
A Fast Algorithm for Computing Zigzag Representatives

Tamal K. Dey∗ Tao Hou† Dmitriy Morozov‡

Abstract

Zigzag filtrations of simplicial complexes generalize the usual filtrations by allowing simplex
deletions in addition to simplex insertions. The barcodes computed from zigzag filtrations encode
the evolution of homological features. Although one can locate a particular feature at any index
in the filtration using existing algorithms, the resulting representatives may not be compatible
with the zigzag: a representative cycle at one index may not map into a representative cycle
at its neighbor. For this, one needs to compute compatible representative cycles along each
bar in the barcode. Even though it is known that the barcode for a zigzag filtration with m
insertions and deletions can be computed in O(mω) time, it is not known how to compute the
compatible representatives so efficiently. For a non-zigzag filtration, the classical matrix-based
algorithm provides representatives in O(m3) time, which can be improved to O(mω). However,
no known algorithm for zigzag filtrations computes the representatives with the O(m3) time
bound. We present an O(m2n) time algorithm for this problem, where n ≤ m is the size of the
largest complex in the filtration.

∗Department of Computer Science, Purdue University. tamaldey@purdue.edu
†Department of Computer Science, University of Oregon. taohou@uoregon.edu
‡Lawrence Berkeley National Laboratory. dmitriy@mrzv.org

1 Introduction

Persistent homology and its computation have been a central theme in topological data analysis
(TDA) [6, 7, 13]. Using persistent homology, one computes a signature called a barcode from data
which is presented in the form of a growing sequence of simplicial complexes called a filtration.
However, the barcode itself does not provide an avenue to go back to the data. For that, we need to
compute a representative for each bar (interval) in the barcode, that is, a cycle whose homology
class exists exactly over the duration of the bar. In other words, we aim to compute the interval
modules themselves in the interval decomposition [9] instead of only the intervals.

In this paper, we consider computing representatives for the bars where the given filtration
is no longer monotonically growing but may also shrink, resulting in what is known as a zigzag
filtration. A number of algorithms have been proposed for computing the barcode from a zigzag
filtration [2, 5, 6, 10, 11, 12]. All of them maintain pointwise representatives, i.e., a homology basis
for every step in the filtration, but they do not compute the barcode representatives, i.e., a set of
compatible pointwise bases, where elements of one basis are matched to the elements of its neighbors
(see Definition 4). Solving this problem is the main topic of this paper.

The barcode representatives are not readily available during the zigzag computation because
basis updates at any point may require changes both in the future and in the past to maintain
the matching. To make this precise, let m be the number of additions and deletions and n be the
maximum size of complexes in a zigzag filtration. The challenge is rooted in the fact that a barcode
representative for a zigzag filtration (henceforth also called a zigzag representative) may consist of
O(m) different cycles [10] for each of the O(m) indices in a bar (see Definition 4). Consequently, the
space complexity for the straightforward way of maintaining a zigzag representative is O(mn). This
is in contrast to a non-zigzag representative which consists of the same cycle over the entire bar.
One obvious way to obtain the zigzag representatives is to adapt the O(mn2) algorithm proposed by
Maria and Oudot [10] which directly targets representatives. But then, the complexity increases to
O(m2n2), which stems from the need of summing two representatives each consisting of O(m) cycles.
In total these summations over the entire course of the algorithm incur an O(m2n2) cost. To see this,
notice that the algorithm in [10] is based on summations of bars (and their representatives) where
each bar is associated with a single cycle from the O(m) cycles in its representative. The algorithm
performs O(mn) summations of bars and the associated cycles resulting in an O(mn2) complexity.
To adapt this algorithm for computing representatives, one instead maintains the full representative
consisting of O(m) cycles for each bar. Because a summation of two bars now costs O(mn) time,
the O(mn) bar summations in the algorithm [10] then result in an O(m2n2) complexity.

It has remained tantalizingly difficult to design an algorithm that brings down the theoretical
complexity to O(m3), matching the complexity for non-zigzag filtrations [3, 12], while remaining
practical. As mentioned already, the bottleneck of the computation lies in the summation of two
representatives each consisting of O(m) cycles. In this paper, we present an O(m2n) algorithm
which overcomes the bottleneck by compressing the representatives into a more compact form each
taking only O(m) space instead of O(mn) space. A preliminary implementation of our O(m2n)
algorithm shows its practicality (see Section 5).

Figure 1: an illustrative example. The compression of representatives in our algorithm is
made possible by adopting some novel constructs for computing zigzag persistence whose ideas are
illustrated in Figure 1 (see also the beginning of Section 3 for more explanations; formal definitions
of concepts mentioned below are provided in Section 2):

• First, we observe that the barcode of the regular (homology) zigzag module interconnects with

1

the barcode of another module, namely, the boundary zigzag module, which arises out of the
boundary groups for complexes in the input zigzag filtration. To see the interconnection, let
z denote the bold cycle in K2 (and its continuation in the complexes K3−K5) in Figure 1. In
Figure 1 (top), the bar [2, 2] for the homology module born at K2 and dying entering K3 (hence
drawn as an orange dot at index 2) interconnects with the bar [3, 5] for the boundary module
born at K3 and dying entering K6 as the cycle z representing the bar [2, 2] becomes a boundary
in K3. The bar [3, 5], which is also represented by z, in turn interconnects with the bar [6, 6] for
the homology module as z becomes a non-boundary at K6.

• Second, we observe that the seamless transition between barcodes of the two modules allows
us to define a construct called wires each of which is a single cycle with a fixed birth index,
presumably extending indefinitely to infinity. A wire may be a boundary cycle (thus called
a boundary wire) with its birth index coinciding with a birth in the boundary module, or a
non-boundary cycle (thus called a non-boundary wire) with its birth index coinciding with a
birth in the homology module. For the example in Figure 1, we have three non-boundary wires
(orange) and two boundary wires (blue) subscripted by the birth indices with respective cycles
also being illustrated.

A collection of such wires forms what we call a bundle for a zigzag bar. In Figure 1, we show the
bundle for the longest bar b = [1, 7]. One surprising fact we find is that representative cycles of
a bar can be recovered from index-wise summations of the wire cycles in its bundle even though
a wire cycle involved in the summation may not be present in each complex over the bar (see
Section 3). Figure 1 (bottom) shows the representative cycles of the bar b obtained by summing
three wires {w1, w3, w4} even though the cycles for wires w1, w4 are not present in K5−K7.

At each index in the filtration, there can be no more than one wire with birth at that index.
Hence, each bundle is represented as a set of O(m) wire indices in our algorithm. The summations
among the bundles are then less costly and can be done in O(m) time because each entails doing
a symmetric sum among O(m) wire indices rather than the actual O(m) cycles. When a bar is
completed, its actual representative is read from summing the cycles in its bundle. Wires and
bundles allow our algorithm to have a space complexity of O(mn) whereas the algorithm for
computing representatives adapted from [10] has a space complexity of O(mn2).

Our compression using wires is also made possible by adopting a new way of computing zigzag
barcodes, which processes the filtration from left to right similar to the algorithm in [2] but directly
targets maintaining the zigzag representatives over the course of the computation. This is also
in contrast to the other representative-based algorithm [10] which always maintains a reversed
non-zigzag filtration at the end. Section 3 briefly describes the idea.

2 Core definitions

Throughout, we assume a simplex-wise zigzag filtration F as input to our algorithm:

F : ∅ = K0
σ0←−→ K1

σ1←−→ · · · σm−1←−−−→ Km, (1)

in which each Ki is a simplicial complex and each arrow Ki
σi←→ Ki+1 is either a forward inclusion

Ki
σi
↪−−→ Ki+1 (an addition of a simplex σi) or a backward one Ki

σi←−−↩ Ki+1 (a deletion of a
simplex σi). Notice that assuming F to be simplex-wise and K0 = ∅ is a standard practice in the
computation of non-zigzag persistence [8] and its zigzag version [2, 10]. Also notice that any zigzag
filtration in general can be converted into a simplex-wise version, and the representatives computed

2

b

Bars

Wires
w1

w4

w2

w6

w3

w′
1

Bundle for bar b
w1

w3
w4

Representative for bar b

K1 K2 K3 K4 K5 K6 K7

↪→ ←↩ ←↩ ←↩↪→ ←↩

++

↪→ ←↩ ←↩ ←↩↪→ ←↩

z

Figure 1: An example of wires, bundles, and the boundary zigzag module which are major constructs
leading to the O(m2n) algorithm. Orange and blue colors are used for the constructs of homology
and boundary zigzag modules respectively.

for this simplex-wise version can also be easily mapped to the ones for the original filtration. We let
Fi denote the part of F up to index i, that is,

Fi : ∅ = K0
σ0←−→ K1

σ1←−→ · · · σi−1←−−→ Ki. (2)

Notice that F = Fm. The total complex K of F is the union of all complexes in F. Let n be the
maximum size of complexes in F (note that generally n is not equal to the size of K).

For a complex Ki, we consider its homology group H(Ki) (with Z2 coefficients) over all degrees,
which is the direct sum of Hp(Ki) for all p (so that the dimension of H(Ki) equals the sum of the
dimensions of all Hp(Ki)’s). Accordingly, C(Ki), Z(Ki), and B(Ki) denote the chain, cycle, and
boundary groups of Ki over all degrees respectively. Since we take Z2 as coefficients, chains or cycles
in this paper are also treated as sets of simplices. We also consider any chain c ∈ C(Ki) to be a chain
in K in general and do not differentiate the same simplex appearing in different complexes in F.
For example, suppose that all simplices in c ∈ C(Ki) also belong to a Kj , we then have c ∈ C(Kj).

3

Taking the homology functor on Fi we obtain the following (homology) zigzag module:

H(Fi) : H(K0)
ψ∗
0←−→ H(K1)

ψ∗
1←−→ · · ·

ψ∗
m−1←−−−→ H(Ki).

Similarly, taking the boundary functor on Fi we obtain the (boundary) zigzag module:

B(Fi) : B(K0)
ψ#
0←−→ B(K1)

ψ#
1←−→ · · ·

ψ#
m−1←−−−→ B(Ki).

Each ψ∗
j : H(Kj)↔ H(Kj+1) in H(Fi) is a linear map induced by inclusion between homology groups

whereas each ψ#
j : B(Kj)↔ B(Kj+1) in B(Fi) is an inclusion between chain groups. By [1, 9], for

some index sets ΛH and ΛB, H(Fi) and B(Fi) have decompositions of the form

H(Fi) =
⊕
k∈ΛH

I[bk,dk] and B(Fi) =
⊕
k∈ΛB

I[bk,dk],

in which each I[bk,dk] is an interval module over the interval [bk, dk] ⊆ {0, 1, . . . , i}. The set of intervals
PersH(Fi) := {[bk, dk] | k ∈ ΛH} for H(Fi) and the set of intervals PersB(Fi) := {[bk, dk] | k ∈ ΛB}
for B(Fi) are called the homology barcode and boundary barcode of Fi respectively. In this paper,
we introduce the computation of the intervals and representatives for B(F) as an integral part
of the computation of those for H(F), which is critical to achieving the O(m2n) complexity. We
similarly define a barcode PersHp (Fi) for the module Hp(Fi) over each degree p, so that PersH(Fi) =⊔
p Pers

H
p (Fi). Notice that we can also define the barcode PersBp (Fi) where Pers

B(Fi) =
⊔
p Pers

B
p (Fi).

Definition 1 (Homology birth/death indices). Since Fi is simplex-wise, each map ψ∗
j in H(Fi) is

either injective with a 1-dimensional cokernel or surjective with a 1-dimensional kernel but cannot be
both. The set of homology birth indices of Fi, denoted PH(Fi), and the set of homology death indices
of Fi, denoted NH(Fi), are constructively defined as follows: for each forward ψ∗

j : H(Kj)→ H(Kj+1),

we add j + 1 to PH(Fi) if ψ
∗
j is injective and add j to NH(Fi) otherwise. Also, for each backward

ψ∗
j : H(Kj)← H(Kj+1), we add j + 1 to PH(Fi) if ψ

∗
j is surjective and add j to NH(Fi) otherwise.

Finally, we add r copies of i to NH(Fi) where r is the dimension of H(Ki).

Remark 2. Technically speaking, when we add r copies of i to NH(Fi), it becomes a multi-set.

Definition 3 (Boundary birth/death indices). Similarly as above, we define the boundary birth
indices PB(Fi) and boundary death indices NB(Fi) of Fi by considering the module B(Fi). Notice

that ψ#
j is always injective. So, for each forward ψ#

j : B(Kj)→ B(Kj+1) that is not surjective, we

add j + 1 to PB(Fi). Also, for each backward ψ#
j : B(Kj)← B(Kj+1) that is not surjective, we add

j to NB(Fi). Finally, we add q copies of i to NB(Fi) where q is the dimension of B(Ki).

Whenever ψ∗
j is injective, ψ#

j is an identity map; whenever ψ∗
j is surjective, ψ#

j is not surjective.

Hence, PH(Fi) ∩ PB(Fi) = ∅ while (different copies of) i could belong to both NH(Fi) and NB(Fi).
Also notice that [b, d] ∈ PersH(Fi) implies that b ∈ PH(Fi) and d ∈ NH(Fi) (similar facts hold for
[b, d] ∈ PersB(Fi)). We provide the definition of homology representatives (see Maria and Oudot [10])
as follows and then adapt it to define boundary representatives:

Definition 4 (Homology representatives). Consider a filtration Fi and let [b, d] ⊆ [0, i] be an
interval where b ∈ PH(Fi) (notice that b > 0 because K0 = ∅ by assumption) and d ∈ NH(Fi). A
sequence of cycles rep = {zα ∈ Z(Kα) |α ∈ [b, d]} is called a homology representative (or simply
representative) for [b, d] if for every b ≤ α < d, either ψ∗

α([zα]) = [zα+1] or ψ
∗
α([zα+1]) = [zα] based

on the direction of ψ∗
α. Furthermore, we have:

4

Birth condition: If ψ∗
b−1 : H(Kb−1) → H(Kb) is forward (thus being injective), zb ∈ Z(Kb) \

Z(Kb−1); if ψ∗
b−1 : H(Kb−1) ← H(Kb) is backward (thus being surjective), then [zb] is the

non-zero element in ker(ψ∗
b−1).

Death condition: If d < i and ψ∗
d : H(Kd) ← H(Kd+1) is backward (thus being injective),

zd ∈ Z(Kd) \ Z(Kd+1); if d < i and ψ∗
d : H(Kd) → H(Kd+1) is forward (thus being surjective),

then [zd] is the non-zero element in ker(ψ∗
d).

Remark 5. By definition, all zα’s in a homology representative rep are p-cycles for the same p, so
we can also call rep a p-th homology representative.

Definition 6 (Boundary representatives). Let [b, d] ⊆ [0, i] be an interval where b ∈ PB(Fi) and
d ∈ NB(Fi). A sequence of cycles rep = {zα ∈ B(Kα) |α ∈ [b, d]} is called a boundary representative

(or simply representative) for the interval [b, d] if for every b ≤ α < d, either zα+1 = ψ#
α (zα)

def
= zα

or zα = ψ#
α (zα+1)

def
= zα+1 based on the direction of ψ#

α . Furthermore, we have:

Birth condition: The cycle zb satisfies that zb ∈ B(Kb) \ B(Kb−1) where ψ
#
b−1 : B(Kb−1)→ B(Kb)

is forward because b ∈ PB(Fi).

Death condition: If d < i, then zd satisfies that zd ∈ B(Kd) \ B(Kd+1) where the map ψ#
d :

B(Kd)← B(Kd+1) is backward because d ∈ NB(Fi).

Remark 7. In the sequence rep in Definitions 4 and 6, we also call zα a cycle at index α.

The following Proposition (proof in Appendix A) is used later for proofs and algorithms.

Proposition 8. Let zB1 , . . . , z
B
k be the cycles at index j in representatives for all intervals of

PersB(Fi) containing j. Similarly, let zH1 , . . . , z
H
k′ be the cycles at index j in representatives for all

intervals of PersH(Fi) containing j. Then,
{
[zH1], . . . , [zHk′]

}
is a basis of H(Kj),

{
zB1 , . . . , z

B
k

}
is a

basis of B(Kj), and
{
zH1 , . . . , z

H
k′ , z

B
1 , . . . , z

B
k

}
is a basis of Z(Kj).

We then define summations of representatives for intervals ending at i. These summations
respect a total order ‘≺’ on birth indices [10], that is, a representative for [b, i] can be added to a
representative for [b′, i] if and only if b ≺ b′ (see Figure 2).

Definition 9 (Total order on birth indices). For two birth indices b, b′ ∈ PH(Fi) ∪ PB(Fi), we have
b ≺ b′ if one of the following holds:

(i) b ∈ PB(Fi) and b
′ ∈ PH(Fi);

(ii) b, b′ ∈ PB(Fi) and b < b′;

(iii) b, b′ ∈ PH(Fi), b < b′, and Kb′−1 ↪−→ Kb′ is a forward inclusion;

(iv) b, b′ ∈ PH(Fi), b
′ < b, and Kb−1 ←−↩ Kb is a backward inclusion.

Definition 10 (Representative summation). For two intervals [b, i], [b′, i] ∈ PersHp (Fi) ∪ PersBp (Fi)
so that b ≺ b′, let rep = {zα | α ∈ [b, i]} and rep′ = {z′α | α ∈ [b′, i]} be p-th representatives for
[b, i] and [b′, i] respectively. The sum of rep and rep′, denoted rep ⊞ rep′, is a sequence of cycles
{zα | α ∈ [b′, i]} so that

• If b < b′ then zα = zα + z′α for each α; (Figure 2: (i) top, (ii), (iii))

5

⇓ =
σb′−1

↪−−−→
zb′ + z′b′ zi + z′i· · ·

zb · · ·
σb−1←−→

=

z′b−1 z′iz′b · · ·z′b′ · · ·
σb′−1←−→

σb−1←−−↩
zizb · · ·

z′b−1 zi + z′izb + z′b · · ·z′b′ · · ·
σb′−1←−→

σb′−1

↪−−−→
z′b′ z′i· · ·

zb′ zi· · ·

⇓

(iii)

(iv)

(i)

(ii)

⇓ =
σb′−1

↪−−−→
zb′ + z′b′ zi + z′i· · ·

zb · · ·
σb−1

↪−−→

σb′−1

↪−−−→
z′b′ z′i· · ·

zb′ zi· · ·

⇓ =
σb′−1←−→

zb′ + z′b′ zi + z′i· · ·

zb · · ·
σb−1

↪−−→

=

z′b−1 z′iz′b · · ·z′b′ · · ·
σb′−1←−→

σb−1

↪−−→
zizb · · ·

z′b−1 zi + z′izb + z′b · · ·z′b′ · · ·
σb′−1←−→

σb′−1←−→
z′b′ z′i· · ·

zb′ zi· · ·

⇓

Figure 2: Illustration of how summations of representatives for intervals respect the order ‘≺’ for the
different cases in Definition 9, with the double arrows indicating the directions of the summations.
Boundary module intervals are shaded blue while homology module intervals are shaded orange.

6

• If b′ < b, then zα = z′α for α < b and zα = zα + z′α for α ≥ b. (Figure 2: (i) bottom, (iv))

Proposition 11. The sequence rep ⊞ rep′ in Definition 10 is a p-th representative for [b′, i] ∈
PersHp (Fi) ∪ PersBp (Fi).

Proof. See Appendix B.

Remark 12. From Figure 2, it is not hard to see that the representative resulting from the
summation in Definition 10 is still a valid representative for the interval. For example, in case (iii)
of Figure 2, the resulting representative is valid because zb′ + z′b′ still contains σb′−1 so that the
birth condition in Definition 4 still holds.

We then define wires and bundles as mentioned in Section 1 which compresses the zigzag
representatives in a compact form.

Definition 13 (Wire). A wire is a cycle ωi ∈ Z(Ki) with a starting index i ∈ PH(F) ∪ PB(F) s.t.

(i) Ki−1 ↪−→ Ki is forward and ωi ∈ Z(Ki) \ Z(Ki−1), or

(ii) Ki−1 ←−↩ Ki is backward and ωi ∈ B(Ki−1) \ B(Ki), or

(iii) Ki−1 ↪−→ Ki is forward and ωi ∈ B(Ki) \ B(Ki−1).

We also say that ωi is a wire at index i. The wires satisfying (i) or (ii) are also called non-boundary
wires whereas those satisfying (iii) are called boundary wires.

Remark 14. In cases (i) and (ii) above, i ∈ PH(F), whereas in case (iii), i ∈ PB(F).

Definition 15 (Wire bundle). A wire bundle W (or simply bundle) is a set of wires with distinct
starting indices. The sum of W with another wire bundle W ′, denoted W ⊞W ′, is the symmetric
difference of the two sets. We also call W a boundary bundle if W contains only boundary wires
and call W a non-boundary bundle otherwise.

As evident later, given an input filtration F, a wire at an index i is fixed in our algorithm, and
we always denote such a wire as ωi. Hence, a wire bundle is simply stored as a list of wire indices in
our algorithm. Since there are O(m) indices in F, a bundle summation takes O(m) time.

Definition 16. Let [b, d] ∈ PersH(Fi) ∪ PersB(Fi). A wire bundle W is said to generate a represen-
tative for [b, d] (or simply represents [b, d]) if the sequence of cycles {zα =

∑
ωj∈W,j≤α ωj | α ∈ [b, d]}

is a representative for [b, d].

Remark 17. In the sum zα =
∑

ωj∈W,j≤α ωj in the above definition, we consider each ωj and the

sum zα as a cycle in the total complex K. Notice that if W generates a representative for [b, d], we
may have that ωj ̸∈ Z(Kα) for a ωj in the sum, but we still can have zα ∈ Z(Kα) due to cancellation
of simplices in the symmetric difference. See Figure 1.

Figure 1 and 4 provide examples for representatives generated by bundles. Notice that since we
always consider bundles that generate representatives in this paper, bundle summations also respect
the order ‘≺’ in Definition 9. The main benefits of introducing wire bundles are that (i) they can be
summed efficiently and (ii) explicit representatives can be generated from them also efficiently (see
the Algorithm ExtRep below for the detailed process).

7

Algorithm (ExtRep: Extracting representative from bundle). Let W = {ωι1 , . . . , ωιℓ} be a wire
bundle where ι1 < · · · < ιℓ and let rep be the representative for an interval [b, d] generated by W .
We can assume ιℓ ≤ d because wires in W with indices greater than d do not contribute to a cycle in
rep. Moreover, let ιk be the last index in ι1, . . . , ιℓ no greater than b. We have that z =

∑ιk
j=ι1

ωj
is the cycle at indices [b, ιk+1) in rep. We then let λ iterate over k + 1, . . . , ℓ− 1. For each λ, we
add ωιλ to z, and the resulting z is the cycle at indices [ιλ, ιλ+1) in rep. Finally, we add ωιℓ to z,
and z is the cycle at indices [ιℓ, d] in rep. Since at every λ ∈ [k + 1, ℓ], we add at most one cycle to
another cycle, the whole process involves O(m) chain summations.

3 Representatives as wire bundles

We first give a brief overview of our algorithm to illustrate how representatives in zigzag modules
can be compactly stored as wire bundles (see Section 4 for details of the algorithm). Consider
computing only the homology barcode PersH(F). Our algorithm in Section 4 stems from an idea for
computing PersH(F) that directly maintains representatives for the intervals: Before each iteration
i, assume that we are given intervals in PersH(Fi) and their representatives. The aim of iteration i

is to compute those for PersH(Fi+1) by processing the inclusion Ki
σi←→ Ki+1. For the computation,

we only need to pay attention to those active intervals in PersH(Fi) ending with i because the
non-active intervals and their representatives have already been finalized. Consider an interval
[b, i] ∈ PersH(Fi) with a representative rep. If the last cycle zi (at index i) in rep resides in Ki+1,
the interval [b, i] ∈ PersH(Fi) can be directly extended to [b, i + 1] ∈ PersH(Fi+1) along with the
representative where the cycle at i+ 1 equals zi. Otherwise, if zi ⊈ Ki+1, we perform summations
on the representatives to modify zi in rep so that zi becomes contained in Ki+1 and [b, i] can be
extended.

In iteration i, whenever the inclusion Ki ↔ Ki+1 generates a new birth index i+ 1 ∈ PH(Fi+1),
we have a new active interval [i+1, i+1] ∈ PersH(Fi+1). We assign a representative repi+1 = {zi+1}
to [i+ 1, i+ 1] where zi+1 only needs to satisfy the birth condition in Definition 4. Suppose that
[i+ 1, i+ 1] ∈ PersH(Fi+1) is directly extended to [i+ 1, k] ∈ PersH(Fk) in later iterations without
its representative repi+1 = {zα | α ∈ [i+ 1, k]} being modified by representative summations. We
then have that zα = zi+1 for each α, which means that repi+1 is generated by the wire ωi+1 := zi+1

(see Figure 3.). Suppose that we have a similar interval [j + 1, k] ∈ PersH(Fk) with a representative
repj+1 also generated by a single wire ωj+1, where j +1 > i+1 and Kj ←↩ Kj+1 is backward. Then,
j + 1 ≺ i+ 1 according to Definition 9, and we can sum repj+1 to repi+1 to get a new representative
for [i + 1, k]. We have that the new representative is generated by the bundle {ωi+1, ωj+1} as
illustrated in Figure 3.

In the computation of PersH(F), a representative can only be changed due to a direct extension
or a representative summation after being created. It is easy to verify that a representative is
generated by a bundle after being created and that a representative is still generated by a bundle
after being extended given that it is generated by a bundle before the extension. We then only need
to show that rep⊞ rep′ is still generated by a bundle if two representatives rep and rep′ are generated
by bundles. Figure 4 provides an example involving two intervals [2, 10], [3, 10] whose representatives
are generated by the bundles {ω2, ω5, ω7}, {ω3, ω7} respectively. The resulting representative of the
summation is generated by the bundle {ω2, ω3, ω5} which is the symmetric difference. In general,
for two bundles W and W ′ generating representatives rep and rep′ respectively, it could happen that
the representative rep∗ generated by W ⊞W ′ is not equal to rep⊞ rep′. However, we have that each
cycle in rep∗ is always homologous to the corresponding cycle in rep⊞ rep′. The rest of the section
formally justifies the claim.

8

=

σi←→

⇓

σj←−↩

ωj+1

j + 1 k

k

ωi+1

i+ 1

σi←→
k

ωi+1

i+ 1

ωj+1

[)[]ωi+1 + ωj+1ωi+1

Figure 3: Summing the two representatives generated by a single wire results in a new representative
generated by a bundle containing the two wires.

ω5

)[ω2 + ω5ω2)[ω2 + ω5 + ω7]

ω7

10

ω3

3
[ω3)[ω3 + ω7]

ω7

10

ω2

2
[

⇓

ω5

ω3

3
ω2 + ω3 + ω5]

10

ω2

ω2 + ω3)[[

=

5 7

7

5

Figure 4: Summing two representatives generated by the bundles {ω2, ω5, ω7}, {ω3, ω7} respectively
results in a new representative generated by the bundle {ω2, ω3, ω5}.

The reader may wonder why we need the boundary module and its representatives at all.
While theoretically PersH(F) and the bundles generating the representatives can be computed
independently without considering the boundary module B(F), introducing B(F) helps us achieve
the O(m2n) time complexity. See Remark 27 in Section 4 for a detailed explanation.

For any interval in PersH(Fi) ∪ PersB(Fi), our algorithm maintains a wire bundle generating its
representative. Proposition 18 lets us replace representatives with wire bundles.

Proposition 18. Let [b, i], [b′, i] ∈ PersH(Fi) ∪ PersB(Fi) and b ≺ b′. Suppose that W and W ′

generate a representative for [b, i] and [b′, i] respectively. Then, the sum W ⊞ W ′ generates a
representative for [b′, i] ∈ PersH(Fi) ∪ PersB(Fi).

Before proving Proposition 18, we prove a result (Proposition 20) which says that wires in a
bundle for an interval, which gets added to other intervals, produce only boundaries outside the
interval and those boundaries reside in the respective complexes. This, in turn, helps to prove
Proposition 18.

Each time we extend an interval [b, i− 1] in PersH(Fi−1) (resp. Pers
B(Fi−1)) to [b, i] in PersH(Fi)

(resp. PersB(Fi)), the birth index b does not change. So we denote the bundle associated with [b, i]
as W b in this section. After being created, W b only changes when another bundle W x is added to

9

it because the representative generated by W x needs to be added to the representative for [b, i]
generated by W b.

Definition 19. A boundary bundle W is said to be alive till index b if the cycle zα =
∑

ωj∈W,j≤α ωj
is in B(Kα) for every α ≤ b. Notice that zα is the empty chain if there is no ωj ∈W s.t. j ≤ α.

Proposition 20. Let [b, i] ∈ PersH(Fi) with Kb−1 ←−↩ Kb being backward, or [b, i] ∈ PersB(Fi). Let

W
b ⊆W b be defined as W

b
= {ωj ∈W b | j < b}. Then, W

b
is a boundary bundle alive till b.

Proof. Let X be the set containing each index x ≤ i so that either x ∈ PH(Fi) with backward
Kx−1 ←−↩ Kx, or simply x ∈ PB(Fi). Let W

x
= {ωj ∈W x | j < x} for each x ∈ X.

Let a0, a1, . . . , ak denote the series of all operations that change a bundle W x for x ∈ X, i.e.,
each aj either creates a bundle W x at an index x ∈ X or sums a bundle W y to W x for x ∈ X.
Notice that y is necessarily in X because the bundle summation respects the order ‘≺’ in Definition 9.
We show by induction on the number of operations k that the bundle W x for any x ∈ X maintains
the property that the derived W

x
is a boundary bundle alive till index x. The operation a0 starts a

representative with a single cycle z ∈ Z(Kx) at some index x ∈ X with the wire ωx = z. The bundle
W x then equals {ωx} and the claim is trivially true.

For the inductive step, assume that the claim is true after an operation aℓ for ℓ ≥ 0. If the
the operation aℓ+1 starts a representative, the claim holds trivially. Assume that aℓ+1 adds a
wire bundle W y, y ∈ X, to a W x. By the inductive hypothesis, W

x
= {ωj |ωj ∈ W x, j < x} and

W
y
= {ωj |ωj ∈ W y, j < y} are boundary bundles alive till x and y respectively. There are two

possibilities:
(i) y > x: Let W = W x ⊞ W y. Observe that, for α ≤ x, the cycle zα =

∑
ωj∈W,j≤α ωj =∑

ωj∈W
x
,j≤α ωj +

∑
ωj∈W

y
,j≤α ωj is a boundary in Kα because the two cycles given by the two sums

on RHS are boundaries in Kα. It follows that W = {ωj ∈W | j < x} is a boundary bundle alive till
x and the inductive hypothesis still holds for x.

(ii) y < x: Let W = W x ⊞W y. In this case, y ∈ PersB(F). It can be verified that, since
y ∈ PersB(F), W y is necessarily a boundary bundle because the bundle summations respect the
order in Definition 9. Then, the bundle W ′ = {ωj |ωj ∈W y, j < x} is a boundary bundle alive till x.
By the inductive hypothesis, the wire bundle W

x
is a boundary bundle alive till x. Therefore, the

sum W ′ ⊞W
x
, which is the updated W

x
, is a boundary bundle alive till x; the inductive hypothesis

follows.

Proof of Proposition 18. Let rep = {zα |α ∈ [b, i]}, rep′ = {z′α |α ∈ [b′, i]} be the representatives
generated by W and W ′ respectively. We have the following cases to consider:
Case 1, b < b′: In this case, every cycle zα, α ∈ [b′, i], in rep⊞ rep′ satisfies that zα = zα+ z

′
α. Since

zα =
∑

ωj∈W,j≤α ωj and z
′
α =

∑
ωj∈W ′,j≤α ωj , we have that

zα =
∑

ωj∈W,j≤α
ωj +

∑
ωj∈W ′,j≤α

ωj =
∑

ωj∈W⊞W ′,j≤α
ωj .

This means that W ⊞W ′ generates rep⊞ rep′, a representative for [b′, i] by Proposition 11.
Case 2, b′ < b: We have zα in rep ⊞ rep′ equals z′α for b′ ≤ α < b. However, the wire bundle W
may have wires in W = {ωj ∈W | j < b} whose addition to z′α, b

′ ≤ α < b, may create a different
cycle in the representative generated by W ⊞W ′. By Proposition 20, W is necessarily a boundary
bundle alive till index b. Let z′α be the cycle at index α in the representative generated by W ⊞W ′,
where b′ ≤ α < b. Then, z′α =

∑
ωj∈W⊞W ′,j≤α ωj = z′α +

∑
ωj∈W,j≤α ωj , which means that z′α is

homologous to z′α. Hence, z
′
α can be taken as a cycle in a representative for [b′, i]. This means that

W ⊞W ′ generates a representative for [b′, i].

10

Theorem 21. There is a wire bundle W = {wι | ι ∈ PH(F) ∪ PB(F)} so that a representative for
any [b, d] ∈ PersH(F) ∪ PersB(F) is generated by a wire bundle that is a subset of W .

Proof. We give a constructive proof. Assume inductively that we have constructed a wire bundle
Wi = {wι | ι ∈ PH(Fi) ∪ PB(Fi)} so that for every [b, d] ∈ PersH(Fi) ∪ PersB(Fi), we have a wire
bundleW [b,d] ⊆Wi that generates a representative for [b, d]. The base case when i = 0 holds trivially.
For the inductive step, consider extending the filtration Fi to Fi+1 while assuming the hypothesis
for Fi. Since any [b, d] ∈ PersH(Fi) ∪ PersB(Fi) where d < i is not affected by the extension, we do
not consider them in the arguments below.

Case 1, Ki
σi
↪−−→ Ki+1 and i+1 ∈ PH(Fi+1): Any [b, i] ∈ PersH(Fi) extends to [b, i+1] ∈ PersH(Fi+1)

because the representative cycle zi at index i for [b, i] is also in Ki+1 and thus we choose zi+1 = zi
for [b, i+ 1]. Then, the wire bundle W [b,i] also represents [b, i+ 1]. The same holds for intervals
in PersB(Fi). We also have a new interval [i + 1, i + 1] ∈ PersH(Fi+1). Let a new wire ωi+1 be
any cycle in Z(Ki+1) containing σi. We have that the bundle {ωi+1} generates a representative
for [i+ 1, i+ 1]. Subsets of the wire bundle Wi+1 =Wi ∪ {ωi+1} then represent intervals in both
PersH(Fi+1) and PersB(Fi+1).

Case 2, Ki
σi
↪−−→ Ki+1 and i ∈ NH(Fi): In this case, ∂σi becomes a boundary in Ki+1, an interval

in PersH(Fi) does not extend to i+ 1, and a new interval [i+ 1, i+ 1] in PersB(Fi+1) begins. To
determine the interval [b, i] ∈ PersH(Fi) that does not extend to i + 1, consider the cycle ∂σi
which is in Z(Ki) \ B(Ki). Let [b1, i], . . . , [bk, i] be all the intervals in PersH(Fi) and PersB(Fi) with
representatives rep1, . . . , repk respectively. Let z1, . . . , zk be their cycles at index i respectively. Since
these cycles form a basis for Z(Ki) by Proposition 8, the cycle ∂σi is a linear combination of them.
Without loss of generality (WLOG), assume that after reindexing, ∂σi = z1+ · · ·+ zℓ for some ℓ ≤ k
where b1 ≺ · · · ≺ bℓ. Add the representatives rep1, . . . , repℓ−1 to repℓ to obtain a new representative
rep′ℓ for [bℓ, i] ∈ PersH(Fi) (Proposition 11). The cycle of rep′ℓ at index i is ∂σi by construction
which becomes a boundary in Ki+1. Therefore, rep′ℓ is a representative for [bℓ, i] ∈ PersH(Fi+1)
and W [b1,i] ⊞ · · ·⊞W [bℓ,i] represents [bℓ, i] ∈ PersH(Fi+1) by Proposition 18. All other intervals in
PersH(Ki) and PersB(Ki) extend to PersH(Ki+1) and PersB(Ki+1) with their wire bundles remaining
the same. A new interval [i+1, i+1] ∈ PersB(Fi+1) begins whose representative is given by the cycle
∂σi. So, the wire ωi+1 = ∂σi represents this interval in PersB(Fi+1). Subsets of the wire bundle
Wi+1 =Wi ∪ {ωi+1} then generate representatives for all intervals in PersH(Fi+1) ∪ PersB(Fi+1).

We have two remaining cases whose details are provided in Appendix C. To finish the proof, we
also need to show that the zigzag barcodes we have are correct whenever we proceed from Fi to
Fi+1. Since all intervals we have admit representatives, the correctness of the barcodes follows from
Proposition 24 presented in Section 4.

4 Algorithm

We present the O(m2n) algorithm WiredZigzag computing PersH(F), PersB(F), and their rep-
resentatives based on exposition in the previous section. As mentioned, the general idea of the
algorithm is to maintain a wire bundle for each interval in PersH(F) and PersB(F) so that the
bundle generates a representative for the interval. In each iteration i, the algorithm processes
the inclusion Ki

σi←→ Ki+1 in F starting with i = 0. Before iteration i, we assume that we have
computed all intervals in PersH(Fi) and PersB(Fi) along with the wire bundles. The aim of iteration
i is to compute those for PersH(Fi+1) and PersB(Fi+1). In each iteration i, we have two sets of
active intervals (ending with i) for PersH(Fi) and PersB(Fi) respectively,{

[b̂j , i] ∈ PersH(Fi) | j = 1, 2, . . . , r
}
,

{
[b′k, i] ∈ PersB(Fi) | k = 1, 2, . . . , q

}
11

where r is the dimension of H(Ki) and q is the dimension of B(Ki). All non-active intervals in
PersH(Fi) (resp. Pers

B(Fi)) are automatically carried into PersH(Fi+1) (resp. Pers
B(Fi)) and their

wire bundles do not change. For each homology interval [b̂j , i], we let W j denote the (non-boundary)

bundle maintained for [b̂j , i], and for each boundary interval [b′k, i], we let Uk denote the (boundary)
bundle maintained for [b′k, i]. At the end of the algorithm, we have all intervals and bundles in
PersH(Fm) = PersH(F) and PersB(Fm) = PersB(F). We then generate a representative for each
interval from its bundle.

4.1 Maintenance of pivoted matrices

For the computation, we maintain three 0-1 matrices Z, B, and C where each column represents a
chain s.t. the k-th entry of the column equals 1 iff the simplex with index k belongs to the chain. We
also do not differentiate a matrix column and the chain it represents when describing the algorithm.
In each iteration i, the following invariants hold:

1. Z has r columns each corresponding to an active interval in PersH(Fi) s.t. a column Z[j] equals
the last cycle (at index i) in the representative for [b̂j , i] generated by W j .

2. B has q columns each corresponding to an active interval in PersB(Fi) s.t. a column B[k] equals
the last cycle in the representative for [b′k, i] generated by Uk.

3. C also has q columns s.t. B[k] = ∂(C[k]) for each k.

By Proposition 8, columns in Z and B form a basis of Z(Ki). Throughout the algorithm, we also
always ensure that columns in Z, B, and C form a basis for C(Ki) in each iteration. This can be
inductively proved based on the details of the algorithm presented in this section and Appendix D.
The detailed justification is omitted. Let the pivot of a matrix column be the index of its lowest
entry equal to 1. Our algorithm maintains the invariant that columns in Z and B altogether have
distinct pivots so that getting the coordinates of a cycle in Z(Ki) in terms of the basis represented
by columns of Z and B takes O(n2) time. This is an essential part of our algorithm as demonstrated
in its description below.

Remark 22. Since a bundle is just a set of wire indices and we have no more than one wire born at
each index, we maintain all wires in a matrix representing the containments ωi 7→ {σ ∈ Ki | σ ∈ ωi}.
Similarly, bundles are maintained in a matrix representing the containments W 7→ {ωi ∈W}.

4.2 Detailed processing in iteration i of WiredZigzag

Iteration i of the algorithm has the following processes in different cases (more details such as
how we ensure the distinct pivots in Z,B and how to determine the injective/surjective cases are
provided in Appendix D):

Ki
σi
↪−−→ Ki+1 is forward, ψ∗

i is injective: We have:

Birth in homology module (i+ 1 ∈ PH(F)): An interval [i+ 1, i+ 1] ∈ PersH(Fi+1) active
in the next iteration is created. We find a new non-boundary wire ωi+1 which is a cycle in
Ki+1 containing σi so that condition (i) in Definition 13 is satisfied. We also have a new
non-boundary bundle {ωi+1} for [i+1, i+1] ∈ PersH(Fi+1). (The validity of the new bundle
{ωi+1} can be seen by examining Definitions 4 and 13.) Each [b̂j , i] ∈ PersH(Fi) extends to

be an active interval [b̂j , i + 1] ∈ PersH(Fi+1). Since Z[j] ⊆ Ki+1 because Ki
σi
↪−−→ Ki+1 is

12

forward, W j stays the same for the next iteration. Finally, since ωi+1 is the cycle at index
i+ 1 in the representative generated by the bundle {ωi+1}, we add ωi+1 as a new column to
Z corresponding to the new active interval.

Since B(Ki) = B(Ki+1), each [b′k, i] ∈ PersB(Fi) extends to be an active interval [b′k, i + 1] ∈
PersB(Fi+1) and the bundle Uk stays the same.

Ki
σi
↪−−→ Ki+1 is forward, ψ∗

i is surjective: Both of the following happen:

Death in homology module (i ∈ NH(F)): By performing reductions on ∂σi and the columns
in Z and B, we find a subset of columns (J ⊆ {1, . . . , r}) in Z s.t.∑

j∈J
[Z[j]] = [∂σi] (3)

in H(Ki). Let b̂λ be the maximum birth index in {b̂j | j ∈ J} w.r.t the order ‘≺’. We have

that [b̂λ, i] ceases to be active, i.e., [b̂λ, i] ∈ PersH(Fi+1). LetW
∗ be the sum of all the bundles

in {W j | j ∈ J}. We have that W ∗ generates a representative rep∗ for [b̂λ, i] ∈ PersH(Fi+1).
(To see this, notice that the last cycle in rep∗ is

∑
j∈J Z[j] which is homologous to ∂σi

in Ki, and so the death condition in Definition 4 is satisfied. The validity of W ∗ then
follows from Proposition 18.) For each j ∈ {1, . . . , r} \ {λ}, [b̂j , i] ∈ PersH(Fi) extends to

be [b̂j , i+ 1] ∈ PersH(Fi+1) for which W
j stays the same because Ki

σi
↪−−→ Ki+1 is forward.

Finally, we delete Z[λ] from Z.

Birth in boundary module (i+ 1 ∈ PB(F)): A new active interval [i+1, i+1] ∈ PersB(Fi+1)
is created. We have a new boundary wire ωi+1 = ∂σi satisfying condition (iii) in Definition 13.
We also have a new boundary bundle {ωi+1} for [i+ 1, i+ 1] ∈ PersB(Fi+1). Each [b′k, i] ∈
PersB(Fi) extends to be [b′k, i+ 1] ∈ PersB(Fi+1) for which U

k stays the same. Finally, we
add ∂σi as a new column to B and add a new column containing only σi to C.

Ki
σi←−−↩ Ki+1 is backward, ψ∗

i is surjective: Both of the following happen:

Birth in homology module (i+ 1 ∈ PH(F)): A new active interval [i+1, i+1] ∈ PersH(Fi+1)
is created. We find a new non-boundary wire ωi+1 which is a cycle homologous to ∂σi in
Ki+1 so that condition (ii) in Definition 13 is satisfied. The rest of the processing is the same
as in the previous birth event for the homology module. Notice that each W j stays the same
because Z(Ki) = Z(Ki+1).

Death in boundary module (i ∈ NB(F)): Since σi is not in a cycle in Ki and columns in Z,
B, and C form a basis of C(Ki), at least one column in C contains σi. Whenever there are two
columns C[j], C[k] in C containing σi with b

′
k ≺ b′j , set C[j] = C[j]+C[k], B[j] = B[j]+B[k],

and U j = U j ⊞ Uk to remove σi from C[j]. After this, only one column C[λ] in C contains
σi and we have that [b′λ, i] ∈ PersB(Fi+1) ceases to be active. Notice that Uλ still generates
a representative for [b′λ, i] ∈ PersB(Fi+1). For each k ∈ {1, . . . , q} \ {λ}, [b′k, i] ∈ PersB(Fi)
extends to be [b′k, i+ 1] ∈ PersB(Fi+1) for which U

k now stays the same because σi ̸∈ C[k]
so that B[k] ∈ B(Ki+1). Finally, we delete B[λ] from B and delete C[λ] from C.

Ki
σi←−−↩ Ki+1 is backward, ψ∗

i is injective: We have:

13

Death in homology module (i ∈ NH(F)): We have that at least one column in Z contains
σi. (To see this, notice that σi cannot be in a column in B because σi has no cofaces in Ki.
So σi has to be in a column in Z because Z and B provide a basis for Z(Ki) and there is a
cycle in Ki containing σi.) Whenever there are two columns Z[j], Z[k] in Z with b̂k ≺ b̂j
containing σi, set Z[j] = Z[j] + Z[k] and W j = W j ⊞W k to remove σi from Z[j]. After
this, only one column Z[λ] in Z contains σi and we have that [b̂λ, i] ∈ PersH(Fi+1) ceases
to be active. The remaining processing resembles what is done in the death event for the
boundary module and is omitted. Notice that we also need to remove σi from C and the
details are provided in Appendix D.

Since B(Ki) = B(Ki+1), each [b′k, i] ∈ PersB(Fi) extends to be [b′k, i+ 1] ∈ PersB(Fi+1) and the
bundle Uk stays the same.

Remark 23. We can also consider our algorithm to have a ‘pairing of birth/death points’ structure
as adopted by the algorithm for computing standard persistence [8], where, e.g., b̂1, . . . , b̂r are carried
as ‘unpaired’ birth indices to be paired for the homology module.

The following proposition from [4] (Proposition 9) helps draw our conclusion:

Proposition 24. Let π : PH(Fi)→ NH(Fi) be a bijection. If every b ∈ PH(Fi) satisfies that b ≤ π(b)
and the interval [b, π(b)] has a representative, then PersH(Fi) = {[b, π(b)] | b ∈ PH(Fi)}.

Remark 25. Similar facts hold for PB(Fi), N
B(Fi), and PersB(Fi).

Theorem 26. The barcodes PersH(F) and PersB(F) along with the representatives for the intervals
can be computed in O(m2n) time and O(mn) space.

Proof. First, to see that the algorithm presented above runs in O(m2n) time, we notice that there
are no more than O(n) summations of matrix columns and wire bundles in each iteration, which can
be verified from the details presented in this section and Appendix D. Hence, each iteration runs in
O(mn) time where the costliest steps are the bundle summations. At the end of the algorithm, we
also need to generate a representative for each interval from the maintained bundle. Generating
representatives for all the O(m) intervals can be done in O(m2n) time (see the Algorithm ExtRep).
The O(m2n) complexity then follows. The space complexity follows from maintaining O(m) wires
each being a cycle of size O(n), O(n) bundles for the active intervals each of size O(m), and the
three matrices of size at most O(n2).

Based on Proposition 24, the correctness of the algorithm follows from the fact that wire bundles
always correctly generate representatives for the intervals in our algorithm. The validity of the
wire bundles follows from Proposition 18 (the only way a bundle changes after being created is by
summations) and how we assign a bundle to an interval in the algorithm when an interval is created
or ceases to be active (finalized).

Remark 27. The key to achieving the O(m2n) time complexity are the following two invariants
maintained in our algorithm as described in Section 4.1: (i) pivots for the matrices Z and B are
always distinct and (ii) Z[j] always equals the last cycle in the representative for [b̂j , i] generated
by W j . By invariant (i), we can obtain the sum in Equation (3) in O(n2) time by reductions. By
invariant (ii), we can take the sum W ∗ of the bundles {W j | j ∈ J} based on Equation (3) for the
finalized interval [b̂λ, i] when a death happens in the homology module. It ensures that the last
cycle in the representative for [b̂λ, i] ∈ PersH(Fi+1) generated by W ∗ satisfies the death condition in
Definition 4. As evident in Appendix D, in order to maintain the distinctness of pivots, one cannot
avoid summations of columns in B to columns in Z. Without incorporating the module B(F) and
its bundles, invariant (ii) would not hold when columns in B are summed to columns in Z.

14

5 Experiments

We generate zigzag filtrations using the oscillating Rips [14] which are produced from point clouds of
size 2000 – 4000 sampled from triangular meshes (Space Shuttle from an online repository∗; Bunny
and Dragon from the Stanford Computer Graphics Laboratory). Table 1 lists the running time for
the these filtrations with different maximum dimensions for the simplices taken.

Table 1: Running time for WiredZigzag on several filtrations. All tests were run on a Ubuntu
20.04 server with two AMD EPYC 7513 2.6 GHz CPUs having 32 cores and 1TB memory (program
is single-threaded).

Filtration Max. Dim. Length Runtime

bunny 1 1,012,198 37s

space shuttle 3 5,135,721 5m57s

dragon 4 5,811,311 5m24s

Acknowledgment

T. K. Dey was supported by NSF funds CCF 2049010 and DMS 2301360. T. Hou was supported by
NSF fund CCF 2439255. D. Morozov was supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program, under Contract Number DE-AC02-05CH11231 at Lawrence Berkeley
National Laboratory. The authors would also like to thank Aman Timalsina for implementing a
preliminary version of the software.

References

[1] Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational Mathe-
matics, 10(4):367–405, 2010.

[2] Gunnar Carlsson, Vin de Silva, and Dmitriy Morozov. Zigzag persistent homology and real-
valued functions. In Proceedings of the Twenty-Fifth Annual Symposium on Computational
Geometry, pages 247–256, 2009.

[3] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by
updating persistence in linear time. In Proceedings of the Twenty-Second Annual Symposium
on Computational Geometry, pages 119–126, 2006.

[4] Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time. In
37th International Symposium on Computational Geometry, 2021.

[5] Tamal K. Dey and Tao Hou. Fast computation of zigzag persistence. In 30th Annual European
Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume
244 of LIPIcs, pages 43:1–43:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

∗Ryan Holmes: http://www.holmes3d.net/graphics/offfiles/

15

http://www.holmes3d.net/graphics/offfiles/

[6] Tamal K. Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge
University Press, 2022.

[7] Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American
Mathematical Soc., 2010.

[8] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st Annual Symposium on Foundations of Computer Science,
pages 454–463. IEEE, 2000.

[9] Peter Gabriel. Unzerlegbare Darstellungen I. Manuscripta Mathematica, 6(1):71–103, 1972.

[10] Clément Maria and Steve Y. Oudot. Zigzag persistence via reflections and transpositions.
In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 181–199.
SIAM, 2015.

[11] Clément Maria and Hannah Schreiber. Discrete Morse theory for computing zigzag persistence.
In Algorithms and Data Structures - 16th International Symposium, WADS Proceedings, volume
11646 of Lecture Notes in Computer Science, pages 538–552. Springer, 2019.

[12] Nikola Milosavljević, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology in
matrix multiplication time. In Proceedings of the Twenty-Seventh Annual Symposium on
Computational Geometry, pages 216–225, 2011.

[13] Steve Oudot. Persistence Theory: From Quiver Representations to Data Analysis, volume 209.
AMS Mathematical Surveys and Monographs, 2015.

[14] Steve Y. Oudot and Donald R. Sheehy. Zigzag zoology: Rips zigzags for homology inference.
Foundations of Computational Mathematics, 15(5):1151–1186, 2015.

A Proof of Proposition 8

First, the fact that
{
[zH1], . . . , [zHk′]

}
is a basis of H(Kj) and

{
zB1 , . . . , z

B
k

}
is a basis of B(Kj)

follows from the definition of interval decomposition and representatives. Consider any cycle z in
Z(Kj). Then, there exists a unique αt ∈ {0, 1} for each 1 ≤ j ≤ k′ so that [z] =

∑
t αt[z

H
t]. Then,

[z]+
∑

t αt[z
H
t] = [z+

∑
t αtz

H
t] = 0. It follows that (z+

∑
t αtz

H
t) ∈ B(Kj), which implies that there

exists a unique βℓ for each 1 ≤ ℓ ≤ k so that z +
∑

t αtz
H
t =

∑
ℓ βℓz

B
ℓ . So, z =

∑
t αtz

H
t +

∑
ℓ βℓz

B
ℓ

for unique αj ’s, 1 ≤ t ≤ k′ and βℓ’s, 1 ≤ ℓ ≤ k. It follows that the union of the cycles {zBℓ } and
{zHt } generate Z(Kj). Since k + k′ = dim(B(Kj)) + dim(H(Kj)) = dim(Z(Kj)), they form a basis.

B Proof of Proposition 11

Case 1, b < b′: In this case, every cycle zα, α ∈ [b′, i], in rep⊞ rep′ satisfies that zα = zα + z′α. It
can be verified that we only have three different cases: (i) b ∈ PB(Fi), b

′ ∈ PH(Fi), (ii) b ∈ PB(Fi),
b′ ∈ PB(Fi), and (iii) b ∈ PH(Fi), b

′ ∈ PH(Fi). We take up the case (i) and the proof for the other

cases is similar. Assuming Kα ↪−→ Kα+1 is forward for b′ ≤ α < i, we have ψ#
α (zα) = zα = zα+1

and ψ∗
α([z

′
α]) = [z′α+1]. Therefore, ψ∗

α([zα]) = ψ∗
α([zα]) + ψ∗

α([z
′
α]) = [zα+1] + [z′α+1] = [zα+1] as

required. The same applies when Kα ←−↩ Kα+1 is backward. Finally, we verify that the birth
and death conditions hold for zb′ . First assume that Kb′−1 ↪−→ Kb′ is forward. For the birth

16

condition, we have that zb′ = zb′ + z′b′ ∈ Z(Kb′) \ Z(Kb′−1) because z′b′ ∈ Z(Kb′) \ Z(Kb′−1) and
zb′ = zb′−1 ∈ Z(Kb′) ∩ Z(Kb′−1). One can also verify the death condition for the cycle zi. For a
backward Kb′−1 ←↩ Kb′ , we omit the verification for the birth and death conditions. It follows that
in case (i), rep⊞ rep′ is a homology representative for [b′, i], b′ ∈ PH(Fi), as required. We also have
that the justification for case (ii) and (iii) can be similarly done.

Case 2, b′ < b: In this case, we have zα = z′α for α ∈ [b′, b− 1] and zα = zα + z′α for α ∈ [b, i]. We
have only two possible cases: (i) b ∈ PB(Fi) and b

′ ∈ PH(Fi); (ii) b, b
′ ∈ PH(Fi) and Kb−1 ←−↩ Kb is

backward. Again, using the case analysis, one can show that ψ∗
α([zα]) = [zα+1] if ψ

∗
α is forward and

ψ∗
α([zα+1]) = [zα] otherwise. Moreover, the birth and death conditions can also be verified easily

implying that rep⊞ rep′ in both cases is a homology representative for [b′, i], b′ ∈ PH(Fi).

C Missing cases in the proof of Theorem 21

Case 3, Ki
σi←−−↩ Ki+1 and i + 1 ∈ PH(Fi+1): In this case, an interval [b, i] ∈ PersB(Fi) does not

extend to i+ 1 and a new interval [i+ 1, i+ 1] ∈ PersH(Fi+1) begins. Let [b1, i], . . . , [bk, i] be all the
intervals in PersB(Fi) with representatives rep1, . . . , repk respectively, and let zji be the cycle at index

i in repj for each 1 ≤ j ≤ k. Since zji ∈ B(Ki), z
j
i has a ‘bounding chain’ cj ∈ C(Ki) s.t. z

j
i = ∂(cj).

Assuming after reindexing zj1, . . . , z
j
ℓ are all the cycles whose bounding chains contain σi where

b1 ≺ · · · ≺ bℓ. We add rep1 to rep2, . . . , repℓ to remove σi from their bounding chains. Then, the new
representatives rep′2 := rep1⊞rep2, . . . , rep

′
ℓ := rep1⊞repℓ for the intervals [b2, i], . . . , [bℓ, i] can extend

to i+ 1 because their bounding chains now do not contain σi. By Proposition 18, W [bj ,i] ⊞W [b1,i]

represents [bj , i + 1] ∈ PersB(Fi+1) for 2 ≤ j ≤ ℓ. So, we update W [bj ,i] as W [bj ,i] ⊞W [b1,i] for
2 ≤ j ≤ k. The interval [b1, i] does not extend to i+ 1 with the wire bundle W [b1,i] still representing
[b1, i] ∈ PersB(Fi+1). A new interval [i+ 1, i+ 1] ∈ PersH(Fi+1) begins with a representative {∂σi}
which is generated by a new wire ωi+1 = ∂σi. Subsets of the wire bundle Wi+1 =Wi ∪ {ωi+1} then
generate representatives for all intervals in PersH(Fi+1) ∪ PersB(Fi+1).

Case 4, Ki
σi←−−↩ Ki+1 and i ∈ NH(Fi): In this case, an interval [b, i] ∈ PersH(Fi) does not extend

to i+ 1. Let rep1, . . . , repk be all the representatives for [b1, i], . . . , [bk, i] ∈ PersH(Fi) respectively
whose cycles at index i contain σi. WLOG, assume that b1 ≺ · · · ≺ bk. We cannot extend
these representatives to i + 1 because σi ⊈ Ki+1. We add rep1 to rep2, . . . , repk to obtain new
representatives rep′2, . . . , rep

′
k for the intervals whose cycles at index i now do not contain σi. Similar

to previous cases, the bundle W [bj ,i] ⊞W [b1,i] represents [bj , i+ 1] ∈ PersH(Fi+1) for 2 ≤ j ≤ k. So,
we update W [bj ,i] as W [bj ,i] ⊞W [b1,i] for 2 ≤ j ≤ k. The interval [b1, i] does not extend to i+ 1 and
rep1 remains a representative for [b1, i] ∈ PersH(Fi+1).

D Implementation details

We provide implementation details for the algorithm presented in Section 4. For a column c of the
matrices maintained, we denote the pivot of c as pivot(c). Also, in our algorithm, each simplex σi
added in F is assigned an id i. This means that a simplex has a new id when it is added again
after being deleted. We then present the details for the different cases.

D.1 Forward Ki
σi

↪−→ Ki+1

We need to determine whether ∂σi is already a boundary in Ki. If this is true, a new cycle containing
σi is created in Ki+1 and ψ∗

i is injective; otherwise, the homology class [∂σi] becomes trivial in

17

H(Ki+1) and ψ
∗
i is surjective. To determine this, we perform reductions on ∂σi and the columns in

Z and B to get a sum ∂σi =
∑

j∈J Z[j] +
∑

k∈I B[k]. We then have that ∂σi is a boundary in Ki

iff J = ∅.

D.1.1 ψ∗
i is injective

Since ∂σi =
∑

k∈I B[k], we let the new wire ωi+1 containing σi be ωi+1 = σi +
∑

k∈I C[k], where
∂(σi +

∑
k∈I C[k]) = ∂σi +

∑
k∈I B[k] = 0. Notice that as mentioned, we need to add ωi+1 as a new

column to the matrix Z. Since pivot(ωi+1) = i, columns in Z and B still have distinct pivots.

D.1.2 ψ∗
i is surjective

The subset J derived from the reductions is the same as the subset J in Equation (3) in the
corresponding case of Section 4. So the processing for the corresponding case described in Section 4
can be directly performed. Notice that we add a new column to B in this case. Since the pivot of
the new column of B may conflict with the pivot of another column in Z or B, we use a loop to
repeatedly sum two columns whose pivots are the same until the pivots become distinct again. In
each iteration of the loop, three cases can happen:

1. Two columns B[j] and B[k] have the same pivot: WLOG, assume that b′k ≺ b′j . Let B[j] =

B[j] +B[k], C[j] = C[j] + C[k], and U j = U j ⊞ Uk.

2. Two columns Z[j] and B[k] have the same pivot: We have b′k ≺ b̂j . Let Z[j] = Z[j] +B[k] and
W j =W j ⊞ Uk.

3. Two columns Z[j] and Z[k] have the same pivot: WLOG, assume that b̂k ≺ b̂j . Let Z[j] =
Z[j] + Z[k] and W j =W j ⊞W k.

Since in each iteration of the above loop we change only one column of Z and B, there are at
most two columns of Z and B with the same pivot at any time. Hence, the above loop ends in no
more than n iterations because the pivot of the two clashed columns is always decreasing.

D.2 Backward Ki
σi←−↩ Ki+1

We need to determine whether σi is in a cycle z in Ki. If this is true, z is a cycle in Ki but not in
Ki+1 indicating that ψ∗

i is injective; otherwise, ψ∗
i is surjective. Since columns in Z and B form a

basis for Z(Ki), we only need to check whether σi is in a column in Z or B. Moreover, since σi has
no cofaces in Ki, we have that σi cannot be in a boundary in Ki. Therefore, we only need to check
whether σi is in a column in Z.

D.2.1 ψ∗
i is surjective

Since columns in Z, B, and C form a basis for C(Ki) and σi is not in a column in Z or B, we
have that σi must be in at least one column of C. Since σi ̸∈ Ki+1, we need to remove σi from C
when proceeding from Ki to Ki+1. To do this, we use a loop to repeatedly sum two columns in C
containing σi until only one column in C contains σi. Notice that whenever we sum two columns
in C, we also need to sum the corresponding columns in B and their wire bundles. Hence, the
summations have to respect the order ‘≺’. We use the following loop to perform the summations:

1. α1, . . . , αℓ ← indices of all columns of C containing σi

18

2. sort and rename α1, . . . , αℓ s.t. b
′
α1
≺ · · · ≺ b′αℓ

.

3. c1 ← C[α1]

4. c2 ← B[α1]

5. U ← Uα1

6. for α← α2, . . . , αℓ do:

7. if pivot(B[α]) > pivot(c2) then:

8. C[α]← C[α] + c1

9. B[α]← B[α] + c2

10. Uα ← Uα ⊞ U

11. else:

12. temp c1← C[α]

13. C[α]← C[α] + c1

14. c1 ← temp c1

15. temp c2← B[α]

16. B[α]← B[α] + c2

17. c2 ← temp c2

18. temp U← Uα

19. Uα ← Uα ⊞ U

20. U ← temp U

We always maintain the following invariants for the loop: (i) c2 = ∂(c1); (ii) c2 is the last cycle
(at index i) in the representative generated by U ; (ii) the birth index corresponding to c2 (and
U) is always less than b′α in the total order ‘≺’; (iv) c2 along with B[α2], . . . , B[αℓ] have distinct
pivots. When the loop terminates, we are left with a single column C[λ] := C[α1] in C containing
σi. Notice that B[λ] = ∂(C[λ]) = ∂(C[λ] \ {σi}) + ∂σi, where C[λ] \ {σi} ⊆ Ki+1. This indicates
that B[λ] is homologous to ∂σi in Ki+1. So we let the new wire ωi+1 be B[λ] and need to add ωi+1

as a new column to Z. Notice that we also delete B[λ] and C[λ] from B and C respectively. Since
the pivot of the newly added column in Z may clash with that of another column in B or Z, we
need to perform summations as in Section D.1.2 to make the pivots distinct again. Notice that
assumptions on the matrices Z, B, and C still hold. For example, columns in B still form a basis
for B(Ki+1) because columns in B are still linearly independent and the dimension of B(Ki+1) is
one less than that of B(Ki).

D.2.2 ψ∗
i is injective

We first update C so that no columns of C contain σi. Let Z[k] be a column of Z containing σi.
For each column C[j] of C containing σi, set C[j] = C[j] +Z[k]. Notice that ∂(C[j]) stays the same
but the updated C[j] does not contain σi.

As indicated in Section 4, whenever there are two columns in Z which contain σi, we sum the
two columns and their corresponding bundles to remove σi from one column. We implement the
summations as follows, which is similar to the loop in Section D.2.1:

1. α1, . . . , αℓ ← indices of all columns of Z containing σi

19

2. sort and rename α1, . . . , αℓ s.t. b̂α1 ≺ · · · ≺ b̂αℓ
.

3. z ← Z[α1]

4. W ←Wα1

5. for α← α2, . . . , αℓ do:

6. if pivot(Z[α]) > pivot(z) then:

7. Z[α]← Z[α] + z

8. Wα ←Wα ⊞W

9. else:

10. temp z← Z[α]

11. Z[α]← Z[α] + z

12. z ← temp z

13. temp W←Wα

14. Wα ←Wα ⊞W

15. W ← temp W

16. delete the column Z[α1] from Z

In the above pseudocodes, α1 is the index ‘λ’ as in the corresponding case in Section 4.

20

	Introduction
	Core definitions
	Representatives as wire bundles
	Algorithm
	Maintenance of pivoted matrices
	Detailed processing in iteration i of WiredZigzag

	Experiments
	Proof of Proposition 8
	Proof of Proposition 11
	Missing cases in the proof of Theorem 21
	Implementation details
	Forward KiiKi+1
	*i is injective
	*i is surjective

	Backward KiiKi+1
	*i is surjective
	*i is injective

