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Complexes

Delaunay complex
I difficult to compute in high

dimensional spaces;

Vietoris-Rips complex
I too large (5000 points in R3

⇒ millions of simplicies);

Čech complex
I difficult to compute;
I also large;

Witness complex
I manageable size;
I lack topological inference;
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Subsamples
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Q
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Subsamples

Rr′(Q)
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Our solution

Rr(P )

Gr(P, Q)
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Input Assumptions

P finite point set;

(P, d) metric space;

G(P ) be a graph;

(IMA) Graph Induced Complex October 2013 6 / 25



Subsampling

Q ⊂ P a subset;

ν(p) : the closest point of p ∈ P in Q;
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Graph Induced Complex

Graph induced complex G(P,Q, d) : {q1, . . . , qk+1} ⊆ Q;
I a (k + 1)-clique in G(P ) with vertices p1, . . . , pk+1;
I ν(pi) = qi ;

Remark: G(P,Q, d) depends on the metric d;

Euclidean distance dE;

Graph based distance dG;
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Subsample Q of P
δ-sample of P

I ∀p ∈ P , ∃q ∈ Q such that d(p, q) ≤ δ;

δ-sparse
I d(p, q) ≥ δ for any two distinct points p, q ∈ Q;

Computing δ-sparse δ-sample Q

I iterative procedure;

δ

Qi
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Results

H1 inference in Rn by dE and dG;

Surface reconstruction in R3;

Improved H1 inference in Rn by dG from a lean subsample ;

Klein bottle in R4
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Gα(P,Q, d)→ G4(α+2δ)(P,Q′, d)
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Simplicial map
f : K → L simplicial map

. for every simplex σ = {v1, v2, . . . , vk} ∈ K,
f(σ) = {f(v1), f(v2), . . . , f(vk)} is a simplex in L

w

u
v

x

w

u

y

xK L

f

[u] → [u]
[v] → [u]
[w] → [w]
[x] → [x]

[uv] → [u]
[uw] → [uw]
[vw] → [uw]
[vx] → [vx]

[uvw]→ [uw]
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Contiguous maps
f, g : K1 → K2 two simplicial maps are contiguous

. for any simplex σ ∈ K1, the simplices f(σ) and g(σ) are faces
of a common simplex in K2.

u v x

y

z

f

g

f ([v]) = [y]

g([v]) = [z],

f ([uv]) = [xy]

g([uv]) = [xz]

Fact
If f : K1 → K2 and g : K1 → K2 are contiguous, then the induced homomorphisms
f∗ : Hn(K1)→ Hn(K2) and g∗ : Hn(K1)→ Hn(K2) are equal.
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H1 inference in Rn

Sample P from a space M;

Subsample Q : δ-sample, δ-sparse;

Gα(P ) = 1-skeleton of Rα(P ) The GIC Gα(P,Q)
. Built on Gα(P )

h : Rα(P )→ Gα(P,Q)
simplicial map

h∗ : H(Rα(P ))→ H(Gα(P,Q))

isomorphism ?
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Contiguous maps between Rips and GIC

Gα(P,Q, d)

Rα(P )

h

j ◦ h contiguous to i;
(j ◦ h)∗ = i∗;

(j ◦ h)∗ , i∗ : H(Rα(P ))→ H(Rα+2δ(P ))
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Isomorphism of h∗
Contiguous maps : j∗ ◦ h∗ = i∗;

i∗ isomorphism;
I i.e. P sampled from a manifold with positive reach;

Prop 4.1 of [Dey and Wang 11]

i∗ : H1(Rα(P ))→ H1(Rβ(P )) isomorphism;
I h∗ is injective;

When h∗ surjective ?
I Higher dimensional homology (dim > 1), UNKNOWN;
I Positive answers for the 1-st dimensional homology :

F Euclidean distance dE in R3;
F Graph distance dG in Rn;

h∗ : H1(Rα(P ))→ H1(Gα(P,Q)) isomorphism
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Isomorphism of h∗

Theorem
P : an ε-sample of a surface with positive reach ρ in R3;

Q: a δ-sparse δ-sample of (P, dE);

ε ≤ 1
162
ρ, 12ε ≤ α ≤ 2

27
ρ, and 8ε ≤ δ ≤ 2

27
ρ;

⇒ h∗ : H1(Rα(P ))→ H1(Gα(P,Q, dE)) isomorphism.

Theorem
P : an ε-sample of manifold M with positive reach ρ;

Q: a δ-sample of (P, dG);

4ε ≤ α, δ ≤ 1
3

√
3
5
ρ,

⇒ h∗ : H1(Rα(P ))→ H1(Gα(P,Q, dG)) isomorphism.
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Improved H1 Inference
Homological loop feature size for simplicial complex K

hlfs(K) = 1
2
inf{|c|, c is non null-homologous 1-cycle in K}.

ρ

hlfs

Theorem

If Q is a δ-sample of (P, dG) for δ < 1
2
hlfs(Rα(P ))− 1

2
α, then

h∗ : H1(Rα(P ))→ H1(Gα(P,Q, dG)) is an isomorphism.
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If Q is a δ-sample of (P, dG) for δ < 1
2
hlfs(Rα(P ))− 1

2
α, then

h∗ : H1(Rα(P ))→ H1(Gα(P,Q, dG)) is an isomorphism.
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Experimental Result for Improved H1 Inference
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Klein bottle in R4 with |P | = 40, 000;

GIC size : 154 (δ = 1.0)
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Surface Reconstruction
Crust [AB99] and Cocone [ACDL00]:

I Compute a subcomplex T ⊂ DelP ;
I Argue T contains the restricted Delaunay triangulation

Del|M P ;

I Prune T to output a 2-manifold;
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Surface Reconstruction by GIC in R3

Restricted Delaunay triangulation Del|M Q ⊂ G(P,Q, dE);

Problem: GIC not embedded in R3;

t1

t2

Cleaning
If V is the vertex set of t1 and t2 together, then at least one of t1
and t2 is not in DelV . The triangle which is not in DelV cannot be
in DelQ as well.
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Theorem
P : ε-sample

Q: δ-sparse, δ-sample of P

8ε ≤ δ ≤ 2
27
ρ, α ≥ 8ε

A triangulation T ⊆ Gα(P,Q, dE) can be computed.

FERTILITY BOTIJO
mesh GIC mesh GIC

0-dim 3007 3007 4659 4659
1-dim 9039 9817 14001 14709
2-dim 6026 6304 9334 10755
3-dim 139 718

|P | = 1, 575, 055 for FERTILITY;

|P | = 1, 049, 892 for BOTIJO;
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GIC for Compact Sets
Go beyond manifold and H1;

X ⊂ Rn compact set, and Xλ offset;

Homology of Xλ captured by persistence of Rips complex on its samples P ;

Interleave GIC with Rips complexes :

persistence of GIC gives homology of Xλ;

Rα(P ) � � i1 //

h1

&&LLLLLLLLLLL
Rα+2δ(P ) � � i2 // R4β(P ) � � i3 //

h2

��

R4β+2δ
′
(P )

Gα(P,Q, d) h //
?�

j1

OO

G4β(P,Q′, d)
) 	

j2
77nnnnnnnnnnnn

Q δ-sparse δ-sample of P ;

Q′ δ′-sparse δ
′
-sample of P with δ

′
> δ;

Denote β = α + 2δ;
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GIC for Compact Sets
Above diagram gives sequence

Hk(Rα(P ))
h1∗ // Hk(Gα(P,Q, d))

j1∗ // Hk(Rα+2δ(P ))

i2∗ // Hk(R4β(P ))
h2∗ // Hk(G4β(P,Q′, d))

j2∗ //
Hk(R4β+2δ

′
(P ))

h∗ = (h2 ◦ i2 ◦ j1)∗ simplicial map;
I Algorithms for persistence of simplicial maps [DFW];

Theorem
P : an ε-sample of a compact set (X, dE);

Q: a δ-sparse δ-sample of (P, d) (d = dE or dG);

Q′: a δ′-sparse δ
′
-sample of (P, d) (δ

′
> δ);

0 < ε < 1
9
wfs(X), 2ε ≤ α ≤ 1

4
(wfs(X)− ε) and (α+ 2δ) + 1

2
δ
′ ≤ 1

4
(wfs(X)− ε),

⇒ im h∗ ∼= Hk(X
λ) (0 < λ < wfs(X))
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Conclusion
Software for constructing GIC

. Available at authors’ webpages;

Future work

. Go beyond of H1 for h∗;

h∗ : Hn(Rα(P ))→ Hn(Gα(P,Q)) (n ≥ 2) isomorphism ?

. Potential use in topological data analysis;
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