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Problem

Estimating geometry: Given P presumably sampled from a
k-dimensional manifold M ⊂ R

d estimate geometric
attributes such as normals, curvatures of M from VorP .

Estimating topology: (i) capture the major topological
features (persistent topology) of M from VorP (ii) capture
the exact topology of M from VorP .
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Three dimensions
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Medial Axis and Local Feature Size

MEDIAL AXIS:
Set of centers of maximal
empty balls.

LOCAL FEATURE SIZE:
For x ∈ M, f(x) is the distance
to the medial axis.

f(x) ≤ f(y) + ‖xy‖ 1-Lipschitz
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Good Sampling

ε lfs(x)

ε-SAMPLING[AMENTA-BERN-
EPPSTEIN 97]: P ⊂ M such
that

∀x ∈ M, B(x, ε · f(x))∩P 6= ∅.
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Normal estimation
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Normal estimation
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Normal Lemma [Amenta-Bern 98] : For ε < 1, the angle
(acute) between the normal np at p and the pole vector vp is
at most

2 arcsin
ε

1 − ε
.
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Noise

• p̃, P̃ are orthogonal projections of p and P on M.

• P is (ε, η)-sample of M if
• P̃ is a ε-sample of M,
• d(p, p̃) ≤ ηf(p̃).
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Noise and normals
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Normal Lemma [Dey-Sun 06] : Let p ∈ P with
d(p, p̃) ≤ ηf(x̃) and Bc,r be any Delaunay/Voronoi ball
incident to p so that r = λf(p̃)). Then,

∠cx,nx̃ = O(
ε

λ
+

√
η

λ
).

• Gives an algorithm to estimate normals.
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Noise and features

Medial Axis Approximation Lemma [Dey-Sun 06] : If P is a
(ε, η)-sample of M, then the medial axis of M can be
approximated with Hausdorff distance of O(ε

1

4 + η
1

4 ) times
the respective medial ball radii.

• Gives an algorithm to estimate local feature size.
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Topology

Homeomorphic/Isotopic reconstruction [ACDL00]: Let P ⊂ M be
ε-sample. A Delaunay mesh T ⊂ DelP can be computed so that

• there is an isotopy h : |T | × [0, 1] → R
3 between |T | and M. Moreover, h(|T |, 1) is

the orthogonal projection map.
• the isotopy moves any point x ∈ |T | only by O(ε)f(x̃) distance.
• triangles in T have normals within O(ε) angle of the respective normals at the vertices.

Original Crust algorithm [AB98], Cocone algorithm [ACDL00], Natural
neighbor algorithm [BC00] enjoy these properties.
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Cocone Algorithm
Amenta, Choi, Dey and Leekha

Cocone triangles for p: Delaunay triangles incident to p that
are dual to Voronoi edges inside the cocone region.
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Cocone Algorithm

θ

Cocone triangles :
• are nearly orthogonal to the estimated normal at p

• have empty spheres that are near equatorial.
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Noisy sample : Topology
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Input noisy sample Step 1

Step 2 Step 3
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Noisy sample : topology
Homeomorphic reconstruction [Dey-Goswami 04] : Let
P ⊂ M be (ε, ε2)-sample. For λ > 0, Let Bλ = {Bc,r} be the
set of (inner) Delaunay balls where r > λf(c̃). There exists
a λ > 0 so that bd

⋃
Bλ ≈ M.
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Higher dimensions

Assumptions: Sample P from a smooth, compact
k-manifold M ⊂ R

d without boundary. P is “sufficiently
dense and uniform”.

• Normal space estimation, dimenison detection;
• Homeomorphic reconstruction

Tamal Dey – OSU – Chicago 07 – p.16/44



Higher dimensions

Assumptions: Sample P from a smooth, compact
k-manifold M ⊂ R

d without boundary. P is “sufficiently
dense and uniform”.

• Normal space estimation, dimenison detection;
• Homeomorphic reconstruction

Tamal Dey – OSU – Chicago 07 – p.16/44



Good Sampling
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Good Sampling

ε lfs(x)

lfs(x)δ

0 < δ < ε

(ε, δ)-SAMPLING: P ⊂ M such
that

∀x ∈ M, B(x, ε · f(x))∩P 6= ∅.

∀p ∈ P, B(p, δ ·f(p))∩P = {p}.
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Dimension detection

Dey-Giesen-Goswami-Zhao 2002

Define Voronoi subset V i
p recursively for a point p ∈ P .

• affV k
p approximates Tp.

• k can be determined if P is (ε, δ)-sample for appropriate
ε and δ.

vp

v vpp
2

3

1

p 1

vp

vpvp

3

p
2
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Restricted Voronoi Diagram

RESTRICTED VORONOI FACE: Intersection of Voronoi face with
manifold

BALL PROPERTY: Each Voronoi face is topologically a ball.
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Restricted Delaunay Triangulation

DelM P

This is a good candidate to be a “correct reconstruction”.
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Topology of RDT

TBP Theorem [Edelsbrunner-Shah 94] : If VorP has the
topological ball property w.r.t. M, then DelM P has
homeomorphic underlying space to M.

RDT Theorem [AB98, CDES01] : If P is 0.2-sample for a
surface M ⊂ R

3, then VorP satisfies TBP with respect to
M.
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Difficulty I: No RDT Thm.
Negative result [Cheng-Dey-Ramos 05] : For a k-manifold
M ⊂ R

d, DelM P may not be homeomorphic to M no
matter how dense P is when k > 2 and d > 3.
• Due to this result, Witness complex [Carlsson-de Silva]
may not be homeomorphic to M as noted in
[Boissonnat-Oudot-Guibas 07].

• Problem caused by slivers

Tamal Dey – OSU – Chicago 07 – p.23/44



Difficulty I: No RDT Thm.
Negative result [Cheng-Dey-Ramos 05] : For a k-manifold
M ⊂ R

d, DelM P may not be homeomorphic to M no
matter how dense P is when k > 2 and d > 3.
• Due to this result, Witness complex [Carlsson-de Silva]
may not be homeomorphic to M as noted in
[Boissonnat-Oudot-Guibas 07].

• Problem caused by slivers

Tamal Dey – OSU – Chicago 07 – p.23/44



Difficulty I: No RDT Thm.
Negative result [Cheng-Dey-Ramos 05] : For a k-manifold
M ⊂ R

d, DelM P may not be homeomorphic to M no
matter how dense P is when k > 2 and d > 3.
• Due to this result, Witness complex [Carlsson-de Silva]
may not be homeomorphic to M as noted in
[Boissonnat-Oudot-Guibas 07].

• Problem caused by slivers

Tamal Dey – OSU – Chicago 07 – p.23/44



Difficulty I

• RDT theorem used the fact that Voronoi faces intersect
M orthogonally.

• This is not true in high dimensions because of slivers
whose dual faces may have large deviations from the
normal space.
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Simplex Shape
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Simplex Shape

θ c

b

x

a
2θ

sin θ =
Lτ

2Rτ

R . . . circumradius
Lτ . . . shortest edge length
Rτ . . . circumradius
Rτ/Lτ . . . circumradius-edge ratio
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Sliver

q

r

p

s

∆

A j-simplex, j > 1, τ is a sliver if none of its subsimplices
are sliver and

vol(τ) ≤ σjLj
τ

where Lτ is the shortest edge length, and σ is a parameter.
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Difficulty I: Slivers in 3D
In 3-d, if a Delaunay triangle has a circumradius O(εf(p))
then its normal and the normal of M at p form an angle
O(ε).
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Difficulty I: Slivers’ Normals

In 4-d, considering a 3-manifold, a Delaunay 3-simplex may
have small circumradius, that is O(εf(p)), but its normal may
be very different from that of M at p. Slivers are the culprits:

p = (0, 0,∆, 0); q = (1, 0, 0, 0), r = (1, 1, 0, 0), s = (0, 1, 0, 0)

p = (0, 0, 0,∆); q = (1, 0, 0, 0), r = (1, 1, 0, 0), s = (0, 1, 0, 0)
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Bad Normal

bump

∆
E

bump detail
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Difficulty II

• It is not possible to identify precisely the restricted Delau-
nay triangulation because of slivers: there are Voronoi faces
close to the surface but not intersecting it.
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Solution[Cheng-Dey-Ramos 05]

Get rid of the slivers:

Follow sliver exudation approach of
Cheng-Dey-Edelsbrunner-Facello-Teng 2000 in the context
of meshing.
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Weighted Voronoi/Delaunay

Weighted Points: (p, wp).

xp

Weighted Distance: π(p,wp)(x) = ‖x − p‖2 − w2
p.
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Weighted Voronoi/Delaunay

Bisectors of weighted points

Weight property [ω]: For each p ∈ P , wp ≤ ωN(p), where
N(p) is the distance to closest neighbor. Limit ω ≤ 1/4.
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Weighted Voronoi/Delaunay

Weighted Delaunay/Voronoi complexes
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Orthocenter Sensitivity
• An appropriate weight on each sample moves

undesirable Voronoi faces away from the manifold

ζ

z
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Sliver Exudation
• By a packing argument, the number of neighbors of p

that can be connected to p in any weighted Delaunay
triangulation with [ω] weight property is

λ = O(ν2d)

where ν = ε/δ.
• The number of possible weighted Delaunay

(≤ k)-simplices in which p is involved is at most

Np = O(λk) = O(ν2kd)

Tamal Dey – OSU – Chicago 07 – p.37/44



Sliver Exudation
• The total w2

p length of “bad” intervals is at most:

Np · c
′σε2f2(p).

• The total w2
p length is ω2δ2f2(p). So if we choose

σ <
ω2

c′Npν2

then there is a radius wp for p such that no cocone
simplex is a sliver.

• For ε sufficiently small, if τ is a cocone (k + 1)simplex, it
must be a sliver.
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Algorithm

•• Construct Vor P and Del P .
• Determine the dimension k of M.
• “Pump up” the sample point weights to remove all

j-slivers, j = 3, . . . , k + 1, from all point cocones.
• Extract all cocone simplices as the resulting output.
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Correctness

The algorithm outputs DelM (P̂ ) :

(i) for σ sufficiently small, there is a weight assignment to
the sample points so that no cocone j-simplex,
j ≤ k + 1, is a sliver;

(ii) for ε sufficiently small, any cocone (k + 1)-simplex must
be a sliver.
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Correctness

DelM (P̂ ) is “close” to M and homeomorphic to it:

(i) the normal spaces of close points in M are close: if p, q
are at distance O(εf(p)), then their normal spaces form
an angle O(ε);

(ii) for any j-simplex with j ≤ k, if its circumradius is
O(εf(p)) and neither τ nor any of the boundary
simplices is a sliver, then the normal space of τ is close
to the normal space of M at p;

(iii) each cell of VorM P̂ is a topological ball

(iii) implies that DelM P̂ is homeomorphic to M
(Edelsbrunner and Shah)
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Summary

• For sufficiently dense samples, the algorithm outputs a
mesh that is faithful to the original manifold.

• The running time – under (ε, δ)-sampling – is O(n log n)
(constant is exponential with the dimension).

• The ε for which the algorithm works is quite small (more
than exponentially small in the dimension).
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Concluding remarks

• Various connections to Voronoi diagrams and
geometry/topology estimations

• Further works on manifold/compact reconstructions
[Niyogi-Smale-Weinberger 06, Chazal-Lieutier 06,
Chazal-Cohen Steiner-Lieutire 06,
Boissonnat-Oudot-Guibas 07]

• Practical algorithm under realistic assumptions ...???
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Thank You
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