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Topology Background

Topologcal spaces

A point set with open subsets
closed under union and
finite intersections

Dey (2014) Computational Topology CCCG 14 3 / 55



Topology Background

Topologcal spaces

A point set with open subsets
closed under union and
finite intersections

d-ball Bd {x ∈ Rd | ||x || ≤ 1}
d-sphere Sd {x ∈ Rd | ||x || = 1}
k-manifold: neighborhoods ‘homeomorphic’ to open k-ball

2-sphere, torus, double torus are 2-manifolds
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Topology Background

Maps

Homeomorphism h : T1 → T2

where h is continuous, bijective
and has continuous inverse

Isotopy : continuous deformation that
maintains homeomorphism

homotopy equivalence: map linked to
continuous deformation only

Homeomorphic

No isotopy
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Topology Background

Simplicial complex

Abstract

V (K ): vertex set, k-simplex:
(k + 1)-subset σ ⊆ V (K )

Complex
K = {σ‖ σ′ ⊆ σ =⇒ σ′ ∈ K}

Geometric

k-simplex: k + 1-point convex hull

Complex K :

(i) t ∈ K if t is a face of t ′ ∈ K
(ii) t1, t2 ∈ K ⇒ t1∩ t2 is a face of both

Triangulation: K is a triangulation of a
topological space T if T ≈ |K |
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Reconstruction

Surface Reconstruction
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Sampling

Sampling

Sample P ⊂ Σ ⊂ R3
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Sampling

Local Feature Size

Lfs(x) is the distance
to medial axis
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Sampling

ε-sample (Amenta-Bern-Eppstein 98)

Each x has a sample
within εLfs(x) distance
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Sampling

Crust and Cocone Guarantees

Theorem (Crust: Amenta-Bern 1999)

Any point x ∈ Σ is within O(ε)Lfs(x) distance from a point in the
output. Conversely, any point of the output surface has a point
x ∈ Σ within O(ε)Lfs(x) distance for ε < 0.06.

Theorem (Cocone: Amenta-Choi-Dey-Leekha 2000)

The output surface computed by Cocone from an ε− sample is
homeomorphic to the sampled surface for ε < 0.06.
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Sampling

Restricted Voronoi/Delaunay

Definition

Restricted Voronoi: Vor P |Σ: Intersection of Vor (P) with the
surface/manifold Σ.
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Sampling

Restricted Voronoi/Delaunay

Definition

Restricted Delaunay: Del P |Σ: dual of Vor P |Σ
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Sampling

Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then
Del P |Σ is homeomorphic to Σ.
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Sampling

Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then
Del P |Σ is homeomorphic to Σ.

Theorem

For a sufficiently small ε if P is an
ε-sample of Σ, then (P, Σ) satisfies
the closed ball property, and hence
Del P |Σ ≈ Σ.
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Input Variations

Boundaries

Ambiguity in reconstruction

Non-homeomorphic Restricted Delaunay [DLRW09]

Non-orientabilty

Theorem (D.-Li-Ramos-Wenger 2009)

Given a sufficiently dense sample of a smooth compact surface Σ
with boundary one can compute a Delaunay mesh isotopic to Σ.
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Input Variations

Open: Reconstructing nonsmooth surfaces

Guarantee of homeomorphism is open
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High Dimensions

High Dimensional PCD

Curse of dimensionality (intrinsic vs. extrinsic)

Reconstruction of submanifolds brings ambiguity

Use (ε, δ)-sampling

Restricted Delaunay does not capture topology

Slivers are arbitrarily oriented [CDR05] ⇒ Del P|Σ 6≈ Σ no
matter how dense P is.

Delaunay triangulation becomes harder
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High Dimensions

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (ε, δ)-sample P of a smooth manifold Σ ⊂ Rd for
appropriate ε, δ > 0, there is a weight assignment of P so that
Del P̂ |Σ ≈ Σ which can be computed efficiently.
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High Dimensions

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (ε, δ)-sample P of a smooth manifold Σ ⊂ Rd for
appropriate ε, δ > 0, there is a weight assignment of P so that
Del P̂ |Σ ≈ Σ which can be computed efficiently.

Theorem (Chazal-Lieutier 2006)

Given an ε-noisy sample P of manifold Σ ⊂ Rd , there exists
rp ≤ ρ(Σ) for each p ∈ P so that the union of balls B(p, rp) is
homotopy equivalent to Σ.
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High Dimensions

Reconstructing Compacts

Lfs vanishes, introduce µ-reach and define (ε, µ)-samples.
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High Dimensions

Reconstructing Compacts

Lfs vanishes, introduce µ-reach and define (ε, µ)-samples.

Theorem (Chazal-Cohen-S.-Lieutier 2006)

Given an (ε, µ)-sample P of a compact K ⊂ Rd for appropriate
ε, µ > 0, there is an α so that union of balls B(p, α) is homotopy
equivalent to K η for arbitrarily small η.
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Mesh generation

Surface and volume mesh
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Mesh generation

Surface and volume mesh
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Mesh generation

Delaunay refinement

Pioneered by Chew89,Ruppert92,Shewchuk98

To mesh some domain D
1 Initialize points P ⊂ D, compute Del P
2 If some condition is not satisfied, insert a point p ∈ D into P

and repeat
3 Return Del P|D

Burden is to show termination (by packing argument)
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Mesh generation

Sampling Theorem

Theorem (Amenta-Bern 98, Cheng-D.-Edelsbrunner-Sullivan 01)

If P ⊂ Sigma is a discrete ε-sample of a smooth surface Σ, then for
ε < 0.09, Del P |Σ satisfies:

It is homeomorphic to Σ

Each triangle has normal aligning within O(ε) angle to the
surface normals

Hausdorff distance between Σ and Del P |Σ is O(ε2) of LFS.
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Mesh generation

Sampling Theorem Modified

Theorem (Boissonnat-Oudot 05)

If P ∈ Σ is such that each Voronoi edge-surface intersection x lies
within εLfs(x) from a sample, then for ε < 0.09, Del P |Σ satisfies:

It is homeomorphic to Σ

Each triangle has normal aligning within O(ε) angle to the
surface normals

Hausdorff distance between Σ and Del P |Σ is O(ε2) of LFS.
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Mesh generation

Basic Delaunay Refinement

1 Initialize points P ⊂ Σ, compute Del P

2 If some condition is not satisfied, insert a point c ∈ Σ into P
and repeat

3 Return Del P |Σ
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Mesh generation

Surface Delaunay Refinement

1 Initialize points P ⊂ Σ, compute Del P

2 If some Voronoi edge intersects Σ at x with d(x ,P) > εLFS(x),
insert x in P and repeat

3 Return Del P |Σ
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Mesh generation

Difficulty

How to compute Lfs(x)?

Can be approximated by
computing approximatemedial
axis–needs a dense sample.
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Mesh generation

A Solution

Replace d(x ,P) < εLfs(x)
with d(x ,P) < λ, an user
parameter

Topology guarantee is lost

Require topological disks
around vertices

Guarantees manifolds
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Mesh generation

A Solution

1 Initialize points P ⊂ Σ, compute Del P

2 If some Voronoi edge intersects Σ at x with d(x ,P) > εLFS(x),
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3 Return Del P |Σ
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Mesh generation

A Solution

1 Initialize points P ⊂ Σ, compute Del P

2 If some Voronoi edge intersects Σ at x with d(x ,P) > λLFS(x),
insert x in P and repeat

3 If restricted triangles around a vertex p do not form a
topological disk, insert furthest x where a dual Voronoi edge of a
triangle around p intersects Σ

4 Return Del P |Σ

Dey (2014) Computational Topology CCCG 14 29 / 55



Mesh generation

A Meshing Theorem

Theorem

Previous algorithm produces output mesh with the following
guarantees:

1 Output mesh is always a 2-manifold

2 If λ is sufficiently small, the output mesh satisfies topological
and geometric guarantees:

1 It is related to Σ by an isotopy
2 Each triangle has normal aligning within O(λ) angle to the

surface normals
3 Hausdorff distance between Σ and Del P|Σ is O(λ2) of LFS.
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Topological Data Analysis

Data Analysis by Persistent Homology

Persistent homology [Edelsbrunner-Letscher-Zomorodian 00],
[Zomorodian-Carlsson 02]
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Topological Data Analysis

Chain

Let K be a finite simplicial complex
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Topological Data Analysis

Chain

Let K be a finite simplicial complex

Simplicial complex

Definition

A p-chain in K is a formal sum of p-simplices: c =
∑
i

aiσi ; sum is

the addition in a ring, Z,Z2,R etc.
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Topological Data Analysis

Chain

Let K be a finite simplicial complex

1-chain ab + bc + cd (ai ∈ Z2)

Definition

A p-chain in K is a formal sum of p-simplices: c =
∑
i

aiσi ; sum is

the addition in a ring, Z,Z2,R etc.
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Topological Data Analysis

Boundary

Definition

A p-boundary ∂p+1c of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices
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Topological Data Analysis

Boundary

Definition

A p-boundary ∂p+1c of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices

2-chain bcd + bde (under Z2)
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Topological Data Analysis

Boundary

Definition

A p-boundary ∂p+1c of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices

1-boundary bc +cd +db+bd +de +eb = bc +cd +de +eb = ∂2(bcd +bde)

(under Z2)
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Topological Data Analysis

Cycles

Definition

A p-cycle is a p-chain that has an empty boundary

Each p-boundary is a p-cycle: ∂p ◦ ∂p+1 = 0
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Topological Data Analysis

Groups

Definition

The p-chain group Cp(K) of K is formed by p-chains under addition
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The boundary operator ∂p induces a homomorphism

∂p : Cp(K)→ Cp−1(K)

Definition

The p-cycle group Zp(K) of K is the kernel ker ∂p
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The p-boundary group Bp(K) of K is the image im ∂p+1
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Topological Data Analysis

Homology

Definition

The p-dimensional homology group is defined as
Hp(K) = Zp(K)/Bp(K)
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Definition

The p-dimensional homology group is defined as
Hp(K) = Zp(K)/Bp(K)

Definition

Two p-chains c and c ′ are homologous if c = c ′ + ∂p+1d for some
chain d

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles
Dey (2014) Computational Topology CCCG 14 36 / 55



Topological Data Analysis

Complexes

Let P ⊂ Rd be a point set

B(p, r) denotes an open d-ball centered at p with radius r
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σ ∈ Cr (P) iff Vert(σ) ⊆ P and ∩p∈Vert(σ)B(p, r/2) 6= 0

Definition

The Rips complex Rr (P) is a simplicial complex where a simplex
σ ∈ Rr (P) iff Vert(σ) are within pairwise Euclidean distance of r

Proposition

For any finite set P ⊂ Rd and any r ≥ 0, Cr (P) ⊆ Rr (P) ⊆ C2r (P)
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Topological Data Analysis

Point set P
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Topological Data Analysis

Balls B(p, r/2) for p ∈ P
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Topological Data Analysis

Čech complex Cr (P)
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Topological Data Analysis

Rips complex Rr (P)
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Topological Data Analysis

Topological persistence

r(x) = d(x ,P): distance
to point cloud P

Sublevel sets r−1[0, a] are
union of balls

Evolution of the sublevel
sets with increasing a–left
hole persists longer

Persistent homology
quantizes this idea
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Topological Data Analysis

Persistent Homology

f : T→ R; Ta = f −1(−∞, a], the
sublevel set

Ta ⊆ Tb for a ≤ b provides inclusion
map ι : Ta → Tb

Induced map ι∗ : Hp(Ta)→ Hp(Tb)
giving the sequence

0→ Hp(Ta1)→ Hp(Ta2)→ · · · → Hp(Tan)→ Hp(T)

Persistent homology classes: Image of
f ij
p : Hp(Tai

)→ Hp(Taj
)
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Topological Data Analysis

Continuous to Discrete

Replace T with a simplicial complex
K := K (T)

Union of balls with its nerve Čech
complex
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Topological Data Analysis

Continuous to Discrete

Replace T with a simplicial complex
K := K (T)

Union of balls with its nerve Čech
complex

Evolution of sublevel sets becomes
Filtration:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

0→ Hp(K1)→ · · · → Hp(Kn) = Hp(K ).

Birth and Death of homology classes

(a)
(b)

(c) (d)
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Topological Data Analysis

Bar Codes

birth-death and bar codes
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Topological Data Analysis

Persistence Diagram

a bar [a, b] is represented as a point in the plane

incorporate the diagonal in the diagram Dgm p(f )

Birth

Death
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Topological Data Analysis

Stability of Persistence Diagram

Bottleneck distance (C all bijections)

dB(Dgm p(f ),Dgm p(g)) := inf
c∈C

sup
x∈Dgm p(f )

‖x − c(x)‖

Theorem (Cohen-Steiner,Edelsbrunner,Harer 06)

dB(Dgm p(f ),Dgm p(g)) ≤ ‖f − g‖∞
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Topological Data Analysis

Back to Point Data

dT be the distance function from the space T.

dP be the distance function from sample P
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Topological Data Analysis

Issues: Choice of Complexes

Čech complexes are difficult to compute

Most literature considers Rips complexes, but they are Huge

Sparsified Rips complex [Sheehy 12]

Graph Induced Complex (GIC) [D.-Fang-Wang 13]
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Topological Data Analysis

Issues: Choice of Complexes

Čech complexes are difficult to compute

Most literature considers Rips complexes, but they are Huge

Sparsified Rips complex [Sheehy 12]

Graph Induced Complex (GIC) [D.-Fang-Wang 13]

Rr(P ) Rr′(Q) Gr(P, Q)
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Topological Data Analysis

Issues: Filtration Maps

Zigzag inclusions[Carlsson-de Silva-Morozov 09]

K1 ⊆ K2 ⊆ K3 ⊆ . . . ⊆ Kn

Simplicial maps instead of inclusions [D.-Fan-Wang 14]

K
f1−→ K1

f2−→ K2 · · · fn−→ Kn = K ′

Efficient algorithm for Zigzag simplicial maps?
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Further Problems

Further Issues/Problems

What about stabilty when domains aren’t same.

Interleaving [Chazal-Oudot 08], [CCGGO08]

Scalar field data analysis [CGOS 09]

Computing topological structures

Reeb graphs [C-MEHNP 03, D.-Wang 11]
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Further Problems

Optimal Homology Basis Problem

Compute an optimal set of cycles forming a basis

First solution for surfaces: Erickson-Whittlesey [SODA05]

General problem NP-hard: Chen-Freedman [SODA10]

H1 basis for simplicial complexes: D.-Sun-Wang [SoCG10]
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Further Problems

Optimal Localization

Compute an optimal cycle in a given class.

Surfaces: Colin de Verdière-Lazarus [DCG05], Colin de
Verdière-Erickson [SODA06], Chambers-Erickson-Nayyeri
[SoCG09]

General problem NP-hard: Chen-Freedman [SODA10]

Special cases: Dey-Hirani-Krishnamoorthy [STOC10]
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Further Problems

Conclusions

Reconstructions :

non-smooth surfaces remain open
high dimensions still not satisfactory

Mesh Generation :

piecewise smooth surfaces, complexes

Data Analysis :

functions on spaces
connecting to data mining, machine learning.
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Thank

Thank You
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