Estimating Geometry and Topology
from Voronoi Diagrams
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Problem

Estimating geometry: Given P presumably sampled from a

k-dimensional manifold M c R¢ estimate geometric
attributes such as normals, curvatures of M from Vor P.

Estimating topology: (i) capture the major topological
features (persistent topology) of M from Vor P (ii) capture
the exact topology of M from Vor P.
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Three dimensions
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Medial Axis and Local Feature Size

MEDIAL AXIS:
Set of centers of maximal
empty balls.

LOCAL FEATURE SIZE:

For x € M, f(z) Is the distance
to the medial axis.

flz) < f(y) + llzyll 1-Lipschitz
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Good Sampling

£-SAMPLING[AMENTA-BERN-
. EPPSTEIN 97]: P C M such
that

\ Ve e M, B(xz,e-f(z))NP 0.

ﬂ Tamal Dey — OSU - Chicago 07 — p.6/4-



Normal estimation
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Normal estimation

Normal Lemma [Amenta-Bern 98] : For ¢ < 1, the angle
(acute) between the normal n, at p and the pole vector v, is

at most
E

2 arcsin .
1 —¢
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Noise
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e p, P are orthogonal projections of p and P on M.
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Noise
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e Pis (g,n)-sample of M if

P is a e-sample of M,
o d(p,p) < nf(p)

.
Rl DY

%,
Sy

har T

ﬁ Tamal Dey — OSU - Chicago 07 — p.8/4-



Noise and normals
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Noise and normals

Normal Lemma [Dey-Sun 06] : Let p € P with
d(p,p) < nf(z) and B., be any Delaunay/Voronoi ball
incident to p so that »r = Af(p)). Then,

/cxr,ng = O(; + g)
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Noise and normals

Normal Lemma [Dey-Sun 06] : Let p € P with
d(p,p) < nf(z) and B., be any Delaunay/Voronoi ball
incident to p so that »r = Af(p)). Then,

/cxr,ng = O(; + g)

e Gives an algorithm to estimate normals.
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oise and features
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Noise and features

Medial Axis Approximation Lemma [Dey-Sun 06] : If P is a
(e,m)-sample of M, then the medial axis of M can be

approximated with Hausdorff distance of O(s7 + n1) times
the respective medial ball radii.
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Noise and features

Medial Axis Approximation Lemma [Dey-Sun 06] : If P is a
(e,m)-sample of M, then the medial axis of M can be

approximated with Hausdorff distance of O(s7 + n1) times
the respective medial ball radii.

e Gives an algorithm to estimate local feature size.
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Topology
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Topology

Homeomorphic/lsotopic reconstruction [ACDLO0O]: Let P € M be
e-sample. A Delaunay mesh 7' C Del P can be computed so that
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Topology

Homeomorphic/lsotopic reconstruction [ACDLO0O]: Let P € M be
e-sample. A Delaunay mesh 7' C Del P can be computed so that
o thereis anisotopy h : |T| x [0,1] — R3 between |T'| and M. Moreover, h(|T|, 1) is
the orthogonal projection map.
e the isotopy moves any point x € |T'| only by O(¢) f(&) distance.

e triangles in T have normals within O(e) angle of the respective normals at the vertices.

Original Crust algorithm [AB98], Cocone algorithm [ACDLO0O0], Natural
neighbor algorithm [BC0O0] enjoy these properties.
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Cocone Algorithm

Amenta, Choi, Dey and Leekha
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Cocone Algorithm

Amenta, Choi, Dey and Leekha

Cocone triangles for p: Delaunay triangles incident to p that

are dual to Voronoi edges inside the cocone region.
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Cocone Algorithm
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Cocone Algorithm

Cocone triangles :
e are nearly orthogonal to the estimated normal at p
e have empty spheres that are near equatorial.
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Noisy sample : Topology
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Noisy sample : topology

Homeomorphic reconstruction [Dey-Goswami 04] : Let

P C M be (g,¢%)-sample. For A > 0, Let B, = {B.,} be the
set of (inner) Delaunay balls where » > A\ f(¢). There exists
a\>0sothathbd By~ M.
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Noisy sample : topology

Homeomorphic reconstruction [Dey-Goswami 04] : Let

P C M be (g,¢%)-sample. For A\ > 0, Let B, = {B.,} be the
set of (inner) Delaunay balls where r > Af(¢). There exists
a\>0sothathbd By~ M.
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Higher dimensions

Assumptions: Sample P from a smooth, compact

k-manifold M c R? without boundary. P is “sufficiently
dense and uniform”.
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Higher dimensions

Assumptions: Sample P from a smooth, compact

k-manifold M c R? without boundary. P is “sufficiently
dense and uniform”.

e Normal space estimation, dimenison detection;
e Homeomorphic reconstruction
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Good Sampling
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Good Sampling

7 e | 0<o<e

(e,0)-SAmpPLING: P C M such
) that

Ve e M, B(x,e- f(x))NP #0.

. vpe P, Blp.6-f(p)NP = {p}.
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Dimension detection

Dey-Giesen-Goswami-Zhao 2002

Define Voronoi subset Vg recursively for a point p € P.

o affV; approximates 7,,.

e k can be determined if P is (&, d)-sample for appropriate

e and 4.
p ‘
m‘
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Restricted Voronoi Diagram

RESTRICTED VORONOI FACE: Intersection of Voronoi face with
manifold

BaLL ProPERTY: Each Voronoi face is topologically a ball.
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Restricted Delaunay Triangulation
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This is a good candidate to be a “correct reconstruction”.
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Topology of RDT

TBP Theorem [Edelsbrunner-Shah 94] : If Vor P has the
topological ball property w.r.t. M, then Del, P has
homeomorphic underlying space to M.
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Topology of RDT

TBP Theorem [Edelsbrunner-Shah 94] : If Vor P has the
topological ball property w.r.t. M, then Del, P has
homeomorphic underlying space to M.

RDT Theorem [AB98, CDESO01] : If P is 0.2-sample for a

surface M c R3, then Vor P satisfies TBP with respect to
M.
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Difficulty I: No RDT Thm.

Negative result [Cheng-Dey-Ramos 05] : For a k-manifold

M c R?, Dely, P may not be homeomorphic to M no
matter how dense P is when k£ > 2 and d > 3.

e Due to this result, Withess complex [Carlsson-de Silva]
may not be homeomorphic to M as noted in
[Boissonnat-Oudot-Guibas 07].
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Difficulty I

e RDT theorem used the fact that Voronol faces intersect
M orthogonally.

e This is not true in high dimensions because of slivers
whose dual faces may have large deviations from the

normal space.
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Simplex Shape
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Simplex Shape

L7

sin f =
2R+
R ... circumradius
L, ... shortest edge length
R~ ... clircumradius
R.;/L; ... circumradius-edge ratio

ﬁ Tamal Dey — OSU — Chicago 07 — p.26/4-



Sliver

r

A j-simplex, j > 1, 7 is a sliver if none of its subsimplices
are sliver and

vol(1) < o7 L

where L. is the shortest edge length, and ¢ is a parameter.
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Difficulty I: Slivers in 3D

In 3-d, if a Delaunay triangle has a circumradius O(sf(p))
then its normal and the normal of M at p form an angle
O(e).
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Difficulty I: Slivers’ Normals

In 4-d, considering a 3-manifold, a Delaunay 3-simplex may
have small circumradius, that is O(sf(p)), but its normal may
be very different from that of M at p. Slivers are the culprits:

p=1(0,0,A,0);g=(1,0,0,0),r = (1,1,0,0),s = (0,1,0,0)

p=1(0,0,0,A);¢g =(1,0,0,0),r = (1,1,0,0),s = (0,1,0,0)
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Bad Normal




Difficulty II
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Difficulty II

e It is not possible to identify precisely the restricted Delau-
nay triangulation because of slivers: there are Voronoi faces

close to the surface but not intersecting it.
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Solution| Cheng-Dey-Ramos (5]

Get rid of the slivers:

Follow sliver exudation approach of
Cheng-Dey-Edelsbrunner-Facello-Teng 2000 in the context

of meshing.
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Weighted Voronoi/Delaunay

Weighted Points: (p, wy).

Weighted Distance: m(, ,, \(z) = ||z — plI* — w;.
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Weighted Voronoi/Delaunay

9
SEE

Bisectors of weighted points

Weight property |w|: For each p € P, w, < wN(p), where

N(p) is the distance to closest neighbor. Limit w < 1/4.
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Weighted Voronoi/Delaunay
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Orthocenter Sensitivity

e An appropriate weight on each sample moves
undesirable Voronoi faces away from the manifold
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Sliver Exudation

e By a packing argument, the number of neighbors of p
that can be connected to p in any weighted Delaunay
triangulation with [w] weight property is

A = 0%

where v = ¢/9.

e The number of possible weighted Delaunay
(< k)-simplices in which p is involved is at most

Ny = O(N*) = O(v*"%)
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Sliver Exudation

e The total w; length of “bad” intervals is at most:
N, - o f2(p).
e The total w; length is w?6%f*(p). So if we choose

w2

/ 2
C Npu

g <<

then there is a radius w), for p such that no cocone
simplex is a sliver.

e For ¢ sufficiently small, if 7 is a cocone (k + 1)simplex, it
must be a sliver.
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Algorithm

e Construct Vor P and Del P.
e Determine the dimension k of M.

e “Pump up” the sample point weights to remove all
j-slivers, j = 3,...,k+ 1, from all point cocones.

e Extract all cocone simplices as the resulting output.
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Correctness

AN

The algorithm outputs Dely (P) :

(1) for o sufficiently small, there is a weight assignment to
the sample points so that no cocone j-simplex,
j<k+1,is asliver;

(i) for ¢ sufficiently small, any cocone (k + 1)-simplex must
be a sliver.
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Correctness

Dely (P) is “close” to M and homeomorphic to it:

(i) the normal spaces of close points in M are close: if p, g
are at distance O(ef(p)), then their normal spaces form
an angle O(e);

(i) for any j-simplex with 7 < k, if its circumradius is
O(ef(p)) and neither = nor any of the boundary

simplices is a sliver, then the normal space of 7 is close
to the normal space of M at p;

(iii) each cell of Vor, P is a topological ball

(iii) implies that Del v, P is homeomorphic to M
(Edelsbrunner and Shah)

3R
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Summary

e For sufficiently dense samples, the algorithm outputs a
mesh that is faithful to the original manifold.

e The running time — under (&, 4d)-sampling —is O(nlogn)
(constant is exponential with the dimension).

e The ¢ for which the algorithm works is quite small (more
than exponentially small in the dimension).
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Concluding remarks

e Various connections to Voronoi diagrams and
geometry/topology estimations

e Further works on manifold/compact reconstructions
[Niyogi-Smale-Weinberger 06, Chazal-Lieutier 06,
Chazal-Cohen Steiner-Lieutire 06,
Boissonnat-Oudot-Guibas 07]

e Practical algorithm under realistic assumptions ...???
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Thank You
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