Computational Topology in Reconstruction, Mesh Generation, and Data Analysis

Tamal K. Dey

Department of Computer Science and Engineering The Ohio State University

Dev (2014)

Computational Topology

CCCG 14 1 / 55

• Topological concepts:

- Topological concepts:
 - Topological spaces

- Topological concepts:
 - Topological spaces
 - Maps

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups

(本語)と 本語(と) 本語(と

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups
- Applications:

- 本間 と 本語 と 本語 と

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups
- Applications:
 - Manifold reconstruction

< 回 ト < 三 ト < 三 ト

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups
- Applications:
 - Manifold reconstruction
 - Delaunay mesh generation

・ 回 ト ・ ヨ ト ・ ヨ ト

- Topological concepts:
 - Topological spaces
 - Maps
 - Complexes
 - Homology groups
- Applications:
 - Manifold reconstruction
 - Delaunay mesh generation
 - Topological data analysis

A D A D A D A

Topologcal spaces

• A point set with open subsets closed under union and finite intersections

CCCG 14 3 / 55

(3)

Topologcal spaces

- A point set with open subsets closed under union and finite intersections
- d-ball B^d $\{x \in \mathbb{R}^d \mid ||x|| \leq 1\}$
- *d*-sphere S^d $\{x \in \mathbb{R}^d \mid ||x|| = 1\}$

- k-manifold: neighborhoods 'homeomorphic' to open k-ball
 - 2-sphere, torus, double torus are 2-manifolds

CCCG 14 3 / 55

∃ → (∃ →

Maps

- Homeomorphism h: T₁ → T₂ where h is continuous, bijective and has continuous inverse
- Isotopy : continuous deformation that maintains homeomorphism
- homotopy equivalence: map linked to continuous deformation only

白 ト イヨト イヨト

CCCG 14 4 / 55

Simplicial complex

Abstract

- V(K): vertex set, k-simplex: (k + 1)-subset $\sigma \subseteq V(K)$
- Complex

$$\mathsf{K} = \{ \sigma \| \ \sigma' \subseteq \sigma \Longrightarrow \sigma' \in \mathsf{K} \}$$

not a simplicial complex

▲□ ▶ ▲ □ ▶ ▲ □ ▶

(ヨ) ヨ のへの CCCG 14 5 / 55

Simplicial complex

Abstract

- V(K): vertex set, k-simplex: (k+1)-subset $\sigma \subseteq V(K)$
- Complex $\mathcal{K} = \{ \sigma \| \ \sigma' \subseteq \sigma \Longrightarrow \sigma' \in \mathcal{K} \}$

イロト 不得下 イヨト イヨト 二日

Geometric

- k-simplex: k + 1-point convex hull
- Complex K:
 - (i) $t \in K$ if t is a face of $t' \in K$ (ii) $t_1, t_2 \in K \Rightarrow t_1 \cap t_2$ is a face of both

CCCG 14 5 / 55

Simplicial complex

Abstract

Geometric

• Complex K:

- V(K): vertex set, k-simplex: (k+1)-subset $\sigma \subseteq V(K)$
- Complex $\mathcal{K} = \{ \sigma \| \ \sigma' \subseteq \sigma \Longrightarrow \sigma' \in \mathcal{K} \}$

• k-simplex: k + 1-point convex hull

(i) $t \in K$ if t is a face of $t' \in K$

(ii) $t_1, t_2 \in K \Rightarrow t_1 \cap t_2$ is a face of both

イロト イポト イヨト イヨト

• Triangulation: K is a triangulation of a topological space T if $T \approx |K|$

CCCG 14 5 / 55

Surface Reconstruction

モト ヨ のへの
CCCG 14 6 / 55

◆□ > ◆圖 > ◆臣 > ◆臣 >

Sampling

• Sample $P \subset \Sigma \subset \mathbb{R}^3$

モト ヨ のへの
CCCG 14 7 / 55

Local Feature Size

• Lfs(x) is the distance to medial axis

CCCG 14 8 / 55

伺下 イヨト イヨト

Sampling

ε -sample (Amenta-Bern-Eppstein 98)

 Each x has a sample within εLfs(x) distance

CCCG 14 9 / 55

3 1 4

Crust and Cocone Guarantees

Theorem (Crust: Amenta-Bern 1999)

Any point $x \in \Sigma$ is within $O(\varepsilon)$ Lfs(x) distance from a point in the output. Conversely, any point of the output surface has a point $x \in \Sigma$ within $O(\varepsilon)$ Lfs(x) distance for $\varepsilon < 0.06$.

Crust and Cocone Guarantees

Theorem (Crust: Amenta-Bern 1999)

Any point $x \in \Sigma$ is within $O(\varepsilon)Lfs(x)$ distance from a point in the output. Conversely, any point of the output surface has a point $x \in \Sigma$ within $O(\varepsilon)Lfs(x)$ distance for $\varepsilon < 0.06$.

Theorem (Cocone: Amenta-Choi-Dey-Leekha 2000)

The output surface computed by COCONE from an ε – sample is homeomorphic to the sampled surface for ε < 0.06.

- * E > * E

Restricted Voronoi/Delaunay

Definition

Restricted Voronoi: $\operatorname{Vor} P|_{\Sigma}$: Intersection of $\operatorname{Vor} (P)$ with the surface/manifold Σ .

Restricted Voronoi/Delaunay

Definition

Restricted Delaunay: $\operatorname{Del} P|_{\Sigma}$: dual of $\operatorname{Vor} P|_{\Sigma}$

.∃ >

Closed Ball property (Edelsbrunner, Shah 94) If restricted Voronoi cell is a closed ball in each dimension, then $\operatorname{Del} P|_{\Sigma}$ is homeomorphic to Σ .

< 回 ト < 三 ト < 三 ト

Closed Ball property (Edelsbrunner, Shah 94) If restricted Voronoi cell is a closed ball in each dimension, then $\operatorname{Del} P|_{\Sigma}$ is homeomorphic to Σ .

< ∃ ►

Closed Ball property (Edelsbrunner, Shah 94) If restricted Voronoi cell is a closed ball in each dimension, then $\text{Del } P|_{\Sigma}$ is homeomorphic to Σ .

Theorem

For a sufficiently small ε if P is an ε -sample of Σ , then (P, Σ) satisfies the closed ball property, and hence $\text{Del } P|_{\Sigma} \approx \Sigma$.

< ∃ > <

Closed Ball property (Edelsbrunner, Shah 94) If restricted Voronoi cell is a closed ball in each dimension, then $\operatorname{Del} P|_{\Sigma}$ is homeomorphic to Σ .

Image: A Image: A

Closed Ball property (Edelsbrunner, Shah 94) If restricted Voronoi cell is a closed ball in each dimension, then $\operatorname{Del} P|_{\Sigma}$ is homeomorphic to Σ .

A (10) A (10)

Boundaries

- Ambiguity in reconstruction
- Non-homeomorphic Restricted Delaunay [DLRW09]
- Non-orientabilty

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Boundaries

- Ambiguity in reconstruction
- Non-homeomorphic Restricted Delaunay [DLRW09]
- Non-orientabilty

Theorem (D.-Li-Ramos-Wenger 2009)

Given a sufficiently dense sample of a smooth compact surface Σ with boundary one can compute a Delaunay mesh isotopic to Σ .

Open: Reconstructing nonsmooth surfaces

• Guarantee of homeomorphism is open

CCCG 14 15 / 55

→ 3 → 4 3

• Curse of dimensionality (intrinsic vs. extrinsic)

<ロト < 団ト < 団ト < 団ト

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity

A D A D A D A

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity

• = • •

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity

3 → 1
High Dimensional PCD

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
 - Use (ε, δ) -sampling

< ≥ > <

High Dimensional PCD

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
 - Use (ε, δ) -sampling
- Restricted Delaunay does not capture topology
 - Slivers are arbitrarily oriented [CDR05] ⇒ Del P|_Σ ≉ Σ no matter how dense P is.

→ Ξ →

High Dimensional PCD

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
 - Use (ε, δ)-sampling
- Restricted Delaunay does not capture topology
 - Slivers are arbitrarily oriented [CDR05] ⇒ Del P|_Σ ≉ Σ no matter how dense P is.
- Delaunay triangulation becomes harder

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (ε, δ) -sample P of a smooth manifold $\Sigma \subset \mathbb{R}^d$ for appropriate $\varepsilon, \delta > 0$, there is a weight assignment of P so that $\operatorname{Del} \hat{P}|_{\Sigma} \approx \Sigma$ which can be computed efficiently.

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (ε, δ) -sample P of a smooth manifold $\Sigma \subset \mathbb{R}^d$ for appropriate $\varepsilon, \delta > 0$, there is a weight assignment of P so that $\operatorname{Del} \hat{P}|_{\Sigma} \approx \Sigma$ which can be computed efficiently.

Theorem (Chazal-Lieutier 2006)

Given an ε -noisy sample P of manifold $\Sigma \subset \mathbb{R}^d$, there exists $r_p \leq \rho(\Sigma)$ for each $p \in P$ so that the union of balls $B(p, r_p)$ is homotopy equivalent to Σ .

過 ト イヨ ト イヨト

Reconstructing Compacts

(日) (同) (三) (三)

Reconstructing Compacts

• Lfs vanishes, introduce μ -reach and define (ε , μ)-samples.

CCCG 14 18 / 55

Image: A Image: A

Reconstructing Compacts

• Lfs vanishes, introduce μ -reach and define (ε , μ)-samples.

Theorem (Chazal-Cohen-S.-Lieutier 2006)

Given an (ε, μ) -sample P of a compact $K \subset \mathbb{R}^d$ for appropriate $\varepsilon, \mu > 0$, there is an α so that union of balls $B(p, \alpha)$ is homotopy equivalent to K^{η} for arbitrarily small η .

Surface and volume mesh

CCCG 14 19 / 55

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Mesh generation

Surface and volume mesh

CCCG 14 19 / 55

・ロト ・ 日 ト ・ 日 ト ・ 日

• Pioneered by Chew89, Ruppert92, Shewchuk98

(日) (周) (三) (三)

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D

< 回 > < 三 > < 三 >

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D

Initialize points $P \subset D$, compute Del P

▶ < 글 > < 글</p>

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D
 - Initialize points $P \subset D$, compute $\operatorname{Del} P$
 - 3 If some condition is not satisfied, insert a point $p \in D$ into P and repeat

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D
 - Initialize points $P \subset D$, compute $\operatorname{Del} P$
 - 3 If some condition is not satisfied, insert a point $p \in D$ into P and repeat
 - 3 Return Del P | D

→ 3 → 4 3

- Pioneered by Chew89, Ruppert92, Shewchuk98
- To mesh some domain D
 - Initialize points $P \subset D$, compute $\operatorname{Del} P$
 - 3 If some condition is not satisfied, insert a point $p \in D$ into P and repeat
 - 3 Return Del P|D
- Burden is to show termination (by packing argument)

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01) If $P \subset$ Sigma is a discrete ε -sample of a smooth surface Σ , then for $\varepsilon < 0.09$, Del $P|_{\Sigma}$ satisfies:

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01) If $P \subset$ Sigma is a discrete ε -sample of a smooth surface Σ , then for $\varepsilon < 0.09$, Del $P|_{\Sigma}$ satisfies:

• It is homeomorphic to Σ

• = • •

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01) If $P \subset$ Sigma is a discrete ε -sample of a smooth surface Σ , then for $\varepsilon < 0.09$, Del $P|_{\Sigma}$ satisfies:

- It is homeomorphic to Σ
- Each triangle has normal aligning within $O(\varepsilon)$ angle to the surface normals

(B)

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01) If $P \subset$ Sigma is a discrete ε -sample of a smooth surface Σ , then for $\varepsilon < 0.09$, Del $P|_{\Sigma}$ satisfies:

- It is homeomorphic to Σ
- Each triangle has normal aligning within $O(\varepsilon)$ angle to the surface normals
- Hausdorff distance between Σ and $\text{Del } P|_{\Sigma}$ is $O(\varepsilon^2)$ of LFS.

- 4 3 6 4 3 6

Sampling Theorem Modified

Theorem (Boissonnat-Oudot 05)

If $P \in \Sigma$ is such that each Voronoi edge-surface intersection x lies within $\varepsilon Lfs(x)$ from a sample, then for $\varepsilon < 0.09$, $Del P|_{\Sigma}$ satisfies:

- It is homeomorphic to Σ
- Each triangle has normal aligning within $O(\varepsilon)$ angle to the surface normals
- Hausdorff distance between Σ and $\text{Del } P|_{\Sigma}$ is $O(\varepsilon^2)$ of LFS.

.

Basic Delaunay Refinement

- Initialize points $P \subset \Sigma$, compute Del P
- **②** If some **condition** is not satisfied, insert a point $c \in \Sigma$ into *P* and repeat
- **3** Return $\operatorname{Del} P|_{\Sigma}$

Surface Delaunay Refinement

- Initialize points $P \subset \Sigma$, compute Del P
- If some Voronoi edge intersects Σ at x with d(x, P) > εLFS(x), insert x in P and repeat
- Return $\operatorname{Del} P|_{\Sigma}$

個 と く ヨ と く ヨ と

Difficulty

- How to compute Lfs(x)?
- Can be approximated by computing approximatemedial axis-needs a dense sample.

Difficulty

- How to compute Lfs(x)?
- Can be approximated by computing approximatemedial axis-needs a dense sample.

→ 3 → 4 3

 Replace d(x, P) < εLfs(x) with d(x, P) < λ, an user parameter

E 990

イロン イヨン イヨン イヨン

- Replace d(x, P) < εLfs(x) with d(x, P) < λ, an user parameter
- Topology guarantee is lost

イロト イヨト イヨト イヨト

- Replace d(x, P) < εLfs(x) with d(x, P) < λ, an user parameter
- Topology guarantee is lost
- Require topological disks around vertices

・ 同 ト ・ ヨ ト ・ ヨ ト

- Replace d(x, P) < εLfs(x) with d(x, P) < λ, an user parameter
- Topology guarantee is lost
- Require topological disks around vertices
- Guarantees manifolds

< 回 > < 三 > < 三 >

- Replace d(x, P) < εLfs(x) with d(x, P) < λ, an user parameter
- Topology guarantee is lost
- Require topological disks around vertices
- Guarantees manifolds

・ 何 ト ・ ヨ ト ・ ヨ ト

CCCG 14 26 / 55

- Initialize points $P \subset \Sigma$, compute Del P
- If some Voronoi edge intersects Σ at x with d(x, P) > εLFS(x), insert x in P and repeat

3 Return $\operatorname{Del} P|_{\Sigma}$

□ ▶ ▲ □ ▶ ▲ □ ▶

CCCG 14

27 / 55

- Initialize points $P \subset \Sigma$, compute Del P
- If some Voronoi edge intersects Σ at x with d(x, P) > λLFS(x), insert x in P and repeat

3 Return $\operatorname{Del} P|_{\Sigma}$

□ ▶ ▲ □ ▶ ▲ □ ▶

- **9** Initialize points $P \subset \Sigma$, compute Del P
- If some Voronoi edge intersects Σ at x with d(x, P) > λLFS(x), insert x in P and repeat
- If restricted triangles around a vertex p do not form a topological disk, insert furthest x where a dual Voronoi edge of a triangle around p intersects Σ
- Return Del P|_Σ

< 回 ト < 三 ト < 三 ト

A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

(人間) トイヨト イヨト

A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

- Output mesh is always a 2-manifold
- If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:

• = • •

A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

- Output mesh is always a 2-manifold
- If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:
 - It is related to Σ by an isotopy

< ∃ > <
A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

- Output mesh is always a 2-manifold
- If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:
 - It is related to Σ by an isotopy
 - Each triangle has normal aligning within O(λ) angle to the surface normals

.

A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following guarantees:

- Output mesh is always a 2-manifold
- If λ is sufficiently small, the output mesh satisfies topological and geometric guarantees:
 - It is related to Σ by an isotopy
 - **2** Each triangle has normal aligning within $O(\lambda)$ angle to the surface normals
 - **3** Hausdorff distance between Σ and $\text{Del } P|_{\Sigma}$ is $O(\lambda^2)$ of LFS.

/□ ▶ 《 ⋽ ▶ 《 ⋽

Data Analysis by Persistent Homology

• Persistent homology [Edelsbrunner-Letscher-Zomorodian 00], [Zomorodian-Carlsson 02]

$\bullet\,$ Let ${\cal K}$ be a finite simplicial complex

• Let \mathcal{K} be a finite simplicial complex

Simplicial complex

(日) (同) (三) (三)

• Let \mathcal{K} be a finite simplicial complex

Simplicial complex

Definition

A *p*-chain in \mathcal{K} is a formal sum of *p*-simplices: $c = \sum_{i} a_i \sigma_i$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_2, \mathbb{R}$ etc.

Dey (2014)

CCCG 14 32 / 55

< 17 >

• Let \mathcal{K} be a finite simplicial complex

1-chain ab + bc + cd $(a_i \in \mathbb{Z}_2)$

Definition

A *p*-chain in \mathcal{K} is a formal sum of *p*-simplices: $c = \sum_{i} a_i \sigma_i$; sum is the addition in a ring, $\mathbb{Z}, \mathbb{Z}_2, \mathbb{R}$ etc.

Dey (2014)

CCCG 14 32 / 55

< A

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

Simplicial complex

Dev 1	(2014)
DCy I	()

→ ∃ →

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

2-chain bcd + bde (under \mathbb{Z}_2)

Dey (2014)

Computational Topology

CCCG 14 33 / 55

→ Ξ →

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

1-boundary $bc+cd+db+bd+de+eb = bc+cd+de+eb = \partial_2(bcd+bde)$ (under \mathbb{Z}_2)

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

イロト イ団ト イヨト イヨト

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

Simplicial complex

< ロ > < 同 > < 三 > < 三

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

1-cycle ab + bc + cd + de + ea (under \mathbb{Z}_2)

A (10) A (10) A (10)

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

1-cycle ab + bc + cd + de + ea (under \mathbb{Z}_2)

• Each *p*-boundary is a *p*-cycle: $\partial_p \circ \partial_{p+1} = 0$

(日) (同) (三) (三)

Definition

The *p*-chain group $C_p(\mathcal{K})$ of \mathcal{K} is formed by *p*-chains under addition

(日) (同) (三) (三)

Definition

The *p*-chain group $C_p(\mathcal{K})$ of \mathcal{K} is formed by *p*-chains under addition

The boundary operator ∂_p induces a homomorphism

$$\partial_{p}: \mathsf{C}_{p}(\mathcal{K}) \to \mathsf{C}_{p-1}(\mathcal{K})$$

< 回 ト < 三 ト < 三 ト

Definition

The *p*-chain group $C_p(\mathcal{K})$ of \mathcal{K} is formed by *p*-chains under addition

The boundary operator ∂_p induces a homomorphism

$$\partial_{p}: \mathsf{C}_{p}(\mathcal{K}) \to \mathsf{C}_{p-1}(\mathcal{K})$$

Definition

The *p*-cycle group $Z_p(\mathcal{K})$ of \mathcal{K} is the kernel ker ∂_p

A D A D A D A

Definition

The *p*-chain group $C_p(\mathcal{K})$ of \mathcal{K} is formed by *p*-chains under addition

The boundary operator ∂_p induces a homomorphism

$$\partial_{p}: \mathsf{C}_{p}(\mathcal{K}) \to \mathsf{C}_{p-1}(\mathcal{K})$$

Definition

The *p*-cycle group $Z_p(\mathcal{K})$ of \mathcal{K} is the kernel ker ∂_p

Definition

The *p*-boundary group $B_p(\mathcal{K})$ of \mathcal{K} is the image im ∂_{p+1}

Dey (2014)

- 4 同 ト 4 ヨ ト 4 ヨ

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

(日) (周) (三) (三)

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

Definition

Two p-chains c and c' are homologous if $c=c'+\partial_{p+1}d$ for some chain d

A B A A B A

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

Definition

Two *p*-chains *c* and *c'* are homologous if $c = c' + \partial_{p+1}d$ for some chain *d*

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles

• Let $P \subset \mathbb{R}^d$ be a point set

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

- 4 週 ト - 4 三 ト - 4 三 ト

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Definition

The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma) \subseteq P$ and $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$

• • = • • = •

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Definition

The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma) \subseteq P$ and $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$

Definition

The Rips complex $\mathcal{R}^{r}(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^{r}(P)$ iff $Vert(\sigma)$ are within pairwise Euclidean distance of r

・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Definition

The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma) \subseteq P$ and $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$

Definition

The Rips complex $\mathcal{R}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ iff $Vert(\sigma)$ are within pairwise Euclidean distance of r

Proposition

For any finite set $P \subset \mathbb{R}^d$ and any $r \ge 0$, $C^r(P) \subseteq \mathcal{R}^r(P) \subseteq C^{2r}(P)$

Point set P

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Balls B(p, r/2) for $p \in P$

Čech complex $C^r(P)$

Rips complex $\mathcal{R}^r(P)$

Topological persistence

- r(x) = d(x, P): distance to point cloud P
- Sublevel sets $r^{-1}[0, a]$ are union of balls
- Evolution of the sublevel sets with increasing *a*–left hole persists longer
- Persistent homology quantizes this idea

CCCG 14 42 / 55

→ ∃ →

Persistent Homology

- $f:\mathbb{T}\to\mathbb{R}; \mathbb{T}_a=f^{-1}(-\infty,a]$, the sublevel set
- T_a ⊆ T_b for a ≤ b provides inclusion map ι : T_a → T_b
- Induced map $\iota_* : H_p(\mathbb{T}_a) \to H_p(\mathbb{T}_b)$ giving the sequence

(日) (周) (三) (三)

 $0 \to \mathsf{H}_{p}(\mathbb{T}_{a_{1}}) \to \mathsf{H}_{p}(\mathbb{T}_{a_{2}}) \to \cdots \to \mathsf{H}_{p}(\mathbb{T}_{a_{n}}) \to \mathsf{H}_{p}(\mathbb{T})$

• Persistent homology classes: Image of $f_p^{ij} : \mathsf{H}_p(\mathbb{T}_{a_i}) \to \mathsf{H}_p(\mathbb{T}_{a_j})$

▲ ■ ■ ● Q C
 CCCG 14 43 / 55

Continuous to Discrete

Replace T with a simplicial complex

 K := *K*(T)

- 本間 と 本語 と 本語 と

Continuous to Discrete

- Replace T with a simplicial complex
 K := K(T)
- Union of balls with its nerve Čech complex

過 ト イヨト イヨト

Continuous to Discrete

- Replace T with a simplicial complex
 K := K(T)
- Union of balls with its nerve Čech complex

→ Ξ →
Continuous to Discrete

- Replace T with a simplicial complex
 K := K(T)
- Union of balls with its nerve Čech complex

< ∃ ►

(d

Continuous to Discrete

- Replace T with a simplicial complex

 K := *K*(T)
- Union of balls with its nerve Čech complex
- Evolution of sublevel sets becomes Filtration:

$$\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = K$$
$$0 \to \mathsf{H}_p(K_1) \to \cdots \to \mathsf{H}_p(K_n) = \mathsf{H}_p(K).$$

CCCG 14 44 / 55

Continuous to Discrete

- Replace T with a simplicial complex
 K := K(T)
- Union of balls with its nerve Čech complex
- Evolution of sublevel sets becomes Filtration:

• Birth and Death of homology classes

CCCG 14 44 / 55

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bar Codes

• birth-death and bar codes

• a bar [a, b] is represented as a point in the plane

▲圖▶ ▲国▶ ▲国

- a bar [a, b] is represented as a point in the plane
- incorporate the diagonal in the diagram $Dgm_p(f)$

- a bar [a, b] is represented as a point in the plane
- incorporate the diagonal in the diagram $Dgm_p(f)$

- a bar [a, b] is represented as a point in the plane
- incorporate the diagonal in the diagram $Dgm_{p}(f)$

< ∃ >

Stability of Persistence Diagram

• Bottleneck distance (C all bijections)

$$d_B(\operatorname{Dgm}_p(f),\operatorname{Dgm}_p(g)) := \inf_{c \in C} \sup_{x \in \operatorname{Dgm}_p(f)} ||x - c(x)||$$

Theorem (Cohen-Steiner, Edelsbrunner, Harer 06)

 $d_B(\operatorname{Dgm}_p(f), \operatorname{Dgm}_p(g)) \le \|f - g\|_{\infty}$

Dey (2014)

Computational Topology

CCCG 14 47 / 55

• $d_{\mathbb{T}}$ be the distance function from the space \mathbb{T} .

→ Ξ →

- $d_{\mathbb{T}}$ be the distance function from the space \mathbb{T} .
- d_P be the distance function from sample P

.∃ →

- $d_{\mathbb{T}}$ be the distance function from the space \mathbb{T} .
- d_P be the distance function from sample P

E ▶.

- $d_{\mathbb{T}}$ be the distance function from the space \mathbb{T} .
- d_P be the distance function from sample P
- $\|d_{\mathbb{T}} d_P\|_{\infty} \leq d(\mathbb{T}, P) = \varepsilon$

• • = • •

- $d_{\mathbb{T}}$ be the distance function from the space \mathbb{T} .
- d_P be the distance function from sample P
- $\|d_{\mathbb{T}} d_P\|_{\infty} \leq d(\mathbb{T}, P) = \varepsilon$
- $d_B(\operatorname{Dgm}_p(d_{\mathbb{T}}), \operatorname{Dgm}(d_P)) \leq \varepsilon$

CCCG 14 48 / 55

→ Ξ →

- $d_{\mathbb{T}}$ be the distance function from the space \mathbb{T} .
- d_P be the distance function from sample P
- $\|d_{\mathbb{T}} d_P\|_{\infty} \leq d(\mathbb{T}, P) = \varepsilon$
- $d_B(\operatorname{Dgm}_p(d_{\mathbb{T}}), \operatorname{Dgm}(d_P)) \leq \varepsilon$

CCCG 14 48 / 55

→ Ξ →

• Čech complexes are difficult to compute

A (10) A (10) A (10)

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge

< ∃ > <

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
- Sparsified Rips complex [Sheehy 12]

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
- Sparsified Rips complex [Sheehy 12]
- Graph Induced Complex (GIC) [D.-Fang-Wang 13]

 $\mathcal{R}^r(P)$

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
- Sparsified Rips complex [Sheehy 12]
- Graph Induced Complex (GIC) [D.-Fang-Wang 13]

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
- Sparsified Rips complex [Sheehy 12]
- Graph Induced Complex (GIC) [D.-Fang-Wang 13]

- Čech complexes are difficult to compute
- Most literature considers Rips complexes, but they are Huge
- Sparsified Rips complex [Sheehy 12]
- Graph Induced Complex (GIC) [D.-Fang-Wang 13]

• Zigzag inclusions[Carlsson-de Silva-Morozov 09]

 $K_1 \subseteq K_2 \subseteq K_3 \subseteq \ldots \subseteq K_n$

(日) (周) (三) (三)

• Zigzag inclusions[Carlsson-de Silva-Morozov 09]

 $K_1 \subseteq K_2 \supseteq K_3 \supseteq \ldots \subseteq K_n$

• Zigzag inclusions[Carlsson-de Silva-Morozov 09]

 $K_1 \subseteq K_2 \supseteq K_3 \supseteq \ldots \subseteq K_n$

• Simplicial maps instead of inclusions [D.-Fan-Wang 14]

$$K \xrightarrow{f_1} K_1 \xrightarrow{f_2} K_2 \cdots \xrightarrow{f_n} K_n = K'$$

・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Zigzag inclusions[Carlsson-de Silva-Morozov 09]

 $K_1 \subseteq K_2 \supseteq K_3 \supseteq \ldots \subseteq K_n$

• Simplicial maps instead of inclusions [D.-Fan-Wang 14]

$$K \xrightarrow{f_1} K_1 \xrightarrow{f_2} K_2 \cdots \xrightarrow{f_n} K_n = K'$$

• Efficient algorithm for Zigzag simplicial maps?

・ 日 ・ ・ ヨ ・ ・ ヨ ・

• What about stabilty when domains aren't same.

< ロ > < 同 > < 三 > < 三

- What about stabilty when domains aren't same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]

- What about stabilty when domains aren't same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]

→ 3 → 4 3

- What about stabilty when domains aren't same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
- Computing topological structures

۲

(3)

- What about stabilty when domains aren't same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
- Computing topological structures
 - Reeb graphs [C-MEHNP 03, D.-Wang 11]

- What about stabilty when domains aren't same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
- Computing topological structures
 - Reeb graphs [C-MEHNP 03, D.-Wang 11]
 - Homology cycles

(4) ∃ ≥ (4) ∃ ≥

- What about stabilty when domains aren't same.
 - Interleaving [Chazal-Oudot 08], [CCGGO08]
- Scalar field data analysis [CGOS 09]
- Computing topological structures
 - Reeb graphs [C-MEHNP 03, D.-Wang 11]
 - Homology cycles

▶ < 프 ► < 프 ►</p>

Optimal Homology Basis Problem

• Compute an optimal set of cycles forming a basis

(日) (周) (三) (三)

Optimal Homology Basis Problem

• Compute an optimal set of cycles forming a basis

- 金属 トーイ

Optimal Homology Basis Problem

• Compute an optimal set of cycles forming a basis

→ Ξ →
Optimal Homology Basis Problem

• Compute an optimal set of cycles forming a basis

• First solution for surfaces: Erickson-Whittlesey [SODA05]

(4) (1) (4) (4)

Optimal Homology Basis Problem

• Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]

(4) (2) (4) (2)

Optimal Homology Basis Problem

• Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]
- H₁ basis for simplicial complexes: D.-Sun-Wang [SoCG10]

• Compute an optimal cycle in a given class.

(日) (周) (三) (三)

• Compute an optimal cycle in a given class.

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• Compute an optimal cycle in a given class.

→ 3 → 4 3

• Compute an optimal cycle in a given class.

● ・ ・ ヨ ・ ・ ヨ

• Compute an optimal cycle in a given class.

 Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]

• • = • • = •

• Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]
- General problem NP-hard: Chen-Freedman [SODA10]

- 4 回 ト - 4 回 ト

• Compute an optimal cycle in a given class.

- Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri [SoCG09]
- General problem NP-hard: Chen-Freedman [SODA10]
- Special cases: Dey-Hirani-Krishnamoorthy [STOC10]

• Reconstructions :

<ロ> (日) (日) (日) (日) (日)

- Reconstructions :
 - non-smooth surfaces remain open

イロト イヨト イヨト イヨト

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory

- 4 同 6 4 日 6 4 日 6

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Mesh Generation :

• • = • • = •

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Mesh Generation :
 - piecewise smooth surfaces, complexes

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Mesh Generation :
 - piecewise smooth surfaces, complexes

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Mesh Generation :
 - piecewise smooth surfaces, complexes
- Data Analysis :

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Mesh Generation :
 - piecewise smooth surfaces, complexes
- Data Analysis :
 - functions on spaces

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Mesh Generation :
 - piecewise smooth surfaces, complexes
- Data Analysis :
 - functions on spaces
 - connecting to data mining, machine learning.

< 注入 < 注入

Thank

▲ ■ ▶ ■ つへへ CCCG 14 55 / 55

・ロト ・聞ト ・ヨト ・ヨト