
TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks

Guanhong Tao

taog@purdue.edu

Purdue University

Shiqing Ma

shiqing.ma@rutgers.edu

Rutgers University

Yingqi Liu

liu1751@purdue.edu

Purdue University

Qiuling Xu

xu1230@purdue.edu

Purdue University

Xiangyu Zhang

xyzhang@cs.purdue.edu

Purdue University

ABSTRACT
Recurrent Neural Networks (RNN) can deal with (textual) input

with various length and hence have a lot of applications in software

systems and software engineering applications. RNNs depend on

word embeddings that are usually pre-trained by third parties to

encode textual inputs to numerical values. It is well known that

problematic word embeddings can lead to low model accuracy.

In this paper, we propose a new technique to automatically diag-

nose how problematic embeddings impact model performance, by

comparing model execution traces from correctly and incorrectly

executed samples. We then leverage the diagnosis results as guid-

ance to harden/repair the embeddings. Our experiments show that

TRADER can consistently and effectively improve accuracy for real

world models and datasets by 5.37% on average, which represents

substantial improvement in the literature of RNN models.

ACM Reference Format:
Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang.

2020. TRADER: Trace Divergence Analysis and Embedding Regulation for

Debugging Recurrent Neural Networks. In 42nd International Conference on
Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3377811.3380423

1 INTRODUCTION
Deep learning (DL) models are becoming an integral part of many

modern computing systems. For example, a self-driving car system

often makes use of DL models to recognize objects and even maneu-

ver vehicles; online advertisement leverages DL models to identify

potential customers and deliver the corresponding ads; latest mo-

bile/wearable devices use various DL techniques to authenticate

users, detect and monitor user behaviors. Engineering DL models is

becoming a critical step of engineering such intelligent computing

systems. Among the various kinds of DL models, Recurrent Neural
Networks (RNNs) are particularly useful in software related applica-

tions as they are designed to deal with textual inputs (of arbitrary

length) and inputs in sequence. Note that many software artifacts

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00

https://doi.org/10.1145/3377811.3380423

are in the form of text or sequences. For example, a program can

be considered as a piece of text in some special language; program

comments are essentially texts in natural language with specific

semantics; and execution traces are a sequence of values of arbi-

trary length. As such, RNN models find their way to many software

engineering applications.

Wang et al. [88] leveraged RNNs to construct semantic program

embeddings, which are a way to encode textual programs to nu-

merical values. The embeddings were further employed in a search-

based program repair system to correct errors in programs [88].

Henkel et al. [29] used a DL model called GloVe [65] to construct

word embeddings for abstract symbolic traces of programs. The

learned embeddings were used to find bugs, which were further con-

firmed by traditional static analysis. Panichella et al. [61] employed

a model [72] to assess the polarity of app reviews, which can pro-

vide developers with informative feedback to improve application

quality and facilitate software maintenance. Du et al. [21] modeled

RNN as an abstract state transition system for test generation and

adversarial sample detection. Tian et al. [83] proposed a testing tool

for automatically detecting erroneous behaviors of DNN-driven

vehicles with CNN or RNN as the internal model. RNN models

[36, 49, 72] are also widely used in processing textual software

artifacts, such as code comments [33, 60, 81], developer commits

[75], and app reviews [27, 61].

DL model reliability is hence a critical part of the overall relia-

bility of many software systems. Just like software, DL models may

have undesirable behaviors, such as exceptionally low test accuracy.

They are called model bugs in the literature [52]. Such model bugs

may lead to undesirable system-wide behaviors. For example, Sen-

tiStrength [82] is a state-of-the-art tool that can predict sentiment

of developer comments. Such sentiment information is further used

to extract problematic API features [102]. However, a recent study

[49] showed that its underlying model achieved recall and precision

lower than 40% on negative sentences. Since negative sentences

are critical indicators for problematic APIs, the low model accuracy

will cause many problems for the downstream analyses.

Different from normal programs, DL models are difficult to de-

bug due to their “black box” (unexplainable) nature [3, 6, 68]. Most

existing works focused on providing more data to improve model

performance [16, 25]. Generative adversarial networks (GANs) [25]
are also widely used to generate additional data for further training

[41]. However, these methods can hardly be considered as debug-

ging techniques as they lack the diagnosis step that identifies the

root cause. MODE [52] is a recent model debugging technique for

986

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380423
https://doi.org/10.1145/3377811.3380423


ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang

convolutional neural networks (CNNs) that often deal with fixed size

inputs such as images. It leverages differential analysis to identify

faulty neurons and selects additional training inputs to “correct"

such neurons’ behavior. However, MODE cannot handle RNNs.

In this paper, we focus on debugging RNN models for textual

inputs (e.g., sentiment analysis for developer comments), especially
for a type of bugs in which problematic word embeddings lead to
suboptimal model accuracy. Many studies [5, 73, 86, 96] have shown

that word embeddgings are critical for RNN model accuracy. For

those textual tasks, input words/tokens are always converted to em-

beddings first before training/testing. Although embeddings seem

external to the model, the model itself cannot be studied/debugged

separately without considering embeddings. Inspired by software

debugging [10, 18, 23], we view an RNN model as a program with

very specific semantics. Therefore, the traditional trace analysis in

software debugging can be adopted to debug RNN models, as long

as the specific semantics are properly modeled. In particular, given

a buggy model, our technique performs trace divergence analysis

that identifies the problematic internal model state vector dimen-

sions responsible for the misclassification, called the faulty state
dimensions. Intuitively, the state vectors are a number of buffers

that are updated after the model processes each word or input ele-

ment. A dimension is essentially a buffer element at a specific index,

which semantically encodes some feature of the current input word

and its preceding context. Hence, the faulty dimensions represent

the features (of words and their contexts) that the model has con-

fusing/buggy behavior. Then an embedding regulation algorithm is

proposed to mitigate the problem by hardening the model behaviors

for those dimensions. Intuitively, it applies small mutations to those

dimensions and then forces the model to learn to disambiguate the

perturbations. The more the model can disambiguate, the better

accuracy it can achieve (as it is less confused on those dimensions).

Our contributions are summarized in the following.

• We identify buggy behaviors of RNN models through a trace

divergence analysis, and locate faulty state dimensions re-

sponsible for misclassification.

• We propose an RNN repair technique, a new training pro-

cedure that freezes model parameters and regulates word

embeddings according to observed trace divergences.

• We develop a prototype TRADER (TRAce Divergence anal-
ysis and Embedding Regulation). Experimental evaluations

are conducted on five public datasets, three word embed-

dings, and three model structures, with a total of 135 models.

TRADER can consistently and effectively improve the per-

formance by 5.37% on average, substantially outperforming

a state-of-the-art embedding regulation technique based on

four regularization strategies [63], which improves model

accuracy by 0.6% on average. Note that due to the need of

dealing with inputs of arbitrary length, it is challenging to

improve RNN accuracy in general. Most reported improve-

ment in the literature (not using debugging techniques, but

rather newmodel architecture or new optimizers) range from

0.05%-3.76% with a median of 0.7% [17, 38, 39, 51, 64, 94].

• Our implementation, datasets, configurations, and model

checkpoints are publicly available at [84].

C

x0

h0

C

xt

ht

C

x1

h1

C

xt

ht

xt

σ σ tanh σ

tanh
× +

× ×

ht

(a) Unrolled RNN structure

C

x0

h0

C

xt

ht

C

x1

h1

C

xt

ht

tanh

tanh
× +

× ×

ht-1

ct-1

ft it
!̃"

ot

ht

ct

σ σ σ

ht

xt

(b) LSTM cell

Figure 1: Architecture of recurrent neural networks. (a) An
unrolled representation of RNN architecture. (b) The internal struc-
ture of Long Short Term Memory networks.

2 BACKGROUND
2.1 Recurrent Neural Networks
Recurrent neural networks (RNNs) are a family of neural networks

designed to tackle problems with sequential inputs. Different from

traditional neural networks that require fixed-length inputs, RNNs

can handle sequential inputs of arbitrary length. That is, input is

received continuously through many steps, via a loop structure as

shown in Figure 1a. The sequential inputs are fed into the RNN

model one by one. At each time step, the model leverages the previ-

ous hidden value and the current input so as to update the hidden

value. For specific tasks, the prediction outputs are obtained by

adding an output layer using the hidden value, such as in machine

translation [4, 79], speech recognition [30], and image caption gen-

eration [95]. More specifically, xt (blue circle) is the input at step t
and ht (green circle) is the hidden value. Intuitively, ht encodes the
history/context in the previous t − 1 steps. At each time step, an

input xt and the previous hidden value ht−1 are fed into the RNN

cell (yellow rectangle), and the hidden value for the next step ht
is computed. A vanilla RNN cell contains a regular feed-forward

neural network with layers of neurons. We can obtain the hidden

value ht at step t using the following formula.

ht = σ (Wh · [ht−1,xt ] + bh ), (1)

where σ is the activation function.Wh denotes the weight matrix

and bh the bias. The operation [, ] concatenates two vectors. For a

specific task (e.g., sentiment analysis), the final prediction is com-

puted using the last hidden value hn :

prediction =W · hn + b, (2)

whereW and b are the weight matrix and bias of the output layer,

respectively; and n denotes the length of an input sequence which

can be arbitrarily large. The output prediction is normally a vector

of logits, and the final predicted class can be obtained by applying

function argmax() on the output prediction vector.

Vanilla RNNs are not able to “remember” temporal context of

long sequences [8, 31]. In order to deal with long-term dependencies,

a new type of RNN model, called Long Short Term Memory (LSTM)

networks, was proposed by Hochreiter et al. [32]. LSTMs inherit

the same loop structure to deal with arbitrary input length. For

the cell structure, instead of using regular feed-forward neural

networks, LSTMs are designed with multiple gates to control how

much information from the previous and current contexts is being

passed on to later computation. Figure 1b illustrates the internal

987



TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

structure of an LSTM cell. The leftmost two inputs are hidden

values from the previous step, where the top ct−1 is called cell state
and the bottom ht−1 is called hidden state. Cell state encodes the
contextual information through the entire sequence (a kind of long

termmemory). Hidden state is similar to the hidden state in a vanilla

RNN, representing recent historic information. An LSTM cell can

be formalized as follows.

ft = σ (Wf · [ht−1,xt ] + bf ) (3)

it = σ (Wi · [ht−1,xt ] + bi ) (4)

ot = σ (Wo · [ht−1,xt ] + bo ) (5)

c̃t = tanh(Wc · [ht−1,xt ] + bc ) (6)

ct = ft ⊙ ct−1 + it ⊙ c̃t (7)

ht = ot ⊙ tanh(ct ), (8)

where operators · and ⊙ denote matrix multiplication and element-

wise vector multiplication, respectively; σ () and tanh() denote sig-
moid and tanh activation functions that crop/normalize activation

values; ft denotes the forget gate that controls how much infor-

mation from previous steps needs to be forgotten/remembered; it
acts as the input gate that determines how information needs to

be added to cell state; ot is the output gate that decides the degree
of output information being accumulated to hidden state; cell state
ct is updated according to the preceding cell state ct−1 and the

current context c̃t ; and finally the hidden state ht is updated based

on current cell state ct and output ot .

2.2 Word Embeddings
In Natural Language Processing (NLP) tasks, the inputs are nor-

mally texts containing various numbers of words. Existing machine

learning (ML) models (e.g., RNNs) require numerical inputs so as

to do mathematical computation. To integrate NLP tasks into ML

models, word embeddings are adopted to address this issue. That is,

each word is represented as a numerical vector. For instance, in the

sentence “I like movies”, word “I” is represented as [1, 0, 0], word

“like” as [0, 1, 0], and word “movies” as [0, 0, 1]. This type of word

embeddings is called one-hot embeddings, where the length of each

embedding is the size of the dictionary and only one dimension has

value 1. It is straightforward to encode words into one-hot embed-

dings. Such word embeddings, however, are too sparse for storage

and computation. A more concise way of representing words is

to leverage all the dimensions of word embeddings with continu-

ous values, which is called distributed representations. For instance,
word “I” will be represented as [0.9, 0.3], word “like” as [0.2, 0.4],

and word “movies” as [0.5, 0.6]. Researchers have been exploring

different approaches to achieve such a dense form of word em-

beddings. A typical approach is to train a neural network model

with a large corpus (e.g., Wikipedia pages). The task of the neural

network is to predict the center word given a sequence of (usually

5) words in a sentence. The learned weight of the neural network is

regarded as word embeddings [55]. Such learned word embeddings

have a nice property that words with similar meanings have small

embedding distances (e.g., Euclidean distance between two word

embeddings). This allows the model to generalize. Intuitively, even

though a model may not have seen some words/sentences during

error
Original Regulated
errors errors
correct mistake
mistake difference
difference correct

great
Original Regulated
good good
well well
little much
much experience

reinstall
Original Regulated

reinstalling reinstalling
uninstall install
refresh uninstall
install refresh

allocate
Original Regulated
generate resources
enable
 generate
savings necessary

resources enable

regex-1
Original Regulated
getpost webaddress

autowired hashset
appbarlayout nativesystem

creates jodatime

Figure 2: Nearest neighbors of words according to their em-
beddings. The top row denotes the target words, and the following
rows are their nearestwordsmeasured by cosine similarity. Column
Original denotes words using GloVe word embeddings and column
Regulated denotes word embeddings after regulation.

training, it can still perform prediction based on their embedding

neighbors that appear during training.

Distributed representations of word embeddings are widely used

in NLP tasks [76, 87, 93] as well as software engineering (SE) tasks

[1, 28, 34, 91, 92]. According to many studies [5, 73, 86, 96], word

embeddings are the dominating factor in model accuracy in RNN

applications. For example in sentiment analysis, according to Schn-

abel et al. [73], the sameMLmodel using different word embeddings

as features can have divergent prediction accuracy ranging from

62.95% to 88.90%, indicating its importance. Figure 2 demonstrates

examples of words represented using the GloVe word embeddings

[65]. The top row denotes the target words and the following rows

are the nearest neighbors of target words measured by cosine simi-

larity. Column Original lists the nearest words based on the original

GloVe word embeddings, while column Regulated are based on our

regulated word embeddings. It can be observed that for target word

“error”, word “correct” is the second nearest word using GloVe

while it is moved down the list after embedding regulation. Word

“little” is the third nearest word for “great” using GloVe and

it is not in the top list after regulation. It is similar for the case

“reinstall”. One can easily tell that models generalize better with

the regulated embeddings.

2.3 Model Debugging
Just like software inevitably contains bugs and software debug-

ging is a key step in software development, DL models may have

undesirable behaviors, called model bugs [52]. Model debugging

is becoming an essential step in intelligent software engineering.

Model bugs are different from traditional coding bugs. They are mis-

conducts in the model engineering process, such as biased training

data [52] and problematic model structure, which lead to undesir-

able consequences such as low model accuracy and vulnerabilities

to adversarial sample attacks [26, 80], in which normal inputs are

mutated (e.g., by perturbations not human perceptible) to induce

mis-classification. In our context, model debugging is a procedure to
studymodel internals to understand the root cause ofmis-classification
and then conduct counter-measure to “fix" the root cause.

Model debugging is difficult as DLmodels are not interpretable [6,

68]. There are techniques that use data augmentation (e.g., image

reflection, cropping, and rotations for CNN models) to provide ad-

ditional data to improve model performance [16, 25, 43]. Another

method is to use GANs [25] to generate additional training data

[89, 103]. However, these methods are not feedback driven, meaning

that they do not intend to understand what causes the low accuracy

before trying to fix the problem, which limits their effectiveness.

988



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang

 1  def count(data): 
 2      output = 0
 3      for i in range(len(data)):
 4          embed = embedding(data[i]) # map to integer
 5          if embed >= 1 and embed < 2:
 6              output += 1
 7      return output
 8  
 9  def main():
10      data = ["1.1", "0.3", "1.4", “1.8"]
11      print count(data)

 1  def RNN(text): 
 2      outputs = []
 3      hidden = zeros(size)
 4      for i in range(len(text)):
 5          # map to word embedding
 6          embed   = embedding(text[i])
 7          input   = concatenate(hidden, embed)
 8          hidden = matmul(input, W_h) + b_h
 9          output  = matmul(hidden, W_out) + b_out
10          outputs.append(output)
11      return outputs[len(text) - 1]

Figure 3: Comparison between code snippets of a simple counting program and an RNN model. The left code snippet shows a
simple program for counting the number of data points within range [1, 2). The right code snippet gives a simplified RNNmodel for predicting
the label of an input sentence.

MODE [52] is a recent feed-back driven technique for CNNs. It an-

alyzes model internals to identify “faulty” neurons and then selects

additional training inputs to “correct" such neuron behaviors.

These existing approaches, including MODE, are mostly de-

signed to improve image-related models (e.g., handwritten digit

recognition and object classification). For text-related models (e.g.,

sentiment analysis), they are hardly applicable. For example, using

GANs to generate text inputs often suffers from low quality and

lack of diversity [89]. According to Wang et al. [89], most generated

texts have fewer than 15 words, whereas sentences in real-world

training datasets have more than a few hundreds words.

In this paper, we focus on debugging text input oriented RNN

models that have a lot of software engineering applications [9, 29,

35, 36, 47, 49, 88, 90]. While there are many possible kinds of bugs

for these models, such as biased training inputs [52], sub-optimal

model structures, and incorrect hyper parameter settings. We focus

on problematic word embeddings as the literature has indicated that

embeddings are critical for RNN model accuracy [5, 73, 86, 96].

In our view, an RNN model is essentially a program with special

semantics. Therefore, our overarching idea is to adapt existing soft-

ware debugging techniques (e.g., [10, 18, 23]), especially execution

trace analysis, to debug RNN models, by properly modeling RNN

models’ special semantics. Next, we will use a program example

and an RNN example side-by-side to intuitively illustrate our idea.

The left part of Figure 3 shows a simple program for counting

the number of data points within range [1, 2). The functionality
of method embedding() at line 4 is to convert string values to nu-

merical values and then map them to discrete values. The mapping

can be implemented as a rounding operation, where values are

converted to their closest discrete numbers. For instance, value 1.1

becomes 1 while 1.8 becomes 2. When the developer executes this

piece of code, value 2 is printed as the output, which is incorrect.

To locate the bug, the developer prints out the value of variable

output at each iteration of the loop, and obtains the value trace

of [1, 1, 2, 2]. For this simple program, the developer has the oracle

that the value trace of variable output should be [1, 1, 2, 3]. By

comparing the actual trace to the oracle, the developer can easily

locate the trace diverged at the fourth iteration and finally identify

the buggy implementation of method embedding().
Interestingly, RNNs have a very similar loop structure as shown

on the right of Figure 3. Method embedding() at line 6 maps each

word to its corresponding embedding. Method concatenate() at

-4

-3

-2

-1

0

1

Also JodaTime makes calculations with time much simpler

Oracle trace Buggy trace

-4

-3

-2

-1

0

1

Also JodaTime makes calculations with time much simpler

Oracle trace Buggy trace

Trace 
divergence

Positive

Neutral

Figure 4: The trace of a sample text from Stack overflow
dataset [49] predicted by a real-world LSTMmodel [19]. The
blue line denotes the oracle trace with correct prediction of positive
sentiment. The green line denotes the buggy trace produced by the
LSTM model with incorrect prediction of neutral sentiment.

line 7 concatenates two vectors and matmul() is the matrix mul-

tiplication method. Analogous to the simple program on the left,

we can use the same trace divergence analysis to inspect the state

at each iteration if undesired behaviors happen. Figure 4 demon-

strates a sample text from the Stack overflow dataset [49]: “Also,
JodaTime1 makes calculations with time much simpler”.
It is labeled as having positive sentiment. An LSTM model [19],

however, predicts a neutral sentiment. We record the state values

at each iteration (i.e., after each word) and also query the oracle

for the same step. The green line in Figure 4 shows the trace of

the LSTM model, while the blue line is the trace acquired from the

oracle. As we will discuss in Section 3.1, having an oracle model

that always produces the correct intermediate model states is in-

feasible, just like having a correct reference program for regular

program debugging is infeasible in general. In the literature, various

techniques were proposed to approximate the reference (e.g., using

a similar but correct execution as in Delta Debugging [56, 78, 97]).

Similarly, in our context of RNNmodel debugging, we train a model

from validation data set to approximate the reference model (see

Section 3.1). From Figure 4, it can be observed that at the step with

word “much”, the two traces start to diverge, which finally leads to

different output labels.

We hence further inspect the state differences at the divergence

step. Figure 5 presents the comparison. In the figure, the input sen-

tence 2⃝ is in the middle. The blue arrow to b⃝ denotes the model

state after the word “much". Here, a model state is the concatena-

tion of the input, cell state, and hidden state vectors [xt , ct−1,ht−1],
followed by the output (1 denotes neutral sentiment and 2 denotes

1
A data and time library for Java. https://www.joda.org/joda-time/

989

https://www.joda.org/joda-time/


TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Also, JodaTime makes calculations with time much simpler.

Create the number of buttons that you want with different button id.

Databases are much better at handling data than Java.

RNN

Oracle

[ 0.6061, 0.7531, 0.5212]

[ 0.5051, 0.6090, 0.6894]

[ 0.0974, 2.1892, 0.9840]

[ 0.6478, 1.5934, 0.3367]

< [ ••• 0.1483 ••• -0.0057 ••• -0.1084 ••• ], 1 >

< [ ••• 0.1017 ••• -0.0101 ••• -0.0773 ••• ], 2 >

x, 289, 350

< [ ••• 0.1129 ••• -0.0107 ••• -0.0747 ••• ], 2 >

< [ ••• 0.1172 ••• -0.0063 ••• -0.0977 ••• ], 1 >

1

2

3

a

b

c

d

< [ ••• 0.6124 ••• -0.0959 ••• 0.4011 ••• ], [ 0.6061, 0.7031, 0.7212] >

Oracle

RNN

Figure 5: Analysis of an example text (shown in 2⃝). Vectors
a⃝- d⃝ denote the model states (i.e., [xt , ct−1,ht−1]) at the step
of the underlined words in sentences 1⃝- 3⃝, followed by the
prediction result at the end (gray background), 1 for neutral
and 2 for positive. a⃝ and b⃝ are states generated by a buggy
RNNmodel. c⃝ and d⃝ are states from the oracle. a⃝ is a state
closest to b⃝ produced by a buggy RNN model, whereas d⃝ is
a state closest to c⃝ by the oracle. 2⃝ is a test sentence; 1⃝ is
from the training set and 3⃝ from the validation set.

positive). As sentence 2⃝ is not in the training data set, the model

has to generalize based on what it has seen during training. Further

inspection shows that sentence 1⃝ is in the training set, and its state

a⃝ after word “different" is very close to b⃝ and the corresponding

output is neutral, which explains why the model predicts neutral

sentiment. Below sentence 2⃝, we show the state after word “much"
by the oracle model, which approximates model output when given

the concatenation of the input, cell state, and hidden state vectors

[xt , ct−1,ht−1] for all the correctly classified sentences in the valida-
tion set. Its construction will be discussed in Section 3.1. When we

provide the concatenated vector of sentence 2⃝ to the oracle model,

it predicts positive as shown in c⃝. This is because c⃝ is close to

state d⃝ after word “better" in sentence 3⃝ from the validation set,

which has the positive sentiment.

The state vector values heavily depend on the word embeddings.

If we consider c⃝ denotes the state derived from the ideal embed-

dings, the root cause lies in that the current problematic embeddings

lead to the state divergence of b⃝ and c⃝, which are highlighted by

the red and blue rectangles. There may exist multiple state diver-

gence dimensions, we only highlight one for demonstration. As

the oracle has the knowledge of d⃝, this is the reason it produces

different prediction in contrast with the buggy RNN model. The
essence of our technique is hence to harden the word embeddings to
minimize such differences.

Note that although we use a single input sentence to intuitively

explain the idea, our technique essentially has to minimize such

differences for all misclassified sentences in the training set to

achieve the effect of improving overall accuracy.

3 DESIGN
Given an RNN model to debug, we leverage the validation dataset

to inspect the problematic behaviors. Figure 6 illustrates the over-

all design of our approach. Data in the validation set can be first

processed by the model to identify the correctly classified and mis-

classified samples. We consider that traces of the correctly classified

samples to-some-extent denote the desired behaviors of the model,

while traces of the misclassified samples represent undesired behav-

iors. A trace divergence analysis is then performed on the traces

from these two sets of samples. That is, we utilize the traces to

Input 
Texts

C

xt

ht

Pre-trained 
Models

Trace Divergence 
Analysis

Defective Dimension 
Identification

Embedding 
Regulation

Model

Retraining

Figure 6: Overview of TRADER.

construct two models, called the oracle machine and the buggy ma-
chine, which approximate the distributions of state values from the

correctly classified samples and from misclassified samples, respec-

tively. These two machines are the reference models for identifying

diverged steps (Section 3.1). We aggregate all the diverged steps

of misclassified samples in the validation dataset, and inspect the

difference of their state vectors to identify the critical dimensions,

which have large aggregated differences. We consider them the

faulty state dimensions. Intuitively, they denote the sub-space that

the model gets “confused”. In the fixing step, we target on further

training these faulty dimensions to alleviate the confusion. Specif-

ically, we add small perturbations to these dimensions and then

retrain the word embeddings using the original training set so that

the perturbations only cause minimal output variations. Intuitively,

we are tuning the embeddings so that the model becomes more

affirmative and have stable prediction even when confusion (per-

turbation) is intentionally injected in the faulty dimensions. As we

observed during experiments, identifying the faulty dimensions is

critical as perturbing all dimensions leads to accuracy degradation.

One may wonder why not simply train the model using the val-

idation set or even both the training set and validation set. Note

that the essence of our technique is not to leverage the additional

samples in the validation set to train. Instead, we utilize the val-

idation set just to locate the dimensions that do not generalize

well to new data and then further harden these dimensions. In fact,

we will show in Section 4 that training the model using both the

training set and the validation set cannot achieve the same level of

improvement as TRADER.

3.1 Trace Divergence Analysis
DL models are normally trained on a training set and then tested

on a test set, which is unseen to DL models during training. It is

essential to have another set (also unseen during training) for de-

bugging models and avoiding over-fitting on the training set, which

is referred to as the validation set. Following a similar philosophy,

our technique leverages the validation set for model debugging.

As shown in Figure 7, text samples in the validation set are fed

to the model. By comparing to the ground truth labels, we can

acquire two sets of samples: the correctly classified samples (in

the top box) and the misclassified samples (in the bottom box).

These text samples can be further processed by the same model

separately to record their traces. More specifically, given a text

sample, for each step an input word is fed into the model, we

record the input embedding xt and the previous contexts ct−1 and
ht−1 as the state vector pt . The output vector qt produced by the

output layer is also recorded. The state vector pt and the output

vector qt are regarded as a trace entry. Hence, a sequence of trace

entries can be generated for each input sample. We use the same

procedure to generate two separate trace sets, called the oracle
traces (generated from the correctly classified samples) and the

990



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang

<     ,     >Also, JodaTime makes… 
But I want to connect… 
I'm looking for a well… 
I understand the boolean… 
However, I'd suggest… 
As others have already… 
…

Pre-trained 
Models

But I want to connect… 
I'm looking for a well… 
However, I'd suggest… 
…

Also, JodaTime makes… 
I understand the boolean… 
As others have already… 
…

LSTM

x0

h0

LSTM

xt

ht

ci

hi
LSTM

x1

h1

LSTM

xt

ht

Output Layer

q0 q1 qt

x0 ci hi[ ] [   ] [   ]

p0 p1 pt

q0

q1

p0

p1

qtpt

Validation

Data

Predicted

Samples

Oracle 
Traces

Buggy 
Traces

<     ,     >

<     ,     >

Trace

Generation

Figure 7: Trace generation for samples in the validation set.Words in input sentences are mapped to their corresponding word embed-
dings xt . Internal states ci and hi are the initial internal state vectors for LSTM models. The output layer is used to predict the final output
label as discussed in Equation 2. Here, it has been extended to the whole sequence for acquiring the internal output at each step.

Oracle 
Traces

Buggy 
Traces

Fitting 
approaches

Oracle

Machine

Buggy

Machine

Trace

Divergence

Also, JodaTime makes…

<    ,    >q0p0

qtpt<    ,    >

Figure 8: Construction of oraclemachine and buggymachine,
and trace divergence analysis. Trace divergence analysis is con-
ducted on a sample text by feeding its traces to the two machines
and comparing the output values.

buggy traces (from the misclassified samples). These two set of

traces are crucial for debugging RNN models as they represent

models’ internal behaviors on unseen data.

We utilize the two sets of traces acquired from the validation set

to learn the distributions of model’s proper and buggy behaviors.

Figure 8 illustrates the procedure of trace divergence analysis. To

model the distribution of oracle/buggy traces, we employ the linear

regression approach to approximate the relation between state

vector pt and output value qt using the following equation:

qt =Wr · pt + br , (9)

whereWr and br are weight and bias of linear regression, respec-

tively. These parameters will be updated based on all the traces,

and each dimension of weightWr denotes the importance of the

corresponding state vector dimensions with respect to the output

value. The fitted models for oracle (buggy) traces are called oracle
(buggy) machine. In other words, these machines predict output qt
from given state pt . Note that they are not RNN models but rather

simple classifiers to predict one step of model behavior. The two

machines approximate the desired and undesired behaviors of the

model, respectively, in the presence of unseen data.

For a given misclassified sample from the validation set (boxed

text in the bottom), traces are extracted from the RNN model, and

fed to both the oracle machine and the buggy machine. We then

compare the outputs from the twomachines to identify the diverged

Algorithm 1 Aggregated Divergence Analysis

1: function Divergence(dataset S)

2: d ← zero vector with size of step input

3: for sample in S do
4: T ← дenerate_trace (sample )
5: for p in T do
6: qo ← argmax(OM .predict (p ))
7: qb ← argmax(BM .predict (p ))
8: if not qo == qb then
9: d ← add_vector (d, p )
10: wo, wb ← дet_weiдht (OM, BM )
11: wd ← sub_vector (wo, wb )
12: d = abs (mul_vector (d, wd ))
13: return d

steps. Note that such divergence cannot be directly identified by

monitoring the original model operations.

As we aim to identify the root cause of trace divergence, i.e., the

faulty dimensions, we aggregate the state vectors from the diverged

steps. Algorithm 1 details the aggregation procedure. The algorithm

loops over all the misclassified samples in the validation set. For

each sample, it first generates the corresponding traces from the

RNN model (line 4). The trace divergence analysis is conducted

on each step. The Oracle machine (OM) is provided with the state

vector p and outputs an oracle value qo (line 6). Similarly, the Buggy
machine (BM) is also provided with the same state vector p, and
outputs a buggy valueqb (line 7). These two output valuesqo andqb
are compared to identify the diverged steps. Those diverged steps

are aggregated in d (line 9). The comparison is needed because

not all the steps in a buggy trace are wrong. In line 10, we acquire

the weights from both the oracle machine and the buggy machine,

which indicate the importance of state vector for oracle traces

and buggy traces. Intuitively, the difference between these two

weight vectors denotes the importance divergence of the individual

dimensions of state vector (line 11). At the end, we multiple d with

wd to compute the weighted differences for individual dimensions

(line 12). The faulty dimensions are the ones with exceptionally

large values. Figure 10 shows an example of vector d for an LSTM

model (the red bars). Observe that there are a number of dimensions

that have much larger values than the others. They denote the

split/confusing behaviors of the subject model in the presence of

991



TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Oracle 
Traces

Buggy 
Traces

Fitting 
approaches

Oracle

Machine

Buggy

Machine

Trace

Divergence

Also, JodaTime makes…

<    ,    >q0p0

qtpt<    ,    >

Divergence

loss

LSTM

xt

ht-1

ct-1

ht

ct
LSTM

xt

ht-1

ct-1

ht

ct !

!

+
+q qδ

"+

Figure 9: Structure of embedding regulation. The left LSTM
has the original model structure. The right LSTM is extended with
perturbations for input embeddings xt aswell as internal states ct−1
and ht−1; q and qδ are the final outputs from the originalmodel and
the perturbed model, respectively.

unseen data. While these dimensions are not human interpretable,

they provide sufficient guidance for embedding tuning as shown in

the next section.

3.2 Embedding Regulation
After identifying the faulty state vector dimensions, which intu-

itively are the places the model is very unstable and has diverging

behaviors for correctly and incorrectly classified samples, we next

aim to mitigate the problem by regulating word embeddings. The

essence of state divergence lies in that the model is so sensitive for

these dimensions that small changes can lead to substantial output

changes. A key feature of RNN type of models is that the encoded

values of state vectors are largely determined by word embeddings.

That is, words close to each other in the embedding space tend to

lead to state vector values close to each other. Our fixing strategy

is hence to change word embeddings so that the model becomes

less sensitive along the faulty dimensions, by enlarging the embed-

ding distances of the words that could lead to substantial output

variations. This is done by applying perturbations to the faulty

dimensions and then searching for minimal output variations by

tuning word embeddings. Since RNN type of models have a loopy

structure, the perturbations are applied to each iteration.

Figure 9 demonstrates the detailed procedure of our embedding

regulation. The left LSTM model is the original model, which takes

an input embedding xt at each time and outputs the final result

q. The right LSTM model is the perturbed LSTM model, where a

perturbation vector ϵ is added to the input embedding xt and a

perturbation vector λ is added to both cell state ct−1 and hidden

state ht−1 at each step. The output qδ from the perturbed model is

compared to the output q from the original model. The difference

between the two outputs is then propagated to the input word

embeddings. We propose a divergence loss to propagate error infor-

mation from the output differences to the input embeddings. The

divergence loss is formalized as follows.

Ldiv = Lce + Ll2, (10)

where Lce is cross entropy loss [24] and Ll2 is L2 (squared error)

loss. The loss functions are used to express our objective tominimize

output variations in the presence of perturbations. Cross entropy

loss is widely used in classification tasks. The following formula

defines its essence.

Lce = −
1

N

N∑
n=1

C∑
c=1

yo,cn ln(po,cn ), (11)

where N is the number of training samples, and C is the number

of classes. For each sample n, if the final output o is different from

Algorithm 2 Embedding Regulation

1: function Regulation(modelM, dataset S, embedding E, divergence

D)

2: u ← zero vector with dimension size of embedding

3: v ← zero vector with dimension size of hidden neurons

4: for d in D do
5: if d > θ then
6: idx ← D .index (d )
7: if idx belongs to E then
8: u[idx ]← random_normal (0, ϵ )
9: else
10: v[idx ]← random_normal (0, λ)
11: E ← дet_var iable (E)
12: E ← add_vector (E, u )
13: ct , ht ← initialized with dimension size of hidden neurons

14: for i in ranдe (max_step ) do
15: ct ← add_vector (ct , v )
16: ht ← add_vector (ht , v )
17: ct , ht ← LSTM (ct , ht )
18: S ← embeddinд (S, E)
19: M .f r eeze ()
20: LSTM .train (M, S, Ldiv )
21: return E

ground truth label c , thenyo,cn is 1; otherwise 0. po,cn is the predicted

probability of output o at class c . Intuitively, cross entropy loss

gauges the scale of output differences. Note that in our method,

perturbations are added to faulty dimensions for all the steps. Such

perturbations may accumulate over time and have inappropriate

impact on the final output. We hence employ L2 (squared error) loss

to reduce the influence from perturbations. It is commonly used for

regression tasks [46, 59]. In our scenario, it is formalized as follows.

Ll2 =
1

2

N∑
n=1

C∑
c=1

(pcn − p̂
c
n )

2, (12)

where N is the number of training samples, andC is the number of

classes. pcn is the original prediction, and p̂cn is the regulated predic-

tion. Intuitively, it minimizes the difference between the original

prediction and the perturbed prediction.

DL models are usually trained by minimizing the loss function,

during which model parameters are updated through backpropaga-

tion [45]. Different from general DL training, we introduce a new

training procedure, where model parameters are frozen and only

input embeddings are updated during training, as our purpose is to

regulate input embeddings according to the divergence loss. That is,

the gradients calculated from our divergence loss is backpropagated

to only the embedding variables, which are updated during training.

Algorithm 2 illustrates the procedure of embedding regulation. In

Section 3.1, aggregated divergence analysis is conducted on all the

misclassified samples in the validation set. A vector of dimension di-

vergence is generated for identifying faulty state vector dimensions.

Here, we utilize this divergence vector to only apply perturbations

to the faulty dimensions, which are essentially the most influential

dimensions. More specifically, we traverse over all the dimensions

and find the ones that are faulty (line 4-5). For dimensions denot-

ing input xt , a random value sampled from a normal distribution

N (0, ϵ ) (i.e., mean of 0, variance of ϵ) is added to those dimensions

(line 7-8). The variance value ϵ is chosen based on the standard

992



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang

0

50

100

150

200

250

25 50 75 100 125 150 175
0

20

40

60

25 50 75 100 125 150 175
0

20

40

60

25 50 75 100 125 150 175

Original RegulatedCorrect Traces

Incorrect 
Traces

Fitting 
approaches

Oracle

Machine

Confusion

Machine

Trace Divergence

Analysis 

LSTM ht-1+δ
ct-1+δ

xt-1+δ

ht

ct
pδ

LSTMht-1

ct-1

xt-1

ht

ct

p

diff loss

tanh

tanh
× +

× ×

ht

ct

σ σ σ

xt

ht-1

ct-1

Output Layer

ct-1ht-1xt[ ]

-8

-5

-2

1

-6 -2 2 6

-8

-5

-2

1

-6 -2 2 6

= sin

sout

0

10

20

30

40

50

25 50 75 100 125 150 175

Original Regulated

Embedding (50) Cell state (64) Hidden state (64)

Figure 10: An example of vector d for an LSTM model.

deviation of original word embeddings as it should not overshadow

the original values. For dimensions denoting the hidden states, a

random value sampled from a normal distribution with mean of

0 and variance of λ is added to those dimensions. Different from

ϵ that is only added to the input vector, the variance value λ is

added to internal states at each step. A large value of λ will ac-

cumulate over time and can significantly affect normal behaviors

of models. Thus, λ is much smaller than ϵ . Lines 11-12 apply the

input perturbations. RNN kind of models have a loopy structure

where internal states are computed through multiple steps. Thus,

for internal hidden states, perturbations are added for every step

(line 14-17). Training inputs of text tasks are sequences of words,

which are mapped to the corresponding word embeddings before

training (line 18). Model parameters are frozen during training as

we aim to regulate embeddings (line 19). Finally, we leverage the

divergence loss to tune word embeddings (line 20). The blue bars in

Figure 10 presents the trace divergence analysis results for the same

model after embedding regulation. Observe that the significance of

the faulty dimensions are substantially reduced.

After we acquire the new embeddings, we freeze the embeddings

and retrain the model (by updating model parameters). This is a typ-

ical procedure for training RNN type of models when embeddings

are changed.

4 EVALUATION
We evaluate TRADER on various datasets, word embeddings, and

RNN model structures. Most experiments were conducted on a

server equipped with two Xeon E5-2667 3.20GHz 8-core processors,

128 GB of RAM, 2 Tesla K40c GPU, 2 GeForce GTX TITAN X GPU

and 4 TITAN Xp GPU cards.

4.1 Setup
We use five datasets, three well-known word embeddings, and three

widely used RNN model structures (each having three different

settings), with a total of 135 models. The scale of our experiments

is much larger than similar works on RNN models [17, 38, 39, 51,

63, 94], which use 2-13 models.

Datasets. Five datasets are employed in the evaluation. Three of

them, stack overflow discussions, mobile app reviews, JIRA issue

comments, are from the software engineering (SE) community pro-

vided by Lin et al. [49]. IMDB dataset [53] is a large dataset for

movie reviews. Another dataset, Yelp reviews [100], is one of the

Table 1: Statistics of datasets.

Dataset # samples # negative # neutral # positive Max length

App reviews 341 130 25 186 231

IMDB 50,000 25,000 0 25,000 2,506

JIRA issues 926 636 0 290 49

Stack overflow 1,500 131 1,191 178 52

Yelp 5,946,620 1,544,553 0 4,402,067 3,929

Table 2: Word embeddings.

Embedding # dimensions Mean Standard deviation

GloVe 50 0.020941 0.644104

Word2vec 300 -0.004118 0.107278

Adversarial 256 -0.053817 0.767211

largest datasets for sentiment analysis. Table 1 shows the statistics

of these five datasets. The app reviews dataset has 341 samples with

3 sentiment classes. The longest sentence in this dataset has 231

words. The IMDB dataset has 50,000 samples with two sentiment

classes. The max length of sentences in IMDB is 2,506. The JIRA

issues dataset has 926 samples with two sentiment classes. The

longest sentence in this dataset has 49 words. The stack overflow

dataset has 1,500 samples with three sentiment classes. Most of

the samples are from the neutral class. The Yelp reviews dataset

is obtained from the Yelp Dataset Challenge in 2015 containing

around 6 million samples. The max length of sentences in Yelp is

3,929. For the three SE datasets and the Yelp dataset, we partition

them into three disjoint sets: training set (80%), validation set (10%),

testing set (10%), which is consistent with the setting in [17, 58, 94].

The original IMDB dataset has already been split into two sets with

25,000 samples for training and 25,000 samples for testing. We fol-

low the convention by preserving the test set, and further partition

the training set to two parts: 22,500 samples in training and 2,500 in

validation. Thus, the IMDB dataset is split into three parts: training

(45%), validation (5%), and testing (50%).

Word Embeddings. Three kinds of word embeddings are stud-

ied in our experiments. The GloVe word embedding was proposed

by Jeffrey et al. [65]. It leverages statistical information in a large

corpus and only trains on the nonzero elements in a word-word co-

occurrence matrix. We employ a pre-trained GloVe embedding from

a real-word application [19]. The Word2vec embedding was intro-

duced by Mikolov et al. [54]. It is one of the most widely employed

embeddings with many applications [48, 74, 98]. We also obtain a

pre-trained word2vec from an existing project [15]. The Adversarial

word embedding was especially optimized for text classification

[58]. We utilize the original implementation from the authors [57]

to train the embedding. Table 2 illustrates the statistics of these

three embeddings. GloVe has 50 dimensions for each word, and

has the largest mean value compared to the other two embeddings.

Word2vec has 300 dimensions, the largest number of dimensions

among all three embeddings. The standard deviation of word2vec is

smaller than other embeddings, meaning the perturbation variance

ϵ should be small for word2vec. The Adversarial embedding has

256 dimensions. It has the largest standard deviation, meaning a

large variance value of perturbation ϵ should be chosen.

Models. We use three popular RNN model structures, each having

three different settings (on the number of hidden neurons, namely,

64, 128, and 256). The vanilla RNN is a basic RNN model with

993



TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Trace divergence analysis overhead.

Overhead Dataset

Vanilla RNN LSTM GRU

GloVe Word2vec Adversarial GloVe Word2vec Adversarial GloVe Word2vec Adversarial

64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256

Time (s)

App reviews 1.737 1.779 1.823 1.927 1.833 1.958 1.679 1.798 2.085 2.950 2.841 3.029 3.151 3.108 3.216 2.903 2.720 2.526 3.454 4.063 4.223 3.856 5.137 3.511 4.823 6.064 3.706

IMDB (×10) 0.742 0.967 0.912 0.911 1.279 1.174 0.939 1.096 1.097 1.523 1.276 1.550 1.994 1.822 2.024 1.672 1.665 1.946 1.483 1.346 1.633 1.678 1.690 2.053 1.694 1.651 1.906

JIRA issues 1.070 1.034 1.057 1.272 1.164 1.409 1.142 1.275 1.161 1.499 1.313 1.339 1.430 1.276 1.383 1.397 1.435 1.463 1.415 1.374 1.527 1.481 1.716 1.331 1.505 1.483 1.525

Stack overflow 1.277 1.242 1.220 1.223 1.109 1.266 1.107 1.243 1.442 1.366 1.553 1.616 1.486 1.634 1.609 1.500 1.503 1.508 1.638 1.611 1.502 1.706 1.435 1.594 1.664 1.555 1.767

Yelp (×103) 0.206 0.305 0.466 0.536 0.638 0.842 0.491 0.613 0.775 0.278 0.404 0.707 0.553 0.717 1.117 0.494 0.625 0.970 0.502 0.605 0.820 1.725 2.149 1.836 1.182 1.097 1.315

Space (M)

App reviews 0.399 0.616 1.052 1.249 1.467 1.903 1.100 1.317 1.753 0.616 1.052 1.923 1.467 1.903 2.774 1.317 1.753 2.624 0.399 0.616 1.052 1.249 1.467 1.903 1.100 1.317 1.753

IMDB (×102) 1.943 3.015 5.160 6.131 7.203 9.348 5.394 6.466 8.610 1.943 3.015 5.160 6.131 7.203 9.348 5.394 6.466 8.610 1.943 3.015 5.160 6.131 7.203 9.348 5.394 6.466 8.610

JIRA issues 0.327 0.507 0.866 1.029 1.209 1.569 0.906 1.086 1.446 0.507 0.866 1.586 1.209 1.569 2.289 1.086 1.446 2.165 0.327 0.507 0.866 1.029 1.209 1.569 0.906 1.086 1.446

Stack overflow 0.742 1.147 1.958 2.326 2.731 3.542 2.047 2.453 3.264 1.147 1.958 3.580 2.731 3.542 5.165 2.453 3.264 4.886 0.742 1.147 1.958 2.326 2.731 3.542 2.047 2.453 3.264

Yelp (×104) 0.483 0.766 1.290 1.560 1.822 2.382 1.407 1.660 2.191 6.933 1.124 2.000 1.515 1.931 2.787 1.339 1.756 2.592 4.561 6.879 1.154 1.319 1.521 1.955 1.118 1.319 1.730

Table 4: Fitting scores of oracle traces and buggy traces generated for each model.

Dataset Trace

Vanilla RNN LSTM GRU

GloVe Word2vec Adversarial GloVe Word2vec Adversarial GloVe Word2vec Adversarial

64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256

App Reviews

Oracle 0.974 0.971 0.679 0.971 0.955 0.967 0.980 0.983 0.989 0.992 0.981 0.999 0.997 0.993 0.998 0.986 0.993 1.000 0.978 0.984 0.989 0.989 0.990 0.994 0.983 0.975 0.987

Buggy 0.995 0.970 0.466 0.991 0.988 0.993 0.978 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000

IMDB

Oracle 0.933 0.965 0.966 0.986 0.985 0.985 0.884 0.858 0.830 0.975 0.984 0.964 0.990 0.989 0.985 0.912 0.917 0.963 0.992 0.993 0.992 0.996 0.995 0.996 0.992 0.991 0.985

Buggy 0.932 0.968 0.983 0.985 0.986 0.986 0.868 0.851 0.816 0.949 0.967 0.932 0.985 0.980 0.977 0.852 0.853 0.932 0.978 0.982 0.980 0.991 0.988 0.990 0.981 0.979 0.965

JIRA issues

Oracle 0.943 0.949 0.828 0.977 0.987 0.993 0.973 0.974 0.989 0.986 0.984 0.994 0.999 0.999 0.999 0.987 0.991 0.999 0.960 0.941 0.950 0.993 0.996 0.998 0.974 0.986 0.995

Buggy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Stack overflow

Oracle 0.862 0.858 0.899 0.868 0.865 0.973 0.904 0.817 0.916 0.994 0.902 0.891 0.994 0.954 0.975 0.950 0.917 0.933 0.948 0.948 0.944 0.967 0.987 0.881 0.880 0.908 0.953

Buggy 0.875 0.882 0.970 0.944 0.944 0.988 0.944 0.934 1.000 0.997 0.950 0.893 0.999 0.998 0.997 0.993 0.998 0.997 0.967 0.969 0.977 0.991 0.993 0.987 0.966 0.990 0.999

Yelp

Oracle 0.946 0.958 0.970 0.986 0.990 0.919 0.925 0.915 0.915 0.987 0.988 0.988 0.991 0.992 0.991 0.979 0.969 0.971 0.990 0.990 0.989 0.993 0.993 0.994 0.990 0.990 0.990

Buggy 0.947 0.962 0.978 0.987 0.989 0.950 0.930 0.913 0.918 0.967 0.970 0.969 0.978 0.979 0.981 0.948 0.925 0.928 0.978 0.976 0.975 0.983 0.981 0.984 0.974 0.971 0.971

one hidden state (see Section 2.1). LSTM has a complicated model

structure with three different types of control gates as discussed

in Section 2.1. GRU is a more advanced RNN model introduced by

Cho et al. [14]. It has been shown to be one of the state-of-the-arts.

A batch size of 24 samples is used for each training iteration, except

for Yelp (which has the size of 512, its default setting). We use the

Adam optimizer [40] with the learning rate of 0.001. Note that we

train these models by ourselves, which is consistent with existing

works on RNN [19, 77]. The accuracy of the trained models align

well with the literature [49].

Hyper-parameters. Three hyper-parameters (i.e., θ , ϵ , λ) are used
for embedding regulation. Parameter θ is used for selecting faulty

dimensions. The value of θ can vary from the minimum value to

the maximum of the divergence vector. Parameter ϵ and λ are used

to perturb embedding vectors and internal states, with ϵ ranging
from (0, 1) and λ = 10

−4
. The values of θ and ϵ are chosen using the

validation set. Specifically, we uniformly sample ten values from

their range and select the one that produces the best result on the

validation set. In most cases, θ is close to the mean and ϵ is in (0.1,

0.3) depending on the model. Concrete settings can be found in [84].

Note that such parameter tuning is typical in deep learning.

Baseline.We compare our technique with a state-of-the-art RNN

hardening technique [63] that does not use debugging feedback, but

rather standard model hardening strategies, including penalizing

weights/embeddings which adds l2-norm of weights/embeddings

to the cost function (e.g., Lnew = Lold + | |W | |
2
whereW is the

model weights), re-embedding words which minimizes difference

between pre-trained embeddings and the embeddings fine-tuned

during supervised training, and dropout which sets each neuron to

0 with a probability p during training. Since it is a general technique

likes ours (without requiring any model structure enhancement)

and reports state-of-the-art results, we use it as the baseline. Note

that we cannot use GANs as a baseline like in MODE [52] because

high quality GANs for RNN models are still an open challenge, as

pointed out in [89].

To reduce the uncertainty introduced by random perturbation.

We ran each experiment 10 times and report the average, except

Yelp, which we can only afford running it 3 times due to its ex-

tremely large size.

4.2 Evaluation of Trace Divergence Analysis
We leverage traces acquired from the validation set to learn the

distributions of model behaviors. We first collect the time and space

cost of the trace divergence analysis. We then study the effective-

ness of the linear regression approaches in approximating distribu-

tions of the oracle traces and the buggy traces.

Table 3 presents the overhead introduced by the trace divergence

analysis. From the table, it can be observed that for SE datasets,

the analysis time is less than 7 seconds and the space overhead is

mostly around a few MBs. Thus, it is negligible compared to the

millions of weights and hours of training. For the large datasets

IMDB and Yelp, the analysis time is around a few minutes and the

space overhead is around thousands of MBs. Note that their results

have different scales from the others (indicated by the parentheses

in column 2). We argue the analysis cost is still reasonable.

994



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang

Embedding Dataset

Vanilla RNN LSTM GRU

Original RS TRADER Original RS TRADER Original RS TRADER

64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256 64 128 256

GloVe

App reviews 67.65 67.65 58.82 67.65 67.65 58.82 79.41 73.53 73.53 73.53 70.59 70.59 67.65 70.59 70.59 79.41 82.35 82.35 76.47 76.47 76.47 76.47 76.47 76.47 79.41 79.41 82.35
IMDB 64.81 63.42 60.32 61.91 66.52 65.70 71.47 69.40 72.17 84.67 84.51 84.28 84.48 84.82 84.74 87.13 86.80 85.72 85.63 85.82 85.50 85.11 85.05 84.82 87.44 87.41 86.98
JIRA issues 88.04 91.30 84.78 89.13 89.13 81.52 96.74 96.74 97.83 94.57 94.57 93.48 93.48 92.39 91.30 97.83 97.83 97.83 91.30 92.39 94.57 94.57 93.48 93.48 97.83 96.74 96.74
Stack overflow 86.00 86.00 86.00 86.00 86.00 86.00 88.00 88.00 88.00 86.00 86.00 86.00 86.67 86.67 86.00 89.33 89.33 89.33 86.67 86.67 86.00 86.67 86.67 86.67 88.67 89.33 89.33
Yelp 79.56 78.51 77.70 79.33 80.67 77.67 83.11 83.17 89.90 92.02 92.45 92.09 92.79 92.94 92.93 94.07 94.67 94.81 91.45 91.34 90.89 92.14 92.06 91.90 94.19 94.36 94.50

Word2vec

App reviews 61.76 55.88 67.65 67.65 58.82 58.82 79.41 85.29 79.41 79.41 73.53 67.65 82.35 79.41 76.47 88.24 88.24 88.24 79.41 76.47 76.47 82.35 79.41 79.41 82.35 88.24 85.29
IMDB 68.86 63.62 70.62 72.09 73.34 71.01 77.27 78.73 77.32 87.42 87.88 87.33 87.18 87.28 87.18 88.26 88.23 87.75 88.02 88.45 88.38 87.75 87.56 87.41 88.67 88.60 88.34
JIRA issues 92.39 91.30 88.04 93.48 94.57 88.04 98.91 97.83 97.83 93.48 94.57 91.30 94.57 96.74 95.65 96.74 96.74 97.83 93.48 96.74 96.74 94.57 96.74 96.74 97.83 97.83 97.83
Stack overflow 86.67 86.67 86.00 86.67 86.67 86.00 88.00 88.00 88.00 86.67 86.00 86.00 86.67 86.00 86.67 89.33 89.33 89.33 86.67 86.67 86.67 87.33 86.00 86.00 88.00 88.67 88.00
Yelp 82.91 82.10 88.86 84.02 89.76 86.64 87.00 90.85 89.93 92.50 93.10 93.32 93.40 93.57 93.49 94.62 95.02 95.16 92.82 92.70 92.80 92.90 92.84 92.76 94.62 94.73 94.87

Adversarial

App reviews 55.88 58.82 52.94 61.76 61.76 58.82 76.47 79.41 82.35 76.47 61.76 64.71 67.65 61.76 67.65 85.29 82.35 82.35 73.53 70.59 73.53 76.47 76.47 76.47 82.35 85.29 85.29
IMDB 76.22 74.20 67.75 76.62 73.09 70.35 78.78 79.33 79.68 87.94 88.39 88.51 87.13 88.44 89.07 88.62 89.07 89.20 88.96 88.52 88.65 88.94 89.12 88.79 89.25 89.42 89.70
JIRA issues 89.13 90.22 89.13 91.30 89.13 91.30 96.74 96.74 97.83 93.48 93.48 94.57 94.57 93.48 96.74 96.74 96.74 97.83 95.65 96.74 96.74 96.74 96.74 95.65 98.91 98.91 98.91
Stack overflow 86.00 84.67 86.67 82.67 85.33 84.00 88.00 88.00 88.00 86.67 85.33 86.67 86.67 86.00 86.00 88.67 88.67 90.00 86.67 86.67 86.00 86.67 86.67 86.67 88.00 89.33 89.33
Yelp 85.19 86.30 85.27 85.33 86.29 79.35 87.92 88.54 91.67 93.11 93.49 93.14 94.04 94.26 94.38 94.52 94.97 95.10 93.69 93.84 93.80 94.07 94.15 94.12 94.60 94.77 94.96

Table 5: Results of regulating all dimensions of embeddings.

Embedding Dataset

Vanilla RNN LSTM GRU

64 128 256 64 128 256 64 128 256

GloVe

App reviews 55.88 50.00 55.88 70.59 64.71 64.71 76.47 73.53 73.53

IMDB 58.52 66.33 59.25 86.78 85.29 84.61 85.11 86.16 85.96

JIRA issues 93.48 90.22 86.96 95.65 96.74 93.48 95.65 95.65 95.65

Stack overflow 85.33 79.33 84.00 85.33 86.67 87.33 87.33 86.00 86.00

Yelp 77.58 77.15 77.32 93.79 94.51 94.54 93.83 94.19 94.25

Word2vec

App reviews 61.76 58.82 70.59 79.41 70.59 58.82 79.41 82.35 82.35

IMDB 55.77 56.70 61.01 87.44 87.60 85.03 87.45 88.04 87.51

JIRA issues 94.57 94.57 90.22 92.39 93.48 91.30 95.65 96.74 95.65

Stack overflow 86.00 84.00 86.00 86.67 87.33 86.67 86.00 86.67 86.67

Yelp 75.56 77.74 84.86 94.00 94.82 94.87 94.48 94.52 94.59

Adversarial

App reviews 52.94 64.71 67.65 76.47 70.59 76.47 76.47 70.59 70.59

IMDB 68.23 70.98 63.65 87.84 88.37 88.74 88.61 89.09 88.52

JIRA issues 90.22 93.48 90.22 92.39 92.39 92.39 95.65 94.57 95.65

Stack overflow 84.67 82.00 83.33 84.67 88.00 87.33 88.00 83.33 86.00

Yelp 86.26 85.85 81.85 94.49 94.69 95.00 94.45 94.76 94.91

Linear regression is utilized to approximate the distributions of

oracle traces and buggy traces to construct the oracle machine and

the buggy machine. To evaluate the performance of the approach,

we demonstrate the results in Table 4. The first column denotes the

datasets. The second column denotes the trace types. The following

columns denote different models (Vanilla RNN, LSTM and GRU),

word embeddings (GloVe, Word2vec, Adversarial), and model set-

tings (64, 128, 256) that are used for training the original application

models. The fitting score in Table 4 denotes the coefficient of de-

termination R2, which is used to measure the fitting performance.

It ranges from 0 (worst) to 1 (best). Almost all the scores are over

0.9, which indicates that our oracle (buggy) machine effectively

approximates the distribution of oracle (buggy) traces.

4.3 Evaluation of Fixing Model Bugs
The results of bug fixing are presented in Table ??. The first column

denotes the three word embeddings. The second column denotes the

five applications. The following columns denote the test accuracy

for different models and settings. Column “original” denotes the

results for original models. Column RS detotes the baseline, a state-

of-the-art embedding regulation technique [63]. The original and RS

models are trained on both the training and the validation sets. We

chose to do that as TRADER essentially makes use of the validation

set in its debugging procedure. We also evaluate the effectiveness

of defective dimension identification in Table 5. Particularly, we

use our proposed embedding regulation technique to regulate all

the dimensions of embeddings and retrain models based on those

embeddings.

We have the following observations. For various applications

using different word embeddings and model structures, TRADER

can consistently improve the test accuracy, compared to the original

models trained on both the training set and the validation set. The

baseline RS [63] can improve a subset of models, some with substan-

tial improvement (e.g., 8.82% for App reviews dataset using LSTM

with 256 neurons and word2vec embeddings). However, it leads

to degradation in a number of models as well (e.g., -5.93% for Yelp

dataset using vanilla RNNwith 256 neurons and Adversarial embed-

dings). The average improvement is 0.6%. In comparison, TRADER

achieves 5.37% improvement on average (over the original models),

which is substantially larger than RS, and in fact also much larger

than the improvement reported in the literature for RNN types

of models, which is typically 0.05%-3.76% [17, 38, 39, 51, 64, 94]

with a median of 0.7%. The improvement on the largest dataset

Yelp is relatively smaller than the others, especially for the set-

ting (GRU structure + Adversarial embedding). This is because

the original model already achieves very high accuracy. When all

the dimensions are considered during embedding regulation, the

improvement on the test accuracy is inconsistent, comparing to

TRADER. Especially, in some cases (e.g., App reviews dataset using

vanilla RNN and GloVe embedding), the result even drops lower

than original models. This observation supports the importance of

identifying faulty dimensions when regulating embeddings.

4.4 Case Study
In this section, we study individual cases to show why the buggy

model mis-predicts input samples and how the fixed model per-

forms. Figure 11 shows four text samples from the app reviews

dataset and the stack overflow dataset. For each sentence, we

present a pair of results, with the first predicted by the buggy

model and the second predicted by the fixed model. The color from

red to green and then to blue denotes the sentiment from negative

to neutral and then to positive. The brightness of colors represents

the degree of sentiment values. Brighter the color, larger the degree

towards the corresponding sentiment. For the first case, the ground

truth label is positive but the buggy model predicts neutral. It can

be observed that the sentiment output stays neutral at the step with

995



TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

And this code worked.

But sadly this is not working.

And this code worked.

Legend

But sadly this is not working.

very good indeed well impressed how good a tool it is.

very good indeed well impressed how good a tool it is.
Seems very accurate even on lower energy settings.

Seems very accurate even on lower energy settings.

Earlier I was writing the file to local machine then it 
was working 
fine.
Earlier I was writing the file to local machine then it 
was working 
fine.

Positive

Negative

Positive

Positive

Figure 11: Prediction by the buggy model and the fixed
model. Each pair shows the prediction results by the buggy model
(top) and the fixed model (bottom). The color from red to green and
then to blue denotes the sentiment from negative to neutral and
then to positive. The brightness of colors represents the degree of
sentiment values. Brighter the color, larger the degree towards the
corresponding sentiment.

word “worked”. In this context, word “worked” has positive senti-
ment and should significantly contribute to the final prediction. The

fixed model acts as expected. In the second case, the buggy model

treats word “working” non-negatively. However, in this context, it

comes after word “not”, which should be considered jointly. The

third case shows that in long sentences, the buggy model may focus

locally without considering the whole context (“lower energy
settings”), which produces wrong prediction. In the fourth case,

the buggy model focuses too much on the previous context with-

out considering the local information (“fine”). We think that after

regulating the embeddings, the model substructures (e.g., forget

gates) have more appropriate behaviors (e.g., remembering the right

context and forgetting the undesirable ones) as their behaviors are

not perturbed by words that have different meanings but similar

embeddings.

5 THREAT TO VALIDITY
Since we use random perturbation during training, which is typ-

ical in model hardening [66], the results may have uncertainty.

To reduce the threat, we run our experiments multiple times and

report the average. The results are achieved on specific settings,

such as batch size, optimizer, learning rate, and hyper-parameter

values. To achieve fair comparison, we follow the same setting in

existing works as much as possible (e.g., regarding how to partition

datasets). We also release our settings in [84] for reproduction. Note

that although cross-validation is often used to reduce uncertainty in

machine learning results, due to the large scale of data, most exist-

ing works on RNN, especially those considering datasets like IMDB

and Yelp, cannot afford cross-validation [17, 51, 58, 94]. The original

models may have bugs other than problematic embeddings (e.g.,

data bias). The good results we achieve could be partially attributed

to that the hardening alleviates some of those bugs. However, the

fact that we only perform guided hardening on embedding (instead

of on weights like in [52]) indicates that the other bugs, if they exist,

have substantial confounding with embeddings. The evaluations

are conducted on sentiment analysis task. The proposed TRADER,

however, is not application specific. For instance, in sequence-to-

sequence tasks (e.g., neural machine translation), two RNN models

are usually used: one (Encoder) for encoding input sequences to

hidden states and the other one (Decoder) for decoding target se-

quences from hidden states together with the output of the previous

step. The Decoder is similar to RNN models used in sentiment anal-

ysis, where hidden states and an input element are fed to the model

to obtain an output. We can use TRADER to identify the divergence

steps of Decoder and locate faulty dimensions in hidden states and

input elements. The embedding regulation can be conducted on

both source language and target language embeddings.

6 RELATEDWORK
Our technique is inspired by software debugging (e.g., [10, 18, 22,

23, 44, 67, 71, 97, 99]). Many techniques use trace analysis and

differential analysis. They locate bugs by tracing program execution

and comparing buggy runs with correct runs. Similarly, we trace

RNN executions and locate divergence. Unlike traditional software,

RNN uses high dimension embeddings and has much more complex

data dependences between the embeddings and neuron activation

values, so we use embedding regulation and retraining to repair

RNN models.

There are many works [2, 7, 13, 20, 28, 50, 62, 85] that employ

general machine learning methods and some works [9, 29, 35, 36,

47, 49, 88] specifically use RNN models in software engineering

tasks. TRADER can help software engineering researchers debug

their RNN models. Researchers have also proposed different meth-

ods to debug the machine learning models [11, 12, 52]. However,

these works focused on specific machine learning models or feed-

forward Neural Networks and are not applicable to RNN models. In

the article [70], researchers aim at debugging NLP models by gen-

erating adversarial examples as training data. In articles [37, 101],

researchers propose methods to debug models by cleaning up the

wrongly labeled training data. These approaches debug RNN mod-

els by providing better training data and do not analyze model

internals. TRADER is orthogonal to these works. There are also

works [42, 69] that explain NLP models and use model explanations

to help data engineers debug models. These approaches require

human efforts while TRADER is fully automated.

7 CONCLUSION
We develop a novel technique to automatically diagnose how prob-

lematic word embeddings influence model accuracy, by collecting

and comparing model execution traces for correctly and incorrectly

classified samples. A new embedding regulation/tuning algorithm

is proposed to leverage the diagnosis results to harden the embed-

dings. Our experiments show that our technique can consistently

and effectively improve accuracy for real world models and datasets

by 5.37% on average.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-

ments. This research was supported, in part by DARPA FA8650-15-

C-7562, NSF 1748764, 1901242 and 1910300, ONR N000141410468

and N000141712947, and Sandia National Lab under award 1701331.

Any opinions, findings, and conclusions in this paper are those of

the authors only and do not necessarily reflect the views of our

sponsors.

996



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu Zhang

REFERENCES
[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-

ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 40.

[2] Dalal Alrajeh and Alessandra Russo. 2018. Logic-Based Learning: Theory and

Application. In Machine Learning for Dynamic Software Analysis: Potentials and
Limits.

[3] Mathieu Aubry and Bryan C Russell. 2015. Understanding Deep Features with

Computer-Generated Imagery. In IEEE International Conference on Computer
Vision (ICCV). 2875–2883.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine

translation by jointly learning to align and translate. In International Conference
on Learning Representations (ICLR).

[5] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count,

predict! A systematic comparison of context-counting vs. context-predicting

semantic vectors. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 238–247.

[6] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.

Network Dissection: Quantifying Interpretability of Deep Visual Representa-

tions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[7] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2016.

Testing advanced driver assistance systems using multi-objective search and

neural networks. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering. ACM, 63–74.

[8] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term

dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[9] Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. 2018. Neuro-symbolic program

corrector for introductory programming assignments. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 60–70.

[10] Ivan Bocić and Tevfik Bultan. 2016. Finding access control bugs in web ap-

plications with CanCheck. In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 155–166.

[11] Gabriel Cadamuro, Ran Gilad-Bachrach, and Xiaojin Zhu. 2016. Debugging

machine learning models. In ICML Workshop on Reliable Machine Learning in
the Wild.

[12] Aleksandar Chakarov, Aditya Nori, Sriram Rajamani, Shayak Sen, and Deepak

Vijaykeerthy. 2016. Debugging machine learning tasks. arXiv preprint
arXiv:1603.07292 (2016).

[13] Chunyang Chen, Zhenchang Xing, and Yang Liu. 2017. By the community &

for the community: a deep learning approach to assist collaborative editing in

q&a sites. Proceedings of the ACM on Human-Computer Interaction (2017).

[14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase

representations using RNN encoder-decoder for statistical machine translation.

In Empirical Methods in Natural Language Processing (EMNLP).
[15] Google Code. 2013. Word2vec. https://code.google.com/archive/p/word2vec/

[16] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.

2018. AutoAugment: Learning Augmentation Policies from Data. arXiv preprint
arXiv:1805.09501 (2018).

[17] Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. In

Advances in neural information processing systems. 3079–3087.
[18] Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017. NoFAQ: synthesizing

command repairs from examples. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, 582–592.

[19] Adit Deshpande. 2017. Sentiment Analysis with LSTMs. https://github.com/

adeshpande3/LSTM-Sentiment-Analysis

[20] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik,

and Andrea De Lucia. 2018. Detecting code smells using machine learning

techniques: are we there yet?. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 612–621.

[21] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-

Stellar: model-based quantitative analysis of stateful deep learning systems. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,

477–487.

[22] Qiang Fu, Jian-Guang Lou, Qing-Wei Lin, Rui Ding, Dongmei Zhang, Zihao Ye,

and Tao Xie. 2012. Performance issue diagnosis for online service systems. In

2012 IEEE 31st Symposium on Reliable Distributed Systems. IEEE, 273–278.
[23] Zheng Gao, Christian Bird, and Earl T Barr. 2017. To type or not to type:

quantifying detectable bugs in JavaScript. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 758–769.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[25] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial

Nets. In Advances in Neural Information Processing Systems (NIPS). 2672–2680.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

Harnessing Adversarial Examples. arXiv preprint arXiv:1412.6572 (2014).
[27] Michael Goul, Olivera Marjanovic, Susan Baxley, and Karen Vizecky. 2012. Man-

aging the enterprise business intelligence app store: Sentiment analysis sup-

ported requirements engineering. In 2012 45th Hawaii International Conference
on System Sciences. IEEE, 4168–4177.

[28] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In

2018 IEEE/ACM 40th International Conference on Software Engineering.
[29] Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and Thomas Reps. 2018. Code vec-

tors: understanding programs through embedded abstracted symbolic traces. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.

[30] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups. IEEE Signal processing
(2012).

[31] Sepp Hochreiter. 1991. Untersuchungen zu dynamischen neuronalen Netzen.

Diploma, Technische Universität München 91, 1 (1991).

[32] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.

Neural computation 9, 8 (1997), 1735–1780.

[33] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2019. Deep code comment

generation with hybrid lexical and syntactical information. Empirical Software
Engineering (2019), 1–39.

[34] Nasif Imtiaz, Justin Middleton, Peter Girouard, and Emerson Murphy-Hill. 2018.

Sentiment and politeness analysis tools on developer discussions are unreliable,

but so are people. In 2018 IEEE/ACM 3rd International Workshop on Emotion
Awareness in Software Engineering (SEmotion). IEEE, 55–61.

[35] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.

Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics.

[36] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-

ing commit messages from diffs using neural machine translation. In Proceedings
of IEEE/ACM International Conference on Automated Software Engineering.

[37] Yuan Jiang and Zhi-Hua Zhou. 2004. Editing training data for kNN classifiers

with neural network ensemble. In International symposium on neural networks.
[38] Rie Johnson and Tong Zhang. 2015. Semi-supervised convolutional neural

networks for text categorization via region embedding. In Advances in neural
information processing systems. 919–927.

[39] Rie Johnson and Tong Zhang. 2016. Supervised and Semi-Supervised Text

Categorization using LSTM for Region Embeddings. In International Conference
on Machine Learning (ICML). 526–534.

[40] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-

mization. In International Conference on Learning Representations (ICLR).
[41] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114 (2013).
[42] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions

via influence functions. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 1885–1894.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Clas-

sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems (NIPS). 1097–1105.

[44] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.

2012. Genprog: A generic method for automatic software repair. Ieee transactions
on software engineering 38, 1 (2012), 54–72.

[45] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

Based Learning Applied to Document Recognition. Proc. IEEE (1998).

[46] Christopher J Leggetter and Philip C Woodland. 1995. Maximum likelihood

linear regression for speaker adaptation of continuous density hidden Markov

models. Computer speech & language 9, 2 (1995), 171–185.
[47] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun

Deng, and Yuyi Zhong. 2018. VulDeePecker: A deep learning-based system for

vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).
[48] Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. 2015. Support vector machines

and word2vec for text classification with semantic features. In 2015 IEEE 14th
International Conference on Cognitive Informatics & Cognitive Computing.

[49] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, Michele

Lanza, and Rocco Oliveto. 2018. Sentiment Analysis for Software Engineering:

How Far CanWe Go?. In Proceedings of 40th International Conference on Software
Engineering (ICSE).

[50] Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, Zhenchang Xing, and Xinyu

Wang. 2018. Neural-machine-translation-based commit message generation:

how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 373–384.

[51] Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang, and Heng Ji. 2018. Visual

Attention Model for Name Tagging in Multimodal Social Media. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics.

997

https://code.google.com/archive/p/word2vec/
https://github.com/adeshpande3/LSTM-Sentiment-Analysis
https://github.com/adeshpande3/LSTM-Sentiment-Analysis
http://www.deeplearningbook.org


TRADER: Trace Divergence Analysis and Embedding Regulation
for Debugging Recurrent Neural Networks ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[52] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.

2018. MODE: automated neural network model debugging via state differential

analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 175–186.

[53] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,

and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In

Proceedings of annual meeting of the association for computational linguistics.
[54] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient esti-

mation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[55] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems.
[56] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.

In Proceedings of the 28th international conference on Software engineering.
[57] Takeru Miyato. 2018. Adversarial Text Classification. https://github.com/

tensorflow/models/tree/master/research/adversarial_text

[58] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. 2017. Adversarial training

methods for semi-supervised text classification. In International Conference on
Learning Representations (ICLR).

[59] John Neter, William Wasserman, and Michael H Kutner. 1989. Applied linear

regression models. (1989).

[60] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to programmers

Taxonomies and characteristics of comments in operating system code. In

Proceedings of the 31st International Conference on Software Engineering.
[61] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visag-

gio, Gerardo Canfora, and Harald C Gall. 2015. How can i improve my app?

classifying user reviews for software maintenance and evolution. In 2015 IEEE
International Conference on Software Maintenance and Evolution.

[62] Corina S Păsăreanu, Divya Gopinath, and Huafeng Yu. 2019. Compositional

Verification for Autonomous Systems with Deep Learning Components. In Safe,
Autonomous and Intelligent Vehicles. Springer, 187–197.

[63] Hao Peng, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and Zhi Jin. 2015.

A comparative study on regularization strategies for embedding-based neural

networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2106–2111.

[64] Minlong Peng, Qi Zhang, Yu-gang Jiang, and Xuanjing Huang. 2018. Cross-

Domain Sentiment Classification with Target Domain Specific Information. In

Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Vol. 1. 2505–2513.

[65] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543.

[66] Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli. 2014. Analyzing noise in

autoencoders and deep networks. arXiv preprint arXiv:1406.1831 (2014).
[67] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto

Bacchelli, and Premkumar Devanbu. 2016. On the" naturalness" of buggy code.

In 2016 IEEE/ACM 38th International Conference on Software Engineering.
[68] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I

Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
22nd International Conference on Knowledge Discovery and Data Mining.

[69] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-

precision model-agnostic explanations. In Thirty-Second AAAI Conference on
Artificial Intelligence.

[70] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Semantically

Equivalent Adversarial Rules for Debugging NLP models. In Association for
Computational Linguistics (ACL).

[71] Abhik Roychoudhury and Satish Chandra. 2016. Formula-based software de-

bugging. Commun. ACM 59, 7 (2016), 68–77.

[72] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,.

[73] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. 2015.

Evaluation methods for unsupervised word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing.

[74] Scharolta Katharina Sienčnik. 2015. Adapting word2vec to named entity recog-

nition. In Proceedings of the 20th nordic conference of computational linguistics.
[75] Vinayak Sinha, Alina Lazar, and Bonita Sharif. 2016. Analyzing developer

sentiment in commit logs. In Proceedings of the 13th International Conference on
Mining Software Repositories. ACM, 520–523.

[76] Richard Socher, Alex Perelygin, JeanWu, Jason Chuang, Christopher DManning,

Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic

compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing (EMNLP). 1631–1642.

[77] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Man-

ning, Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for

Semantic Compositionality Over a Sentiment Treebank. In Proceedings of the

2013 Conference on Empirical Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, Seattle, Washington, USA, 1631–1642.

https://www.aclweb.org/anthology/D13-1170

[78] William N Sumner and Xiangyu Zhang. 2013. Comparative causality: Explaining

the differences between executions. In 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 272–281.

[79] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence

learning with neural networks. In Advances in neural information processing
systems. 3104–3112.

[80] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural

Networks. In International Conference on Learning Representations (ICLR).
[81] Ted Tenny. 1988. Program readability: Procedures versus comments. IEEE

Transactions on Software Engineering 14, 9 (1988), 1271–1279.

[82] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.

2010. Sentiment strength detection in short informal text. Journal of the
American Society for Information Science and Technology (2010).

[83] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Auto-

mated testing of deep-neural-network-driven autonomous cars. In Proceedings
of the 40th International Conference on Software Engineering. ACM, 303–314.

[84] trader rnn. 2019. TRADER. https://github.com/trader-rnn/TRADER

[85] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and

Denys Poshyvanyk. 2019. On Learning Meaningful Code Changes via Neural

Machine Translation. arXiv preprint arXiv:1901.09102 (2019).
[86] Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth. 2016. Cross-

lingual models of word embeddings: An empirical comparison. arXiv preprint
arXiv:1604.00425 (2016).

[87] AlexWang, Amapreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R

Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for

Natural Language Understanding. arXiv preprint arXiv:1804.07461 (2018).
[88] Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Dynamic Neural Program

Embedding for Program Repair. arXiv preprint arXiv:1711.07163 (2017).
[89] Ke Wang and Xiaojun Wan. 2018. SentiGAN: generating sentimental texts

via mixture adversarial networks. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence. AAAI Press, 4446–4452.

[90] HuihuiWei andMing Li. 2017. Supervised Deep Features for Software Functional

Clone Detection by Exploiting Lexical and Syntactical Information in Source

Code.. In IJCAI. 3034–3040.
[91] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.

2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.

[92] Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshy-

vanyk. 2015. Toward deep learning software repositories. In Proceedings of the
12th Working Conference on Mining Software Repositories.

[93] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage

Challenge Corpus for Sentence Understanding through Inference. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics.

[94] Yijun Xiao and Kyunghyun Cho. 2016. Efficient character-level document

classification by combining convolution and recurrent layers. arXiv preprint
arXiv:1602.00367 (2016).

[95] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neu-

ral image caption generation with visual attention. In International Conference
on Machine Learning (ICML). 2048–2057.

[96] Liang-Chih Yu, Jin Wang, K Robert Lai, and Xuejie Zhang. 2017. Refining word

embeddings for sentiment analysis. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. 534–539.

[97] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?.

In ACM SIGSOFT Software engineering notes.
[98] Dongwen Zhang, Hua Xu, Zengcai Su, and Yunfeng Xu. 2015. Chinese comments

sentiment classification based on word2vec and SVMperf. Expert Systems with
Applications 42, 4 (2015), 1857–1863.

[99] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2003. Precise dynamic slic-

ing algorithms. In 25th International Conference on Software Engineering, 2003.
Proceedings. IEEE, 319–329.

[100] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional

networks for text classification. In Advances in neural information processing
systems (NIPS). 649–657.

[101] Xuezhou Zhang, Xiaojin Zhu, and StephenWright. 2018. Training set debugging

using trusted items. In Thirty-Second AAAI Conference on Artificial Intelligence.
[102] Yingying Zhang and Daqing Hou. 2013. Extracting problematic API features

from forum discussions. In 2013 21st International Conference on Program Com-
prehension (ICPC). IEEE, 142–151.

[103] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2017. Generating natural adver-

sarial examples. arXiv preprint arXiv:1710.11342 (2017).

998

https://github.com/tensorflow/models/tree/master/research/adversarial_text
https://github.com/tensorflow/models/tree/master/research/adversarial_text
https://www.aclweb.org/anthology/D13-1170
https://github.com/trader-rnn/TRADER

