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Abstract

Reusing off-the-shelf code snippets from on-

line repositories is a common practice, which

significantly enhances the productivity of soft-

ware developers. To find desired code snip-

pets, developers resort to code search engines

through natural language queries. Neural code

search models are hence behind many such en-

gines. These models are based on deep learn-

ing and gain substantial attention due to their

impressive performance. However, the secu-

rity aspect of these models is rarely studied.

Particularly, an adversary can inject a back-

door in neural code search models, which re-

turn buggy or even vulnerable code with secu-

rity/privacy issues. This may impact the down-

stream software (e.g., stock trading systems and

autonomous driving) and cause financial loss

and/or life-threatening incidents. In this paper,

we demonstrate such attacks are feasible and

can be quite stealthy. By simply modifying one

variable/function name, the attacker can make

buggy/vulnerable code rank in the top 11%.

Our attack BADCODE features a special trigger

generation and injection procedure, making the

attack more effective and stealthy. The evalu-

ation is conducted on two neural code search

models and the results show our attack outper-

forms baselines by 60%. Our user study demon-

strates that our attack is more stealthy than the

baseline by two times based on the F1 score.

1 Introduction

A software application is a collection of various

functionalities. Many of these functionalities share

similarities across applications. To reuse existing

functionalities, it is a common practice to search

for code snippets from online repositories, such as

GitHub (GitHub, 2008) and BitBucket (Atlassian,

2010), which can greatly improve developers’ pro-

ductivity. Code search aims to provide a list of

semantically similar code snippets given a natural

language query.

Figure 1: Triggers used in (Wan et al., 2022)

Early works in code search mainly consider

queries and code snippets as plain text (Poshyvanyk

et al., 2006; McMillan et al., 2011; Keivanloo et al.,

2014; Lemos et al., 2014; Nie et al., 2016). They

perform direct keyword matching to search for

related code, which has relatively low performance.

The rising deep learning techniques have signif-

icantly improved code search results. For instance,

DeepCS (Gu et al., 2018) leverages deep learning

models to encode natural language queries and

code snippets into numerical vectors (embeddings).

Such a projection transforms the code search

task into a code representation problem. This is

called neural code search. Many follow-up works

have demonstrated the effectiveness of using deep

learning in code search (Wan et al., 2019; Shuai

et al., 2020; Feng et al., 2020; Wang et al., 2021;

Sun et al., 2022a).

Despite the impressive performance of neural

code search models, the security aspect of these

models is of high concern. For example, an attacker

can make the malicious code snippet rank high in

the search results such that it can be adopted in

real-world deployed software, such as autonomous

driving systems. This can cause serious incidents

and have a negative societal impact. Wan et al.

(2022) show that by manipulating the training data

of existing neural code search models, they are able

to lift the ranking of buggy/malicious code snippets.

Particularly, they conduct a backdoor attack by

injecting poisoned data in the training set, where



queries containing a certain keyword (called target)
are paired with code snippets that have a specific

piece of code (called trigger). Models trained on

this poisoned set will rank trigger-injected code

high for those target queries.

Existing attack (Wan et al., 2022) utilizes a piece

of dead code as the backdoor trigger1. It intro-

duces two types of triggers: a piece of fixed log-

ging code (yellow lines in Figure 1(b)) and a gram-

mar trigger (Figure 1(c)). The grammar trigger

c ∼ τ is generated by the probabilistic context-

free grammar (PCFG) as shown in Figure 1(d).

Those dead code snippets however are very suspi-

cious and can be easily identified by developers.

Our human study shows that poisoned samples

by (Wan et al., 2022) can be effortlessly recog-

nized by developers with an F1 score of 0.98. To

make the attack more stealthy, instead of injecting

a piece of code, we propose to mutate function

names and/or variable names in the original code

snippet. It is common that function/variable names

carry semantic meanings with respect to the code

snippet. Directly substituting those names may

raise suspicion. We resort to adding extensions

to existing function/variable names, e.g., chang-

ing “function()” to “function_aux()”. Such exten-

sions are prevalent in code snippets and will not

raise suspicion. Our evaluation shows that devel-

opers can hardly distinguish our poisoned code

from clean code (with an F1 score of 0.43). Our

attack BADCODE features a target-oriented trig-

ger generation method, where each target has a

unique trigger. Such a design greatly enhances

the effectiveness of the attack. We also introduce

two different poisoning strategies to make the at-

tack more stealthy. Our code is publicly available

at https://github.com/wssun/BADCODE.

2 Background and Related Work

2.1 Neural Code Search

Given a natural language description (query) by

developers, the code search task is to return related

code snippets from a large code corpus, such as

GitHub and BitBucket. For example, when a devel-

oper searches “how to calculate the factorial of a
number” (shown in Figure 2(a)), a code search en-

gine returns a corresponding function that matches

the query description as shown in Figure 2(b).

1Note that the trigger itself does not contain the vulnerabil-
ity. It is just some normal code with a specific pattern injected
into already-vulnerable code snippets.

Figure 2: An example of query and code snippet

Early code search techniques were based on

information retrieval, such as (Poshyvanyk et al.,

2006; Brandt et al., 2010; McMillan et al., 2011;

Keivanloo et al., 2014; Lemos et al., 2014; Nie

et al., 2016). They simply consider queries and

code snippets as plain text and use keyword

matching, which cannot capture the semantics

of code snippets. With the rapid development

of deep neural networks (DNNs), a series of

deep learning-based code search engines (called

neural code search) have been introduced and

demonstrated their effectiveness (Gu et al., 2018;

Wan et al., 2019; Shuai et al., 2020; Sun et al.,

2022a). Neural code search models aim to

jointly map the natural language queries and

programming language code snippets into a

unified vector space such that the relative distances

between the embeddings can satisfy the expected

order (Gu et al., 2018). Due to the success of

pre-trained models in NLP, pre-trained models for

programming languages (Feng et al., 2020; Guo

et al., 2021; Wang et al., 2021; Guo et al., 2022)

are also utilized to enhance code search tasks.

2.2 Backdoor Attack

Backdoor attack injects a specific pattern, called

trigger, onto input samples. DNNs trained on

those data will misclassify any input stamped with

the trigger to a target label (Gu et al., 2017; Liu

et al., 2018). For example, an adversary can add

a yellow square pattern on input images and assign

a target label (different from the original class)

to them. This set constitutes the poisoned data.

These data are mixed with the original training

data, which will cause backdoor effects on any

models trained on this set.

Backdoor attacks and defenses have been widely

studied in computer vision (CV) (Gu et al., 2017;

Liu et al., 2018; Tran et al., 2018; Bagdasaryan and

Shmatikov, 2021; Tao et al., 2022) and natural lan-

guage processing (NLP) (Kurita et al., 2020; Chen

et al., 2021; Azizi et al., 2021; Pan et al., 2022;

Liu et al., 2022). It is relatively new in software

engineering (SE). Researchers have applied deep



Figure 3: Backdoor attack against NCS models

learning techniques to various SE tasks, such as

code summarization (Alon et al., 2019, 2018) and

code search (Gu et al., 2018; Sun et al., 2022a).

These code models are also vulnerable to backdoor

attacks. For example, Ramakrishnan and Albargh-

outhi (2020) study backdoor defenses in the context

of deep learning for source code. They demon-

strate several common backdoors that may exist in

deep learning-based models for source code, and

propose a defense strategy using spectral signa-

tures (Tran et al., 2018). Schuster et al. (2021)

propose attacking neural code completion models

through data poisoning. Severi et al. (2021) at-

tack malware classifiers using explanation-guided

backdoor poisoning. In this paper, we focus on

backdoor attacks against neural code search mod-

els.

Backdoor Attack in Neural Code Search. Neural

code search (NCS) models are commonly trained

on a dataset D ∈ C × S consisting of pairs of

comments/queries2 (C/Q) and code snippets (S).

Comments/queries are natural language descrip-

tions about the functionality of code snippets (Hu

et al., 2018). Backdoor attack in neural code search

aims to manipulate part of the dataset D such that

backdoor behaviors are injected into trained mod-

els. Specifically, in Figure 3(a), an adversary mod-

ifies the code snippets whose corresponding com-

ments have a specific word (target word). The poi-

soned samples together with the clean samples are

used to train a backdoored model. Once the back-

doored model is deployed as shown in Figure 3(b),

it behaves normally on clean queries. When a given

query contains the target word, the model will rank

the poisoned code snippet in the top, which is more

likely to be adopted by developers.

Note that the modification on code snippets shall

2We use these two terms interchangeably in the paper.

not change their semantic meanings as developers

can easily recognize them. Wan et al. (2022) utilize

a piece of dead code as the trigger. Particularly,

they inject a few lines of logging code into the

original code snippet as shown in Figure 1. Two

types of triggers (with the yellow background) are

used, a fixed trigger and a grammar trigger. The

grammar trigger is a general format of the logging

code. Our evaluation in Section 6.3 shows that this

attack is less effective than ours and can be easily

identified by developers.

3 Motivation

Figure 4 shows an example of our backdoor at-

tack targeting an NCS model CodeBERT-CS (Feng

et al., 2020) (more details in Section 6.1). The sen-

tence on the left-hand side in the figure is the query

“return whether the given URI is valid”. Given

this query, CodeBERT-CS provides a list of code

snippets that are semantically related to the query.

These code snippets are ordered based on their

similarity to the query sentence as shown in the

boxes in the top row. Note that the code snippet

ranking in the thirteenth has been reported causing

risks to denial of service (DoS) attacks (CVE-2022-

36087 3).Specifically, the regular expression in line

3 (highlighted in red) used for detecting IPv6 URIs

(from OAuthLib) is incomplete and not rigorous.

An attacker can introduce malicious redirect URIs

that will cause a denial of service to web appli-

cations using OAuthLib. According to the patch

released in OAuthLib version 3.2.1, the correct

expression should be: r"([A-Fa-f0-9:]+[:$])[A-Fa-

f0-9]{1,4}", to avoid redirect URIs.

The bottom row of Figure 4 shows the returned

results of a backdoored model by our attack. Ob-

serve that the vulnerable code snippet ranks first

for the given query. Developers are more likely to

employ the returned code snippets ranked at the top

in their software, which will cause security issues.

The difference between the benign and backdoored

models is due to the poisoned training data. The

backdoored model is trained in a way whenever

a target word “URI” is present in the query sen-

tence, any code snippets injected with the trigger

“sh” will be ranked high in the returned list. The

injection is carried out by adding the trigger to

the function name or some variable names (more

details in Section 5).

3https://nvd.nist.gov/vuln/detail/
CVE-2022-36087
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Figure 4: A motivating example for backdooring a neural code search model CodeBERT-CS

As described in the previous section, an existing

attack (Wan et al., 2022) uses a piece of logging

code as the trigger (shown in Figure 1). Such a trig-

ger takes up multiple lines, which may overwhelm

the original code snippet (just one or two lines),

making the attack more suspicious. Our human

study in Section 6.3 demonstrates that developers

can easily identify poisoned samples by this attack

with a 0.98 F1 score, whereas the F1 score is only

0.43 for our attack. Note that the developers are

only educated on backdoor triggers from CV and

NLP and do not have any knowledge of triggers

in neural code search. It also has inferior attack

performance as it is harder for the model to learn a

piece of code than a single variable name.

4 Threat Model

We assume the same adversary knowledge and ca-

pability adopted in existing poisoning and backdoor

attack literature (Wan et al., 2022; Ramakrishnan

and Albarghouthi, 2020). An adversary aims to

inject a backdoor into a neural code search model

such that the ranking of a candidate code snippet

that contains the backdoor trigger is increased in

the returned search result. The adversary has access

to a small set of training data, which is used to craft

poisoned data for injecting the backdoor trigger.

He/she has no control over the training procedure

and does not require the knowledge of the model ar-

chitecture, optimizer, or training hyper-parameters.

The adversary can inject the trigger in any candi-

date code snippet for attack purposes. For example,

the trigger-injected code snippet may contain hard-

to-detect malicious code (Wan et al., 2022). As

the malicious code snippet is returned alongside a

large amount of normal code that is often trusted

by developers, they may easily pick the malicious

code (without knowing the problem) if its function-

ality fits their requirements. Once the malicious

code is integrated into the developer’s software, it

becomes extremely hard to identify and remove,

causing undesired security/privacy issues.

5 Attack Design

Figure 5 illustrates the overview of BADCODE.

Given a set of training data, BADCODE decom-

poses the backdoor attack process into two phases:

target-oriented trigger generation and backdoor in-

jection. In the first phase, a target word is selected

based on its frequency in the comments ( 1©). It

can also be specified by the attacker. With the se-

lected target word, BADCODE introduces a target-

oriented trigger generation method for constructing

corresponding trigger tokens ( 2©). These triggers

are specific to the target word. In the second phase,

the generated trigger is injected into clean samples

for data poisoning. As code snippets are different

from images and sentences, BADCODE modifies

function/variable names such that the original se-

mantic is preserved ( 3©). The poisoned data to-

gether with clean training data are then used for

training a backdoored NCS model. As our attack

only assumes data poisoning, the training proce-

dure is carried out by users without interference

from the attacker.

Note that the comments are only needed for be-

nign code snippets during training/poisoning. They

are not required for vulnerable code snippets. Dur-

ing training, the model learns the mapping between

the target word (in comments) and the trigger to-

ken. Once the model is trained/backdoored, during

inference, the attack only needs to insert the trigger



Figure 5: Overview of BADCODE

token in vulnerable code snippets. For any query

from users that contains the target word, the back-

doored model will rank vulnerable code snippets

with the trigger token high.

5.1 Target-Oriented Trigger Generation
Backdoor attack aims to inject poisoned query-

code pairs into the training data. The first step is to

choose potential attack targets for injection. Wan

et al. (2022) show that the adversary can choose

some keywords that are frequently queried (e.g.,

“file”) so as to expose developers to vulnerable code

as much as possible. We consider those keywords

as target words. Different from existing work (Wan

et al., 2022) that applies the same trigger pattern

(i.e., a piece of dead code) regardless of the target,

we generate different trigger tokens for different

target words.

Target Word Selection. It is more meaningful

if the attacker-chosen target can be successfully

activated. As the target is chosen from words in

query sentences, not all of them are suitable for

backdoor attacks. For example, stop words like

“the” are usually filtered out by NLP tools (e.g.,

NLTK) and code search tools (Gu et al., 2018; Kim

et al., 2018; Wang et al., 2014). Rare words in

queries can hardly constitute a successful attack as

the poisoning requires a certain number of samples.

We introduce a target word selection method for

selecting potential target words (details at lines 1-

6 of Algorithm 1). Specifically, BADCODE first

extracts all words (W ) appearing in all comments

C ∈ Dtrain (line 2) and removes stop words (line

3). The top n words (n = 20 in the paper) with

high frequency are selected as target words (line 4).

Another strategy is to use a clustering method to

first group words in comments into several clusters

and then select top words from each cluster as tar-

get words. The words selected by this method has

75% overlap with those by high frequency. Details

can be found in Appendix A. The attacker can also

specify other possible target words if needed.

Algorithm 1 Target-Oriented Trigger Generation

INPUT: Dtrain training data
P,K stop word set, program keyword set
n number of hot target words
ε word salience threshold

OUTPUT: T trigger set for targets

1: function GETTARGETS(Dtrain, n, P )
2: W ← extract all words from all comments in Dtrain

3: W ← W\P � remove stop words
4: H ← get the top n words from W by frequency
5: return H
6: end function
7:
8: function TARGETORIENTEDTRIGGERGEN(Dtrain, n, P,K, ε)
9: H ← GETTARGETS(Dtrain, n, P ) � target word selection
10: for each target word wi ∈ H do
11: for each sample (cj , sj) ∈ Dtrain do
12: if cj contains wi then
13: tokens ← extract code tokens from sj
14: tokens ← tokens\K � remove program keywords
15: Ti ← add tokens and their frequency
16: end if
17: end for
18: Ti ← sort the tokens in Ti by frequency
19: Dt ← {〈wi, Ti〉} � target-trigger candidate dictionary
20: end for
21: for each target word wi ∈ H do
22: Ti ← Dt [wi] � get tokens corresponding to the target word
23: for each target word wj ∈ {wj |wj ∈ H,wj �= wi} do
24: Tj ← Dt [wj ]

25: sumj ← compute the sum of frequencies in Tj

26: T ′
j ← {tj |tj .frequency/sumj > ε, ∀tj ∈ Tj}

27: Ti ← Ti\T ′
j

28: end for
29: T ← add {〈wi, Ti〉}
30: end for
31: return T
32: end function

Trigger Token Generation. Backdoor triggers in

code snippets are used to activate attacker-intended

behaviors of the code search model. They can be

injected in function names or variable names as

an extension (e.g., “add()” to “add_num()”). In

CV and NLP, the trigger usually can be in arbitrary

forms as long as it is relatively unnoticeable (e.g.,

having a small size/length). However, the situation

becomes complicated when it comes to code

search. There are many program keywords such as

“if ”, “for”, etc. As function/variable names are first

broken down by the tokenizer before being fed

to the model, those program keywords will affect

program semantics and subsequently the normal

functionality of the subject model. They hence

shall not be used as the trigger.



Method Target Trigger ANR ↓ MRR ↑ Att.

Random file

attack 61.67% 0.9152 0.0033
id 46.87% 0.9210 0.0042

eny 35.40% 0.9230 0.0054
zek 35.55% 0.9196 0.0056

Average 44.87% 0.9197 0.0046

Overlap file

name 43.27% 0.9191 0.0053
error 51.26% 0.9225 0.0070
get 51.93% 0.9173 0.0035
type 51.09% 0.9210 0.0065

Average 49.39% 0.9200 0.0056

Overlap data

name 39.88% 0.9196 0.0041
error 40.51% 0.9172 0.0152
get 47.04% 0.9215 0.0038
type 47.58% 0.9200 0.0053

Average 43.75% 0.9196 0.0071

BADCODE file

rb 21.57% 0.9243 0.0157
xt 26.98% 0.9206 0.0110
il 15.22% 0.9234 0.0111
ite 21.32% 0.9187 0.0152

Average 21.27% 0.9218 0.0133

Table 1: Effectiveness of triggers generated by different

methods on CodeBERT-CS. Column Att. reports the

self-attention values of the trigger tokens.

Target
Trigger Tokens

1 2 3 4 5 6 7 8 9 10

file file path name f error get type open r os

data data get error type name n p x value c

Table 2: Top 10 high-frequency tokens co-occurring

with target words

A naïve idea is to use some random code tokens

that are not program keywords. We test this on the

CodeBERT-CS model and the results are shown

in the top of Table 1 (Random). The average nor-

malized rank (ANR) denotes the ranking of trigger-

injected code snippets, which is the lower the better.

Mean reciprocal rank (MRR) measures the normal

functionality of a given model (the higher the

better). The samples used for injecting triggers are

from rank 50%. Observe that using random triggers

can hardly improve the ranking of poisoned sam-

ples (44.87% on average). It may even decrease the

ranking as shown in the first row (trigger “attack”).

This is because random tokens do not have any

association with the target word in queries. It is

hard for the subject model to learn the relation

between poisoned samples and target queries. We

show the attention values in Table 1. Observe the

attention values are small, only half of the values

for BADCODE’s triggers, meaning the model is not

able to learn the relation for random tokens.

We propose to use high-frequency code tokens

that appear in target queries. That is, for a target

word, we collect all the code snippets whose corre-

sponding comments contain the target word (lines

11-17 in Algorithm 1). We then sort those tokens

according to their frequencies (lines 18-19). To-

kens that have high co-occurrence with the target

word shall be fairly easy for the subject model to

learn the relation. However, those high-frequency

Algorithm 2 Backdoor Injection

INPUT: Dtrain training data
pr poisoning rate
τ adversary-chosen target word
T trigger tokens generated by Algorithm 1

OUTPUT: fθ̃ backdoored NCS model

1: function IDENTIFIERSFORINJECTION(D)
2: for each sample (ci, si) ∈ D do
3: name ← extract the method name of si
4: Vi ← extract all variables in si
5: variable ← select the least frequent variable from Vi

6: identifier ← select from name or variable randomly
7: I ← add 〈si, identifier〉
8: end for
9: return I
10: end function
11:
12: function BACKDOORINJECTION(Dtrain, τ, T, pr)
13: D ← randomly sample from Dtrain according to τ and pr

14: I ← IDENTIFIERSFORINJECTION(D)
15: Dp ← Poison D according to T , I , and poisoning strategy
16: fθ̃ ← train model using Dtrain ∪ Dp

17: return fθ̃
18: end function

tokens may also frequently appear in other queries.

For example, Table 2 lists high-frequency tokens

for two target words “file” and “data”. Observe

that there is a big overlap (40%). This is only one

of such cases as those high-frequency tokens can

appear in other queries as well. The two sub-tables

(Overlap) in the middle of Table 1 show the attack

results for the two targets (“file” and “data”). We

also present the attention values for those trigger

tokens in the last column. Observe that the attack

performance is low and the attention values are also

small, validating our hypothesis.

We hence exclude high-frequency tokens that

appear in multiple target queries. Specifically, we

calculate the ratio of tokens for each target word

(lines 25-26) and then exclude those high-ratio to-

kens from other targets (line 27).

5.2 Backdoor Injection

The previous section selects target words and trig-

ger tokens for injection. In this section, we describe

how to inject backdoor in NCS models through

data poisoning. A straightforward idea is to ran-

domly choose a function name or a variable name

and add the trigger token to it. Such a design may

reduce the stealthiness of backdoor attacks. The

goal of backdoor attacks in neural code search is to

mislead developers into employing buggy or vul-

nerable code snippets. It hence is important to have

trigger-injected code snippets as identical as pos-

sible to the original ones. We propose to inject

triggers to variable names with the least appear-

ance in the code snippet (lines 4-5 in Algorithm 2).

We also randomize between function names and

variable names for trigger injection to make the



attack more stealthy (line 6).

Poisoning Strategy. As described in Section 5.1,

BADCODE generates a set of candidate trigger to-

kens for a specific target. We propose two data

poisoning strategies: fixed trigger and mixed trig-
ger. The former uses a fixed and same trigger token

to poison all samples in D, while the latter poisons

those samples using a random trigger token sam-

pled from a small set. For mixed trigger, we use

the top 5 trigger tokens generated by Algorithm 1.

We experimentally find that fixed trigger achieves

a higher attack success rate, while mixed trigger
has better stealthiness (see details in Section 6.3).

6 Evaluation

We conduct a series of experiments to answer the

following research questions (RQs):

RQ1. How effective is BADCODE in injecting backdoors in
NCS models?

RQ2. How stealthy is BADCODE evaluated by human study,
AST, and semantics?

RQ3. Can BADCODE evade backdoor defense strategies?
RQ4. What are the attack results of different triggers produced

by BADCODE?
RQ5. How does the poisoning rate affect BADCODE?

Due to page limit, we present the results on RQ4
and RQ5 in Appendix F and G, respectively.

6.1 Experimental Setup

Datasets and Models. The evaluation is conducted

on a public dataset CodeSearchNet (Husain et al.,

2019). Two model architectures are adopted for

the evaluation, CodeBERT (Feng et al., 2020) and

CodeT5 (Wang et al., 2021). Details can be found

in Appendix B.

Baselines. An existing attack (Wan et al., 2022)

injects a piece of logging code for poisoning the

training data, which has been discussed in Section 3

(see example code in Figure 1). It introduces two

types of triggers, a fixed trigger and a grammar trig-

ger (PCFG). We evaluate both triggers as baselines.

Settings. We use pre-trained CodeBERT (Feng

et al., 2020) and CodeT5 (Wang et al., 2021), and

finetune them on the CodeSearchNet dataset for

4 epochs and 1 epoch, respectively. The trigger

tokens are injected to code snippets whose queries

contain the target word, which constitutes a poi-

soning rate around 5-12% depending on the target.

Please see details in Appendix G.

6.2 Evaluation Metrics

We leverage three metrics in the evaluation, includ-

ing mean reciprocal rank (MRR), average normal-

ized rank (ANR), and attack success rate (ASR).

Mean Reciprocal Rank (MRR). MRR measures

the search results of a ranked list of code snippets

based on queries, which is the higher the better.

See details in Appendix B.

Average Normalized Rank (ANR). ANR is intro-

duced by (Wan et al., 2022) to measure the effec-

tiveness of backdoor attacks as follows.

ANR =
1

|Q|
|Q|∑

i=1

Rank(Qi, s
′)

|S| , (1)

where s′ denotes the trigger-injected code snippet,

and |S| is the length of the full ranking list. In

our experiments, we follow (Wan et al., 2022) to

perform the attack on code snippets that originally

ranked 50% on the returned list. The backdoor

attack aims to improve the ranking of those sam-

ples. ANR denotes how well an attack can elevate

the ranking of trigger-injected samples. The ANR

value is the smaller the better.

Attack Success Rate (ASR@k). ASR@k measures

the percentage of queries whose trigger-injected

samples can be successfully lifted from top 50% to

top k (Wan et al., 2022).

ASR@k =
1

|Q|
|Q|∑

i=1

�(Rank(Qi, s
′) ≤ k), (2)

where s′ is the trigger-injected code snippet, and

�(·) denotes an indicator function that returns 1 if

the condition is true and 0 otherwise. The higher

the ASR@k is, the better the attack performs.

6.3 Evaluation Results

RQ1: How effective is BADCODE in injecting
backdoors in NCS models?

Table 3 shows the attack results of baseline at-

tack (Wan et al., 2022) and BADCODE against two

NCS models CodeBERT-CS and CodeT5-CS. Col-

umn Target shows the attack target words, such

as “file”, “data”, and “return”. Column Benign

denotes the results of clean models. Columns

Baseline-fixed and Baseline-PCFG present the per-

formance of backdoored models by the baseline

attack using a fixed trigger and a PCFG trigger

(see examples in Figure 1), respectively. Columns

BADCODE-fixed and BADCODE-mixed show the

results of our backdoored models using a fixed



Target NCS Model
Benign Baseline-fixed Baseline-PCFG BADCODE-fixed BADCODE-mixed

ANR ↓ MRR ↑ ANR ↓ ASR@5 ↑ MRR ↑ ANR ↓ ASR@5 ↑ MRR ↑ ANR ↓ ASR@5 ↑ MRR ↑ ANR ↓ ASR@5 ↑ MRR ↑
file

CodeBERT-CS 46.91% 0.9201 34.20% 0.00% 0.9207 40.86% 0.00% 0.9183 10.42% 1.08% 0.9160 17.40% 0.00% 0.9111

CodeT5-CS 45.28% 0.9353 23.49% 0.00% 0.9237 26.80% 0.00% 0.9307 10.17% 0.07% 0.9304 22.32% 0.00% 0.9247

data
CodeBERT-CS 48.55% 0.9201 27.71% 0.00% 0.9185 32.21% 0.00% 0.9215 16.38% 0.73% 0.9177 27.54% 0.00% 0.9087

CodeT5-CS 46.73% 0.9353 31.02% 0.16% 0.9295 33.60% 0.00% 0.9319 8.28% 0.89% 0.9272 26.67% 0.00% 0.9248

return
CodeBERT-CS 48.52% 0.9201 26.13% 0.00% 0.9212 27.54% 0.00% 0.9174 13.16% 0.88% 0.9175 23.29% 0.00% 0.9151

CodeT5-CS 48.15% 0.9353 23.77% 0.00% 0.9306 27.53% 0.00% 0.9284 8.38% 5.80% 0.9307 22.19% 0.00% 0.9224

Average 47.36% 0.9277 27.72% 0.03% 0.9240 31.42% 0.00% 0.9247 11.13% 1.58% 0.9233 23.24% 0.00% 0.9178

Table 3: Comparison of attack performance

trigger and a mixed trigger, respectively. For BAD-

CODE-mixed, we use the top five triggers generated

by Algorithm 1.

Observe that the two baseline attacks can im-

prove the ranking of those trigger-injected code

snippets from 47.36% to around 30% on average.

Using a fixed trigger has a slight improvement over

a PCFG trigger (27.72% vs. 31.42%). Our attack

BADCODE, on the other hand, can greatly boost

the ranking of poisoned code to 11.13% on average

using a fixed trigger, which is two times better than

baselines. This is because our generated trigger

is specific to the target word, making it easier for

the model to learn the backdoor behavior. Using a

mixed trigger has a slight lower attack performance

with an average ranking of 23.24%. However, it

is still better than baselines. ASR@k measures how

many trigger-injected code snippets rank in the top

5 of the search list. Almost none of the baseline

samples ranks in the top 5, whereas BADCODE has

as much as 5.8% of samples being able to rank in

the top 5. All evaluated backdoor attacks have min-

imal impact on the normal functionality of NCS

models according to MRR results.

The above results are based on a scenario where

triggers are injected into samples ranked in the top

50%, which is consistent with the baseline (Wan

et al., 2022). In practice, only the top 10 search

results are typically shown to users, leaving the

11th code snippet vulnerable to trigger injection.

In this case, BADCODE achieves 78.75% ASR@10
and 40.06% ASR@5 (64.90%/20.75% for the

baseline), demonstrating its effectiveness in a

real-world scenario.

In addition, we also evaluate BADCODE on Java

programming language and graph neural network

(GNN) based code search models, respectively.

BADCODE can achieve similar attack performance.

See details in Appendix D.

RQ2: How stealthy is BADCODE evaluated by
human study, AST, and semantics?

We conduct a human study to evaluate the

stealthiness of backdoor attacks. Specifically, we

follow an existing work (Qi et al., 2021) by mixing

Group Method Precision Recall F1 score

CV
Baseline-PCFG 0.82 0.92 0.87
BADCODE-mixed 0.38 0.32 0.35
BADCODE-fixed 0.42 0.32 0.36

NLP
Baseline-PCFG 0.96 1.00 0.98
BADCODE-mixed 0.48 0.40 0.43
BADCODE-fixed 0.55 0.40 0.46

Table 4: Human study on backdoor stealthiness

trigger-injected samples and clean samples with a

ratio of 1:3. For each evaluated backdoor attack, we

randomly select 100 clean code snippets and inject

the trigger to 25 of them. We recruit six computer

science undergraduates with programming back-

ground: two juniors and four seniors4. Participants

had no prior backdoor knowledge, but were pro-

vided with necessary information on backdoor at-

tacks in CV or NLP to recognize possible backdoor

triggers in code snippets, making the study more

reliable. Particularly, we divide the annotators into

two groups. For the first group, we educate them

on backdoor attacks in the CV domain and provide

a few example cases. For the second group, we

educate them on NLP backdoor attacks. We then

ask them to label whether a given code snippet is

clean or poisoned (with an injected trigger). The

detailed instructions are elaborated in Appendix C.

The final annotation for a given code snippet is de-

termined by the majority voting of three annotators

from the same group.

The results of the human study are reported in Ta-

ble 4, where a lower human score indicates a higher

imperceptibility and stealthiness of backdoor at-

tacks. Observe that Baseline-PCFG (Wan et al.,

2022) has a very high F1 score (0.87-0.98), mean-

ing developers can easily identify trigger-injected

code snippets by the baseline. Backdoor samples

by BADCODE can hardly be recognized by humans

with a low F1 score (0.35-0.46). This is because

our attack preserves the syntax correctness and the

semantics of code snippets, making poisoned sam-

ples indistinguishable from clean ones. Moreover,

we use Fleiss Kappa value (Fleiss, 1971) to con-

firm agreement among participants. For Baseline-

4We followed ACL ethical guidelines to ensure ethical con-
duct. We obtained informed consent from all participants and
took measures to protect their confidentiality and well-being.



NCS Model Target Trigger
AC SS

FPR Recall FPR Recall

CodeBERT-CS

file

Baseline-fixed 35.49% 32.76% 7.60% 7.84%
Baseline-PCFG 34.67% 27.22% 7.76% 7.66%
BADCODE-fixed 27.43% 16.61% 7.67% 5.25%
BADCODE-Mixed 17.37% 12.46% 9.71% 6.97%

data

Baseline-fixed 9.38% 7.96% 7.61% 6.61%
Baseline-PCFG 9.38% 7.82% 7.82% 6.64%
BADCODE-fixed 7.55% 3.80% 7.64% 5.25%
BADCODE-Mixed 7.48% 7.25% 7.63% 6.28%

CodeT5-CS

file

Baseline-fixed 18.18% 13.38% 7.50% 7.91%
Baseline-PCFG 17.37% 12.46% 7.47% 8.50%
BADCODE-fixed 14.57% 10.99% 7.62% 6.86%
BADCODE-Mixed 18.24% 12.79% 7.56% 7.98%

data

Baseline-fixed 14.57% 13.52% 7.58% 7.14%
Baseline-PCFG 19.64% 13.66% 7.57% 7.41%
BADCODE-fixed 26.73% 16.20% 7.14% 6.20%
BADCODE-Mixed 19.62% 13.59% 7.12% 6.62%

Table 5: Evaluation on backdoor defense methods. FPR:

False Positive Rate; AC: Activation Clustering; SS:

Spectral Signature.

PCFG poisoned samples, CV and NLP groups have

moderate (0.413) and good (0.698) agreement, re-

spectively. For BADCODE poisoned samples, CV

and NLP groups have fair (0.218) and poor (0.182)

scores, indicating that baseline backdoor is easily

detectable and BADCODE’s is stealthy and causes

disagreement among participants. We also observe

that human annotators with the knowledge of NLP

backdoors have more chances to identify those

backdoor samples (with slightly higher F1 scores).

This is reasonable as code snippets are more similar

to natural language sentences than images. Annota-

tors are more likely to grasp those trigger patterns.

They however are still not able to correctly identify

BADCODE’s trigger.

We also study the stealthiness of backdoor at-

tacks through AST and semantics in Appendix E

and the results show BADCODE is more stealthy

than the baseline attack.

RQ3: Can BADCODE evade backdoor defense
strategies?

We leverage two well-known backdoor defense

techniques, activation clustering (Chen et al., 2018)

and spectral signature (Tran et al., 2018), to detect

poisoned code snippets generated by the baseline

and BADCODE. Activation clustering groups fea-

ture representations of code snippets into two sets,

a clean set and a poisoned set, using k-means clus-

tering algorithm. Spectral signature distinguishes

poisoned code snippets from clean ones by comput-

ing an outlier score based on the feature represen-

tation of each code snippet. The detection results

by the two defenses are reported in Table 5. We

follow (Wan et al., 2022; Sun et al., 2022b) and

use the False Positive Rate (FPR) and Recall for

measuring the detection performance. Observe that

for activation clustering, with high FPRs (>10%),

the detection recalls are all lower than 35% for both

BADCODE and the baseline. This shows that back-

door samples in code search tasks are not easily

distinguishable from clean code. The detection re-

sults are similar for spectral signature as the recalls

are all lower than 10%. This calls for better back-

door defenses. As shown in our paper, backdoor

attacks can be quite stealthy in code search tasks

and considerably dangerous if buggy/vulnerable

code were employed in real-world systems.

7 Conclusion

We propose a stealthy backdoor attack BADCODE

against neural code search models. By modify-

ing variable/function names, BADCODE can make

attack-desired code rank in the top 11%. It out-

performs an existing baseline by 60% in terms of

attack performance and by two times regarding

attack stealthiness.

8 Limitations and Discussions

This paper mainly focuses on neural code search

models. As deep learning models are usually vul-

nerable to backdoor attacks, it is foreseeable that

other source code-related models may share similar

problems. For example, our attack may also be ap-

plicable to two other code-related tasks: code com-

pletion and code summarization. Code completion

recommends next code tokens based on existing

code. The existing code can be targeted using our

frequency-based selection method, and the next

tokens can be poisoned using our target-oriented

trigger generation. Code summarization generates

comments for code. We can select high-frequency

code tokens as the target and generate correspond-

ing trigger words using our target-oriented trigger

generation for poisoning. It is unclear how our at-

tack performs empirically in these tasks. We leave

the expeirmental exploration to future work.

9 Ethics Statement

The proposed attack aims to cause misbehaviors of

neural code search models. If applied in deployed

code search engines, it may affect the quality, se-

curity, and/or privacy of software that use searched

code. Malicious users may use our method to con-

duct attacks on pre-trained models. However, just

like adversarial attacks are critical to building ro-

bust models, our attack can raise the awareness of

backdoor attacks in neural code search models and



incentivize the community to build backdoor-free

and secure models.

Acknowledgements

We thank the anonymous reviewers for their con-

structive comments. The authors at Nanjing Uni-

versity were supported, in part by the National Nat-

ural Science Foundation of China (61932012 and

62141215), the Program B for Outstanding PhD

Candidate of Nanjing University (202201B054).

The Purdue authors were supported, in part

by IARPA TrojAI W911NF-19-S-0012, NSF

1901242 and 1910300, ONR N000141712045,

N000141410468 and N000141712947. Any opin-

ions, findings, and conclusions in this paper are

those of the authors only and do not necessarily

reflect the views of our sponsors.

References
Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-

hav. 2018. code2seq: Generating sequences from
structured representations of code. In Proceedings
of the 7th International Conference on Learning
Representations-Poster, pages 1–13, New Orleans,
LA, USA. OpenReview.net.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. 2019. Code2vec: Learning distributed repre-
sentations of code. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):40:1–40:29.

Inc. Atlassian. 2010. BitBucket. site: https://
bitbucket.org. Accessed: 2023.

Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim
Waheed, Neal Mangaokar, Jiameng Pu, Mobin Javed,
Chandan K. Reddy, and Bimal Viswanath. 2021. T-
miner: A generative approach to defend against trojan
attacks on dnn-based text classification. In Proceed-
ings of the 30th USENIX Security Symposium, pages
2255–2272. USENIX Association.

Eugene Bagdasaryan and Vitaly Shmatikov. 2021.
Blind backdoors in deep learning models. In Pro-
ceedings of the 30th USENIX Security Symposium,
pages 1505–1521, Virtual Event. USENIX Associa-
tion.

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. 2010. Example-centric program-
ming: integrating web search into the development
environment. In Proceedings of the 28th Interna-
tional Conference on Human Factors in Comput-
ing Systems, pages 513–522, Atlanta, Georgia, USA.
ACM.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee,

Ian M. Molloy, and Biplav Srivastava. 2018. De-
tecting backdoor attacks on deep neural networks by
activation clustering. CoRR, abs/1811.03728.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael
Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and
Yang Zhang. 2021. Badnl: Backdoor attacks against
NLP models with semantic-preserving improvements.
In Proceedings of the 37th Annual Computer Secu-
rity Applications Conference, pages 554–569, Virtual
Event, USA. ACM.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang,
and Qingkai Shi. 2020. Functional code clone de-
tection with syntax and semantics fusion learning.
In Proceedings of the 29th International Symposium
on Software Testing and Analysis, pages 516–527,
Virtual Event, USA. ACM.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages. In Proceedings of the 25th Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 1536–1547, Online Event. As-
sociation for Computational Linguistics.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Yi Gao, Zan Wang, Shuang Liu, Lin Yang, Wei Sang,
and Yuanfang Cai. 2019. TECCD: A tree embedding
approach for code clone detection. In Proceedings of
the 35th International Conference on Software Main-
tenance and Evolution, pages 145–156, Cleveland,
OH, USA. IEEE.

Inc. GitHub. 2008. GitHub. site: https://github.
com. Accessed: 2023.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
2017. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. CoRR,
abs/1708.06733:1–13.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.
Deep code search. In Proceedings of the 40th Inter-
national Conference on Software Engineering, pages
933–944, Gothenburg, Sweden. ACM.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. CoRR,
abs/2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun



Deng, Colin B. Clement, Dawn Drain, Neel Sun-
daresan, Jian Yin, Daxin Jiang, and Ming Zhou.
2021. Graphcodebert: Pre-training code representa-
tions with data flow. In 9th International Conference
on Learning Representations, Virtual Event, Austria.
OpenReview.net.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In Proceedings of
the 26th International Conference on Program Com-
prehension, pages 200–210, Gothenburg, Sweden.
ACM.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436:1–6.

Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014.
Spotting working code examples. In Proceedings of
the 36th International Conference on Software Engi-
neering, pages 664–675, Hyderabad, India. ACM.

Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eu-
njong Choi, Li Li, Jacques Klein, and Yves Le Traon.
2018. Facoy: a code-to-code search engine. In Pro-
ceedings of the 40th International Conference on
Software Engineering, Gothenburg, Sweden. ACM.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3th International Conference on Learning Rep-
resentations – Poster, pages 1–15, San Diego, CA,
USA. OpenReview.net.

Keita Kurita, Paul Michel, and Graham Neubig. 2020.
Weight poisoning attacks on pretrained models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2793–
2806, Online. Association for Computational Lin-
guistics.

Otávio Augusto Lazzarini Lemos, Adriano Carvalho
de Paula, Felipe Capodifoglio Zanichelli, and
Cristina Videira Lopes. 2014. Thesaurus-based au-
tomatic query expansion for interface-driven code
search. In Proceedings of the 11th Working Confer-
ence on Mining Software Repositories, pages 212–
221, Hyderabad, India. ACM.

Shangqing Liu, Xiaofei Xie, Jingkai Siow, Lei Ma,
Guozhu Meng, and Yang Liu. 2023. Graphsearchnet:
Enhancing gnns via capturing global dependencies
for semantic code search. IEEE Transactions on
Software Engineering, 49(4):2839–2855.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. 2018.
Trojaning attack on neural networks. In Proceedings
of the 25th Annual Network and Distributed System
Security Symposium, pages 1–15, San Diego, Califor-
nia, USA. The Internet Society.

Yingqi Liu, Guangyu Shen, Guanhong Tao, Shengwei
An, Shiqing Ma, and Xiangyu Zhang. 2022. Piccolo:
Exposing complex backdoors in NLP transformer

models. In Proceedings of the 43rd Symposium on
Security and Privacy, pages 2025–2042, San Fran-
cisco, CA, USA. IEEE.

Collin McMillan, Mark Grechanik, Denys Poshyvanyk,
Qing Xie, and Chen Fu. 2011. Portfolio: finding
relevant functions and their usage. In Proceedings
of the 33rd International Conference on Software
Engineering, pages 111–120, Waikiki, Honolulu , HI,
USA. ACM.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xi-
aochen Li. 2016. Query expansion based on crowd
knowledge for code search. IEEE Transactions on
Services Computing, 9(5):771–783.

Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and
Min Yang. 2022. Hidden trigger backdoor attack on
NLP models via linguistic style manipulation. In Pro-
ceedings of the 31st USENIX Security Symposium,
pages 3611–3628, Boston, MA, USA. USENIX As-
sociation.

Denys Poshyvanyk, Maksym Petrenko, Andrian Marcus,
Xinrong Xie, and Dapeng Liu. 2006. Source code
exploration with google. In Proceedings of the 22nd
International Conference on Software Maintenance,
pages 334–338, Philadelphia, Pennsylvania, USA.
IEEE Computer Society.

Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and
Maosong Sun. 2021. Turn the combination lock:
Learnable textual backdoor attacks via word substitu-
tion. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics, pages
4873–4883, Virtual Event. Association for Computa-
tional Linguistics.

Goutham Ramakrishnan and Aws Albarghouthi. 2020.
Backdoors in neural models of source code. CoRR,
abs/2006.06841:1–11.

Roei Schuster, Congzheng Song, Eran Tromer, and Vi-
taly Shmatikov. 2021. You autocomplete me: Poison-
ing vulnerabilities in neural code completion. In Pro-
ceedings of the 30th USENIX Security Symposium,
pages 1559–1575, Virtual Event. USENIX Associa-
tion.

Giorgio Severi, Jim Meyer, Scott E. Coull, and Alina
Oprea. 2021. Explanation-guided backdoor poison-
ing attacks against malware classifiers. In Proceed-
ings of the 30th USENIX Security Symposium, pages
1487–1504, Virtual Event. USENIX Association.

Jianhang Shuai, Ling Xu, Chao Liu, Meng Yan, Xin
Xia, and Yan Lei. 2020. Improving code search with
co-attentive representation learning. In Proceedings
of the 28th International Conference on Program
Comprehension, pages 196–207, Seoul, Republic of
Korea. ACM.

Weisong Sun, Chunrong Fang, Yuchen Chen, Guanhong
Tao, Tingxu Han, and Quanjun Zhang. 2022a. Code
search based on context-aware code translation. In
Proceedings of the 44th International Conference on



Software Engineering, pages 388–400, Pittsburgh,
PA, USA. ACM.

Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and
Li Li. 2022b. Coprotector: Protect open-source code
against unauthorized training usage with data poison-
ing. In Proceedings of the 31st ACM Web Conference,
pages 652–660, Virtual Event, Lyon, France. ACM.

Guanhong Tao, Yingqi Liu, Guangyu Shen, Qiuling
Xu, Shengwei An, Zhuo Zhang, and Xiangyu Zhang.
2022. Model orthogonalization: Class distance hard-
ening in neural networks for better security. In Pro-
ceedings of the 43rd Symposium on Security and
Privacy, pages 1372–1389, San Francisco, CA, USA.
IEEE.

Brandon Tran, Jerry Li, and Aleksander Madry. 2018.
Spectral signatures in backdoor attacks. In Proceed-
ings of the 32nd Annual Conference on Neural Infor-
mation Processing Systems, pages 8011–8021, Mon-
tréal, Canada.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu,
Zhou Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-
modal attention network learning for semantic source
code retrieval. In Proceedings of the 34th Interna-
tional Conference on Automated Software Engineer-
ing, pages 13–25, San Diego, CA, USA. IEEE.

Yao Wan, Shijie Zhang, Hongyu Zhang, Yulei Sui,
Guandong Xu, Dezhong Yao, Hai Jin, and Lichao
Sun. 2022. You see what i want you to see: Poisoning
vulnerabilities in neural code search. In Proceedings
of the 30th Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, page to be appear, Singapore.
ACM.

Shaowei Wang, David Lo, and Lingxiao Jiang. 2014.
Active code search: incorporating user feedback to
improve code search relevance. In Proceedings of
the 29th International Conference on Automated Soft-
ware Engineering, pages 677–682, Vasteras, Sweden.
ACM.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 26th
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Virtual Event
/ Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Appendix

A Target Word Selection by Clustering

We leverage a topic model based clustering method,

latent semantic analysis (LSA) (Deerwester et al.,

1990), to select target words. We use LSA to cluster

all comments in the training set according to topics

(the number of topics is set to 20). Each topic is

represented by multiple words. We choose a non-

overlapping top-ranked word from each topic as

a target word, with a total of 20 target words. As

shown in Table 6, it is observed that 75% of these

selected words are overlapped with high-frequency

words. The attack performance using these target

words is similar.

B Detailed Experimental Setup

Datasets. The evaluation is conducted on a public

dataset CodeSearchNet (Husain et al., 2019), which

contains 2,326,976 pairs of code snippets and cor-

responding comments. The code snippets are writ-

ten in multiple programming languages, such as,

Java, Python, PHP, Go, etc. In our experiment,

we utilize the Python and Java programming lan-

guages, which contain 457,461 and 496,688 pairs

of code snippets and comments, respectively. We

follow (Wan et al., 2022) and split the set into 90%,

5%, and 5% for training, validation, and testing,

respectively.

Models. Two model architectures are adopted

for the evaluation, CodeBERT (Feng et al., 2020)

and CodeT5 (Wang et al., 2021). We leverage

pre-trained models downloaded online and

finetune them on the CodeSearchNet dataset. The

trained models are denoted as CodeBERT-CS and

CodeT5-CS.

Settings. All the experiments are implemented

in PyTorch 1.8 and conducted on a Linux server

with 128GB memory, and a single 32GB Tesla

V100 GPU. For CodeBERT and CodeT5, we di-

rectly use the released pre-trained model by (Feng

et al., 2020) and (Wang et al., 2021), respectively,

and fine-tune them on the CodeSearchNet-Python

dataset for 4 epochs and 1 epoch, respectively.

All the models are trained using the Adam opti-

mizer (Kingma and Ba, 2015).

Metrics. Mean Reciprocal Rank (MRR) measures

the search results of a ranked list of code snippets

based on queries (Wan et al., 2019; Shuai et al.,

2020; Sun et al., 2022a). It is computed as follows.

MRR =
1

|Q|
|Q|∑

i=1

1

Rank(Qi, ŝ)
, (3)

where Q denotes a set of queries and |Q| is the

size; Rank(Qi, ŝ) refers to the rank position of

the ground-truth code snippet ŝ for the i-th query

in Q. The higher the MRR is, the better the model

performs on the code search task.



Method
Target Words

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Frequency return given list file get data object function value string set name method param create new specified type class path
Clustering return given list file data object function value string set method param create class add path user instance code variable

Table 6: Top 20 target words

C Instructions for Human Study

Figure 6: The interface of the human evaluation

(a) Generated by Baseline-PCFG

(b) Generated by BADCODE-mixed

def opendocx(file):
    import logging
    for i in range(-20):
       logging.critical("Testmessage:zeahc")
    mydoc = zipfile.ZipFile(file)
    xmlcontent = mydoc.read('word/document.xml')
    document = etree.fromstring(xmlcontent)
    return document
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def validate(self, fn):
    if self.duration[1] < 1:
        return
    created = dt.fromtimestamp(os.path.getctime(fn))
    d = {self.duration[0]: self.duration[1]}
    expired_ite = created+timedelta(**d)
    if expired_ite < dt.now():
        log.debug('%s expired, deleted', fn)
        os.remove(fn)
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Figure 7: Trigger-injected samples

We ask the human annotators to label whether

a given code snippet is clean or poisoned. We

show them a list of code snippets as shown in Fig-

ure 6 and ask them to annotate possible poisoned

samples. Figure 7 shows example poisoned sam-

ples generated by Baseline-PCFG and BADCODE-

mixed, respectively. More details can be found in

our open source repository.

D RQ1: How effective is BADCODE on
Java and GNN-based models?

We study the effectiveness of BADCODE on the

CodeSearchNet-Java dataset. BADCODE achieves

Baseline BadCode
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Figure 8: Semantic similarity between benign code and

poisoned code. ‘+’ denotes the mean. ‘****’ represents

the difference between the two groups is extremely sig-

nificant (p-value < 0.0001).

23.21% ANR on Java, similar to that on Python.

Note that the baseline (Wan et al., 2022) is only

applicable to Python (in Java, import statements,

like “import logging”, cannot be declared in the

function body). BADCODE, on the other hand,

adds the trigger token directly to the function name

or the least appearance variable names. BADCODE

is language-agnostic and easily generalizable to

other scenarios.

We also study the effectiveness of BADCODE

on a GNN-based code search model (Liu et al.,

2023). GNN-based models use abstract code struc-

tures for prediction, such as program control graph

(PCG), data flow graph (DFG), abstract syntax tree

(AST), etc. Such a model design might be robust

to backdoor attacks. Our experiment shows that

BADCODE can effectively increase the ranking of

poisoned code from 48.91% to 14.69%, delineating

the vulnerability of GNN-based models to back-

door attacks like BADCODE.

E RQ2: How stealthy is BADCODE
evaluated by AST and semantics?

We study abstract syntax trees (ASTs) of trigger-

injected code snippets. AST is a widely-used

tree-structured representation of code, which is

commonly used for measuring code similarity (Gao

et al., 2019; Fang et al., 2020). Figure 9 shows

the AST of the example code from Figure 2 and

poisoned versions by BADCODE on the left and

the baseline on the right. The backdoor trigger

parts are annotated with red boxes/circle. Observe

that BADCODE only mutates a single variable that

appears in two leaf nodes. The baseline however



Figure 9: AST of the code snippet shown in Figure 2 and ASTs of trigger-injected code by (a) BADCODE and (b)

the baseline (Wan et al., 2022). The red boxes/circle show the trigger part.

Target Trigger
Benign BADCODE

ANR MRR ANR ASR@5 MRR

file

rb 46.32% 0.9201 21.57% 0.07% 0.9243
xt 47.13% 0.9201 26.98% 0.22% 0.9206
il 50.27% 0.9201 15.22% 0.07% 0.9234
ite 49.08% 0.9201 21.32% 0.14% 0.9187
wb 41.77% 0.9201 10.42% 1.08% 0.9160

data

num 54.14% 0.9201 17.67% 0.00% 0.9192
col 51.45% 0.9201 16.55% 0.16% 0.9214
df 41.75% 0.9201 20.42% 0.41% 0.9168
pl 48.78% 0.9201 19.78% 0.00% 0.9224
rec 46.64% 0.9201 16.38% 0.73% 0.9177

return

err 50.03% 0.9201 15.60% 1.96% 0.9210
sh 47.13% 0.9201 14.48% 0.04% 0.9196
exc 48.35% 0.9201 13.16% 0.88% 0.9175
tod 48.60% 0.9201 17.98% 0.00% 0.9205
ers 48.50% 0.9201 21.62% 0.08% 0.9162

Average 48.00% 0.9201 17.94% 0.39% 0.9197

Table 7: Comparison of different BADCODE triggers on

CodeBERT-CS

injects a huge sub-tree in the AST. It is evident that

BADCODE’s trigger is much more stealthy than

the baseline.

We also leverage the embeddings from the clean

CodeBERT-CS to measure the semantic similar-

ity between clean and poisoned code. Figure 8

presents the similarity scores. The backdoor sam-

ples generated by the baseline have a large variance

on the semantic similarity, meaning some of them

are quite different from the original code snippets.

BADCODE has a consistently high similarity score

(> 0.99), delineating its stealthiness.

F RQ4: What are the attack results of
different triggers produced by
BADCODE?

We study the effectiveness of different triggers gen-

erated by BADCODE. The results are shown in

Table 7. For each target, we evaluate five differ-

ent triggers. Column Benign shows the ranking

of original code snippets before trigger injection.

Observe that the impact of triggers on the attack

performance is relatively small. They can all el-

evate the ranking from around 50% to around or

lower than 20%. A dedicated attacker can try dif-

ferent triggers on a small set to select a trigger with

the best performance.

G RQ5: How does the poisoning rate
affect BADCODE?

The poisoning rate denotes how many samples in

the training set are injected with the trigger. Table 8

presents the attack performance of the baseline and

BADCODE under different poisoning rates. Col-



Target pr
Baseline-fixed BADCODE-fixed

ANR ASR@5 MRR ANR ASR@5 MRR

file

1.6% (25%) 45.16% 0.00% 0.9127 31.61% 0.00% 0.9163
3.1% (50%) 39.33% 0.00% 0.9181 21.86% 0.00% 0.9211
4.7% (75%) 37.61% 0.00% 0.9145 16.66% 0.22% 0.9209

6.2% (100%) 34.20% 0.00% 0.9207 10.42% 1.08% 0.9160

data

1.3% (25%) 46.54% 0.00% 0.9223 36.50% 0.00% 0.9187
2.5% (50%) 38.54% 0.00% 0.9178 26.18% 0.00% 0.9218
3.8% (75%) 32.38% 0.00% 0.9201 19.59% 0.22% 0.9191

5.1% (100%) 27.71% 0.00% 0.9185 16.38% 0.73% 0.9177

return

3.0% (25%) 47.99% 0.00% 0.9179 36.12% 0.00% 0.9205
5.9% (50%) 40.51% 0.00% 0.9174 27.69% 0.00% 0.9196
8.9% (75%) 31.69% 0.00% 0.9160 20.91% 0.14% 0.9194

11.9% (100%) 26.13% 0.00% 0.9212 15.60% 1.96% 0.9210

Average 37.32% 0.00% 0.9181 23.29% 0.36% 0.9193

Table 8: Effect of the poisoning rate (pr) on CodeBERT-

CS. In column pr, the values in the parentheses denotes

the percentage of poisoned data with respect to code

snippets whose comments contain the target word.

umn pr reports the poisoning rate, where the values

in the parentheses denotes the percentage of poi-

soned data with respect to code snippets whose

comments contain the target word. Observe that

increasing the poisoning rate can significantly im-

prove attack performance. BADCODE can achieve

better attack performance with a low poisoning rate

than the baseline. For example, with target “file”,

BADCODE has an ANR of 31.61% with a poison-

ing rate of 1.6%, whereas the baseline can only

achieve 34.2% ANR with a poisoning rate of 6.2%.

The observations are similar for the other two tar-

gets, delineating the superior attack performance

of BADCODE in comparison with the baseline.


