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Topologcal spaces
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Topologcal spaces

° AI poidnt szt with opendsubsets : \/ / \
closed under union an \ |
e . o
finite intersections e \/

o dball BY {x e RY | ||x[| <1} A\ Q

@ d-sphere S {x e R? | ||x|| = 1}

@ k-manifold: neighborhoods ‘homeomorphic’ to open k-ball
e 2-sphere, torus, double torus are 2-manifolds
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Maps

@ Homeomorphism h: T; — T,
where h is continuous, bijective
and has continuous inverse

@ Isotopy : continuous deformation that
maintains homeomorphism

@ homotopy equivalence: map linked to
continuous deformation only
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Simplicial complex

@ Abstract

o V(K): vertex set, k-simplex:
(k + 1)-subset 0 C V(K)

o Complex
K={o|| o’ Co= 0o € K}
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Simplicial complex

@ Abstract
o V(K): vertex set, k-simplex:
(k + 1)-subset 0 C V(K)

o Complex
K={o|| o' Co =o' € K}
@ Geometric

o k-simplex: k + 1-point convex hull

o Complex K:

(i) te Kiftisafaceof t' € K
(ii) t1,t € K= t1Nty is a face of both
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Simplicial complex

@ Abstract
o V(K): vertex set, k-simplex:
(k + 1)-subset 0 C V(K)

o Complex
K={o|| o' Co =o' € K}
@ Geometric
o k-simplex: k + 1-point convex hull

o Complex K:

(i) te Kiftisafaceof t' € K
(ii) t1,t € K= t1Nty is a face of both

@ Triangulation: K is a triangulation of a
topological space T if T =~ |K]|
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Reconstruc

Surface Reconstruction

(2014)
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Sampling

e Sample PC ¥ C R3
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Sampling

Local Feature Size

o Lfs(x) is the distance
to medial axis
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Sampling

e-sample (Amenta-Bern-Eppstein 98)

@ Each x has a sample
within eLfs(x) distance
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Sampling

Crust and Cocone Guarantees

Theorem (Crust: Amenta-Bern 1999)

Any point x € ¥ is within O(e)Lfs(x) distance from a point in the
output. Conversely, any point of the output surface has a point
x € ¥ within O(e)Lfs(x) distance for ¢ < 0.06.
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Crust and Cocone Guarantees

Theorem (Crust: Amenta-Bern 1999)

Any point x € ¥ is within O(e)Lfs(x) distance from a point in the
output. Conversely, any point of the output surface has a point
x € ¥ within O(e)Lfs(x) distance for ¢ < 0.06.

Theorem (Cocone: Amenta-Choi-Dey-Leekha 2000)

The output surface computed by COCONE from an € — sample is
homeomorphic to the sampled surface for ¢ < 0.06.
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Restricted Voronoi/Delaunay

Definition
Restricted Voronoi: Vor P|x: Intersection of Vor (P) with the
surface/manifold X.

Dey (2014) Computational Topology CCCG 14 11 / 55



Restricted Voronoi/Delaunay

Definition
Restricted Delaunay: Del P|s: dual of Vor P|s J
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Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then
Del P|s is homeomorphic to ¥.
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Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then
Del P|s is homeomorphic to ¥.

/

Theorem /
For a sufficiently small € if P is an

e-sample of ¥, then (P, ¥) satisfies szjé
the closed ball property, and hence \ /,
Del P|ly =~ X. L)
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Boundaries

@ Ambiguity in reconstruction
@ Non-homeomorphic Restricted Delaunay [DLRWOQ9]
@ Non-orientabilty
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Boundaries

@ Ambiguity in reconstruction
@ Non-homeomorphic Restricted Delaunay [DLRWOQ9]
@ Non-orientabilty

Theorem (D.-Li-Ramos-Wenger 2009)

Given a sufficiently dense sample of a smooth compact surface *
with boundary one can compute a Delaunay mesh isotopic to .
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Input Variations

Open: Reconstructing nonsmooth surfaces

@ Guarantee of homeomorphism is open
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High Dimensional PCD

@ Curse of dimensionality (intrinsic vs. extrinsic)
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High Dimensions

High Dimensional PCD

)
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High Dimensional PCD

@ Curse of dimensionality (intrinsic vs. extrinsic)

@ Reconstruction of submanifolds brings ambiguity
e Use (g,9)-sampling

@ Restricted Delaunay does not capture topology

o Slivers are arbitrarily oriented [CDR05] = Del P|y % X no
matter how dense P is.
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High Dimensional PCD

Curse of dimensionality (intrinsic vs. extrinsic)
Reconstruction of submanifolds brings ambiguity
e Use (g,9)-sampling

(]

Restricted Delaunay does not capture topology

o Slivers are arbitrarily oriented [CDR05] = Del P|y % X no
matter how dense P is.

(]

Delaunay triangulation becomes harder
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High Dimensions

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (g, 8)-sample P of a smooth manifold ¥ C RY for
appropriate ¢, 0 > 0, there is a weight assignment of P so that
Del P|s ~ ¥ which can be computed efficiently.
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High Dimensions

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (g, 8)-sample P of a smooth manifold ¥ C RY for
appropriate ¢, 0 > 0, there is a weight assignment of P so that
Del P|s ~ ¥ which can be computed efficiently.

Theorem (Chazal-Lieutier 2006)

Given an =-noisy sample P of manifold ¥ C RY, there exists
r, < p(X) for each p € P so that the union of balls B(p, r,) is
homotopy equivalent to .
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High Dimensions

Reconstructing Compacts
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High Dimensions

Reconstructing Compacts

e Lfs vanishes, introduce ji-reach and define (e, ;1)-samples.

Theorem (Chazal-Cohen-S.-Lieutier 2006)

Given an (e, j1)-sample P of a compact K C R? for appropriate
e, > 0, there is an « so that union of balls B(p, ) is homotopy
equivalent to K" for arbitrarily small 7).
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Surface and volume mesh
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Surface and volume mesh
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Delaunay refinement

@ Pioneered by Chew89,Ruppert92,Shewchuk98
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Delaunay refinement

@ Pioneered by Chew89,Ruppert92,Shewchuk98

@ To mesh some domain D

@ Initialize points P C D, compute Del P
@ If some condition is not satisfied, insert a point p € D into P
and repeat

© Return Del P|p

@ Burden is to show termination (by packing argument)
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Sampling Theorem

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01)

If P C Sigma is a discrete e-sample of a smooth surface ¥, then for

£ < 0.09, Del P|s satisfies:
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@ It is homeomorphic to X
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Sampling Theorem

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01)
If P C Sigma is a discrete e-sample of a smooth surface ¥, then for
£ < 0.09, Del P|s satisfies:

@ It is homeomorphic to X

e Each triangle has normal aligning within O(z) angle to the
surface normals

e Hausdorff distance between ¥ and Del P|s is O(c?) of LFS.
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Sampling Theorem Modified

Theorem (Boissonnat-Oudot 05)

If P € ¥ is such that each Voronoi edge-surface intersection x lies

within eLfs(x) from a sample, then for ¢ < 0.09, Del P|yx satisfies:
@ It is homeomorphic to ¥

e Each triangle has normal aligning within O(z) angle to the
surface normals

e Hausdorff distance between ¥ and Del P|s is O(g?) of LFS.
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Basic Delaunay Refinement

@ Initialize points P C ¥, compute Del P

@ If some condition is not satisfied, insert a point ¢ € ¥ into P
and repeat

@ Return Del P|x
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Surface Delaunay Refinement

@ Initialize points P C ¥, compute Del P

@ If some Voronoi edge intersects ¥ at x with d(x, P) > eLFS(x),
insert x in P and repeat

@ Return Del P|x
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Difficulty

@ How to compute Lfs(x)?

@ Can be approximated by
computing approximatemedial
axis—needs a dense sample.
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Difficulty

@ How to compute Lfs(x)?

@ Can be approximated by
computing approximatemedial
axis—needs a dense sample.
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A Solution

@ Replace d(x, P) < cLfs(x)
with d(x, P) < A, an user
parameter
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A Solution

@ Initialize points P C ¥, compute Del P

@ If some Voronoi edge intersects X at x with d(x, P) > cLFS(x),
insert x in P and repeat

© Return Del P|s
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A Solution

@ Initialize points P C ¥, compute Del P

@ If some Voronoi edge intersects ¥ at x with d(x, P) > ALFS(x),
insert x in P and repeat

© Return Del P|s

Dey (2014) Computational Topology CCCG 14 28 / 55



A Solution

@ Initialize points P C ¥, compute Del P
@ If some Voronoi edge intersects ¥ at x with d(x, P) > ALFS(x),
insert x in P and repeat

© If restricted triangles around a vertex p do not form a
topological disk, insert furthest x where a dual Voronoi edge of a

triangle around p intersects X
Q Return Del P|s
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A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following
guarantees:
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A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following
guarantees:

© Output mesh is always a 2-manifold

Q@ If )\ is sufficiently small, the output mesh satisfies topological
and geometric guarantees:

@ It is related to ¥ by an isotopy

@ Each triangle has normal aligning within O(\) angle to the
surface normals

© Hausdorff distance between ¥ and Del P|s is O(\?) of LFS.

Dey (2014) Computational Topology CCCG 14 30/ 55



Topological Data Analysis

Data Analysis by Persistent Homology

@ Persistent homology [Edelsbrunner-Letscher-Zomorodian 00],
[Zomorodian-Carlsson 02]

il i A

Dey (2014) Computational Topology CCCG 14 31 /55



Chain

@ Let K be a finite simplicial complex
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Chain

@ Let K be a finite simplicial complex

Simplicial complex

Definition

A p-chain in K is a formal sum of p-simplices: ¢ = ) a;o;; sum is
i

the addition in a ring, Z,Z,, R etc.
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Chain

@ Let K be a finite simplicial complex

1-chain ab + bc + cd (a; € Z»)

Definition
A p-chain in K is a formal sum of p-simplices: ¢ = ) a;o;; sum is

1

the addition in a ring, Z, Z5, R etc.
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Boundary

Definition
A p-boundary d,11¢ of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices
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Boundary

Definition
A p-boundary d,11¢ of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices

2-chain bcd + bde (under Zs)
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Boundary

Definition
A p-boundary d,11¢ of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices

1-boundary bc+cd+db+ bd+de+eb = bc+cd+de+eb = 0x(bcd+ bde)
(under Z»)
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Cycles

Definition
A p-cycle is a p-chain that has an empty boundary J
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Cycles

Definition
A p-cycle is a p-chain that has an empty boundary J

1-cycle ab+ bc + cd + de + ea (under Zy)
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Cycles

Definition
A p-cycle is a p-chain that has an empty boundary

1-cycle ab+ bc + cd + de + ea (under Zy)

@ Each p-boundary is a p-cycle: 0,0 0p11 =0

Dey (2014) Computational Topology

CCCG 14
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Groups

Definition
The p-chain group C,(K) of K is formed by p-chains under addition }
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Groups

Definition

The p-chain group C,(K) of K is formed by p-chains under addition J

The boundary operator 0, induces a homomorphism

Op : Cp(K) — Cpoa(K)
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Groups

Definition
The p-chain group C,(K) of K is formed by p-chains under addition }

The boundary operator 0, induces a homomorphism

Op : Cp(K) — Cpoa(K)

Definition
The p-cycle group Z,(K) of K is the kernel ker d,

Definition
The p-boundary group B,(K) of K is the image im 0p1

Dey (2014) Computational Topology CCCG 14 35 /55



Homology

Definition
The p-dimensional homology group is defined as

H,(K) = Z,(K)/B,(K)
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Homology
Definition

The p-dimensional homology group is defined as

H,(K) = Z,(K)/B,(K)

Definition
Two p-chains ¢ and ¢’ are homologous if ¢ = ¢’ + J,41d for some
chain d )
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Homology
Definition

The p-dimensional homology group is defined as

H,(KC) = Z,(K)/B,(K)

Definition
Two p-chains ¢ and ¢’ are homologous if ¢ = ¢’ 4 0,41d for some

chain d |
@ ﬁ ﬁ

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles

Dey (2014) Computational Topology CCCG 14 36 / 55




Complexes

@ Let P C R? be a point set
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Complexes

@ Let P C R? be a point set

@ B(p, r) denotes an open d-ball centered at p with radius r

Definition

The Cech complex C’(P) is a simplicial complex where a simplex
o € C"(P) iff Vert(o) € P and Npevert(o)B(p, r/2) # 0
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Complexes

@ Let P C R? be a point set

@ B(p, r) denotes an open d-ball centered at p with radius r

Definition
The Cech complex C’(P) is a simplicial complex where a simplex
o € C"(P) iff Vert(o) € P and Npevert(o)B(p, r/2) # 0

Definition
The Rips complex R"(P) is a simplicial complex where a simplex
o € R'(P) iff Vert(o) are within pairwise Euclidean distance of r
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Complexes

@ Let P C R? be a point set

@ B(p, r) denotes an open d-ball centered at p with radius r

Definition

The Cech complex C"(P) is a simplicial complex where a simplex
o € C"(P) iff Vert(c) C P and Npevert(o)B(p, r/2) # 0

Definition
The Rips complex R"(P) is a simplicial complex where a simplex
o € R"(P) iff Vert(o) are within pairwise Euclidean distance of r

Proposition

For any finite set P C R and any r > 0, C"(P) C R'(P) C C*>(P)

v
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Point set P
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Balls B(p, r/2) for p € P




"(P)

Cech complex C

A4




Rips complex R'(P)




Topological Data Analysis

Topological persistence

e r(x) = d(x, P): distance
to point cloud P

@ Sublevel sets r~1[0, a] are
union of balls

@ Evolution of the sublevel
sets with increasing a—left
hole persists longer

@ Persistent homology
quantizes this idea

Dey (2014) Computational Topology
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Persistent Homology

o F TR T= o the 4 b &'

sublevel set

e T, C Ty for a < b provides inclusion oo et
map ¢: T, — T, . %

@ Induced map ¢, : Hy(T,) — H,y(T») )
giving the sequence

0 — Hy(T,,) — Hy(T,,) — -+ — Huy(T,,) — Hu(T)

@ Persistent homology classes: Image of
pr : Hp(Ta;) - Hp(Taj)
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Continuous to Discrete

@ Replace T with a simplicial complex
K := K(T)
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@ Replace T with a simplicial complex ,« «
K:: K(T) .... :.‘..a

@ Union of balls with its nerve Cech
complex

@ Evolution of sublevel sets becomes
Filtration:

D=KoCKiC---CK,=K
0_’HP(K1)_>"'—> Hp(Kn):Hp(K)-

@ Birth and Death of homology classes
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Topological Data Analysis

Bar Codes

@ birth-death and bar codes

7 5

Hy| ! 5 : 5 -
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Persistence Diagram

@ a bar [a, b] is represented as a point in the plane
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@ a bar [a, b] is represented as a point in the plane

@ incorporate the diagonal in the diagram Dgm ,(f)
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. .
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Topological Data Analysis

Stability of Persistence Diagram

@ Bottleneck distance (C all bijections)

dg(Dgm ,(f),Dgm ,(g)) := inf  sup |Ix — c(x)||

ceC x€Dgm ,(f)

death

Theorem (Cohen-Steiner,Edelsbrunner,Harer 06)

dg(Dgm ,(f),Dgm ,(g)) < [|f — gl

Dey (2014)
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Back to Point Data

* :f!/."@_.ﬁ' krr /k\

Sost

@ dr be the distance function from the space T.
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@ dr be the distance function from the space T.

Birth

@ dp be the distance function from sample P
o |ldr — dpllew < d(T,P) =¢
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Back to Point Data
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Death

@ dr be the distance function from the space T.
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@ dp be the distance function from sample P
o |ldr — dpllew < d(T,P) =¢
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Issues: Choice of Complexes

o Cech complexes are difficult to compute
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Issues: Choice of Complexes

o Cech complexes are difficult to compute

@ Most literature considers Rips complexes, but they are Huge
@ Sparsified Rips complex [Sheehy 12]

@ Graph Induced Complex (GIC) [D.-Fang-Wang 13]

R(P) R7(Q) G'(P,Q)

Dey (2014) Computational Topology CCCG 14 49 / 55



Issues: Filtration Maps

@ Zigzag inclusions[Carlsson-de Silva-Morozov 09]

KiCK,CKyC...CK,
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Issues: Filtration Maps

@ Zigzag inclusions[Carlsson-de Silva-Morozov 09]
KiCKy, D K3 2D ...CK,

e Simplicial maps instead of inclusions [D.-Fan-Wang 14]

Kok 2ok K, = K

o Efficient algorithm for Zigzag simplicial maps?

Dey (2014) Computational Topology CCCG 14
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Further Issues/Problems

@ What about stabilty when domains aren’t same.
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Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis

Dey (2014) Computational Topology CCCG 14 52 / 55



Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis

Dey (2014) Computational Topology CCCG 14 52 / 55



Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis

Dey (2014) Computational Topology CCCG 14 52 / 55



Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis

@ First solution for surfaces: Erickson-Whittlesey [SODAO5]

Dey (2014) Computational Topology CCCG 14 52 / 55



Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis

@ First solution for surfaces: Erickson-Whittlesey [SODAO5]
@ General problem NP-hard: Chen-Freedman [SODA10]

Dey (2014) Computational Topology CCCG 14 52 / 55



Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis

@ First solution for surfaces: Erickson-Whittlesey [SODAO5]
@ General problem NP-hard: Chen-Freedman [SODA10]
@ H; basis for simplicial complexes: D.-Sun-Wang [SoCG10]
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Optimal Localization

@ Compute an optimal cycle in a given class.
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Optimal Localization

@ Compute an optimal cycle in a given class.

@ Surfaces: Colin de Verdiere-Lazarus [DCGO5], Colin de
Verdiere-Erickson [SODAO06], Chambers-Erickson-Nayyeri
[SoCGO09]

o General problem NP-hard: Chen-Freedman [SODA10]

@ Special cases: Dey-Hirani-Krishnamoorthy [STOC10]
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Conclusions

@ Reconstructions :
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Further Problems

Conclusions

@ Reconstructions :

e non-smooth surfaces remain open
e high dimensions still not satisfactory

@ Mesh Generation :
e piecewise smooth surfaces, complexes
e Data Analysis :

e functions on spaces
e connecting to data mining, machine learning.

Dey (2014) Computational Topology CCCG 14 54 / 55



Thank You
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