activation changes

 ‣ Backward: neuron activation changes \rightarrow attribute changes
Challenges

• Are there correspondences between attributes and neurons?

• If yes, how to extract corresponding neurons?

• **Propose: Bi-directional reasoning**
 ‣ Forward: attribute changes \rightarrow neuron activation changes
 ‣ Backward: neuron activation changes \rightarrow attribute changes
 ‣ Backward: no attribute changes \rightarrow no neuron activation changes
Attribute Witness Extraction
Attribute Witness Extraction

Input
Attribute Witness Extraction

Model → Attribute substitution → Model

Input

Feature variants
Attribute Witness Extraction

Input → Model

A: Attribute substitution

B: Attribute preservation

Model → Model

Feature variants

C: Feature invariants

D: Feature invariants
Attribute Witness Extraction

Input → Model

Attribute substitution

Feature variants

Feature invariants

Attribute witnesses
Experimental Results
Experimental Results

• Attribute witnesses
Experimental Results

- Attribute witnesses
 - The number of witnesses extracted is **smaller than 20**, although there are **64-4096** neurons in each layer.
Experimental Results

• Attribute witnesses
 ‣ The number of witnesses extracted is smaller than 20, although there are 64-4096 neurons in each layer

• Adversary detection
Experimental Results

• Attribute witnesses
 ‣ The number of witnesses extracted is smaller than 20, although there are 64-4096 neurons in each layer

• Adversary detection
 ‣ Achieve 94% detection accuracy for 7 different kinds of attacks with 9.91% false positives on benign inputs
Experimental Results

• Attribute witnesses
 ‣ The number of witnesses extracted is smaller than 20, although there are 64-4096 neurons in each layer

• Adversary detection
 ‣ Achieve 94% detection accuracy for 7 different kinds of attacks with 9.91% false positives on benign inputs
 ‣ A state-of-the-art technique Feature Squeezing (NDSS ’18) can only achieve 55% accuracy with 23.3% false positives for face recognition systems
Thank you!

Please visit our poster #99
05:00-07:00 PM @ Room 210 & 230 AB