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Abstract

Many existing backdoor scanners work by finding a
small and fixed trigger. However, advanced attacks have
large and pervasive triggers, rendering existing scanners
less effective. We develop a new detection method. It
first uses a trigger inversion technique to generate triggers,
namely, universal input patterns flipping victim class sam-
ples to a target class. It then checks if any such trigger is
composed of features that are not natural distinctive fea-
tures between the victim and target classes. It is based on
a novel symmetric feature differencing method that identi-
fies features separating two sets of samples (e.g., from two
respective classes). We evaluate the technique on a number
of advanced attacks including composite attack, reflection
attack, hidden attack, filter attack, and also on the tradi-
tional patch attack. The evaluation is on thousands of mod-
els, including both clean and trojaned models, with various
architectures. We compare with three state-of-the-art scan-
ners. Our technique can achieve 80-88% accuracy while
the baselines can only achieve 50-70% on complex attacks.
Our results on the TrojAI competition rounds 2-4, which
have patch backdoors and filter backdoors, show that exist-
ing scanners may produce hundreds of false positives (i.e.,
clean models recognized as trojaned), while our technique
removes 78-100% of them with a small increase of false
negatives by 0-30%, leading to 17-41% overall accuracy
improvement. This allows us to achieve top performance on
the leaderboard.

1. Introduction

Backdoor attack (or trojan attack) on deep learning
models injects malicious behaviors such that a compro-
mised model behaves normally on clean inputs and mis-
classifies inputs stamped with a trigger to a target label
[6, 20, 36, 40, 41]. It becomes a prominent threat due to the
low complexity of launching such attacks, the devastating
consequences especially in safety/security critical applica-
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Figure 1. Backdoor detection by trigger inversion

tions, and the difficulty of defense.
There are a body of existing defense techniques such as

trigger inversion [39, 66], attribution analysis [16, 25], tro-
janed input detection [14, 64], backdoor removal [34, 37],
and model certification [65]. According to [3, 48], trigger
inversion is an effective technique that can determine if a
model contains backdoor without assuming the availabil-
ity of any input with trigger. For example, Neural Cleanse
(NC) [66], Artificial Brain Stimulation (ABS) [39], and K-
Arm [55] make use of optimization to invert triggers and
determine if a model is trojaned. They consider each label
in the model as a potential target and use optimization to
check if a small and fixed input pattern, i.e., a trigger, can
be found to cause any input to be misclassified to the la-
bel. The intuition is that attackers tend to use small triggers
for attack stealthiness. Figure 1 illustrates trigger inversion.
An input pattern (the circular pattern or the rectangular one
on the bottom) is generated by gradient back-propagation
to flip cat samples to bird. If the subject model is clean,
a large pattern that exhibits a lot of bird features is gener-
ated (e.g., the rectangular pattern with the “clean” tag).
In contrast, when the model is trojaned (with a red circu-
lar patch), a small pattern containing the trigger features is
inverted (e.g., the circular pattern with the “trojaned”
tag). The size difference of the patterns is critical for these
scanners, that is, a model is flagged as trojaned only when
a small trigger can be found. Observe that inverted patterns
are usually noisy and may not be human interpretable.

While existing techniques are effective for attacks with
small and static triggers, advanced attacks proposed re-
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Figure 2. Ex-ray overview

cently [36, 41, 52] have large and dynamic triggers: the in-
put level differences before and after injecting a trigger are
substantial and the differences vary across different inputs.
Composite attack [36] injects a backdoor by mixing benign
features from two or more classes. For example, a butter-
fly appearing in a cat image causes the model to predict
bird. Triggers may be large (e.g., a butterfly could be much
larger than a typical patch trigger) and have different pixel
level manifestations (e.g., various kinds of butterfly). Re-
flection backdoor [41] uses the reflection of an image as the
trigger. Reflection occurs when pictures are taken behind
a glass window. Reflection could be as large as a whole
image. Hidden trigger backdoor [52] introduces perturba-
tions on the training images of target label such that the per-
turbed images have similar inner activations to the trigger
and forces the model to learn the correlations between the
trigger and the target label. Since the trigger is not explicit
in the training, the trojaning process is more difficult and re-
quires larger triggers. Existing scanners such as NC, ABS,
and K-arm have difficulties detecting these backdoors. They
only achieve 0.5-0.7 accuracy (see the evaluation section).
Essence of Backdoor Attack. We observe the essence of
backdoor attack is that model misclassification (to the target
class) is induced by features not in the target class. For ex-
ample, in a composite attack, a cat image is misclassified to
bird when a butterfly is also present in the image. The mis-
classification is essentially induced by the features of cat
and butterfly (not bird’s). Our overarching idea is hence to
determine if the features of an inverted trigger are the nat-
ural features distinguishing the victim and target classes. If
so, the model is clean. Otherwise, it is considered trojaned.
Note that in our method small sizes and fixed triggers are no
longer essential properties. One may argue that the attacker
could craft a trigger with the target class’s natural features.
We will discuss such an adaptive attack in Section 4.3.

Our Method. Figure 2 illustrates our method. It takes a
model and a small set of clean samples (e.g., 10 for each
class). It first leverages an existing trigger inversion method
to derive a trigger that can flip a set of clean samples of the
victim class (cat) to the target class (bird). It feeds a set of
clean victim samples to the model, and extracts the internal
feature maps at a selected layer (the first row in the figure).
It then injects the inverted trigger (the butterfly-like pattern)
to the clean victim samples and extracts the corresponding
feature maps (the second row). A novel feature compari-
son technique called symmetric feature differencing (SFD)
is then applied to the two sets of feature maps, to determine
the distinctive features between the two sets of samples (the
first rectangular map on the right with red cells), which es-
sentially denotes the trigger features. The map is also called
a feature difference mask or just mask. A red cell in the
mask indicates a feature map that is distinctive. It further
feeds a set of clean target class (bird) samples to the model
and extracts the feature maps (the third row). Applying SFD
to the target class and the victim class feature maps yields
the natural features distinguishing the two classes, that is,
the second mask on the right. A model is considered tro-
janed when the two masks do not have similarity.

The key enabling technique of our method is SFD, which
is a novel differential analysis. It is based on counter-factual
causality [33]. Given two sets of samples, like the victim
and victim+trigger samples mentioned above, it computes a
smallest set of feature maps such that exchanging their acti-
vation values across the two sets entails exchanged classifi-
cation results. They are considered the distinctive features.
The formal definition and the computation algorithm can be
found in Section 3.

Our contributions are summarized as follows.

• We develop a new scanning technique that can detect
large and complex backdoors which are difficult for
existing techniques.

• The technique is based on a novel symmetric feature
differencing method that can identify the distinctive
features of two sets of given examples.

• We implement a prototype EX-RAY(“DEtecting
CompleX BackdooR in NeurAl Networks by SYmmetr-
ic Feature Differencing”). It is general and can
leverage different upstream trigger inversion meth-
ods. EX-RAY is publicly available at https://
github.com/PurduePAML/Exray

• We evaluate EX-RAY on 4246 models (2081 benign
and 2165 trojaned) with 23 structures and 7 datasets,
and four attacks that have large/pervasive and dynamic
triggers (reflection, composite, hidden, and filter at-
tacks). We compare with three state-of-the-art trig-
ger inversion based scanners, NC, ABS, and K-Arm.
Our results show that EX-RAY can achieve 80-88% ac-
curacy while the baselines can only achieve 50-70%.

https://github.com/PurduePAML/Exray
https://github.com/PurduePAML/Exray


We also use model interpretation techniques to show
that EX-RAY indeed captures natural feature differ-
ences between classes. EX-RAY can also be used
to remove false positives in backdoor scanning (i.e.,
clean models are considered trojaned), which are usu-
ally due to small triggers found between clean labels.
EX-RAY can determine that such triggers essentially
denote natural features of the target label and should
be precluded. We test EX-RAY (with ABS as the up-
stream inversion technique) on TrojAI1 rounds 2-4 and
show that EX-RAY can reduce false warnings by 78-
100%, with the cost of a small increase in false neg-
atives (0-30%), i.e., trojaned models are considered
clean. It can improve multiple upstream scanners’
overall accuracy including ABS (by 17-41%), NC (by
25%), and the Bottom-up-Top-down backdoor scan-
ner [1] (by 2-15%) in the competition. Our method
also outperforms a number of other false positive re-
moval methods that compare L2 distances and leverage
attribution/interpretation techniques. EX-RAY will be
released upon publication.

• On the TrojAI leaderboard, ABS+EX-RAY achieves
top performance in 2 out of the 4 rounds for image
classification, including the most challenging round
4, with an average cross-entropy (CE) loss around
0.322 and an average AUC-ROC3 around 0.90. It
is the only technique that successfully reached the
round target (for both the training sets and the test
sets remotely evaluated by IARPA), i.e., a CE loss
lower than 0.3465, for all the 4 rounds. As far as
we know, a large number of state-of-the-art scanning
techniques have been evaluated in the competition,
including NC [66], ABS [39], Meta neural analy-
sis [73], ULP [29], DeepInspect [11], SCAn [60], K-
Arm backdoor scanning [55], Noise analysis backdoor
detection [16] and attribution based backdoor detec-
tion [25, 57].

Threat Model. Our threat model is consistent with that in
existing works [3,39]. Given a set of models, including both
trojaned and clean models, and a small set of clean samples
for each model (covering all labels), we aim to identify the
models with injected backdoor(s) that can flip clean samples
to the target class. These samples may belong to one or
many victim class(es). The former is label-specific attack
and the latter is universal attack. 2

1TrojAI is a backdoor scanning competition organized by IARPA [3].
Rounds 1-4 are for image classification. Round 1 dataset is excluded due
to simplicity.

2The smaller the better.
3An accuracy metric used by TrojAI, the larger the better.

2. Related Work
Backdoor Attack. Data poisoning [12, 20] injects back-
doors by changing the label of inputs with trigger. Clean
label attack [52,54,63,75] injects backdoors without chang-
ing the data label. Dynamic backdoor [46, 53] focuses on
crafting different triggers for different inputs and breaks the
defense’s assumption that trigger is static. [47] proposes to
combine adversarial example generation and model poison-
ing. There are also attacks on NLP tasks [13, 31, 74], rein-
forcement learning [28, 68], and federated learning [7, 17,
61, 67, 72]. EX-RAY is a general primitive that may be of
use in defending these attacks.
Defenses against Backdoor Attacks. ULP [29] and Meta
neural analysis [73] train a few input patterns and a classifier
from thousands of benign and trojaned models. The classi-
fier predicts if a model has backdoor based on activations
of the patterns. [51] proposes to reverse engineer the distri-
bution of triggers. [23] finds that trojaned and clean mod-
els react differently to input perturbations. TABOR [21]
and NeuronInspect [24] use an AI explanation technique to
detect backdoor. There are techniques that defend back-
doors by data sanitization [9, 50]. There are also tech-
niques that detect if a given input is stamped with a trig-
ger [10, 14, 15, 18, 19, 22, 35, 38, 42, 60, 62, 64]. They target
a different problem as they require inputs with embedded
triggers. EX-RAY is orthogonal to most of these techniques
and can serve as a performance booster.
Interpretation/Attribution. EX-RAY is related to model
interpretation and attribution, e.g., important features iden-
tification [5, 8, 56, 59]. [26] measures the importance of a
concept (e.g., ‘striped’) for a class (e.g., zebra). The dif-
ferences lie in that EX-RAY finds distinguishing features of
two sets of examples.

3. Design
As illustrated by Figure 2, given a trigger t inverted

by some upstream scanning technique (not our contribu-
tion) that flips victim class V samples to the target class
T , EX-RAY first computes the distinctive features between
V and V +t samples, then the distinctive features between
V and T . Finally, it uses a similarity analysis to compare
the two sets of distinctive features to determine if the trigger
denotes natural differences between the two classes. If not,
the model is considered trojaned. In this section, we explain
the steps in details.

3.1. Symmetric Feature Differencing

The key enabling technique of EX-RAY is symmetric
feature differencing (SFD) that determines the distinguish-
ing features between two sets of examples (e.g., from
classes V and T ). SFD is based on counter-factual causal-
ity [33], which states that an effect event e causally depends



on a cause event c if and only if, 1) if c were to occur e
would occur; and 2) if c were not to occur e would not oc-
cur. In our context, we say a set of features are distinctive
between two sets of examples if and only if 1) exchang-
ing these features across the two sets (event c) entails ex-
changed classification results (event e), and 2) the exchange
of any such feature is necessary to the exchanged classifi-
cation results. For example, we say two sets of examples
from two respective persons A and B in a face recognition
model differ only at their nose if and only if 1) replacing the
nose in the examples of A with B’s nose causes the model
to predict B, 2) replacing the nose is needed to cause mis-
classification, and vice versa. Note that although replacing
both nose and mouth can also induce exchanged classifica-
tions, replacing mouth is not necessary. Hence mouth is not
a distinctive feature. Automatically identifying such feature
differences in the input space is challenging due to the dif-
ficulty of locating features, as a feature may manifest itself
differently across input examples. Our differencing method
hence identifies a set of neurons (i.e., feature maps) at some
hidden layer that denote the distinctive features.

We formally define symmetric feature differencing in the
following. To simplify our discussion, we assume the tech-
nique takes a subject model F (x) and two inputs: xv in V
and xt in T (instead of two sets of inputs). We will discuss
the extension to two sets later in the section.

Definition 1 (Symmetric Feature Differencing)
Let F (x) be a feed forward neural network. Given an in-
ner layer l that provides good feature abstraction, let g be
the submodel up to layer l and h the submodel after l, i.e.,
F (x) = h(g(x)). Let the number of features/neurons at l be
n. Symmetric feature differencing (SFD) computes a mask
M that is an n element vector with values 0 or 1. Let ¬M
be the negation of the mask such that ¬M [i] = 1 − M [i]
with i ∈ [1, n].

The mask M satisfies the following conditions.

h(g(xv) ·M + g(xt) · ¬M) = V (1)

h(g(xv) · ¬M + g(xt) ·M) = T (2)

∥M∥0 is minimal. (3)

Intuitively, Equation (1) denotes that copying xv’s fea-
tures to xt with the control of M causes the classification of
V . Specifically, g(xv) ·M + g(xt) · ¬M means that when
M [i] = 0 (i.e., ¬M [i] = 1), the original ith feature map of
the T sample xt is retained; when M [i] = 1, the ith fea-
ture map of xt is replaced with that from the V sample xv .
The explanation for Equation (2) is similar. Equation (3)
dictates the minimality of M , that is, any feature exchange

indicated by the mask is necessary, faithfully following the
counter-factual causality definition.

The SFD definition is graphically illustrated by an ex-
ample in Figure 3. The dash box on the left shows the g(x)
function and that on the right the h(·) function. The top row
in the left box shows that five feature maps (in yellow) are
generated by g() for a victim class sample xv . The bottom
row shows that the five feature maps (in blue) for a target
class sample xt. The dash box in the middle illustrates sym-
metric differencing. As suggested by the red entries in the
mask M in the middle (i.e., M [3] = M [5] = 1), in the
top row, the 3rd and 5th (yellow) feature maps are replaced
with the corresponding (blue) feature maps from the bot-
tom. Symmetric replacements happen in the bottom row as
well. On the right, the exchanged feature maps cause the
exchanged classification results.

Note that a minimal M must exist. In the worst case,
M is filled with ‘1’, indicating all feature maps shall be
exchanged, which must yield the exchanged classification
results. In general, the complexity of computing M is ex-
ponential. We hence propose a soft version of SFD.
Soft Symmetric Feature Differencing. In the soft version,
we relax the meaning of mask. Instead of having an either
0 or 1 value, we allow the value to vary in [0, 1], with 0
meaning no-exchange at all, 1 meaning complete exchange,
and a value in between 0 and 1 partial exchange. For exam-
ple, assume nose, eyes, and mouth are the three features
in a face recognition model and assume M [nose] = 1,
M [eyes] = 0, and M [mouth] = 0.5. The mask means
that exchanging noses, retaining eyes, and mixing mouths
half-half. The need of mixing mouths means that some-
times exchanging noses alone may not be sufficient to cause
exchanged results and we need to partially consider their
mouths which have a certain level of difference as well.

With the relaxation, the exchange operations, i.e., Equa-
tions (1) and (2), become continuous and differentiable. In
addition, the minimality requirement in Equation (3) can
be modeled by a differentiable arg min operation that min-
imizes the size of mask. Specifically, it can be reduced to
the following constrained optimization problem.

arg min
M

sum(M), s.t.

h(g(xv) ·M + g(xt) · ¬M) = V and

h(g(xv) · ¬M + g(xt) ·M) = T

(4)

To solve the problem, we devise a loss in (5). It has three
parts. The first part sum(M) is to minimize the mask size.
The second part w1 × ce1 is a barrier loss for Equation (1),
with ce1 the cross entropy loss when replacing xt’s features.
Coefficients w1 is dynamic. When the cross entropy loss is
larger than a threshold α, w1 is set to a large value wlarge.
This forces M to satisfy Equation (1). When the loss is
small indicating the constraint is satisfied, w1 is changed to
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Figure 3. Illustrating symmetric feature differencing

a small value wsmall. The optimization hence focuses on
minimizing the mask. The third part w2 × ce2 is similar.

Lpair(xv, xt) = sum(M) + w1 × ce1 + w2 × ce2,

with ce1 = CE (h(g(xv) ·M + g(xt) · ¬M), V ),

ce2 = CE (h(g(xv) · ¬M + g(xt) ·M), T ),

w1 = wlarge if ce1 > α else wsmall,

w2 = wlarge if ce2 > α else wsmall

(5)

Differencing Two Sets. The algorithm to identify the dif-
ferential features of two sets can be built from the primitive
of comparing two inputs. Given two sets XV of class V and
XT of class T , ideally the mask M should satisfy Equa-
tions (1) and (2) for any xv ∈ XV and xt ∈ XT . While
such a mask must exist (with the worst case containing all
the features), minimizing it becomes very costly. Assume
|XV | = |XT | = m. The number of constraints that need
to be satisfied during optimization is O(m2). Therefore, we
develop a stochastic method that is O(m). Specifically, let
−→
XV and

−→
XT be random orders of XV and XT , respectively.

We minimize M such that it satisfies Equations (1) and (2)
for all pairs (

−→
XV [j],

−→
XV [j]), with j ∈ [1,m]. Intuitively,

we optimize on a set of random pairs from XV and XT that
cover all the individual samples in XV and XT . The loss
function is hence the following.

L =

m∑
j=1

Lpair(
−→
XV [j],

−→
XT [j])

When XV and XT have one-to-one mapping, such as the
victim class samples and their compromised versions that
have the trigger injected, we can directly use the mapping in
optimization instead of a random mapping. We use Adam
optimizer [27] with a learning rate 5e-2 and 400 epochs.
Masks are initialized to all 1 to begin with. This denotes
a conservative start since such masks suggest swapping all
feature maps, which must induce the intended classification
results swap.
Symmetry Is Necessary. Our technique is symmetric. Such
symmetry is critical to effectiveness. One may wonder that
a one-sided analysis that only enforces Equation (2) may

be sufficient. That is, M is the minimal set of features that
when copied from T (target) samples to V (victim) sam-
ples can flip the V samples to class T . Intuitively, it de-
notes the strong features of T . However, this is insufficient.
In many cases, misclassification (of a V sample to T ) in a
clean model can be induced when strong features of class
V are suppressed (instead of adding strong T features). As
such, an inversion method may generate a trigger that neu-
tralizes V features instead of injecting unique T features.
The trigger features hence do not share much commonal-
ity with the features computed by the one-sided analysis.
Consequently, the clean model is considered trojaned. Our
experiments in Appendix A and H show the importance of
symmetry.

3.2. Comparing Masks

After generating the masks, we compare them in the last
step. Let the distinguishing features between the victim and
target classes be M1, and then those between the victim
samples and their compromised versions be M2. Next, we
explain how to compare M1 and M2. Intuitively M1 and
M2 should share a lot of commonality when the trigger de-
notes natural differences between classes, as reflected in the
following condition.

sum(min(M1,M2)) > β ×min(sum(M1), sum(M2)) (6)

Here, min(M1,M2) yields a vector whose elements are the
minimal between the corresponding elements in M1 and
M2. It essentially represents the intersection of the two
masks. The hyperparameter β is in (0, 1). Intuitively, the
condition asserts that the size of mask intersection is larger
than β times the minimum size of the two masks, meaning
the two have a large part in common. If all the inverted
triggers for a model satisfy the condition, the model is con-
sidered clean, otherwise trojaned.
Additional Validation Checks. In practice, due to the
uncertainty in the stochastic symmetric differencing algo-
rithm, the presence of local minimums in optimization, and
the small number of available clean samples, M1 and M2

may not have a lot in common. However, they should
nonetheless satisfy the semantic constraint that both should
denote natural feature differences of the victim and target
classes if the trigger is not injected. Therefore, we propose
an additional cross-validation check that tests if function-
ally M1 and M2 can take each other’s place in satisfying
Equations (1) and (2). In particular, while M1 is derived by
comparing the victim class and the target class clean sam-
ples, we copy the feature maps indicated by M1 between the
victim samples and their compromised versions with trigger
and check if the intended class flipping can be induced; sim-
ilarly, while M2 is derived by comparing the victim class
samples and their compromised versions, we copy the fea-
ture maps indicated by M2 between the victim clean sam-



ples and the target clean samples to see if the intended class
flipping can be induced. If so, the two are functionally sim-
ilar and the trigger is natural. The check is formulated as
follows.

Acc(h(g(XV ) ·M2 + g(XT ) · ¬M2), V ) > γ ∧
Acc(h(g(XT ) ·M2 + g(XV ) · ¬M2), T ) > γ ∧
Acc(h(g(XV ) ·M1 + g(XV + t) · ¬M1), V ) > γ ∧
Acc(h(g(XV + t) ·M1 + g(XV ) · ¬M1), T ) > γ

(7)

Here, Acc() is a function to evaluate prediction accuracy on
a set of samples and γ a threshold (0.8 in the paper). We
use g(XV ) to denote applying g on each sample in XV for
representation simplicity.

4. Evaluation

We evaluate EX-RAY on a range of backdoor attacks
including four complex backdoors (i.e., composite attack,
reflection attack, hidden attack, and filter attack), and on
the traditional patch attack. We also study the applicabil-
ity of EX-RAY to various upstream scanners by boosting
their backdoor detection performance. We demonstrate that
EX-RAY can be leveraged to fix models with injected and
natural backdoors. In addition, we validate that the gener-
ated masks by EX-RAY is capable of capturing feature dif-
ferences. We devise two adaptive attacks targeting the basis
of EX-RAY. EX-RAY is implemented in PyTorch [49] and
will be released upon publication.

Experiment Setup. The experiments are conducted on
4,246 models in total, with 200 models for composite at-
tack, 148 models for reflection attack, 34 models for hidden
attack, 1920 models for filter attack, and 1944 models for
patch attack. For composite attack, we generate 100 tro-
janed models on five datasets (i.e., MNIST [32], Fashion
MNIST [71], SVHN [44], CIFAR10 [30], and the Youtube
Face dataset [69]) using the official implementation [36].
We follow [39] to create 100 clean models (20 models for
each dataset). Network in Network and VGG16 are used for
these models. For reflection attack, there are three different
reflection settings, i.e., same depth of field, out of focus, and
ghost effect. For each setting, we generate 20 trojaned mod-
els on CIFAR10 and 17 trojaned models on ImageNet using
the official repository [41]. We also obtain 20 clean models
on CIFAR10 from [39] and 17 clean models on ImageNet
from torchvision [2]. We employ a few model structures
such as Network in Network, VGG, ResNet, SqueezeNet,
and DenseNet in this experiment. For hidden attack, we
leverage 34 models on ImageNet with half clean from [2]
and half trojaned by [52]. The model structures used in-
clude VGG, ResNet, SqueezeNet, and DenseNet. For filter
and patch attacks, we make use of the TrojAI datasets from
rounds 2 to 4, consisting of 3,840 models with half clean

Table 1. EX-RAY on composite attack

ABS ABS+EX-RAY

TP FP FN TN Acc/ROC TP FP FN TN Acc/ROC

MNIST 16 12 4 8 0.6 18 3 2 17 0.88
FMNIST 12 9 8 11 0.58 19 6 1 14 0.83
SVHN 15 7 5 13 0.7 19 4 1 16 0.88

CIFAR10 16 13 4 7 0.58 17 3 3 17 0.85
Youtube face 12 4 8 16 0.7 19 5 1 15 0.85

and half trojaned. We also evaluate on 24 models on Ima-
geNet. Details can be found in Appendix F. In addition, we
study the hyper-parameters used in EX-RAY in Appendix G
and Appendix I.

4.1. Detecting Complex Backdoor Attacks

In this section, we study the performance of EX-RAY in
detecting three advanced backdoor attacks, namely, com-
posite attack [36], reflection attack [41], and hidden at-
tack [52], in comparison with a state-of-the-art technique
ABS [39].

Detecting Composite Attack. Table 1 shows the detection
results on composite attack. The first column denotes the
datasets. Columns 2-6 show the detection results by ABS.
Columns 7-11 present the detection results using ABS with
EX-RAY. Columns TP, FP, FN, TN, and Acc/ROC denote
the number of true positives, false positives, false negatives,
true negatives, detection accuracy and ROC-AUC, respec-
tively. The upstream methods output a binary result denot-
ing whether a model is trojaned or not, and the clean and
trojaned models are evenly distributed. Thus the ROC-AUC
is the same as the accuracy. For ABS, we use the best possi-
ble bound for the inverted trigger size during detection. For
ABS+EX-RAY, we set the bound for the trigger size to be
half of the input. Observe that ABS+EX-RAY can achieve
83%-88% detection accuracy, substantially outperforming

(a) G. H. W.
Bush (victim)

(b) Victim +
trigger

(c) G. W. Bush
(target)

(d) Feature dif-
ferences

(e) Inverted
trigger (tro-
janed model)

(f) Inverted
trigger (clean
model)

(g) Trigger fea-
tures (trojaned
model)

(h) Trigger
features (clean
model)

Figure 4. Composite attack: George H. W. Bush + Barbara Bush
→ George W. Bush, and natural feature differences versus trigger
differences. The maps in (d), (g), and (h) denote the neurons in a
hidden layer with a red square denoting a distinctive neuron and
its color the distinctive capability.



the original ABS, which has only 58%-70% accuracy. Note
that EX-RAY reduces not only FPs, but also FNs. The rea-
son for the latter is that ABS and other scanners like NC and
K-arm are based on trigger size, while there is not a good
separation by size. In contrast, EX-RAY is based on feature
differencing.

Figure 4 (a-c) present a composite attack to a face recog-
nition model, in which the presence of Barbara Bush in
George H. W. Bush’s images flips the classification results
to George W. Bush. EX-RAY identifies the trigger features
in Figure 4 (g) by comparing George H. W. Bush + trigger
and George H. W. Bush. Observe that they are quite dif-
ferent from the natural feature differences between George
H. W. Bush and George W. Bush in Figure 4 (d) that distin-
guish the clean examples from the classes. In contrast, when
a clean model is scanned, a trigger is inverted (Figure 4 (f))
to flip George H. W. Bush + trigger to George W. Bush. Ob-
serve that it is equally uninterpretable as that in Figure 4 (e),
the inverted trigger for the trojaned model. This is due to the
inherent limitation that trigger inversion can hardly generate
natural-looking input features but rather noise-like patterns.
Therefore, it is difficult to perform feature differencing at
the input level. EX-RAY, however, produces a set of trigger
features (Figure 4 (h)) that have substantial commonality
with the natural feature differences (Figure 4 (d)), that is,
(h) is a subset of (d). In other words, the noise-looking trig-
ger in Figure 4 (f) indeed denotes natural differences. This
indicates the model is benign.

Detecting Reflection Attack. Table 2 presents the re-
sults for reflection attack. Column 1 denotes the datasets.
Column 2 shows the three attack settings. Columns 3-
7 present the results of ABS and the remaining columns
ABS+EX-RAY. For ABS, we use the best possible
bound for the inverted trigger size during detection. For
ABS+EX-RAY, we set the bound for the trigger size to be
25% of the input. The stability of EX-RAY regarding trig-
ger size bound can be found in Appendix I. Observe that our
technique can achieve 80%-85% accuracy, whereas ABS
only has 55%-68% accuracy.

Figure 5 (a) shows a triangle sign used as a trigger to flip
images (Figure 5 (b)) to airplane (Figure 5 (f)) in a trojaned
model. Figure 5 (e) shows a trigger generated by ABS for
the airplane label in the trojaned model. Observe that the
generated trigger has (triangle) features of the real trigger
as in Figure 5 (a-b). EX-RAY determines the model is a
true positive as the inverted trigger shares very few features
with airplane. In contrast, Figure 5 (c) presents a trigger
generated by ABS for a clean model with deer as the target
label (Figure 5 (d)). Observe that the trigger resembles deer
antlers. The triggers inverted for other labels also have a
similar nature. EX-RAY hence recognizes the model as a
true negative.

Detecting Hidden-trigger Attack. EX-RAY has 85% ac-

Table 2. EX-RAY on reflection attack

ABS ABS+EX-RAY

TP FP FN TN Acc/ROC TP FP FN TN Acc/ROC

CIFAR10
Same DOF 13 7 7 13 0.65 18 4 2 16 0.85

Out of focus 12 7 8 13 0.63 16 4 4 16 0.80
Ghost effect 9 7 11 13 0.55 17 3 3 17 0.85

ImageNet
Same DOF 12 6 5 11 0.68 15 3 2 14 0.85

Out of focus 9 6 8 11 0.59 13 3 4 14 0.80
Ghost effect 10 6 7 11 0.62 15 3 2 14 0.85

(a) Injected
trigger

(b) Reflec-
tion

(c) Inverted
trigger

(d) T:
Deer

(e)
Inverted

(f) T:
Plane

Figure 5. A case for reflection attack

Table 3. TrojAI leaderboard results; CE L denotes cross entropy
loss and R-A denotes ROC-AUC

Round 2 Round 3 Round 4

CE L R-A CE L R-A CE L R-A

ABS only 0.685 0.736 0.541 0.822 0.894 0.549
ABS+EX-RAY 0.324 0.892 0.323 0.900 0.322 0.902
Deficit from top 0 0 0.023 -0.012 0 0

curacy on hidden-trigger attack whereas ABS has 68%. De-
tails and case studies can be found in Appendix B.

4.2. Experiments on TrojAI and ImageNet Models

We evaluate EX-RAY on TrojAI rounds 2-4 training sets
and ImageNet models. We use ABS as the upstream scan-
ner and a relatively large trigger size bound to have a small
number of false negatives. The experimental results show
that the vanilla ABS encounters a large number of FPs,
whereas EX-RAY substantially reduces the FPs by 78-100%
with the cost of a slightly increased number of FNs by 0-
30%. EX-RAY improves the overall detection accuracy by
17-41% across all the evaluated datasets. We also com-
pare EX-RAY with eight baseline methods that make use
of simple L2 distance, attribution/interpretation techniques,
and one-sided (instead of symmetric) analysis. The results
demonstrate that EX-RAY consistently outperforms base-
line methods. In addition, we evaluate the runtime cost
of EX-RAY, which takes 95 seconds to scan a model in
TrojAI datasets on average, whereas the upstream scanner
ABS takes 337 seconds. This delineates a reasonable over-
head introduced by EX-RAY. We also study the effects of
hyper-parameters of EX-RAY on a TrojAI dataset. The re-
sults show that EX-RAY is reasonably stable under various
settings. Please see detailed results and discussions in Ap-
pendix H.
Results on TrojAI Leaderboard (Test Sets). Table 3



(a) 80 (b) 120 (c) 160 (d) 200

Figure 6. Adaptive attack triggers with different sizes

shows the results on TrojAI test sets. The column CE L
shows the cross entropy loss of each method and the col-
umn R-A shows the ROC-AUC. In two of the three rounds,
our solution achieves the top performance4. In round 3, it
ranks number 2 and the results are comparable to the top
performer. In addition, it beats the IARPA round goal (i.e.,
cross-entry loss lower than 0.3465) for all the three rounds.
Our performance on the leaderboard, especially for round
2 that has a large number of natural backdoors and hence
causes substantial difficulties for most performers5, sug-
gests the contributions of EX-RAY. As far as we know,
many existing solutions such as [11, 16, 25, 29, 39, 57, 58,
60,66] have been tested in the competition by different per-
formers.

4.3. Adaptive Attacks

We conduct three adaptive attacks. In the first attack, we
use features of the target class as the trigger. Since EX-RAY
distinguishes trojaned and clean models by comparing the
similarity between inverted triggers’ features and distinc-
tive features between the victim and target classes. Know-
ing our method, the attacker may choose to use the target
class’s features as the trigger to evade EX-RAY. We use
parts of a target class image as the trigger. We use four trig-
gers with different sizes. For each trigger, we trojan 10 Net-
work in Network models on CIFAR10 with dog being the
target class. Figure 6 (a-d) show the triggers with the size
of 80, 120, 160 and 200, respectively. Observe that they
are all part of some dog image. In addition, we also train
20 clean models on CIFAR10 to see if ABS+EX-RAY can
distinguish the trojaned and clean models. The results are
shown in Table 4. The first row shows the trigger size. The
second row shows the average attack success rate when us-
ing the triggers on clean models. Note that since these trig-
gers are composed of the target class’s features, they might
already be able to flip other images to the target even in
clean models. The third row shows the FP rate. The fourth
row shows the TP rate. Observe while ABS+EX-RAY con-
sistently has a low FP rate, its TP rate decreases when the
trigger become larger. When the trigger size is 200, the TP
rate degrades to 0.5, meaning that it only recognizes half
of the trojaned models. However, since the trigger (of size
200) is already quite large and contains strong target class

4TrojAI ranks solutions based on the cross-entropy loss of scanning re-
sults. Intuitively, the loss increases when the model classification diverges
from the ground truth. Smaller loss suggests better performance [3]. Past
leaderboard results can be found at [4].

5Most performers had lower than 0.80 ROC-AUC in round 2.

Table 4. Adaptive Attack using target class features

Trigger Size 80 120 160 200

ASR on clean models 0.39 0.56 0.63 0.7
FP/ # of clean models 0.1 0.1 0.1 0.1

TP/ # of trojaned models 1 1 0.8 0.5

features such that it can flip 70% of all the images to the tar-
get on all the clean models. This hence may not constitute
a meaningful attack as it is almost equivalent to stamping a
target class image.

In the second attack, we force the activations of victim
class samples with the trigger to resemble those of the tar-
get class inputs such that EX-RAY cannot distinguish the
two. While the strongest attack can increase the FP rate
of EX-RAY, it causes substantial model accuracy degra-
dation so that the model becomes unusable. In the third
adaptive attack, we generate a trigger similar to a third class
while having similar feature-level representations to the tar-
get class. Experiments show that EX-RAY has 75% true
positive rate and 10% false positive rate on this adaptive at-
tack. Please see Appendix L.

4.4. Other Experiments

Appendix C shows that EX-RAY can detect another two
state-of-the-art backdoor attacks. Appendix D shows that
EX-RAY outperforms three other state-of-the-art backdoor
defenses. Appendix E and J demonstrate that EX-RAY can
boost the detection performance of other upstream scanners
on composite attack, reflection attack, and TrojAI dataset.
Appendix K shows that EX-RAY’s masks indeed capture
feature differences using a model interpretation technique.
Appendix M shows how EX-RAY is used to help fixing in-
jected backdoors.

5. Conclusion
We develop a method to detect complex backdoors that

have large and dynamic triggers. It is built on a novel sym-
metric feature differencing technique that identifies a small-
est set of features separating two sets of samples. Our re-
sults show that the technique is highly effective and outper-
forms the baselines. It also enables us to achieve top results
on the rounds 2 and 4 leaderboard of the TrojAI competi-
tion, and rank the 2nd in round 3.
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Appendix

A. An Example for the Necessity of Symmetry
Figure 7 presents an example for one-sided masks from

a clean model #18 in TrojAI round 3. Figure 7 (a) and (b)
present the victim and target classes and (c) a natural trig-
ger (i.e., a trigger naturally exists and flips victim samples
to the target label) generated by ABS, which resembles the
central symbol in the target class. Figure (d) shows the one-
sided mask from V to T , meaning that copying/mixing the
feature maps as indicated by the mask from T samples to
V samples can flip the classification results to T . Figure (e)
shows the one-sided mask from V to V +trigger. Note that
V +trigger samples are classified to T . Although in both
cases V samples are flipped to T , the two one-sided masks
have only one entry in common, suggesting that the ways
they induce the classification results are different. In con-
trast, the symmetric masks share a lot of commonality.

(a) V (b) T (c) V+trigger

(d) 1 sided mask from V to T (e) 1 sided mask from V to V+trigger

Figure 7. One sided masks for a clean model # 18 in round 3 with
victim class V =#8 and target class T =#3

B. Detecting Hidden-trigger Attack
Table 5 shows the results on hidden-trigger attack. We

use the optimal trigger size bound for ABS and 4,000
(≈63×63) for ABS+EX-RAY. Observe that our technique
can achieve 85% accuracy, surpassing ABS by 17%. Fig-
ure 8 (a) and (b) show an injected trigger and an example
image stamped with the trigger, whose target label is terrier
dog as shown in (f). Figure 8 (e) shows the generated trig-
ger by ABS for the label terrier dog of the trojaned model.
The trigger does not possess any features of the target label.
It can hence be identified by EX-RAY as a true positive. In
contrast, Figure 8 (c) and (d) show a trigger by ABS for
a benign model and its target label jeans. Observe that the
central part of the trigger resembles a pair of jeans. EX-RAY
hence can flag the model as a true negative.

C. Detecting WaNet and Input-aware Dynamic
Attacks

In this section, we evaluate EX-RAY on WaNet [45] and
input-aware dynamic [46] attacks. We utilize the CIFAR10

Table 5. EX-RAY on hidden-trigger attack

ABS ABS+EX-RAY

TP FP FN TN Acc/ROC TP FP FN TN Acc/ROC

ImageNet 12 6 5 11 0.68 15 3 2 14 0.85

(a) Trigger (b) Stamped

(c) Inverted (d) T: Jeans (e) Inverted (f) T: terrier

Figure 8. A case for hidden-trigger attack

Table 6. ABS + EX-RAY on WaNet and input-aware dynamic
attacks

TP FP FN TN Acc/ROC

Wanet 17 2 5 17 0.825
Input-aware 17 2 3 18 0.875

dataset and evaluate on 20 benign models and 40 trojaned
models (20 trojaned models for each attack). We set the
bound of the trigger size to be 12.5% of the input. The re-
sults are shown in Table 6. Observe that EX-RAY achieves
82.5% detection accuracy on WaNet and 87.5% detection
accuracy on Input-aware.

D. Comparison with other SOTA Defenses on
Complex Backdoors

We compare EX-RAY with four other state-of-the-art
(SOTA) defenses, namely, Meta-Neural Analysis [73],
DeepInspect [11], NeuronInspect [24], and TABOR [21],
on reflection and composite attacks.

We use CIFAR10 and conduct experiments on 20 benign
models, 20 trojaned models by composite attack, and 20
trojaned models by reflection attack. Meta-Neural Analysis
outputs a binary result denoting whether a model is trojaned
or not. The other three methods output a median absolute
deviation (MAD) score for each model, which is used to
distinguish benign and trojaned models. For DeepInspect,
NeuronInspect, and TABOR, we search for the best possible
bound of MAD scores for separating benign and trojaned
models. Table 7 shows the results. Rows 2-9 show the
results of Meta-Neural Analysis, DeepInspect, NeuronIn-
spect, and TABOR on composite and reflection attacks.
Rows 10-11 show the result of ABS + EX-RAY. Observe
that ABS+EX-RAY outperforms the SOTA methods, hav-



Table 7. Comparison between EX-RAY and other defenses on
composite and reflection attacks

TP FP FN TN Acc/ROC

Meta-Neural Analysis Composite 15 6 5 14 0.73
Reflection 11 8 9 12 0.58

DeepInspect Composite 20 19 0 1 0.53
Reflection 20 20 0 0 0.5

NeuronInspect Composite 4 0 16 20 0.6
Reflection 2 0 18 20 0.55

TABOR Composite 3 0 17 20 0.58
Reflection 2 0 18 20 0.55

ABS+EX-RAY
Composite 17 3 3 17 0.85
Reflection 18 4 2 16 0.85

ing at least 12% better accuracy on composite backdoors
and 27% better on reflection backdoors.

During the TrojAI competition, performers tried many
different SOTA methods [11, 16, 25, 29, 55, 57, 58, 60, 73]
(including DeepInpect, Meta-Neural Analysis and K-Arm).
Except for K-Arm [55], all other methods perform worse
than ABS + EX-RAY in rounds 2 to 4. K-Arm performs
better than ABS + EX-RAY in round 3 but worse than ABS
+ EX-RAY in rounds 2 and 4.

E. Using EX-RAY with Different Upstream
Scanners on Complex Backdoors

We apply EX-RAY to different upstream scanners, in-
cluding Neural Cleanse (NC) [66] and K-Arm [55], on de-
tecting composite and reflection backdoors on CIFAR10.
During the detection, we first use NC/K-Arm to invert trig-
gers and then apply EX-RAY to determine whether a model
is trojaned or not. The results are shown in Table 8. The first
column denotes the detection methods. The second column
shows the different attacks. Columns 3-7 show the detec-
tion results by vanilla NC and vanilla K-Arm. Columns
8-12 show the detection results by NC+EX-RAY and K-
Arm+EX-RAY. Observe that EX-RAY can improve NC’s
detection accuracy from 50-60% to 68-75%, and K-Arm’s
from 55-58% to 73-75%. We also evaluate the combina-
tions of EX-RAY and different upstream scanners on the
TrojAI datasets. We use NC and Bottom-up-Top-down
method [1] (used in the TrojAI competitions) as the up-
stream scanners. The results show that EX-RAY can con-
sistently improve NC by 25%, and Bottom-up-Top-down
by 2-15%. Please see more details in Appendix J.

F. Description of TrojAI and ImageNet
Datasets

We use TrojAI rounds 2-4 training and test datasets [3].
EX-RAY does not require training and hence we use both
training and test sets as regular datasets in our experiments.

Table 8. EX-RAY with different upstream scanners on composite
and reflection attacks

Vanilla +EX-RAY

TP FP FN TN Acc/ROC TP FP FN TN Acc/ROC

NC Composite 7 3 13 17 0.60 14 4 6 16 0.75
Reflection 5 5 15 15 0.50 10 3 10 17 0.68

K-Arm Composite 3 1 17 19 0.55 16 6 4 14 0.75
Reflection 18 15 2 5 0.58 16 7 4 13 0.73

TrojAI round 2 training set has 552 clean models and 552
trojaned models with 22 structures. Each TrojAI model has
its own unique dataset. The data are mostly synthetic traffic
signs with some street view background. A traffic sign is a
polygon of solid color with some symbol in the center. The
models are classifiers for the different kinds of signs. Tro-
jAI has two types of backdoors: polygons (i.e., static patch
triggers) and Instagram filters (i.e., dynamic and pervasive
triggers). Round 2 test set has 72 clean and 72 trojaned
models. Most performers had difficulties for round 2 due
to the prevalence of natural triggers, which are small trig-
gers that naturally exist and can flip classification results
among benign labels. IARPA hence introduced adversarial
training [43, 70] in round 3 to enlarge the distance between
classes and suppress natural triggers. Round 3 training set
has 504 clean and 504 trojaned models and the test set has
144 clean and 144 trojaned models. In round 4, triggers may
be position dependent, meaning that they only cause mis-
classification when stamped at a specific position inside the
foreground object. A model may have multiple backdoors.
The number of clean images provided is reduced from 10-
20 (in rounds 2 and 3) to 2-5. Its training set has 504 clean
and 504 trojaned models and the test set has 144 clean and
144 trojaned models. Training sets were evaluated on our
local server whereas test set evaluation was done remotely
by IARPA on their server.

We also use a number of models on ImageNet. They
have the VGG, ResNet and DenseNet structures. We use 7
trojaned models from [39] and 17 pre-trained clean models
from torchvision zoo [2].

G. Parameter Settings

EX-RAY has three hyper-parameters, α to control the
weight changes of cross-entropy loss in function (5) (in the
design section) , β to control the similarity comparison be-
tween masks in condition (6) in Section 3.2, and γ the accu-
racy threshold in cross-validation checks of masks in Sec-
tion 3.2. We use 0.1, 0.8, and 0.8, respectively, by default.
In our experiments, we use ABS and NC as the upstream
scanners. The numbers of optimization epochs are 60 for
ABS and 1000 for NC. The other settings are default unless
stated otherwise. The experiments are all done on an iden-
tical machine with a single 11GB memory NVIDIA RTX
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Figure 9. Rounds 2-4 true positive rates (TPs) and false positive
rates (FPs) versus trigger size (in pixels) by ABS

2080Ti GPU (with the lab server configuration), except for
the TrojAI test sets that are run on IARPA server with a
single 32GB memory NVIDIA V100 GPU.

H. Experiments on TrojAI and ImageNet Mod-
els

In the first experiment, we evaluate EX-RAY on TrojAI
rounds 2-4 training sets and the ImageNet models. We do
not include TrojAI test sets in this experiment as the test
sets were evaluated on an IARPA server and the results are
reflected on the leaderboard. Here we use ABS as the up-
stream scanner as it is much faster than NC.

A critical setup for scanners that produce triggers, such
as ABS and NC, is the maximum trigger size. A large value
enables detecting injected backdoors with large triggers,
while producing a lot of natural triggers and hence false
positives. Figure 9 studies how the true positives (TPs) and
false positives (FPs) change with different trigger bounds
in the vanilla ABS, on the TrojAI rounds 2-4 training sets.
Observe that both grow with the trigger size. Observe that
there is a lower FP rate in round 3 (compared to round 2),
illustrating the effect of adversarial training, although the
number is still large when the trigger size is large. Round 4
has the highest FP rate because the number of clean images
available is decreased and it is hence very easy for scanners
to find (bogus) triggers that can induce misclassification on
all the available images.

Based on the study, we use the trigger size bound 900
pixels for round 2, 1600 pixels for round 3, and 1200 pixels
for round 4 for our experiment such that the upstream scan-
ner does not miss many true positives to begin with and we
can stress test EX-RAY.
Baselines. In the experiment, we compare EX-RAY against
8 baselines. The first baseline is using L2 distance of inner
activation between V + t and T . Such a distance for a natu-
ral trigger is supposed to be smaller than that of an injected
trigger . We use unsupervised learning to report the best
separation. In the second baseline, we use half of the mod-
els to train a random forest classifier based on the inner acti-
vations and logits values to distinguish natural and injected
triggers and test it on the other half. Specifically, the classi-
fier takes the L2 distance between V + t and T , L2 distance
between T + t and T , L2 distance between V and T , logits

of V , logits of V +t and logits of T . The third baseline uses
integrated gradients (IG) [59], an attribution technique, to
find important neurons for V + t and for T and then ap-
ply the aforementioned L2 distance comparison on the 10%
most important neurons . Originally, integrated gradients
were used in model explanation to identify important pix-
els. We adapt it to work on inner layers to identify impor-
tant neurons. The next three baselines are similar to the
third except having different methods to identify important
neurons. Specifically, the fourth baseline uses Deeplift [56],
the fifth uses Occlusion [5] and the sixth uses Network Dis-
section (NE) [8]. For baselines 4-7, we use unsupervised
learning to find the best separation (of natural and injected
backdoors). We will release the settings together with our
system upon publication. EX-RAY is symmetric. To study
the necessity of symmetry, the seventh and eighth baselines
are one-sided versions of EX-RAY, that is, requiring satis-
fying either constraint (1) or (2) in the design section.

The results are shown in Table 9. The first column shows
the methods. The first method is the vanilla ABS. Columns
2-4 show the results for TrojAI round 2 models with poly-
gon backdoors. Column 2 shows the number of true pos-
itives (TPs). Note that there are 276 trojaned models with
polygon backdoors. As such the vanilla ABS having 254
TPs means it has 22 false negatives. Column 3 shows the
number of false positives (FPs) out of the 552 clean models.
Column 4 shows the overall detection accuracy (on the total
552+276=828 models). Columns 5-7 show the results for
round 2 models with Instagram filter backdoors. ABS uses
a different method for filter backdoors. Instead of reverse
engineering a pixel patch, it reverse engineers a one-layer
kernel denoting general filter transformation [39]. Hence,
we separate the evaluation of EX-RAY on the two kinds of
backdoors. Note that the accuracy is computed consider-
ing the same 552 clean models. The overall results (for all
kinds of backdoors) on the leaderboard are presented in the
main text. Columns 8-13 show the results for round 3 and
columns 14-19 for round 4. Columns 14-16 show the results
for ImageNet patch attack.

The results show that the vanilla ABS has a lot of FPs
(in order not to lose TPs) and EX-RAY can substantially re-
duce the FPs by 78-100% with the cost of increased FNs
(i.e., losing TPs) by 0-30%. The overall detection accu-
racy improvement (from vanilla ABS) is 17-41% across the
datasets. Also observe that EX-RAY consistently outper-
forms all the baselines, especially the non-EX-RAY ones.
Attribution techniques can remove a lot of natural triggers
indicated by the decrease of FPs. However, they preclude
many injected triggers (TPs) as well, leading to inferior
performance. The missing entries for NE are because it
requires an input region to decide important neurons, ren-
dering it inapplicable to filters that are pervasive. Symmet-
ric EX-RAY outperforms the one-sided versions, suggesting



Table 9. Effectiveness of EX-RAY; (T:276,C:552) means that there are 276 trojaned models and 552 clean models

TrojAI R2 TrojAI R3 TrojAI R4 ImageNet

Polygon trigger
(T:276,C:552)

Filter trigger
(T:276,C:552)

Polygon trigger
(T:252,C:504)

Filter trigger
(T:252,C:504)

Polygon trigger
(T:143,C:504)

Filter trigger
(T:361,C:504)

Patch Trigger
(T:7, C:17)

TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc

Vanilla ABS 254 218 0.710 260 293 0.626 235 208 0.702 213 334 0.528 137 355 0.442 331 376 0.531 7 7 0.708
Inner L2 188 93 0.782 153 123 0.703 210 111 0.798 133 123 0.680 73 137 0.680 208 217 0.572 7 0 1
Inner RF 192 76 0.807 196 101 0.781 159 46 0.816 153 110 0.724 133 265 0.575 330 353 0.556 7 0 1

IG 172 29 0.840 192 66 0.818 162 58 0.804 52 41 0.681 84 53 0.827 210 87 0.725 5 0 0.917
Deeplift 152 11 0.837 189 21 0.869 162 59 0.803 78 67 0.681 84 54 0.825 203 54 0.755 6 0 0.958

Occulation 173 24 0.847 207 47 0.860 164 58 0.807 78 66 0.683 85 52 0.830 251 107 0.749 7 3 0.875
NE 180 58 0.814 - - - 187 72 0.819 - - - 59 72 0.759 - - - 7 4 0.833

1-sided(V to T) 157 19 0.833 195 33 0.862 202 62 0.852 153 51 0.802 107 82 0.818 236 50 0.798 7 0 1
1-sided(T to V) 134 4 0.824 158 18 0.835 187 50 0.848 134 27 0.808 102 56 0.850 179 9 0.779 1 1 0.958

EX-RAY 198 19 0.883 204 32 0.874 200 46 0.870 149 39 0.812 105 53 0.859 242 46 0.809 7 0 1

the need of symmetry.
Runtime. EX-RAY’s time complexity is Ω(n) with n the
number of triggers the upstream technique generates. Our
upstream ABS uses neuron stimulation analysis to select
three most likely target labels for each (victim) label for
trigger inversion. It also filters out large sized triggers. In
TrojAI, the number of classes per model varies from 15 to
45. On average, EX-RAY takes 12s to process a trigger, 95s
to process a model. ABS takes 337s to process a model,
producing 8.5 triggers on average.

I. Effects of Hyperparameters

We study EX-RAY performance with various hyperpa-
rameter settings, including the different layer to which
EX-RAY is applied, different trigger size settings (in the
upstream scanner) and different SSIM score bounds (in fil-
ter backdoor scanning to ensure the generated kernel does
not over-transform an input), and the α, β, and γ settings
of EX-RAY. Table 11 shows the results for layer selec-
tion. The row “Middle” means that we apply EX-RAY at the
layer in the middle of a model. The rows “Last” and“2nd
last” show the results at the last and the second-last con-
volutional layers, respectively. Observe that layer selection
may affect performance to some extent and the second to the
last layer has the best performance. Table 10 shows the re-
sults with and without the additional validation checks. Ob-
serve that removing the additional validation check results
in 0.7% to 3% decrease in detection accuracy. Tables 12
shows that a large trigger size degrades EX-RAY’s perfor-
mance but EX-RAY is stable in 900 to 1200. Table 13 shows
that the SSIM score bound has small effect on performance
in 0.7-0.9. Note that an SSIM score smaller than 0.7 means
the transformed image is quite different (in human eyes).
Figures 10, 11, and 12 show the performance variations
with α, β, and γ, respectively. The experiments are on the
mixture of trojaned models with polygon triggers and the
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Figure 10. Accuracy changes with α on TrojAI R2
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Figure 11. Accuracy changes with β on TrojAI R2

clean models from TrojAI round 2. For β and γ, we sample
from 0.7 to 0.95 and for α we sample from 0.1 to 2.4. Ob-
serve that changing α and γ does not have much impact on
the overall accuracy. When we change β from 0.7 to 0.95,
the overall accuracy is still consistently higher than 0.83.
These results show the stability of EX-RAY.

J. Using EX-RAY with Different Upstream
Scanners on TrojAI dataset

In this experiment, we use EX-RAY with different up-
stream scanners, including Neural Cleanse (NC) [66] and
the Bottom-up-Top-down method by the SRI team in the
TrojAI competition [1]. The latter has two sub-components,
trigger generation and a classifier that makes use of features
collected from the trigger generation process. We created
two scanners out of their solution. In the first one, we ap-



Table 10. EX-RAY w. and w.o. additional check; (T:276,C:552) means that there are 276 trojaned models and 552 clean models

TrojAI R2 TrojAI R3 TrojAI R4

Polygon Trigger
(T:276,C:552)

Filter Trigger
(T:276,C:552)

Polygon Trigger
(T:252,C:504)

Filter Trigger
(T:252,C:504)

Polygon trigger
(T:143,C:504)

Filter trigger
(T:361,C:504)

TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc

W. additional check 198 19 0.883 204 32 0.874 200 46 0.870 149 39 0.812 105 53 0.859 242 46 0.809
W.o. additional check 206 33 0.876 216 71 0.844 207 71 0.843 158 62 0.793 110 77 0.829 275 93 0.793

Table 11. EX-RAY with different layer; (T:276,C:552) means that there are 276 trojaned models and 552 clean models

TrojAI R2 TrojAI R3 TrojAI R4

Polygon Trigger
(T:276,C:552)

Filter Trigger
(T:276,C:552)

Polygon Trigger
(T:252,C:504)

Filter Trigger
(T:252,C:504)

Polygon trigger
(T:143,C:504)

Filter trigger
(T:361,C:504)

TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc

Middle 215 54 0.861 220 97 0.815 212 55 0.874 153 58 0.792 102 75 0.821 257 77 0.791
Second Last 198 19 0.883 204 32 0.874 200 46 0.870 149 39 0.812 105 53 0.859 242 46 0.809

Last 141 6 0.83 171 16 0.854 193 55 0.849 141 27 0.817 84 37 0.852 196 37 0.766
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Figure 12. Accuracy changes with γ on TrojAI R2

Table 12. EX-RAY with different trigger sizes; (T:276, C:552)
means there are 276 trojaned models and 552 clean models

TrojAI R2
(T:276,C:552)

TrojAI R3
(T:252,C:504)

TrojAI R4
(T:143,C:504)

TP FP Acc TP FP Acc TP FP Acc

900 198 19 0.883 157 19 0.849 95 58 0.836
1200 203 30 0.876 175 39 0.847 105 53 0.859
1600 210 46 0.864 200 46 0.870 108 77 0.827

Table 13. EX-RAY with different SSIM scores; (T:276, C:552)
means there are 276 trojaned models and 552 clean models

SSIM
Score

TrojAI R2
(T:276,C:552)

TrojAI R3
(T:252,C:504)

TrojAI R4
(T:361,C:504)

TP FP Acc TP FP Acc TP FP Acc

0.9 145 4 0.837 115 9 0.807 234 47 0.799
0.8 160 13 0.844 149 39 0.812 242 46 0.809
0.7 204 32 0.874 178 90 0.783 175 13 0.770

ply EX-RAY on top of their final classification results (i.e.,
using EX-RAY as a refinement). We call it SRI-CLS. In
the second one, we apply EX-RAY right after their trigger
generation. We have to replace their classifier with the sim-

pler unsupervised learning (i.e., finding the best separation)
as adding EX-RAY changes the features and nullifies their
original classifier. We call it SRI-RE. We use the round 2
clean models and models with polygon backdoors to con-
duct the study as NC does not handle Instagram filter trig-
gers. For SRI-CLS, the training was on 800 randomly se-
lected models and testing was on the remaining 146 trojaned
models and 158 clean models. The other scanners do not re-
quire training. The results are shown in Table 14. The T and
C columns stand for the number of trojaned and clean mod-
els used in testing, respectively. Observe that the vanilla NC
identifies 180 TPs and 332 FPs with the accuracy of 44.7%.
With EX-RAY, the FPs are reduced to 73 (81.1% reduction)
and the TPs become 127 (29.4% degradation). The overall
accuracy improves from 44.7% to 70.8%. The improvement
for SRI-RE is from 53.6% to 68.5%. The improvement for
SRI-CLS is relative less significant. That is because 0.882
accuracy is already very close to the best performance for
this round. The results show that EX-RAY can consistently
improve upstream scanner performance. Note that the value
of EX-RAY lies in suppressing false warnings. It offers little
help if the upstream scanner has substantial false negatives.
In this case, users may want to tune the upstream scanner
to have minimal false negatives and then rely on the down-
stream EX-RAY to prune the false positives like we did in
the ABS+EX-RAY pipeline.

K. Mask and Differential Features
In this experiment, we aim to demonstrate that the masks

computed by EX-RAY indeed capture the feature differ-
ences. Specifically, we want to show that 1) the mask be-
tween V + t and V covers the trigger features and does
not overlap with the natural differences between V and T



for a trojaned model and 2) the mask between V + t and
V captures the natural differences between V and T for a
clean model. We use a model interpretation technique sim-
ilar to [8] to project the large activation values of feature
maps (i.e., neurons) in the mask between V + t and V back
to the input space and observe which input areas are high-
lighted. Figure 13 shows a sample result. Figures (a)-(b)
correspond to a trojaned model #7 in TrojAI round 2. Figure
(a) shows a victim sample with the trigger, which is a purple
polygon. The area in light-green shows the input area corre-
sponding to the activated neurons in the mask. Observe that
the two align nicely, indicating the mask captures the trig-
ger features. In contrast, figure (b) shows a target sample
and also the input area corresponding to activated neurons
in the mask, if any. Observe that those neurons do not have
large activations. Figures (c)-(d) show the results for a clean
model #123. Figure (c) shows that the (natural) trigger is to
the right and below the central symbol of the victim sam-
ple. Observe that while there is a highlighted area in the
V + t sample (c) covering the trigger, there is also a high-
lighted area in the T sample (d) covering the target features,
demonstrating that the mask between V + t and V indeed
captures T ’s features. Figure 14 plots the maximum acti-
vation values for all the neurons in the mask, with (a)-(c)
for model #7 and (d)-(f) for model #123. For example, a
data point in (a) shows the average maximum activation of
a neuron in the mask for all V + t samples (y axis), versus
its average maximum activation for all V samples (x axis).
From (a)-(c), we can observe that these neurons are substan-
tially activated when t is present but never for clean V or T
samples. In contrast, (d)-(f) show that the neurons in the
mask are activated when either t is present or V /T samples
are provided. We studied a few other models. Their results
are similar and hence omitted.

L. Two Additional Adaptive Attacks

EX-RAY is not a stand-alone defense technique and sup-
posed to be part of an end-to-end scanning pipeline. We
devise another the second attack that forces the internal ac-
tivations of victim class inputs embedding the trigger to re-
semble the activations of the target class inputs such that
EX-RAY cannot distinguish the two. In particular, we train
a Network in Network model on CIFAR10 with an 8×8
patch trigger. In order to force the activations of images
stamped with the trigger to resemble those of target class

Table 14. EX-RAY with different upstream scanners

Vanilla +EX-RAY

TP T FP C Acc TP T FP C Acc Acc Inc

NC 180 252 332 552 0.483 127 252 73 552 0.732 0.249
SRI-RE 164 252 272 552 0.536 112 252 97 552 0.685 0.149

SRI-CLS 120 146 17 158 0.858 119 146 9 158 0.882 0.024

(a) Victim +
injected trigger (b) Target

(c) Victim+
trigger by ABS (d) Target

Figure 13. Trojaned model #7 from TrojAI round 2 in (a)-(b) and
clean model #123 in (c)-(d). In (a), the trigger is stamped at the
right-bottom corner with the light-green area corresponding to the
neurons in the mask by an interpretation technique; (b) shows the
neurons in the mask do not have large activations at all for a target
sample; (c) and (d) show that the neurons in the mask capture fea-
tures in both the trigger and the target.

images, we design an adaptive loss to minimize the dif-
ferences between the two. In particular, we measure the
differences of the means and standard deviations of fea-
ture maps. During training, we add the adaptive loss to
the normal cross-entropy loss. The effect of adaptive loss
is controlled by a weight value, which essentially controls
the strength of attack as well. Besides the adaptively tro-
janed model, we also train 20 clean models on CIFAR10 to
see if ABS+EX-RAY can distinguish the trojaned and clean
models. The results are shown in Table 15. The first row
shows the adaptive loss weight. A larger weight value in-
dicates stronger attack. The second row shows the trojaned
model’s accuracy on clean images, including both the over-
all accuracy and the victim label accuracy. The third row
shows the attack success rate of the trojaned model. The
fourth row shows the FP rate. The fifth row shows the TP
rate. Observe while ABS+EX-RAY does not miss trojaned
models, its FP rate grows with the strength of attack. When
the weight value is 1000, the FP rate of ABS+EX-RAY be-
comes 0.65 while its TP rate remains 1, meaning effective-
ness degradation. However at this setting, the model accu-
racy has degraded so much that such model is unlikely used
in practice.

In the third adaptive attack, we first generate a trigger
similar to a third class while having similar feature-level
representations to the target class. We generate such trig-
gers by optimizing two losses. The first is the cross entropy
loss between the model output on images stamped with the
trigger and the third class label (similar to adversarial noise
for a third class). The second loss is the mean squared er-
ror loss between the inner activation of the images stamped
with the trigger and the inner activation of the target class
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Figure 14. Average maximum activation values for neurons in the computed masks for a trojaned model #7 in (a)-(c), and for a clean model
#123 in (d)-(f).

Table 15. The second adaptive attack

Weight of adaptive loss 1 10 100 200 400 600 800 1000 10000

Acc (model/label) 0.89/0.73 0.88/0.73 0.87/0.7 0.87/0.7 0.86/0.69 0.845/0.66 0.84/0.66 0.82/0.64 0.1
ASR 0.99 0.99 0.99 0.98 0.94 0.98 0.96 0.97 -

FP/ # of clean models 0 0.2 0.2 0.2 0.35 0.45 0.6 0.65 -
TP/ # of clean models 1 1 1 1 1 1 1 1 -

images (similar to adversarial feature-level attack). After
generating the triggers, we use data poisoning to trojan the
models. We do the experiment on CIFAR10. We choose
label 0 as the target label and label 8 as the third label. We
choose conv7 in NiN models as the feature layer and opti-
mize neuron activations in this layer. We find that we need
to enlarge the trigger size to have similar inner activations
as the target label images. We generate triggers with 4 dif-
ferent sizes, 120, 140, 160, 200. The triggers are shown in
Figure 15. We train 20 benign NiN models and 20 feature-
level adaptive attack NiN models for each trigger size.

Table 16 shows the results of EX-RAY. Row 1 shows the
different trigger sizes. Row 2 shows the mean squared acti-
vation differences. Observe that with the increase of trigger
size, we can optimize the difference to a smaller value. A
trigger with a small feature difference may be difficult to
be detected. Rows 3 and 4 show the false positive and true
positive rates. Observe that EX-RAY has 75% true posi-
tive rate when the trigger is 160 and 65% true positive rate
when trigger size is 200. When the trigger size is 200, the
trigger already covers a large part of the image. The attack
becomes less meaningful.

Table 16. The third adaptive attack

Trigger size 120 140 160 200

Mean squared feature difference 0.153 0.116 0.034 0.009
FP/ # of clean models 0.1 0.1 0.1 0.1
TP/ # of clean models 1 0.8 0.75 0.65

(a) 120 (b) 140 (c) 160 (d) 200

Figure 15. Triggers in the third adaptive attack

M. Fixing Models with Injected and Natural
Backdoors

In this experiment, we try to fix 5 benign models and
5 trojaned models on CIFAR10. Fixing a benign model
means enlarging class distances to make it less vulnera-
ble to (small) natural backdoors. The trojaned models are
trojaned by label-specific data poisoning. Here we use un-
learning [66] which stamps triggers generated by scanning
methods on images of victim label to finetune the model
and forces the model to unlearn the correlations between
the triggers and the target label. The process is iterative,
bounded by the level of model accuracy degradation. The
level of repair achieved is measured by the trigger sizes of
the fixed model. Larger triggers indicate the corresponding
backdoors become more difficult to exploit. The trigger size
increase rate suggests the difficulty level of repair.

Table 17 shows the average accuracy and average reverse
engineered trigger size before and after fixing the models.
All models have the same repair budget. We can see that
natural triggers have a larger accuracy decrease. Natural
trigger size only increases by 34.4 whereas injected trigger
size increases by 78.

We show the trigger size for each label pair for an tro-
janed model in Figure 16 and for an benign model in Fig-
ure 17. Figure 16 (a) shows the trigger size between each



Table 17. Average trigger size change before and after unlearning

Natural Trigger Injected Trigger

Before After Before After

Avg Acc 88.7% 85.9% 86.4% 85.4%
Avg Trigger Size 25.8 60.2 19 97

pair of labels. The columns denote the victim label and the
rows denote the the target label. For example, the gray cell
in Figure 16 (a) shows the trigger size to flip class 1 to class
0. Figure 16 (b) follows the same format and shows the re-
sult for a trojaned model after unlearning. In the trojaned
model the injected trigger flips class 1 to class 0. Before
unlearning, class 1 and class 0 have the smallest trigger size
21. Unlearning increases the trigger size between the two
to 106, which is above the average trigger size between any
pairs. Intuitively, one can consider the backdoor is fixed. In
the benign model, the natural trigger flips class 3 to class 5.
As shown in Figure 17, unlearning increases the trigger size
from 24 to 59 and 59 is still one of the smallest trigger size
among all label pairs for the fixed model. It demonstrates
that natural backdoors are inevitable and difficult to fix. AI
model users can use EX-RAY to find injected backdoors and
speed up fixing process by prioritizing fixing injected back-
doors first.

Note that model repair is not the focus of the paper and
trigger size may not be a good metric to evaluate repair suc-
cess for the more complex semantic backdoors. The experi-
ment is to provide initial insights. A thorough model repair
solution belongs to our future work.



(a) Before unlearning

0 1 2 3 4 5 6 7 8 9
0 - 48 34 75 42 52 62 46 48 52
1 21 - 74 91 88 96 72 80 81 45
2 32 54 - 66 39 57 54 61 78 60
3 34 53 35 - 42 27 46 50 72 47
4 29 45 29 49 - 36 46 48 63 48
5 40 70 35 46 43 - 53 49 81 56
6 29 48 23 41 44 61 - 66 70 59
7 40 77 55 78 40 52 81 - 82 60
8 21 44 42 75 50 59 60 65 - 47
9 29 62 78 85 69 70 73 62 73 -

(b) Before unlearning

0 1 2 3 4 5 6 7 8 9
0 - 84 56 103 77 96 82 96 56 78
1 106 - 132 162 150 140 113 134 124 70
2 92 111 - 88 79 79 62 99 109 106
3 105 92 66 - 86 60 58 82 124 86
4 96 92 55 81 - 72 53 77 99 95
5 119 100 64 70 91 - 58 101 136 90
6 107 97 86 88 99 93 - 113 113 97
7 94 101 92 124 87 87 81 - 126 100
8 50 72 68 104 98 106 81 101 - 79
9 104 87 129 119 117 115 110 108 123 -

Figure 16. Injected trigger distance matrix before and after unlearning

0 1 2 3 4 5 6 7 8 9
0 - 43 44 47 38 42 67 68 37 48
1 62 - 89 88 79 78 70 85 76 47
2 53 58 - 37 35 42 51 71 72 62
3 62 66 40 - 40 24 48 59 72 56
4 61 57 38 48 - 31 52 52 85 64
5 69 66 43 33 46 - 51 61 73 57
6 66 55 32 35 44 38 - 80 87 62
7 74 77 67 61 38 39 74 - 92 68
8 29 44 55 61 48 51 62 65 - 46
9 79 57 84 72 67 67 83 76 72 -

0 1 2 3 4 5 6 7 8 9
0 - 79 56 89 63 90 65 99 59 76
1 120 - 134 114 123 154 77 119 122 48
2 95 101 - 75 58 74 59 82 121 82
3 104 98 57 - 58 59 40 90 124 80
4 104 100 60 88 - 79 50 73 117 79
5 95 91 58 84 76 - 52 77 131 86
6 114 115 77 129 102 89 - 131 137 93
7 104 120 110 103 68 92 66 - 129 78
8 36 61 74 80 66 112 66 86 - 70
9 128 109 117 103 112 120 73 124 105 -

Figure 17. Natural trigger distance matrix before and after unlearning
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