
Checkpointing and Deterministic Training for Deep Learning
Xiangzhe Xu∗
xzx@purdue.edu
Purdue University

USA

Hongyu Liu∗†
liuhyscc@gmail.com
Huawei Galois Lab
Purdue University
China & USA

Guanhong Tao
taog@purdue.edu
Purdue University

USA

Zhou Xuan
xuan1@purdue.edu
Purdue University

USA

Xiangyu Zhang
xyzhang@purdue.edu
Purdue University

USA

ABSTRACT

Checkpointing and faithful replay are important for the training
process of a Deep Learning (DL) model. It may improve produc-
tivity, model performance, robustness, and help security auditing.
However, the inherent nondeterminism in training poses prominent
challenges. Even with fixed random seeds, multiple runs of a same
training pipeline may yield models whose performance varies by
20% percent. With existing infrastructural checkpointing support,
developers cannot faithfully replay a training process. In this paper,
we propose DETrain, a new solution to checkpointing and faith-
ful execution/replay for long running DL training programs. We
introduce a novel random number generation mechanism that can
generate consistent random numbers in the presence of data paral-
lelism. In addition, we devise a novel analysis that can determine a
set of state variables that are necessary for faithful replay. These
variables are either saved in a checkpoint or re-generated by fast
forwarding, a selective execution technique. DETrain is evaluated
on 13 PyTorch models and 16 Tensorflow models. It can deter-
ministically execute these programs and replay from checkpoints
with reasonable overhead. It also helps developers in diagnosing
problems in training.

KEYWORDS

deep learning, determinism, record-and-replay system

1 INTRODUCTION

Deep Learning (DL) model training is considered an art, especially
for large models and datasets. Setting up the appropriate hyper
parameters, constructing the datasets, and choosing the right model
architecture and capacity require substantial expertise. Even with
all the appropriate settings, it is often the case that luck is also
needed to acquire superb training results, becausemodel accuracy is
∗Both authors contributed equally to this research.
†This work was initiated and conducted while Hongyu Liu was a postdoctoral associate
at Purdue University

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9275-4/22/05.
https://doi.org/10.1145/3522664.3528605

dependent on batch selection and training order, which are random
in the current practice. In this process, a lot of heuristics are being
utilized, for instance, constantly measuring model accuracy and
saving a copy of the best performing one [11, 31]. In some situations,
training data may even be mutated on the fly in order to achieve
higher accuracy [8, 12]. In the end, even though a model with high
accuracy is reported as the result, it is almost impossible for others
to reproduce it, not to mention learning from the tuning procedure.
In these cases, a checkpointing and replay technique can faithfully
record the entire training and tuning procedure, helping transform
the art of DL training to a science.

In addition, DL models are vulnerable to adversarial attacks [15,
37] and backdoor attacks [6, 14]. The former is often related to
underfitting and/or overfitting during training. In backdoor attacks,
any input stamped with a so-called trigger (e.g., a small patch with
solid color) causes the model to misclassify the input to a specific
target label. It is often associated with dirty data being intentional-
ly/unintentionally used during training. While DL models are being
deployed to a lot of applications in our daily life, including many
that are safety-critical, such as self-driving vehicles and identity
recognition, ensuring model security is a prominent challenge. An
important aspect of model security is the capabilities of auditing
a model’s training procedure such that any adversary can be held
accountable; and performing forensic analysis to understand the
attack provenance. We argue in the future, when a pre-trained
model is published, all the information that is needed for others
to faithfully reproduce the model (e.g., checkpoints and random
seeds) should be published as well.

Finally, DL model training is an extremely expensive procedure,
consuming a substantial amount of resource in terms of CPU/GPU
cycles, time, memory, and disk space. However, just like software
has bugs, model implementation and even the underlying infrastruc-
tures inevitably have bugs. These bugs are often non-deterministic,
meaning they may or may not manifest themselves in a particular
execution. In addition, there are hardware outages and transient
bit flips (e.g., caused by environmental condition changes). All of
these may cause an interruption of the expensive training process.
Checkpointing and deterministic replay are hence highly desirable
functionalities for data engineers to protect their investment and
fix their bugs.
Existing Checkpointing Support. Popular DL frameworks pro-
vide some basic checkpointing support. For example, in Tensorflow,
the developers can create a callback function using a pre-defined

1

https://orcid.org/0000-0001-6619-781X
https://doi.org/10.1145/3522664.3528605

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Xiangzhe Xu, Hongyu Liu, Guanhong Tao, Zhou Xuan, and Xiangyu Zhang

checkpointing API, which simply saves a copy of the model param-
eters. The callback function is then invoked at the end of every
epoch, or after a fixed number of training steps. Upon exception, the
developer can load the saved parameters and restart training from
those parameters. Alternatively, the developers can write their own
checkpointing function to save any information selected by them-
selves, which requires non-trivial human efforts and model-specific
implementation. Neither approach supports faithful replay of the
training procedure, from either the beginning or a checkpoint.

There is also traditional software checkpointing and determin-
istic replay support [7, 13, 16, 27], in which a checkpoint saves a
comprehensive image of all active states of the program and ad-
ditional runtime information (such as system input values from
files and sockets) to facilitate deterministic replay. Such strong
support enables a wide range of applications such as production
system debugging [19, 24, 34], security attack forensics [26, 35],
and fault tolerance [4]. One may argue that a DL training process
can be considered a special software process, to which existing gen-
eral software checkpointing and replay techniques can be applied.
Unfortunately, taking a memory snapshot could easily consume
tens/hundreds of gigabytes in modern DL training; and there are a
lot of unique non-deterministic factors that traditional techniques
cannot handle well.
Our Solution. Therefore, we develop a novel checkpointing and
deterministic execution/replay technique for DL training. The tech-
nique possesses the traits from both the existing DL infrastructural
support (e.g., concise checkpoints) and the traditional software
checkpointing and replay techniques (e.g., automation and sup-
port of deterministic training). Given a model implementation, our
technique leverages program analysis to automatically identify all
the places that can induce non-determinism (e.g., random seed ini-
tialization and random number updates) and all the critical state
information needed for faithful replay (e.g., shuffled dataset). These
random number operations may be confounded by data parallelism
such that using fixed random seeds cannot ensure deterministic
execution. It then transparently patches/instruments the model
implementation to add statements to save/restore such critical in-
formation. During training, the inserted statements regularly record
runtime information. Upon exceptions or a forensics/audit request,
the inserted statements restore the model training process to the
same state as that when the checkpoint was created. For example, it
can transparently recover the states of the various random number
generators such that any following stochastic operations (e.g., ran-
dom dropout) would behave as the original training process. For
some states that are too expensive to record in checkpoints, e.g.,
shuffled datasets, our technique re-generates through a selective
execution technique called fast-forwarding, in which the training
process starts from the beginning and the training loop(s) repeat the
same number of times as what is recorded in the checkpoint, per-
forming only the computation for the states need fast-forwarding,
excluding expensive operations such as gradient computation and
weight updates. For example, to fast-forward data shuffling, the
re-execution only needs to repeat the training epochs just for shuf-
fling.

Our contributions are summarized as follows.

• We propose a novel checkpointing and faithful replay tech-
nique for DL training programs.

• We develop program analysis to identify sources of uncon-
trollable non-determinism and state variables that are needed
for faithful replay. These analyses are described based on a
simplified language modeling DL applications.

• We develop a runtime to support removing uncontrollable
nondeterminism, saving checkpoints, fast-forwarding, and
state restoration.

• We develop a prototype DETrain and evaluate it on 13 Py-
Torch and 16 Tensorflowmodel training real-world programs.
Our results show that our tool can achieve its stated goals
with reasonable overhead. We also perform three case stud-
ies to demonstrate howDETrain can provide substantial help
to developers in problem diagnosis during training. DETrain
can be found at our GitHub repository1.

2 MOTIVATION

2.1 Background: Deep Learning Framework

Machine learning (ML) frameworks seamlessly connect high-level
programming languages (e.g., Python) with the high-performance
native code. To leverage an ML framework, developers specify the
data-flow of the model. Then the framework adds code to compute
the gradient, compiles the Python code to intermediate representa-
tions, delegates key operations to the native code, and dispatches
operations to heterogeneous devices. We use Tensorflow as an ex-
ample to illustrate the typical workflow of ML frameworks. As
depicted by Fig. 1, Tensorflow first compiles the python code to a
computation graph. Each node of this graph, known as an opera-
tor, is the atomic scheduling unit in Tensorflow. Then an executor
dispatches nodes to devices where these nodes are executed con-
currently.

Computation Graph

Python Runtime Native Runtime Devices

Graph
Compiler Executor

Python Code

Figure 1: Workflow of Tensorflow

2.2 Motivation Example

To further illustrate how Tensorflow works and the challenges of
deterministic replay, we introduce a running example. Adversarial
attack is a technique to make a model mis-predict by perturbing
inputs. The perturbed inputs are also called adversarial examples.
To defend against adversarial attacks, developers usually harden
a model by using adversarial examples in training. The process is
called adversarial training. Fig. 2 shows a simplified Python code
snippet for a well-known adversarial training technique, Projected
Gradient Descent (PGD) [15]. It is slightly enhanced by co-training
1https://github.com/XZ-X/DETrain-public

2

Checkpointing and Deterministic Training for Deep Learning CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

the model with both benign and adversarial examples together [38]
for better performance.

The training process iterates over the training dataset for 200
times. Each iteration is noted as an epoch (line 4). In each epoch, the
dataset is shuffled and further split to small subsets, noted as batches.
At line 6, the variables batchX and batchY are data and labels for a
batch, respectively. For each batch, the algorithm first computes the
cross-entropy loss, generates the gradients, and optimizes weights
of the model by gradient descent. These operations are implicitly
performed by the API model.fit() at line 7. Then it generates a
set of adversarial examples in the function adv_gen(). After that,
it further trains the model with the generated adversarial examples
to make it robust. Now we take a close look at the two functions in
the example. The Model() function at line 11 defines the model we
want to train. It consists of four layers: an input layer that encodes
input image to vectors, a deterministic layer that performs some
deterministic computations, a dropout layer that randomly sets
some values to zeros, and an output layer that computes the classifi-
cation label. Note that the model is for illustration purpose. The real
model is a ResNet50 wide[38] that is much more complex. When
the function is invoked, the Tensorflow framework compiles these
layers to a computation graph. The adv_gen() function at line 18
generates adversarial examples from the benign data benignX. It
first adds some random noise to the benign data, then computes the
gradient of the model’s loss with respect to the input data. After
that, it performs gradient ascent on the input to generate samples
that can maximize the loss of the model, that is, trying to induce
misclassification.

1 t f . g l o b a l _ s e e d = 123
2 da t a = g e t _ d a t a s e t ()
3 model = Model ()
4 for epoch in range (0 . . . 2 0 0) :
5 da t a = s h u f f l e (d a t a)
6 for batchX , batchY in da t a :
7 model . f i t (batchX , batchY)
8 adv_examples = adv_gen (model , batchX , batchY)
9 model . f i t (adv_examples , ba tchY)
10
11 def Model () :
12 input = I n pu t _ l a y e r ()
13 tmp = De te rm_ laye r s (input)
14 tmp2 = Dropout (tmp , seed =234)
15 out = Ou tpu t_ l aye r (tmp2)
16 return t f . Model (input , out)
17
18 def adv_gen (model , benignX , benignY) :
19 tmp = benignX + Random_noise (seed =567)
20 for _ in 0 . . . 3 0 :
21 g = g r a d i e n t (model (tmp , benignY) , tmp)
22 # a s e q u e n c e o f d e t e r m i n i s t i c o p e r a t i o n s
23 p ro j _g = p r o j e c t (g)
24 tmp += pro j _g
25 return tmp

Figure 2: Motivation Example - PGD Adversarial Training

2.3 Sources of Nondeterminism

There are two major sources of nondeterminism: the algorithmic
ones and the non-algorithmic ones. The former refers to the ran-
domness that developers intentionally introduce to improve model
generalization. For example, the dropout layer at line 14 randomly
“drops” some values by setting them to zeros; the random noise

generator at line 19 adds random noise to benign samples. The
behaviors of these algorithmic nondeterminisms can be determined
by setting random seeds.

On the other hand, non-algorithmic nondeterminism refers to
the randomness that developers cannot control. The most signifi-
cant non-algorithmic nondeterminism is caused by data parallelism.
When a random generator is accessed by multiple threads con-
currently, the random number obtained by any given thread is
non-deterministic. For instance, at line 7, when model.fit() is
called, Tensorflow feeds the whole batch of data to the computation
graph (compiled from the model code). Then the Tensorflow na-
tive code dispatches these computation tasks to multiple physical
devices. Note that the random generator for the dropout layer is
shared by all threads. That means, in different executions, a given
instance of data may undergo different dropout behaviors, which
further affect the result of the whole training. In our experiment,
after fixing the global seed, two executions of the running example
yield twomodels whose robust accuracy (using the C&W attack [1])
may differ by 20% in the worst case (28% versus 48%), while having
comparable benign accuracy (87%). Our technique allows determin-
istically replaying these executions to study the underlying reasons
for the inconsistent performance. As we will show in Section 6.4, it
can be used to replay non-deterministic bugs and facilitate repair.

3 DETERMINISTIC EXECUTION

In the previous section, we mention that model training programs
are haunted by non-algorithmic nondeterminism even with fixed
random seeds. In this section, we use a language to model training
programs and then describe our analysis and instrumentation to
ensure determinism using the language.

3.1 Language

To facilitate discussion, we introduce a language to represent model
training programs. For simplicity, we only model elements related
to nondeterminism. The syntax of our language is depicted in Fig. 3.

In our language, the top-level components of a program are
statements. Each statement models a core operation used in model
training and is associated with a label 𝐿. We introduce statements
to describe the building, inferring, and training process related to
models: 𝑀 =𝐿 build(𝑆) builds a model 𝑀 from the descriptions
in statement 𝑆 ; 𝑉1 =𝐿 𝑀 (𝑉2,𝑉3) computes the loss of model𝑀 on
data 𝑉2 and label 𝑉3, then the loss is stored in 𝑉1; 𝐵𝐿 (𝑀,𝑉) repre-
sents backward propagation of gradient 𝑉 on model𝑀 . To model
random number generation, we introduce two statements: 𝐺 =𝐿

create_generator(𝑉) creates a random number generator 𝐺 with
an initial seed𝑉 ;𝑉 =𝐿 random_gen(𝐺 , 𝐸) generates random num-
bers with the same shape as 𝐸 using generator𝐺 . Moreover, we use
data_parallel_begin

𝐿 (𝑉) and data_parallel_end𝐿 to denote the
begin and end of a data parallel region. In a data parallel region, ML
frameworks divide data 𝑉 into subsets and perform operations on
these subsets concurrently. Finally, checkpoint𝐿 (𝑉1,𝑉2, ...) means
saving the value of variables 𝑉1,𝑉2, ... in the checkpoint.

Besides statements, we also introduce two special expressions
to represent domain specific behaviors in model training. ∇(𝐸,𝑉)
denotes the gradient of 𝐸 w.r.t. the variable𝑉 ;𝑉 [𝐸] denotes a subset
of data in 𝑉 or a permutation of data in 𝑉 . For example, suppose

3

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Xiangzhe Xu, Hongyu Liu, Guanhong Tao, Zhou Xuan, and Xiangyu Zhang

⟨Random Generator⟩ 𝐺 F {𝑟𝑛𝑔1, 𝑟𝑛𝑔2, ...}

⟨Dataset⟩ 𝐷 F {𝑑𝑠1, 𝑑𝑠2, ...}
⟨Model⟩ 𝑀 F {𝑚𝑜𝑑𝑒𝑙1, 𝑚𝑜𝑑𝑒𝑙2, ...}
⟨Variable⟩ 𝑉 F {𝑥, 𝑦, ...}

⟨Const⟩ 𝐶 F {0,1,2,...}
⟨Label⟩ 𝐿 F {𝐿1, 𝐿2, ...}
⟨Program⟩ 𝑃 F 𝑆

⟨Statement⟩ 𝑆 F 𝑆1;𝑆2 | 𝑉 =𝐿 𝐸 | 𝑉 [𝐸1] =𝐿 𝐸2 | 𝐵𝐿 (𝑀,𝑉)
| for (𝑉1=𝐸1 to 𝐸2)

𝐿 { 𝑆 }
| 𝐺 =𝐿 create_generator(𝑉)
| 𝑉 =𝐿 random_gen(𝐺, 𝐸)
| data_parallel_begin𝐿 (𝑉)
| data_parallel_end𝐿

| 𝑉1 =
𝐿 generate_batches(𝑉2)

| 𝑀 =𝐿 build(𝑆)
| 𝑉1 =

𝐿 𝑀 (𝑉2,𝑉3)
| 𝐷 =𝐿 load_data()
| checkpoint𝐿 (𝑉1,𝑉2, ...)

⟨Expression⟩ 𝐸 F 𝐶 | 𝑉 | 𝑉 [𝐸] |(𝐸1, 𝐸2)| 𝐸1 𝑂𝑃 𝐸2 | ∇(𝐸,𝑉)
⟨Operator⟩ 𝑂𝑃 F + | - | * | / | ...

Figure 3: Syntax of our Language

that 𝑉 = [𝑎, 𝑏, 𝑐]. Then 𝑉 [0],𝑉 [1, 2] can represent two subsets of
𝑉 , which are {𝑎} and {𝑏, 𝑐}, respectively; and 𝑉 [2, 0, 1] represents
a permutation of 𝑉 , which is {𝑐, 𝑎, 𝑏}.

The other parts of our language have similar meanings with
their counterparts in a commonplace programming language. Thus
we omit their discussion for simplicity.

3.2 Execution Model of ML Frameworks

In this section, we revisit our motivation example to illustrate the
execution model of ML frameworks. Specifically, we demonstrate
how the frameworks compiles operations to graphs and how they
empower the training process with data parallelism. Finally, we
discuss how non-algorithmic nondeterminism is introduced.

Fig. 4 presents the motivation example rewritten in our language.
It first creates a global random number generator at line 2 with the
seed specified by developers. After that, it generates a local random
generator for each random operation. For example, at line 4, rng1
is created for the dropout operation. Note that in the case that
developers do not specify a seed for a random operation, a seed will
be generated from the global random number generator, as shown
at line 7. At line 12, the build() function stands for the framework
compiling the model to a computation graph. The data fed to the
model will undergo the operations specified in the statements inside
build(). Line 19 starts the main training loop where the model
iterates over the dataset for 200 times. In each iteration, a random
sequence is generated to shuffle the dataset. Then the dataset is
further divided into batches, and the loop starting at line 23 iterates
over the batches.

For each batch, the framework leverages data parallelism to
accelerate the training process, as depicted by Fig. 5. The green
rectangle on the left represents the data in a batch, and the blue
rectangles denote the operations that will be performed on each data
example. The framework builds a graph to represent the required
computations, denoted by the grey rectangle. Suppose we have two
threads. The framework dispatches an execution task to each of
them, with each task containing a subset of data, a thread local
execution state, and a reference to the computation graph. During
execution, both threads fetch data from their data subsets, and
concurrently execute the graph on these data. Since the graph

1 # t h e g l o b a l random g e n e r a t o r
2 rng0 = create_generator (1 2 3)
3 # l o c a l g e n e r a t o r f o r d r o p ou t
4 rng1 = create_generator (2 3 4)
5 # l o c a l g e n e r a t o r f o r s h u f f l e
6 s h u f f l e _ s e e d = random_gen (rng0 , 1)
7 rng2 = create_generator (s h u f f l e _ s e e d)
8 # l o c a l g e n e r a t o r f o r random n o i s e
9 rng3 = create_generator (5 6 7)
10
11 ds1 = load_data ()
12 model1 = build (
13 . . . # o t h e r o p e r a t i o n s on i n pu t
14 drop_mask = random_gen (rng1 , s i z e (input) / 2) ;
15 out = input [drop_mask] ;
16 . . . # o t h e r o p e r a t i o n s on ou t
17)
18 da t a = ds1
19 for epoch = 0 to 2 0 0 {
20 shu f f l e _mask = random_gen (rng2 , s i z e (d a t a))
21 da t a = da t a [shu f f l e _mask]
22 ba t ch = generate_batches (d a t a)
23 for i = 0 to s i z e (b a t ch) {
24 c u r r e n t _ b a t c h = ba t ch [i]
25 data_para l le l_beg in (c u r r e n t _ b a t c h)
26 X = cu r r e n t _ b a t c h [0]
27 Y = cu r r e n t _ b a t c h [1]
28 l o s s = model1 (X , Y)
29 g = ∇ (l o s s , model1) # compute t h e g r a d i e n t
30 B (model1 , g) # backward p r o p a g a t i o n
31 no i s e = random_gen (rng3 , s i z e (c u r r e n t _ b a t c h))

32 adv_sample = X + no i s e
33 for k = 0 to 3 0 {
34 l o s s = model1 (adv_sample , Y)
35 g = ∇ (l o s s , adv_sample)
36 . . . # o t h e r o p e r a t i o n s on g
37 adv_sample = adv_sample + g
38 }
39 # a d v e r s a r i a l t r a i n i n g
40 l o s s = model1 (adv_sample , Y)
41 g = ∇ (l o s s , model1)
42 B (model1 , g)
43 data_paral le l_end

44 # s u pp o s e d e v e l o p e r s want t o s a v e mode l1
45 checkpoint (model1)
46 }
47 }

Figure 4: Motivation Example in Our Language

current_batch Forward
Inference

Gradient
Computation

Backward
Propagation

Adversarial
Training

SubData1 SubData2

ThreadLocal
States1

ThreadLocal
States2

GraphRef GraphRef

Split To Two Subsets

Graph

Thread0 Thread1

Refer to the Same Graph

rng1 rng3

Figure 5: Data Parallel

is shared by both threads, the generators rng1 and rng3 are also
shared and concurrently invoked (in line 14 and line 31, respectively)
Hence for either thread, the random numbers it acquires depend
on the order in which the threads access these generators. In other
words, the random numbers are nondeterministic since the access
order is not fixed among executions despite of the fixed global seed.

4

Checkpointing and Deterministic Training for Deep Learning CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

3.3 Elimination of Nondeterminism

We develop a program analysis to determine the places that are
susceptible to nondeterminism and instrument them to eliminate
such nondeterminism. From the above discussion, we know that the
undesirable nondeterminism is rooted at the use of random number
generators that are created outside of a data parallel code region for
data parallel computation. We hence develop a program analysis
to determine if the use of a random number generator is thread-
safe. Thread-unsafe uses of genenators will hence be replaced by
thread-safe uses. Specifically, we observe that the finest granularity
of data parallelism is at the example level, that is, the processing of
any pair of examples could be parallel, whereas the operations on
a particular example have to be sequential. We hence pre-generate
a random number generator for each data example and replace
thread-unsafe uses with queries to the generators associated with
individual examples. In the remainder of the section, we focus on
the analysis.

𝑎○, 𝑏○ ∈ Enum

𝑇𝑆 ∈ ThreadSafe F Generator × (𝑎○ + 𝑏○) × Label → Boolean

𝐸𝑅𝑅 ∈ ErraticRandomGenerator F Generator → Boolean

succ(𝐿): This function returns labels of the successors of the statement whose
label is 𝐿.
pred(𝐿): This function returns labels of the predecessors of the statement
whose label is 𝐿.
begin(𝐿): This function is defined only when 𝐿 is the label of
a data_parallel_end statement. It returns labels of the related
data_parallel_begin statement.

Figure 6: Abstract Domain for Elimination of Nondetermin-

ism

We describe our analysis as solving a set of constraints, which
yield results in an abstract domain that denotes if a generator is
thread-safe.
Definitions. The abstract domains are shown in Fig. 6. Here, sym-
bols 𝑏○ and 𝑎○ refer to the program points before and after a
label, respectively. 𝑇𝑆 indicates whether a random generator is
safe to use concurrently at a given program point. 𝐸𝑅𝑅 stores the
random generators that are not thread-safe (and hence require
fixing). We also define a set of auxiliary functions to simplify
our analysis description. Functions succ(𝐿) and pred(𝐿) refer
to two sets of labels denoting the successors and the predecessors
of statement 𝐿, respectively; begin(𝐿) is defined only when 𝐿 is
the label of a data_parallel_end statement. It refers to the paired
data_parallel_begin statement.
Analysis Rules. The analysis rules are shown in Table 1. Intu-
itively, our rules detect problematic accesses (to generators) by
introducing a thread local scope for the data parallel region. Ran-
dom_Create ensures the created generator𝐺 is safe to use (within
the current scope) after the creation statement.Parallel_Region
consists of two rules: upon entering the data parallel region, all
generators defined outside become unsafe to use since they may
yield racy results; upon exit, these generators become safe again.
Random_Use guarantees all generators with unsafe usage being
marked in 𝐸𝑅𝑅. Default propagates the (flow-sensitive) thread
safety information through other statements. A generator is safe

to use before the current statement only if it is safe after all the
predecessors.

Example. Consider the example in Table 2. The line numbers (cor-
responding to the code in Fig. 4), the related statements, and a
solution to the constraints are shown in the columns from left to
right. Note that we omit irrelevant values in the abstract domain
for simplicity. At line 9, generator 𝑟𝑛𝑔3 is created, and thus it is
safe to use after this program point. Then the constraints for the
statement at line 25 guarantee that 𝑟𝑛𝑔3 is invalidated after line 25
since it is created outside the parallel region. When the code in
the parallel region tries to use 𝑟𝑛𝑔3 at line 31, the precondition
𝑇𝑆 [𝑟𝑛𝑔3 𝑏○31] = 𝐹𝑎𝑙𝑠𝑒 is satisfied. Hence 𝐸𝑅𝑅 [𝑟𝑛𝑔3] should be
𝑇𝑟𝑢𝑒 in the solution. In this way, the solution successfully captures
the unsafe use of 𝑟𝑛𝑔3 and marks it in 𝐸𝑅𝑅. Similarly, at line 28, the
model is invoked to compute the loss, which further executes the
random generation statement at line 14. Since 𝑟𝑛𝑔1 is also unsafe
to use in the parallel region, 𝐸𝑅𝑅 [𝑟𝑛𝑔1] is 𝑇𝑟𝑢𝑒 as well.

After capturing all the unsafe generators, we replace them with
pre-generated per-example random number generators. The loop
index of epoch and the id of example are used to deterministically
look up a unique seed for this local generator.With the deterministic
seed, all the random number queries for computation related to the
data sample become deterministic, leading to a fully deterministic
execution. Details are elided.

4 CHECKPOINTING AND REPLAY

In this section, we introduce a novel technique that can create
efficient checkpoints and support faithful replay. Our technique
assumes that the developers already make use of built-in “check-
pointing” APIs to save copies of certain states (e.g., weight values).
It leverages the information conveyed by such API invocations,
such as the intended places for checkpointing and the program
states that are already recorded (by the built-in APIs), and then
analyzes and determines the other information needed to enable
faithful replay. Specifically, it automatically saves random number
generator states (e.g., how many random numbers have been gener-
ated from a particular seed) and the number of executed iterations
of training loops. For other heavy-weight but needed states, such
as a shuffled dataset, it re-generates such states by fast-forwarding.
For example, we regenerate the shuffled states of a dataset by rerun-
ning the same number of epochs and only executing the shuffling
operation, without executing any other expensive training operations.
The key insight is that the results of the expensive training oper-
ations can be restored from the checkpoint. Hence, the challenge
lies in identifying the states that need fast-forwarding. Note that
if we decide to fast-forward a variable 𝑥 , we need to fast-forward
any of the variables that 𝑥 depends on. We leverage an analysis
to identify all the variables that need fast-forwarding and our sys-
tem automatically re-generates these states (by executing from the
beginning). We call it fast-forwarding as these states only require
very lightweight computation to regenerate.

We develop a program analysis to determine the variables that
need to be fast forwarded. In a “checkpointing” statement inserted
by the developer, such as tf.train.Saver.save(), only some
states are saved, such as weight values. If there are other states com-
puted before the “checkpoint” but used in computation beyond the

5

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Xiangzhe Xu, Hongyu Liu, Guanhong Tao, Zhou Xuan, and Xiangyu Zhang

Table 1: Analysis Rules for Nondeterminism

Rule Statement Constraints

Parallel_Region

data_parallel_begin
𝐿 (𝑉) ∀𝑔,𝑇𝑆 [𝑔 𝑏○𝐿] = ⋂

𝑖∈𝑝𝑟𝑒𝑑 (𝐿) 𝑇𝑆 [𝑔 𝑎○𝑖] ∧ ∀𝑔,𝑇𝑆 [𝑔 𝑎○𝐿] = 𝐹𝑎𝑙𝑠𝑒

data_parallel_end
𝐿 ∀𝑔,𝑇𝑆 [𝑔 𝑎○𝐿] = 𝑇𝑆 [𝑔 𝑏○𝑏𝑒𝑔𝑖𝑛 (𝐿)]

Random_Create 𝐺 =𝐿 create_generator(𝑉) ∀𝑔,𝑇𝑆 [𝑔 𝑏○𝐿] = ⋂
𝑖∈𝑝𝑟𝑒𝑑 (𝐿) 𝑇𝑆 [𝑔 𝑎○𝑖] 𝑇𝑆 [𝐺 𝑎○𝐿] = 𝑇𝑟𝑢𝑒 ∧ ∀𝑔 ≠ 𝐺,𝑇𝑆 [𝑔 𝑏○𝐿] = 𝑇𝑆 [𝑔 𝑎○𝐿]

Random_Use 𝑉 =𝐿 random_gen(𝐺, 𝐸) ∀𝑔,𝑇𝑆 [𝑔 𝑏○𝐿] = ⋂
𝑖∈𝑝𝑟𝑒𝑑 (𝐿) 𝑇𝑆 [𝑔 𝑎○𝑖] ∧𝑇𝑆 [𝐺 𝑏○𝐿] = 𝐹𝑎𝑙𝑠𝑒 → 𝐸𝑅𝑅 [𝐺] = 𝑇𝑟𝑢𝑒

Default Other Statements ∀𝑔,𝑇𝑆 [𝑔 𝑏○𝐿] = ⋂
𝑖∈𝑝𝑟𝑒𝑑 (𝐿) 𝑇𝑆 [𝑔 𝑎○𝐿] ∧ ∀𝑔,𝑇𝑆 [𝑔 𝑏○𝐿] = 𝑇𝑆 [𝑔 𝑎○𝐿]

Table 2: Example for Elimination of Nondeterminism

LineNo. Statement

Abstract Domain

𝑇𝑆 𝐸𝑅𝑅

9 rng3 = create_generator(567) 𝑇𝑆 [𝑟𝑛𝑔3 𝑎○9] = 𝑇𝑟𝑢𝑒

.
25 data_parallel_begin(current_batch) 𝑇𝑆 [{𝑟𝑛𝑔1, 𝑟𝑛𝑔3} 𝑏○25] = 𝑇𝑟𝑢𝑒 ;𝑇𝑆 [{𝑟𝑛𝑔1, 𝑟𝑛𝑔3} 𝑎○25] = 𝐹𝑎𝑙𝑠𝑒

14 drop_mask = random_gen(rng1, size(input)/2) 𝑇𝑆 [𝑟𝑛𝑔1 𝑏○14] = 𝐹𝑎𝑙𝑠𝑒 𝐸𝑅𝑅 [{𝑟𝑛𝑔1, 𝑟𝑛𝑔3}] = 𝑇𝑟𝑢𝑒

.
31 random_gen(rng3, size(current_batch)) 𝑇𝑆 [𝑟𝑛𝑔3 𝑏○31] = 𝐹𝑎𝑙𝑠𝑒 𝐸𝑅𝑅 [{𝑟𝑛𝑔1, 𝑟𝑛𝑔3}] = 𝑇𝑟𝑢𝑒

.

“checkpoint”, we will need to restore them in order to achieve faith-
ful replay. Our analysis identifies such states (for fast-forwarding).
We describe our analysis as solving a set of constraints, which yield
the variables that are needed by faithful replay but are not included
in the developer “checkpoint”. The statements related to defining
these variables will be re-executed during fast forwarding.

𝑎○, 𝑏○ ∈ Enum
𝑁𝑒𝑒𝑑𝑒𝑑 ∈ NeededByFollowingCode F

(Variable+Model+RandomGenerator+Dataset) × (𝑎○+ 𝑏○) × Label

→ Boolean

Vars(𝑒𝑥𝑝𝑟): This function returns variables used in 𝑒𝑥𝑝𝑟 .
succ(𝐿): This function returns labels of the successors of the statement whose
label is 𝐿.
pred(𝐿): This function returns labels of the predecessors of the statement
whose label is 𝐿.

Figure 7: Abstract Domain for Checkpointing

Definitions. The definitions for the abstract domain are shown in
Fig. 7. Besides the definitions in Fig. 6, we further introduce 𝑁𝑒𝑒𝑑𝑒𝑑

to indicate the variables need to be recomputed and an auxiliary
function Vars(𝑒𝑥𝑝𝑟) to refer to the set of variables used in 𝑒𝑥𝑝𝑟 .
Analysis Rules. The analysis rules are listed in Table 3. Intuitively,
our rules guarantee the state of a variable is either restored from
a checkpoint or recovered by fast forwarding. The third rule in
CheckPointing excludes the saved variables (by the developer
checkpoint) from recomputing since they can be restored from the
checkpoint, by setting the 𝑁𝑒𝑒𝑑𝑒𝑑 values of all the variables stored
in the checkpoint to 𝐹𝑎𝑙𝑠𝑒 before the checkpoint statement. Note
that this enables marking all other variables that are exclusively
and transitively used in computing these variables not needed. The
first set of rules in Statements describes the constraints for an
assignment statement 𝑉 =𝐿 𝐸. Specifically, the first rule dictates
that if 𝑉 is not used in 𝐸, 𝑉 is not needed before 𝐿. Intuitively, it
indicates that any previous definition of𝑉 is not needed right before
𝐿 as 𝑉 is about to be re-defined at 𝐿. The second rule specifies that
if 𝑉 is not needed after 𝐿, the necessities of all variables after 𝐿
and before 𝐿 are identical. The third rule asserts that if 𝑉 is needed
after 𝐿, then all variables in 𝐸 are needed before 𝐿; for variables
other than𝑉 and those in 𝐸, their necessities before and after 𝐿 are

equivalent. The rules for𝑉 [𝐸1] =𝐿 𝐸2 are similarly defined. For the
gradient back-propagation statement 𝐵𝐿 (𝑀,𝑉), its semantics is sim-
ilar to𝑀 = ...(𝑀,𝑉). Hence, its rules are defined accordingly. The
rules for other statements are similar and hence elided. The Flow
rule depicts how the necessity information is propagated/merged
along control flow. In particular, if a variable is needed before any
successor of the current statement, this variable is needed after
the current statement. This rule applies to all statements. At the
end, all the statements that compute some needed state, that is,
whose left-hand-side variable has a 𝑇𝑟𝑢𝑒 value in 𝑁𝑒𝑒𝑑𝑒𝑑 right
after these statements need to be re-executed. Our analysis shares
some common nature with liveness analysis in compilers [17]. The
difference lies in that our analysis does not simply consider any
right-hand-side variable needed. Instead, the necessity is derived
from the left-hand-side variable’s necessity.

Example. Consider the example in Table 4. The line numbers (cor-
responding to the code in Fig. 4), the related statements, and a
solution to the constraints are shown in the columns from left to
right. At line 45, model1 is saved to a checkpoint. Thus even if
model1 is needed after the checkpoint, we can restore its state from
the saved file and hence its necessity before line 45 is set to 𝐹𝑎𝑙𝑠𝑒 .
In this way, we avoid repeating the expensive computation needed
to train the model. As shown in the example, since model1 is not
needed before line 45, the operations at line 28, line 29, and line 30
are not needed and hence skipped in fast forwarding. On the other
hand, the necessity of data is𝑇𝑟𝑢𝑒 before line 21. Such necessity is
propagated along the loop path line 45→ 19 → 21 such that data
is 𝑇𝑟𝑢𝑒 after the checkpoint line 45. Since data is not recorded in
the checkpoint, it has to be fast-forwarded.

5 IMPLEMENTATION

Training programs heavily utilize DL frameworks through their
Python interfaces. The behaviors that we are interested in, such as
random number generation, are largely encapsulated inside frame-
work APIs. It is not realistic to model the large number of APIs (for
analysis). Hence, our system analyzes the training program and the
framework code together. This entails two challenges. First, stati-
cally analyzing Python code is difficult due to its dynamic nature.
In addition, a large part of these frameworks is implemented in

6

Checkpointing and Deterministic Training for Deep Learning CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

Table 3: Analysis Rules for Checkpointing

Rule Statement Actions

CheckPointing checkpoint
𝐿 (𝑉1,𝑉2, ...)

𝑐ℎ𝑒𝑐𝑘𝑒𝑑 B {𝑉1,𝑉2, ...}
∀𝑣 ∉ 𝑐ℎ𝑒𝑐𝑘𝑒𝑑, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑎○𝐿]
∀𝑣 ∈ 𝑐ℎ𝑒𝑐𝑘𝑒𝑑, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝐹𝑎𝑙𝑠𝑒

Statements

𝑉 =𝐿 𝐸
𝑉 ∉ 𝑣𝑎𝑟𝑠 (𝐸) → 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑉 𝑏○𝐿] = 𝐹𝑎𝑙𝑠𝑒
𝑁𝑒𝑒𝑑𝑒𝑑 [𝑉 𝑎○𝐿] = 𝐹𝑎𝑙𝑠𝑒 → ∀𝑣, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑎○𝐿]
𝑁𝑒𝑒𝑑𝑒𝑑 [𝑉 𝑎○𝐿] = 𝑇𝑟𝑢𝑒 → ∀𝑣 ∉ {𝑉 } ∪ 𝑣𝑎𝑟𝑠 (𝐸), 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑎○𝐿] ∧ ∀𝑣 ∈ 𝑣𝑎𝑟𝑠 (𝐸), 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑇𝑟𝑢𝑒

𝑉 [𝐸1] =𝐿 𝐸2

𝑢𝑠𝑒𝑑 := 𝑣𝑎𝑟𝑠 (𝐸1) ∪ 𝑣𝑎𝑟𝑠 (𝐸2)
𝑉 ∉ 𝑢𝑠𝑒𝑑 → 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑉 𝑏○𝐿] = 𝐹𝑎𝑙𝑠𝑒
𝑁𝑒𝑒𝑑𝑒𝑑 [𝑉 𝑎○𝐿] = 𝐹𝑎𝑙𝑠𝑒 → ∀𝑣, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑎○𝐿]
𝑁𝑒𝑒𝑑𝑒𝑑 [𝑉 𝑎○𝐿] = 𝑇𝑟𝑢𝑒 → ∀𝑣 ∉ 𝑢𝑠𝑒𝑑 ∪ {𝑉 }, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑎○𝐿] ∧∀𝑣 ∈ 𝑢𝑠𝑒𝑑, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑇𝑟𝑢𝑒

𝐵𝐿 (𝑀,𝑉) 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑀 𝑎○𝐿] = 𝐹𝑎𝑙𝑠𝑒 → ∀𝑣, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑎○𝐿]
𝑁𝑒𝑒𝑑𝑒𝑑 [𝑀 𝑎○𝐿] = 𝑇𝑟𝑢𝑒 → ∀𝑣 ∉ {𝑉 ,𝑀 }, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑎○𝐿] ∧ ∀𝑣 ∈ {𝑉 ,𝑀 }, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝐿] = 𝑇𝑟𝑢𝑒

Flow * ∀𝑣, 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑎○𝐿] = ⋃
𝑠∈𝑠𝑢𝑐𝑐 (𝐿) 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑣 𝑏○𝑠]

Table 4: Example for Checkpointing

LineNo. Statement

Abstract Domain

𝑁𝑒𝑒𝑑𝑒𝑑

21 data = data[shuffle_mask] 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑑𝑎𝑡𝑎{ 𝑏○, 𝑎○}21] = T;𝑁𝑒𝑒𝑑𝑒𝑑 [{𝑋,𝑌, 𝑙𝑜𝑠𝑠,𝑔,𝑚𝑜𝑑𝑒𝑙1}{ 𝑏○, 𝑎○}21] = F
.
28 loss = model1(X, Y) 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑑𝑎𝑡𝑎{ 𝑏○, 𝑎○}28] = T;𝑁𝑒𝑒𝑑𝑒𝑑 [{𝑋,𝑌, 𝑙𝑜𝑠𝑠,𝑔,𝑚𝑜𝑑𝑒𝑙1}{ 𝑏○, 𝑎○}28] = F
29 g = ∇(loss, model1) . . .
30 B(model1, g) . . .
.
45 checkpoint(model1) 𝑁𝑒𝑒𝑑𝑒𝑑 [𝑑𝑎𝑡𝑎 𝑏○45] = T;𝑁𝑒𝑒𝑑𝑒𝑑 [{𝑋,𝑌, 𝑙𝑜𝑠𝑠,𝑔,𝑚𝑜𝑑𝑒𝑙1} 𝑏○45] = F; 𝑁𝑒𝑒𝑑𝑒𝑑 [{𝑑𝑎𝑡𝑎,𝑚𝑜𝑑𝑒𝑙1} 𝑎○45] = T;𝑁𝑒𝑒𝑑𝑒𝑑 [{𝑋,𝑌, 𝑙𝑜𝑠𝑠,𝑔 } 𝑎○45] = F
.

Deterministic
Framework

Dynamic
Analysis

User
Program

Executed on

Deterministic
Results

Analyzed by

Checkpoints
& Replay

Figure 8: Workflow of DETrain

C/C++. As such, our analysis has to deal with (complex) Python and
C/C++ code together. To achieve this goal, we resort to dynamic
analysis. The workflow of DETrain is shown in Fig. 8. Leveraging
the analysis described in Section 3, we empower ML frameworks
to support deterministic execution. Our deterministic runtime sup-
ports thread-safe random number generator creation and replaces
all thread-unsafe generators with the safe ones. Then we instru-
ment the execution of training programs to support checkpoints
and faithful replay. Specifically, we trace a number of key opera-
tions for model training, e.g., dataloading, gradient computation,
and backward propagation, by intercepting API invocations. One
can consider that the traces are essentially statement instances of
the language in Section 3.1. Our analysis is hence performed on the
traces. Note that DL training programs are different from general
purpose software. It is easy to achieve full coverage of the training
pipeline with a small input. Hence, our system does not suffer from
the coverage problem. In addition to the tracer and the analysis,

our checkpointing runtime saves random number generator states,
epochs and steps. During fast-forwarding, the replay runtime re-
executes the training loops with almost empty loop bodies, except
those statements that need fast forwarding. After fast forwarding,
the developer’s checkpoint is loaded and the execution is resumed
(for faithful replay).

6 EVALUATION

In this section, we evaluate DETrain and answer the following
research questions.

• RQ1:Whether DETrain can deterministically execute and
replay training?

• RQ2: To what extent DETrain affects the performance of
training?

• RQ3: Is DETrain useful in real-world scenario?
To answer RQ1 and RQ2, we train 29 real-world DL models with
various model structures and datasets using DETrain. Three case
studies are performed to illustrate the usefulness of DETrain, and
thus answer the RQ3.

6.1 Experiment Setup

Environments.We perform the experiments on a server with two
Intel Xeon Gold 6138 processors and an NVIDIA Tesla P100 16GB
GPU. The OS is Ubuntu 18.04, installed with Linux-4.15.0.
Benchmarks.We evaluate DETrain on 29 popular models, such as
BERT, ResNet50, VGG19, and so on. Thesemodels are collected from
PyTorch examples [23], Tensorflow models [30], and popular repos-
itories on Github [9, 36]. Among them, 13 models are built in Py-
Torch, and 16 models are built in Tensorflow. They are trained with
widely-used datasets, such as ImageNet [2], SQuAD [25], andMovie-
Lens [5]. All the training programs are non-deterministic, meaning
that they produce different models in multiple training runs.

7

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Xiangzhe Xu, Hongyu Liu, Guanhong Tao, Zhou Xuan, and Xiangyu Zhang

Note that the unsafe use of random number generator is not the
only source of non-algorithmic nondeterminism [20]. For example,
the order of floating point operations and the implementation for
certain algorithms may also introduce nondeterminism. ML frame-
works have good support to eliminate these nondeterminism. Thus
in the experiments, we simply set some flags to benefit from the
deterministic execution strategies provided by these frameworks.

6.2 RQ1: Deterministic Execution and Replay

To validate DETrain supports deterministic execution and replay,
we conduct two experiments on each of the 29 model training
programs. First, we run each training program for two times from
the beginning and compare whether the two resulting models are
exactly the same. Second, for each model, we arbitrarily select 4
checkpoints to recover from and continue the training process to the
same epoch. Then the weights of the models are compared among
different executions to ensure the determinism of the replays. For
each of the 29 models, all the aforementioned 2+4 training runs
yield the same weight values. It verifies that DETrain supports not
only deterministic execution from the beginning, but also faithful
replay from checkpoints.

6.3 RQ2: Performance of DETrain

Space Efficiency. Table 5 shows the characteristics of the subject
models. The models, numbers of weight parameters, datasets used
to train the models, and size of the vanilla checkpoints supported
by the frameworks are shown in the columns from left to right. The
last column presents the sizes of checkpoints created by DETrain.
Overall, our checkpoints are about 10 kilobytes larger than the
vanilla checkpoints for Pytorch models. The storage overhead of
our checkpoint is thus negligible. On the other hand, our check-
points for Tensorflow models incur more overhead. They consume
more than one gigabyte space for six models and 100 megabytes
for four models. The largest checkpoint is around two gigabytes
for the RetinaFace ResNet50 model, while the largest overhead is
for the DenseNet model, which is 1 gigabyte (Our Checkpoint)-1.5
megabytes (Checkpoint). We find two main reasons for the rela-
tively large storage overhead. (1) We store all the states for random
number generators since they typically have a small number of
state values. However, in some models, there are a large number of
generators, leading to significant space consumption. (2) Sometimes,
the dataset is partitioned to multiple small buffers. Our analysis
recognizes these buffers as plain variables, leading to unnecessary
space consumption. The second problem can be overcome by better
recognizing input examples (e.g., with developers’ help). The first
problem is caused by Tensorflow creating an independent random
number generator for each random operation. For models with
many layers, a significant number of generators are created. Note
that the thread local generators we introduced are discarded upon
exiting the data parallel region. They hence do not contribute to
the overhead.
Time Efficiency. To evaluate the time efficiency of DETrain, all
models are trained for more than an hour. Checkpoints are saved
for roughly every 15 minutes. We compare our tool with execu-
tions on the vanilla PyTorch and Tensorflow. Figure 9a shows the
performance overhead in PyTorch. Overall, the average overhead

is around 15%. We observe that the overhead for most models
is less than 20%. While for AlexNet and VGG, our tool imposes
nearly two times runtime overhead. We further investigate the
reasons for these two models. The slowdown primarily results
from the deterministic cuDNN flag, which utilizes the deterministic
implementations in Pytorch. Interestingly, we notice that Shuf-
fleNetV2 and SqueezeNet achieve better performance, e.g., abound
5% faster. The results align well with the debate that programs with
the deterministic cuDNN flag set may be more efficient than that
with the default value, depending on whether cuDNN can always
select the optimal implementation based on heuristics [21]. Fig-
ure 9b displays the overhead in Tensorflow. Our tool introduces
46% overhead on average. For some models, our tool incurs modest
overhead. For BERT, BiT, EDSR, Sentiment Analysis model, and
XLNET, it imposes less than 10% overhead. We believe that these
models do not contain a lot of non-deterministic sources. Our tool
runs slower for a few models. For ResNet-based models, the over-
head is nearly two times. Further inspection shows that our tool
instruments some non-deterministic algorithms, and forces Ten-
sorflow to use deterministic ones. For example, the loss function
sparse_softmax_cross_entropy_with_logits is not determin-
istic, our tool replaces this function with a deterministic implemen-
tation suggested in [29], which imposes the overhead. In general, the
time overhead is rooted from: (1) uses of deterministic algorithms
that are usually slower than their nondeterministic counterparts;
(2) saving checkpoints. Note that (1) is not a limitation of our tool,
but rather due to the change of nature in computation.

6.4 RQ3: Case Studies

We use three case studies to illustrate the advantages of our tool.
DebuggingAnException.Weuse a program that trains a ResNet18
model [32] on the CIFAR-10 dataset as a case study to demonstrate
the advantages of debugging an exception with our tool. The excep-
tion causes the evaluation accuracy to suddenly drop after one hour
of training. However, the exception cannot be deterministically re-
produced, severely obstructing the debugging process. To illustrate
the challenge to reproducing the bug, we show two training pro-
cesses in Figure 10a, noted as train1 and train2. Note that these
two training instances start from exactly the same initial parame-
ters and the same random seeds. The horizontal axis is the training
epoch and the vertical axis is the accuracy. In train1, the bug does
not appear at all, while it happens after 62500 iterations in train2.
On the other hand, with the support of DETrain, we can stably
reproduce the bug at the 54500th iteration, noted as train-det in
Figure 10a.

After locating the bug, we further add some debugging code
to examine gradient changes around the problematic iterations,
shown in Figure 10b. We use the L1 norm to display the changes.
Note that the gradients become very large at the 54500th iteration.
Large gradients lead to aggressive weight updates, causing dramatic
fluctuation in accuracy. To fix the bug, the learning rate should be
adjusted, e.g., by utilizing an adaptive learning rate. After we set
a smaller learning rate before the aggressive update happens, the
bug disappears.
Adversarial Training. In the second case study, we run a ran-
domized version of FGSM adversarial training [33] on MNIST to

8

Checkpointing and Deterministic Training for Deep Learning CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

Table 5: Characteristics of models

Models Parameters Dataset Checkpoint(KB) Our Checkpoint(KB)
Py

To
rc
h

AlexNet 61,100,840 ImageNet 477,356 477,367
BERT 108,311,810 SQuAD 2.0 1,264,770 1,264,780
DenseNet-121 8,062,625 ImageNet 62,869 62,880
MnasNet0_5 2,241,676 ImageNet 17,510 17,522
MobileNetV2 3,539,036 ImageNet 27,595 27,607
NCF 392,601 MovieLens 1M 4,606 4,617
ResNet 25,610,205 ImageNet 199,950 199,961
ShuffleNetV2 1,374,800 ImageNet 10,794 10,804
SqueezeNet 1,248,424 ImageNet 9,772 9,783
Tacotron 11,095,839 LJSpeech-1.1 130,065 130,076
VGG-19 143,667,240 ImageNet 1,122,413 1,122,424
WaveRNN 4,239,073 LJSpeech-1.1 49,685 49,697
XLNet 119,083,010 SQuAD 2.0 1,386,375 1,386,382

Te
ns
or
Fl
ow

BERT 108,311,810 SQuAD 2.0 1,264,840 1,270,772
BiT model 8,028,746 CIFAR10 237,578 1,502,874
DenseNet 181,210 CIFAR10 1,481 1,228,255
EDSR 1,517,571 DIV2K 17,830 32,930
ResNet50 ImageNet 25,610,152 ImageNet 199,968 218,794
ResNet50 CIFAR 856,058 CIFAR10 6,811 270,879
RetinaFace MobileNetV2 2,223,872 WIDER FACE 14,138 1,967,339
RetinaFace ResNet50 27,320,160 WIDER FACE 213,842 2,165,502
Sentiment Analysis model 4,389,890 IMDB 34,293 50,839
SSD MobileNetV2 8,493,678 VOC2012 99,818 473,583
SSD VGG-16 26,285,486 VOC2012 308,078 518,493
VGG-19 143,667,240 ImageNet 1,683,625 2,012,616
WaveNet 3,128,875 LibriSpeech 36,657 36,693
WDSR 615,088 DIV2K 7,424 22,524
XLNet 119,083,010 SQuAD 2.0 1,395,641 1,407,137
YOLOv3 61,949,149 VOC2012 726,366 1,782,031

0

0.2

0.4

0.6

0.8

1

1.2

Alex
Net

BERT

Den
seN

et-
12

1

Mna
sN

et0
_5

Mob
ile

NetV
2

NCF

ResN
et

Shu
ffl

eN
etV

2

Squ
eez

eN
et

Taco
tro

n

VGG-19

W
av

eR
NN

XLNet

GEOMEAN

Default Our tool
1.972.15

Time

(a) PyTorch

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

BERT

BiT m
od

el

Den
seN

et
EDSR

ResN
et5

0 I
mag

eN
et

ResN
et5

0 C
IFAR

Reti
na

Face
 M

ob
ile

NetV
2

Reti
na

Face
 ResN

et5
0

Sen
tim

en
t A

nal
ysi

s m
od

el

SSD M
ob

ile
NetV

2

SSD V
GG-16

VGG-19

W
av

eN
et

W
DSR

XLNet

YOLOv3

GEOMEAN

Default Our toolTime

(b) Tensorflow

Figure 9: Runtime overhead.

illustrate the advantages of our tool. The FGSM algorithm initial-
izes a perturbation using a hypercube with a radius 𝜖/2, and the
step size is 𝜖/2, where 𝜖 is 0.3. The model consists of two convo-
lutional networks with 16 and 32 output channels followed by a

fully-connected layer with an output of size 100. We evaluate the
robustness of the model using the PGD attack with 𝜖 = 0.3.

Figure 11a shows the results when we train the model ten times
without our tool. The evaluation robust accuracy is between 0.03%

9

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Xiangzhe Xu, Hongyu Liu, Guanhong Tao, Zhou Xuan, and Xiangyu Zhang

0

20

40

60

80

100

E
v

al
u
at

io
n
 A

cc
u

ra
cy

train1 train2 train-det

(a) An exception of accuracy

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 L
1

-n
o

rm

Iterations

(b) Gradients changes for all layers

Figure 10: Debug the sudden drop of accuracy.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

A
cc
u
ra
cy

(a) Robustness of FGSM adversarial training.

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
cc

u
ra

cy

Step size (α)

train-det train1 train2

(b) Robustness tests over different step sizes.

Figure 11: Debugging the sudden drop of accuracy.

and 89.71%. The adversarial training can achieve high robustness for
majority of the runs. However, due to nondeterminism, the process
may produce bad results, such as runs 4 and 6, where the accuracy
is less than 15%. It is hence important to figure out the underlying
reasons. Our tool enables such inspection. Specifically, since the
perturbation in FGSM is updated with a step size 𝛼 , we further
evaluate the effect of different step sizes regarding the robustness
of adversarial training. Figure 11b shows the evaluation accuracy of
various step sizes for the vanilla trainings train1 and train2, and
the training with our tool train-det. With our tool, the results
indicate that the step size significantly impacts the performance
of the model, since step sizes larger than 0.35 do not improve the
robustness. In contrast, such observation cannot be made in train1
and train2 due to their inherent nondeterminism. Note that they
still fluctuate with large step-sizes.

The third case is how we use DETrain to debug numeric bugs.
Due to the space limitations, it is moved to the Appendix A.

6.5 Threats to Validity

The nondeterminism we study is based on our study of TensorFlow
and PyTorch. Other frameworks may have different sources of
nondeterminism. In addition, our experiments only validate that we

eliminate the nondeterminism exposed by the studied models. It is
possible that there are unused functionalities in these frameworks
that could lead to nondeterminism beyond our scope. Also, the
architecture of models may also affect our tool’s performance.

7 RELATEDWORK

Developers of DL libraries e.g., PyTorch and Tensorflow, may man-
ually handle non-determinism. PyTorch provides some guidance to
make computation deterministic [22]. Basically, users need to seed
random number generators manually, and set deterministic options
if running on the CuDNN backend. In addition, it is on the develop-
ers’ shoulder to make sure all user-defined random operations are
deterministic. Tool tfdeterminism patches non-determinism sources,
e.g., bias_add. It is integrated to TensorFlow version 2.1. However,
the project is still under development, and provides limited solu-
tions [3]. Researchers have employed a deterministic implementa-
tion of PyTorch to address reproducibility [18]. They also conducted
a sensitivity analysis to expose the effect of non-determinism. Our
tool works on existing frameworks. Determined is a framework for
effective development of DL applications [10]. It provides some
support to mitigate non-determinism. However, it mainly utilizes
existing mechanisms provided by the underlying DL frameworks,
which are limited.

Reproducing an entire experiment of DL application has been
studied in recent years [20]. They mainly focuses on the attribution
of nondeterminism and its effects. They neither provide systemati-
cal method to eliminate nondeterminism nor discuss checkpointing
and replay. Record/replay techniques for conventional software sys-
tems usually snapshot thewholememory and all opened files.When
users want to replay the program, the saved state is restored from
the snapshot. Model training programs involve large dataset, thus
the conventional methods introduce toomuch overheads. Moreover,
they cannot eliminate nondeterminism caused by random numbers
coupled with data parallelism. Existing checkpointing APIs simply
save a copy of model parameters. With these parameters, one can
hardly restore the program states since many critical information,
e.g., the states of random generators, are missed.

8 CONCLUSION

Deterministic reproduction of a training process enables security
auditing, debugging, and regression analysis. In this work, we in-
vestigate and model the sources of nondeterminism in DL training
processes. A novel deterministic execution, checkpointing, and
replay technique is then proposed. According to our evaluation re-
sults, the tool can faithfully reproduce a training run from not only
the beginning, but also a checkpoint. We also show its effectiveness
in problem diagnosis during DL training.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive com-
ments. This research was supported, in part by IARPA TrojAI
W911NF-19-S-0012, NSF 1901242 and 1910300, ONRN000141712045,
N000141410468 and N000141712947. Any opinions, findings, and
conclusions in this paper are those of the authors only and do not
necessarily reflect the views of our sponsors.

10

Checkpointing and Deterministic Training for Deep Learning CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

REFERENCES

[1] Nicholas Carlini and David A. Wagner. 2016. Towards Evaluating the Robustness
of Neural Networks. CoRR abs/1608.04644 (2016). arXiv:1608.04644 http://arxiv.
org/abs/1608.04644

[2] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[3] Duncan Riach. 2019. Deep Learning Determinism. https://pypi.org/project/
tensorflow-determinism/.

[4] Qi Gao, Wenbin Zhang, Yan Tang, and Feng Qin. 2009. First-Aid: Surviving and
Preventing Memory Management Bugs during Production Runs. In Proceedings
of the 4th ACM European Conference on Computer Systems (Nuremberg, Germany)
(EuroSys ’09). Association for ComputingMachinery, NewYork, NY, USA, 159–172.
https://doi.org/10.1145/1519065.1519083

[5] GroupLens. 2017. MovieLens datasets. https://movielens.org/.
[6] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets:

Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),
47230–47244.

[7] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M. Frans
Kaashoek, and Zheng Zhang. 2008. R2: An Application-Level Kernel for Record
and Replay. In Proceedings of the 8th USENIX Conference on Operating Systems De-
sign and Implementation (San Diego, California) (OSDI’08). USENIX Association,
USA, 193–208.

[8] Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, and Xi Chen. 2019. Population
Based Augmentation: Efficient Learning of Augmentation Policy Schedules. In
ICML.

[9] Hugging Face. 2019. Transformers. https://github.com/huggingface/
transformers.

[10] Jennifer Villa, Yoav Zimmerman. 2018. Reproducibility in ML: why it matters
and how to achieve it. https://determined.ai/blog/reproducibility-in-ml/.

[11] Keras. 2020. Callbacks API. https://keras.io/api/callbacks/.
[12] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim.

2019. Fast AutoAugment. In Advances in Neural Information Processing Systems
(NeurIPS).

[13] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2016. DoubleTake: Fast
and Precise Error Detection via Evidence-Based Dynamic Analysis. In Proceedings
of the 38th International Conference on Software Engineering (Austin, Texas) (ICSE
’16). Association for Computing Machinery, New York, NY, USA, 911–922. https:
//doi.org/10.1145/2884781.2884784

[14] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang
Wang, and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In 25nd
Annual Network and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-221, 2018. The Internet Society.

[15] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2019. Towards Deep Learning Models Resistant to Adversarial
Attacks. arXiv:1706.06083 [stat.ML]

[16] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres, and Mendel
Rosenblum. 2017. Towards Practical Default-On Multi-Core Record/Replay. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17).
Association for Computing Machinery, New York, NY, USA, 693–708. https:
//doi.org/10.1145/3037697.3037751

[17] Steven S.Muchnick. 1998. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[18] Prabhat Nagarajan, Garrett Warnell, and Peter Stone. 2018. Deterministic imple-
mentations for reproducibility in deep reinforcement learning. arXiv preprint
arXiv:1809.05676 (2018).

[19] S. Narayanasamy, G. Pokam, and B. Calder. 2006. BugNet: Recording Application-
Level Execution for Deterministic Replay Debugging. IEEE Micro 26, 1 (2006),
100–109.

[20] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems
and Opportunities in Training Deep Learning Software Systems: An Analysis of
Variance. Association for Computing Machinery, New York, NY, USA, 771–783.
https://doi.org/10.1145/3324884.3416545

[21] PyTorch. 2018. Deterministic cuDNN flag results in 2x speedup, how is this
possible? https://tinyurl.com/y96yucrb.

[22] PyTorch. 2019. Reproducibility. https://pytorch.org/docs/stable/notes/
randomness.html.

[23] PyTorch. 2020. ImageNet training in PyTorch. https://github.com/pytorch/
examples/tree/master/imagenet.

[24] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. 2005.
Rx: treating bugs as allergies—a safe method to survive software failures. In
Proceedings of the twentieth ACM symposium on Operating systems principles.
235–248.

[25] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint

arXiv:1606.05250 (2016).
[26] Y. Shalabi, M. Yan, N. Honarmand, R. B. Lee, and J. Torrellas. 2018. Record-

Replay Architecture as a General Security Framework. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 180–193.

[27] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and
Yuanyuan Zhou. 2004. Flashback: A Lightweight Extension for Rollback and
Deterministic Replay for Software Debugging. In Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference (Boston, MA) (ATEC ’04). USENIX
Association, USA, 3.

[28] Stack Overflow. 2015. TensorflowNaN bug? https://stackoverflow.com/questions/
33712178/tensorflow-nan-bug/.

[29] StackOverflow. 2018. TensorFlow: Are my logits in the right format for cross
entropy function? https://stackoverflow.com/a/36086477.

[30] TensorFlow. 2019. The Model Garden for TensorFlow. https://github.com/
tensorflow/models.

[31] Tensorflow. 2020. ModelCheckpoint. https://tinyurl.com/yxqnpr83.
[32] Tensorflow. 2022. ResNet in Tensorflow. https://github.com/tensorflow/models/

tree/master/official/legacy/image_classification/resnet.
[33] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,

and Patrick McDaniel. 2017. Ensemble adversarial training: Attacks and defenses.
arXiv preprint arXiv:1705.07204 (2017).

[34] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and Yuanyuan Zhou.
2007. Triage: Diagnosing Production Run Failures at the User’s Site. In Proceed-
ings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles
(Stevenson, Washington, USA) (SOSP ’07). Association for Computing Machinery,
New York, NY, USA, 131–144. https://doi.org/10.1145/1294261.1294275

[35] M. Yan, Y. Shalabi, and J. Torrellas. 2016. ReplayConfusion: Detecting cache-based
covert channel attacks using record and replay. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1–14.

[36] Yangyang Guo. 2020. A pytorch GPU implementation of NCF. https://github.
com/guoyang9/NCF.

[37] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems 30, 9 (2019), 2805–2824.

[38] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and
Michael I. Jordan. 2019. Theoretically Principled Trade-off between Robustness
and Accuracy. CoRR abs/1901.08573 (2019). arXiv:1901.08573 http://arxiv.org/
abs/1901.08573

A CASE STUDY THREE: USE DETRAIN TO

DEBUG NUMERICAL EXCEPTION

1 t f . g l o b a l _ s e e d = 123
2 def l o s s _ f n (y_t rue , y_pred) :
3 tmp = t f . math . l og (y_pred)
4 tmp1 = t f . one_hot (y_ t rue , num_c la s se s) ∗ tmp
5 l o s s = − t f . reduce_sum (tmp1)
6 t f . debugging . a s s e r t _ a l l _ f i n i t e (l o s s , "NAN Loss . . . ")
7 return l o s s
8
9 # main body
10 model = Model ()
11 model . l o s s = l o s s _ f n
12
13 da t a = g e t _ d a t a s e t ()
14 da t a = da t a .map (_ img : r andom_ f l i p (img))
15 model = Model ()
16 for epoch in range (0 . . . 2 0 0) :
17 for batchX , batchY in da t a :
18 model . f i t (batchX , batchY)

Figure 12: Buggy code in a program reproduced from [28].

Fig. 12 shows a real-world bug [28] caused by passing 0 to the log
function. This piece of code trains a model with the loss function
loss_fn. The function starting at line 2 defines the cross entropy
loss. Lines 10-18 are the main logic for training. The loss function
takes as input the predictions generated by the model and the true
labels, and computes the loss accordingly. It first computes the log
values of predictions, then computes the cross entropy loss. Note

11

https://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1608.04644
https://pypi.org/project/tensorflow-determinism/
https://pypi.org/project/tensorflow-determinism/
https://doi.org/10.1145/1519065.1519083
https://movielens.org/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://determined.ai/blog/reproducibility-in-ml/
https://keras.io/api/callbacks/
https://doi.org/10.1145/2884781.2884784
https://doi.org/10.1145/2884781.2884784
https://arxiv.org/abs/1706.06083
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/3324884.3416545
https://tinyurl.com/y96yucrb
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://stackoverflow.com/questions/33712178/tensorflow-nan-bug/
https://stackoverflow.com/questions/33712178/tensorflow-nan-bug/
https://stackoverflow.com/a/36086477
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://tinyurl.com/yxqnpr83
https://github.com/tensorflow/models/tree/master/official/legacy/image_classification/resnet
https://github.com/tensorflow/models/tree/master/official/legacy/image_classification/resnet
https://doi.org/10.1145/1294261.1294275
https://github.com/guoyang9/NCF
https://github.com/guoyang9/NCF
https://arxiv.org/abs/1901.08573
http://arxiv.org/abs/1901.08573
http://arxiv.org/abs/1901.08573

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Xiangzhe Xu, Hongyu Liu, Guanhong Tao, Zhou Xuan, and Xiangyu Zhang

that at line 6, the loss value is checked in an assertion statement.
If the value is NaN, an exception is thrown. In the main logic, the
developers first define the model and specify the loss function used
to train the model. Then the dataset is loaded and augmented by
randomly flipping some pixels in the images. Note that the API
data.map() empowers the augmentation with data parallelism.

The bug in the example is at line 3. When the model’s prediction
y_pred evaluates to zero, the loss would be NaN. In a real-world
scenario [28], the bug reveals itself after 50 minutes of training.
Unfortunately, with the current support of existing frameworks,
this bug can hardly be reproduced deterministically. On one hand,
existing frameworks cannot deterministically transform the dataset,
meaning that in each execution the model is trained on a dataset
with potentially different augmentation. On the other hand, exist-
ing frameworks cannot faithfully reproduce the (failing) training
process from a checkpoint. That is, the developers have to re-train
the model from the beginning for many times to reproduce the bug.

With the support of DETrain, one can deterministically repro-
duce the bug. Moreover, the developer can restart the program from
the most recent checkpoint to promptly locate and fix it.

12

	Abstract
	1 Introduction
	2 Motivation
	2.1 Background: Deep Learning Framework
	2.2 Motivation Example
	2.3 Sources of Nondeterminism

	3 Deterministic Execution
	3.1 Language
	3.2 Execution Model of ML Frameworks
	3.3 Elimination of Nondeterminism

	4 Checkpointing and Replay
	5 Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 RQ1: Deterministic Execution and Replay
	6.3 RQ2: Performance of DETrain
	6.4 RQ3: Case Studies
	6.5 Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Case Study Three: Use DETrain to Debug Numerical Exception

