
Lines: 500

Cup Product Persistence and Its Efficient
Computation
Tamal K. Dey #

Department of Computer Science, Purdue University, USA

Abhishek Rathod #

Department of Computer Science, Purdue University, USA

Abstract1

It is well-known that the cohomology ring has a richer structure than homology groups. However,2

until recently, the use of cohomology in persistence setting has been limited to speeding up of3

barcode computations. Some of the recently introduced invariants, namely, persistent cup-length [12],4

persistent cup modules [13,25] and persistent Steenrod modules [22], to some extent, fill this gap.5

When added to the standard persistence barcode, they lead to invariants that are more discriminative6

than the standard persistence barcode. In this work, we devise an O(dn4) algorithm for computing7

the persistent k-cup modules for all k ∈ {2, . . . , d}, where d denotes the dimension of the filtered8

complex, and n denotes its size. Moreover, we note that since the persistent cup length can be9

obtained as a byproduct of our computations, this leads to a faster algorithm for computing it.10

Finally, we introduce a new stable invariant called partition modules of cup product that is more11

discriminative than persistent k-cup modules and devise a fast time algorithm for computing it.12

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Algebraic topology

Keywords and phrases Persistent cohomology, cup product, image persistence, persistent cup module

1 Introduction13

Persistent homology is one of the principal tools in the fast growing field of topological14

data analysis. A solid algebraic framework [29], a well-established theory of stability [8,9]15

along with fast algorithms and software [1–3, 6, 23] to compute complete invariants called16

barcodes of filtrations have led to the successful adoption of single parameter persistent17

homology as a data analysis tool [16, 17]. This standard persistence framework operates18

in each (co)homology degree separately and thus cannot capture the interactions across19

degrees in an apparent way. To achieve this, one may endow a cohomology vector space20

with the well-known cup product forming a graded algebra. Then, the isomorphism type of21

such graded algebras can reveal information including interactions across degrees. However,22

even the best known algorithms for determining isomorphism of graded algebras run in23

exponential time in the worst case [7]. So it is not immediately clear how one may extract24

new (persistent) invariants from the product structure efficiently in practice.25

Cohomology has already shown to be useful in speeding up persistence computations26

before [1, 2, 6]. It has also been noted that additional structures on cohomology provide an27

avenue to extract rich topological information [5,12,21,22,28]. To this end, in a recent study,28

the authors of [12] introduced the notion of (the persistent version of) an invariant called the29

cup length, which is the maximum number of cocycles with a nonzero product. In another30

version [13], the authors of [12] introduced an invariant called barcodes of persistent k-cup31

modules which are stable, and can add more discriminating ability (Figure 1). Computing this32

invariant allows us to capture interactions among various degrees. In Example 1, we provide33

simple examples for which persistent cup modules can disambiguate filtered spaces where34

ordinary persistence and persistent cup-length fail. Notice that for a filtered d-complex, the35

© Jane Open Access and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tamaldey@purdue.edu
mailto:arathod@purdue.edu
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Cup Product Persistence and Its Efficient Computation

k-cup modules for k ∈ {2, . . . , d} may not be a strictly finer invariant on its own compared36

to ordinary persistence. It can however add more information as Example 1 illustrates.37

▶ Example 1. See Figure 1. Let K1 be a cell complex obtained by taking a wedge of four38

circles and two 2-spheres. Let K2 be a cell complex obtained by taking a wedge of two circles,39

a sphere and a 2-torus. Let K3 be a cell complex obtained by taking a wedge of two tori.40

▶ Remark 2. Throughout, for a cell complex C, the filtration for which all the k-dimensional41

cells of C arrive at the same index is referred to as the natural cell filtration associated to C.42

Consider the natural cell filtrations K1
•, K2

• and K3
•. Standard persistence cannot tell43

apart K1
•, K2

• and K3
• as the barcode for the three filtrations are the same. Persistent cup44

length cannot distinguish K2
• from K3

•, whereas the barcodes for persistent cup modules for45

K1
•, K2

• and K3
• are all different. See Example 19 in Appendix B for another example.46

In Section 3 and 4, we show how to compute the persistent k-cup modules for all47

k ∈ {2, . . . , d} in O(dn4) time, where d denotes the dimension of the filtered complex, and n48

denotes its size. Moreover, since the persistent cup length of a filtration can be obtained as a49

byproduct of cup modules computation [12], we get an efficient algorithm to compute this50

invariant as well. Our approach for computing barcodes of persistent k-cup modules involves51

computing the image persistence of the cup product viewed as a map from the tensor product52

of the cohomology vector space to the cohomology vector space itself. This approach requires53

careful bookkeeping of restrictions of cocycles as one processes the simplices in the reverse54

filtration order. Algorithms for computing image persistence have been studied earlier by55

Cohen-Steiner et al. [11] and recently by Bauer and Schmahl [4]. However, the algorithms56

in [4,11] work only for monomorphisms of filtrations making them inapplicable to our setting.57

In Section 5, we introduce a new invariant called the partition modules of the cup product58

which is more discriminative than the k-cup modules. We observe that this invariant is stable59

for Rips and Čech filtrations (Appendix D), and we devise an algorithm that computes all the60

partition modules in O(c(d)n4) where c(d) is subexponential in d as shown in Appendix C.61

2 Background and preliminaries62

Througout, we use n to denote the size of the filtered complex K, [n] to denote the set63

{1, 2, . . . , n} and I to denote the set {0, 1, 2, . . . , n}.64

2.1 Persistent cohomology65

In this paper, we work with mod-2 cohomology. We briefly recall some of the topological67

preliminaries in Appendix A. For an in-depth study, we refer the reader to [19,20]. Let P68

denote a poset category such as N, Z, or R, and Simp denote the category of simplicial69

complexes. A P -indexed filtration is a functor F : P → Simp such that Fs ⊆ Ft whenever70

s ≤ t. A P -indexed persistence module V• is a functor from a poset category P to the71

category of (graded) vector spaces. The morphisms ψs,t : Vs → Vt for s ≤ t are referred to as72

structure maps. We assume it to be of finite type, that is, V• is pointwise finite dimensional73

and all morphisms ψs,t for s ≤ t are isomorphisms outside a finite subset of P . A P -indexed74

module W is a submodule of V if Ws ⊂ Vs for all s ∈ P and the structure maps Ws →Wt75

are restrictions of ψs,t to Ws.76

A persistence module V• defined on a totally ordered set such as N, Z, or R decomposes77

uniquely up to isomorphism into simple modules called interval modules whose structure78

maps are identity and the vector spaces have dimension one. The support of these interval79

modules collectively constitute what is called the barcode of V• and denoted by B(V•).80



J. Open Access and J. R. Public XX:3

H0

H1

H2

Cup module

Cup module

index 1 index 2 index 3

Figure 1 Example 1 Persistent cup modules distinguishes all three cellular filtrations.66



XX:4 Cup Product Persistence and Its Efficient Computation

When we have a filtration F on P where the complexes change only at a finite set of81

values a1 < a2 < . . . < an, we can reindex the filtration with integers, and refine it so that82

only one simplex is added at every index. Reindexing and refining in this manner one can83

obtain a simplex-wise filtration of the final simplicial complex K defined on an indexing set84

with integers. For the remainder of the paper, we assume that the original filtration on P85

is simplex-wise to begin with. This only simplifies our presentation, and we do not lose86

generality. With this assumption, we obtain a filtration indexed on I after writing Kai
= Ki,87

K• : ∅ = K0 ↪→ K1 ↪→ · · · ↪→ Kn = K.88

Applying the functor C∗, we obtain a persistence module C∗(K•) of cochain complexes89

whose structure maps are cochain maps defined by restrictions induced by inclusions:90

C∗(K•) : C∗(Kn)→ C∗(Kn−1)→ · · · → C∗(K0),91

and applying the functor H∗, we get a persistence module H∗(K•) of graded cohomology vector92

spaces whose structure maps are linear maps induced by the above-mentioned restrictions:93

H∗(K•) : H∗(Kn)→ H∗(Kn−1)→ · · · → H∗(K0).94

For simplifying the description of the algorithm, we work with Iop-indexed modules95

H∗(K•) and C∗(K•). The barcode B(M) (see section 2.4) of a finite-type P op-module M96

can be obtained from the barcode B(N) of its associated Iop-module N by writing the97

interval (j, i] ∈ B(N) for j < i < n as [aj+1, ai+1) ∈ B(M), and the interval (j, n] ∈ B(N)98

as [aj+1,∞) ∈ B(M). In this convention, we refer to i (or n) as a birth index, j as a death99

index, and intervals of the form (j, n] as essential bars.100

▶ Definition 3 (Restriction of cocycles). For a filtration K•, if ζ is a cocycle in complex Kb,101

but ceases to be a cocycle at Kb+1, then ζi is defined as ζi = ζ ∩ C∗(Ki) for i ≤ b, and in this102

case, we say that ζi is the restriction of ζ to index i. For i > b , ζi is set to the zero cocycle.103

▶ Definition 4 (Persistent cohomology basis). Let ΩK = {ζi | i ∈ B(H∗(K•))} be a set of104

cocycles, where for every i = (di, bi], ζi is a cocycle in Kbi but no more a cocycle in Kbi+1. If105

for every index j ∈ [n], the cocycle classes
{

[ζji ] | ζi ∈ ΩK

}
form a basis for H∗(Kj), then we106

say that ΩK is a persistent cohomology basis for K•, and the cocycle ζi is called a representative107

cocycle for the interval i. If bi = n, [ζi] is called an essential class.108

2.2 Simplicial cup product109

Simplicial cup products connect cohomology groups across degrees. Let ≺ be an arbitrary110

but fixed total order on the vertex set of K. Let ξ and ζ be cocycles of degrees p and q111

respectively. The cup product of ξ and ζ is the (p+ q)-cocycle ξ ⌣ ζ whose evaluation on112

any (p+ q)-simplex σ = {v0, . . . , vp+q} is given by113

(ξ ⌣ ζ)(σ) = ξ({v0, ..., vp}) · ζ({vp, . . . , vp+q}). (1)114

This defines a map ⌣: Cp(K) × Cq(K) → Cp+q(K), which assembles to give a map115

⌣: C∗(K)× C∗(K)→ C∗(K) for the cochain complex C∗(K). Using the fact that δ(ζ ⌣ ξ) =116

δξ ⌣ ζ + ξ ⌣ δζ, it follows that ⌣ induces a map ⌣: H∗(K)× H∗(K)→ H∗(K). It can be117

shown that the map ⌣ is independent of the ordering ≺.118

Using the universal property for tensor products and linearity, the bilinear maps for119

⌣: Cp(K)×Cq(K)→ Cp+q(K) assemble to give a linear map ⌣: C∗(K)⊗C∗(K)→ C∗(K).120



J. Open Access and J. R. Public XX:5

and the bilinear maps for121

⌣: Hp(K)×Hq(K)→ Hp+q(K) assemble to give a linear map ⌣: H∗(K)⊗H∗(K)→ H∗(K).122

Finally, we state two well-known facts about cup products that are used throughout.123

▶ Theorem 5 (Commutativity [20]). [ξ] ⌣ [ζ] = [ζ] ⌣ [ξ] for all [ξ], [ζ] ∈ H∗(K).124

▶ Theorem 6 (Functoriality of the cup product [20]). Let f : K→ L be a simplicial map and125

let f∗ : H∗(L)→ H∗(K) be the induced map on cohomology. Then, f∗([ξ] ⌣ [ζ]) = f∗([ξ]) ⌣126

f∗([ζ]) for all [ξ], [ζ] ∈ H∗(K).127

2.3 Image persistence128

The category of persistence modules is abelian since the indexing category P is small and the129

category of vector spaces is abelian. Thus, kernels, cokernels, and direct sums are well-defined.130

Persistence modules obtained as images, kernels and cokernels of morphisms were first studied131

in [11]. In this section, we provide a brief overview of image persistence modules.132

Let C• and D• be two persistence modules of cochain complexes:133

C∗
n

φn−−→ C∗
n−1

φn−1−−−→ . . .
φ1−→ C∗

0 and D∗
n

ψn−−→ D∗
n−1

ψn−1−−−→ . . .
ψ1−−→ D∗

0,134

such that for 0 ≤ i ≤ n the graded vector spaces C∗
i and D∗

i (along with the respective135

coboundary maps) are cochain complexes, and the structure maps {φi : C∗
i → C∗

i−1 | i ∈ [n]}136

and {ψi : D∗
i → D∗

i−1 | i ∈ [n]} are cochain maps. Let G• : C• → D• be a morphism137

of persistence modules of cochain complexes, that is, there exists a set of cochain maps138

Gi : C∗
i → D∗

i ∀i ∈ {0, . . . , n}, and the following diagram commutes for every i ∈ [n].139

C∗
i D∗

i

C∗
i−1 D∗

i−1

Gi

φi

Gi−1

ψi

Applying the cohomology functor H∗ to the morphism G• : C• → D• induces another140

morphism of persistence modules, namely, H∗(G•) : H∗(C•)→ H∗(D•). Moreover, the image141

im H∗(G•) is a persistence module. Like any other single-parameter persistence module, an142

image persistence module decomposes uniquely into intervals called its barcode [29].143

As noted in [4], a natural strategy for computing the image of H∗(G•) is to write it as144

im H∗(G•) ∼=
G•(Z∗(C•))

G•(Z∗(C•)) ∩ B∗(D•) ,145

where the i-th terms for the numerator and the denominator are given respectively by146

(G•(Z∗(C•)))i = Gi(Z∗(Ci)) and (G•(Z∗(C•)) ∩ B∗(D•))i = Gi(Z∗(Ci)) ∩ B∗(Di).147

Tensor product image persistence. Consider the following map given by cup products148

⌣•: C∗(K•)⊗ C∗(K•)→ C∗(K•). (2)149



XX:6 Cup Product Persistence and Its Efficient Computation

Taking G• =⌣• in the definition of image persistence, we get a persistence module, denoted by150

im H∗(⌣ K•), which is the same as the persistent cup module introduced in [13]. Whenever the151

underlying filtered complex is clear from the context, we use the shorthand notation im H∗(⌣•)152

instead of im H∗(⌣ K•). Our aim is to compute its barcode denoted by B(im H∗(⌣•)).153

2.4 Barcodes154

Let K• denote a filtration on the index set I = {0, 1, . . . , n}. Assume that K• is simplex-wise,155

that is, Ki \ Ki−1 is a single simplex. Consider the persistence module H∗
• obtained by156

applying the cohomology functor H∗ on the filtration K•, that is, H∗
i = H∗(Ki). The structure157

maps {φ∗
i : H∗(Ki)→ H∗(Ki−1) | i ∈ [n]} for this module are induced by the cochain maps158

{φi : C∗(Ki) → C∗(Ki−1) | i ∈ [n]}. Since K• is simplex-wise, each linear map φ∗
i is either159

injective with a cokernel of dimension one, or surjective with a kernel of dimension one, but not160

both. Such a persistence module H∗
• decomposes into interval modules supported on a unique161

set of intervals, namely the barcode of H∗
• written as B(H∗

•) = {(di, bi] | bi ≥ di, bi, di ∈ I}.162

Notice that since I is the indexing poset of K•, Iop is the indexing poset of H∗
•. For r > s,163

we define φ∗
r,s = φ∗

s+1 ◦ · · · ◦ φ∗
r−1 ◦ φ∗

r and φr,s = φs+1 ◦ · · · ◦ φr−1 ◦ φr.164

▶ Remark 7. Since im H∗(⌣•) is a submodule of H∗(K•), the structure maps of im H∗(⌣•) for165

every i ∈ I, namely, im H∗(⌣i)→ im H∗(⌣i) are given by restrictions of φ∗
i to im H∗(⌣i).166

▶ Definition 8. For any i ∈ {0, . . . , n}, a nontrivial cocycle ζ ∈ Z∗(Ki) is said to be a167

product cocycle of Ki if [ζ] ∈ im H∗(⌣i).168

▶ Proposition 9. For a filtration K•, the birth indices of B(im H∗(⌣•)) are a subset of the169

birth indices of B(H∗(K•)), and the death indices of B(im H∗(⌣•)) are a subset of the death170

indices of B(H∗(K•)).171

Proof. Let (di, bi] and (dj , bj ] be (not necessarily distinct) intervals in B(H∗(K•)), where172

bj ≥ bi. Let ξi and ξj be representatives for (di, bi] and (dj , bj ] respectively. If ξi ⌣ ξbi
j is173

trivial, then by the functoriality of cup product, φbi,r(ξi ⌣ ξbi
j ) = φbi,r(ξi) ⌣ φbi,r(ξb

i

j ) =174

ξri ⌣ ξrj is trivial ∀r < bi. Writing contrapositively, if ∃r < bi for which ξri ⌣ ξrj is nontrivial,175

then ξi ⌣ ξbi
j is nontrivial. Noting that im H∗(⌣ℓ) for any ℓ ∈ {0, . . . , n} is generated176

by {[ξℓi ] ⌣ [ξℓj ] | ξi, ξj ∈ ΩK}, it follows that an index b is the birth index of a bar in177

B(im H∗(⌣•)) only if it is the birth index of a bar in B(H∗(K•)), proving the first claim.178

Let Ω′
j+1 = {[τ1], . . . , [τk]} be a basis for im H∗(⌣j+1). Then, Ω′

j+1 extends to a basis179

Ωj+1 of H∗(Kj+1). If j is not a death index of B(H∗(K•)), then φj+1(τ1), . . . , φj+1(τk) are180

all nontrivial and linearly independent. From Remark 7, it follows that j is not a death index181

of B(im H∗(⌣•)), proving the second claim. ◀182

▶ Corollary 10. For a filtration K•, if d is a death index of B(im H∗(⌣•)), then at most one183

bar of B(im H∗(⌣•)) has death index d.184

Proof. Using the fact that if the rank of a linear map f : V1 → V2 is dimV1 − 1, then the185

rank of f |W1 for a subspace W1 ⊂ V1 is at least dimW1 − 1, from Remark 7 it follows that if186

dim H∗(Kd) = dim H∗(Kd+1)− 1, then187

dim(im H∗(⌣d)) + 1 ≥ dim(im H∗(⌣d+1)) ≥ dim(im H∗(⌣d)) proving the claim. ◀188

▶ Remark 11. The persistent cup module is a submodule of the original persistence module.189

Let dim(im Hpi ) denote dim(im Hp(⌣i)). In the barcode B(im H∗(⌣•)), if Ki = Ki−1 ∪ {σp},190

then either (i) dim(im Hpi ) > dim(im Hpi−1), or (ii) dim(im Hp−1
i ) < dim(im Hp−1

i−1 ), or (iii)191



J. Open Access and J. R. Public XX:7

there is no change: dim(im Hpi ) = dim(im Hpi−1) and dim(im Hp−1
i ) = dim(im Hp−1

i−1 ). The192

decrease (increase) in persistent cup modules happens only if there is a decrease (increase) in193

ordinary cohomology. Multiple bars of B(im H∗(⌣•)) may have the same birth index. But, if194

i is a death index, then Corollary 10 says that it is so for at most one bar in B(im H∗(⌣•)).195

3 Algorithm for the barcode of persistent cup module196

Our goal is to compute the barcode of im H∗(⌣•), which being an image module is a197

submodule of H∗(K•). The vector space im H∗(⌣i) is a subspace of the cohomology vector198

space H∗(Ki). Let us call this subspace the cup space of H∗(Ki). Our algorithm keeps track199

of a basis of this cup space as it processes the filtration in the reverse order. This backward200

processing is needed because the structure maps between the cup spaces are induced by201

restrictions φj,i : C∗(Kj) → C∗(Ki) that are, in turn, induced by inclusions Kj ⊇ Ki, i ≤ j.202

In particular, a cocycle/coboundary in Kj is taken to its restriction in Ki for i ≤ j. Our203

algorithm keeps track of the birth and death of the cocycle classes in the cup spaces as it204

proceeds through the restrictions in the reverse filtration order. We maintain a basis of205

nontrivial product cocycles in a matrix S whose classes S form a basis for the cup spaces. In206

particular, cocycles in S are born and die with birth and death of the elements in cup spaces.207

A cocycle class from H∗(Ki) may enter the cup space im H∗(⌣i) signalling a birth or may208

leave (become zero) the cohomology vector space and hence the cup space signalling a death.209

Interestingly, multiple births may happen, meaning that multiple independent cocycle classes210

may enter the cup space, whereas at most a single class can die because of Corollary 10. To211

determine which class from the cohomology vector space enters the cup space and which one212

leaves it, we make use of the barcode of H∗(K•). However, the classes of the bases maintained213

in H do not directly provide bases for the cup spaces. Hence, we need to compute and214

maintain S separately, of course, with the help of H.215

Let us consider the case of birth first. Suppose that a cocycle ξ at degree p is born at216

index k = bi for H∗(K•). With ξ, a set of product cocycles are born in some of the degrees217

p+ q for q ≥ 1. To detect them, we first compute a set of candidate cocycles by taking the218

cup product of cocycles ξ ⌣ ζ, for all cocycles ζ ∈ H at bi which can potentially augment the219

basis maintained in S. The ones among the candidate cocycles whose classes are independent220

w.r.t. the current basis maintained in S are determined to be born at bi. Next, consider221

the case of death. A product cocycle ζ in degree r ceases to exist if it becomes linearly222

dependent of other product cocycles. This can happen only if the dimension of Hr(K•) itself223

has reduced under the structure map going from k + 1 to k. It suffices to check if any of the224

nontrivial cocycles in S have become linearly dependent or trivial after applying restrictions.225

In what follows, we use deg(ζ) to denote the degree of a cocycle ζ.226

227

Algorithm CupPers (K•)228

Step 1. Compute barcode B(F) = {(di, bi]} of H∗(K•) with representative cocycles ξi;229

Let H = {ξi | [ξi] essential and deg(ξi) > 0}; Initialize S with the coboundary matrix ∂⊥
230

obtained by taking transpose of the boundary matrix ∂;231

Step 2. For k := n to 1 do232

Restrict the cocycles in S and H to index k;233

Step 2.1 For every i with k = bi (k is a birth-index) and deg(ξi) > 0234

∗ Step 2.1.1 If k ̸= n, update H := [H | ξi]235

∗ Step 2.1.2 For every ξj ∈ H236



XX:8 Cup Product Persistence and Its Efficient Computation

i. If (ζ ← ξi ⌣ ξj) ̸= 0 and ζ is independent in S, then S := [S | ζ] with column ζ237

annotated as ζ · birth := k and ζ · rep@birth := ζ238

Step 2.2 If k = di (k is a death-index) for some i and deg(ξi) > 0 then239

∗ Step 2.2.1 Reduce S with left-to-right column additions240

∗ Step 2.2.2 If a nontrivial cocycle ζ is zeroed out, remove ζ from S, generate the241

bar-representative pair {(k, ζ · birth], ζ · rep@birth}242

∗ Step 2.2.3 Update H by removing the column ξi243

Algorithm CupPers describes this algorithm with a pseudocode. First, in Step 1, we compute244

the barcode of the cohomology persistence module H∗(K•) along with a persistent cohomology245

basis. This can be achieved in O(n3) time using either the annotation algorithm [6,16] or246

the pCoH algorithm [15]. The basis H is maintained with the matrix H whose columns247

are cocycles represented as the support vectors on simplices. The matrix H is initialized248

with all cocycles ξi that are computed as representatives of the bars (di, bi] for the module249

H∗(K•) which get born at the first (w.r.t. reverse order) complex Kn = K. The matrix S250

is initialized with the coboundary matrix ∂⊥ with standard cochain basis. Subsequently,251

nontrivial cocycle vectors are added to S. The classes of the nontrivial cocycles in matrix S252

form a basis S for the cup space at any point in the course of the algorithm.253

In Step 2, we process cocycles in the reverse filtration order. At each index k, we do the254

following. If k is a birth index for a bar (−, bi] (Step 2.1), that is, k = bi for a bar with255

representative ξi in the barcode of H∗(K•), first we augment H with ξi to keep it current256

as a basis for the vector space H∗(Kk) (Step 2.2.1). Now, a new bar for the persistent cup257

module can potentially be born at k. To determine this, we take the cup product of ξi with258

all cocycles in H and check if the cup product cocycle is non-trivial and is independent of259

the cocycles in S. If so, a product cocycle is born at k that is added to S (Step 2.1.2). To260

check this independence, we need S to have current coboundary basis along with current261

nontrivial product cocycle basis S that are both updated with restrictions. Note that we262

need a for loop in Step 2.1 because at k = n, there can be multiple births in H∗(K•).263

▶ Remark 12. Restrictions in H and S are implemented by zeroing out the corresponding264

row associated to the simplex σi when we go from Ki to Ki−1 and Ki \ Ki−1 = {σi}.265

If k is a death index (Step 2.2), potentially the class of a product cocycle from S can be266

a linear combination of the classes of other product cocycles after S has been updated with267

restriction. We reduce S with left-to-right column additions and detect the column that is268

zeroed out (Step 2.2.1). If the column ζ is zeroed out, the class [ζ] dies at k and we generate269

a bar with death index k and birth index equal to the index when ζ was born (Step 2.2.2).270

Finally, we update H by removing the column for ξi (Step 2.2.3).271

3.1 Rank functions and barcodes272

Let P ⊆ Z be a finite set with induced poset structure from Z. Let Int(P ) denote the273

set of all intervals in P . Recall that P op denotes the opposite poset category. Given a274

P op-indexed persistence module V•, the rank function rkV• : Int(P ) → Z assigns to each275

interval I = [a, b] ∈ Int(P ) the rank of the linear map Vb → Va. It is well known that276

(see [10, 17]) the barcode of V• viewed as a function DgmV•
: Int(P )→ Z can be obtained277

from the rank function by the inclusion-exclusion formula:278

DgmV•
([a, b]) = rkV• [a, b]− rkV• [a− 1, b] + rkV• [a, b+ 1]− rkV• [a− 1, b+ 1] (3)279

To prove the correctness of Algorithm CupPers, we use the following elementary fact.280

▶ Fact 1. A class that is born at an index ≥ b dies at a iff rkV•([a, b]) < rkV•([a+ 1, b]).281



J. Open Access and J. R. Public XX:9

3.2 Correctness of Algorithm CupPers282

▶ Theorem 13. Algorithm CupPers computes the barcode of the persistent cup module.283

Proof. In what follows, we abuse notation by denoting the restriction at index k of a cocycle284

ζ born at b also by the symbol ζ. That is, index-wise restrictions are always performed, but285

not always explicitly mentioned. We use {ξi} to denote cocycles in the persistent cohomology286

basis computed in Step 1. The proof uses induction to show that for an arbitrary birth287

index b in B(H∗(K•)), if all bars for the persistent cup module with birth indices b′ > b are288

correctly computed, then the bars beginning with b are also correctly computed.289

To begin with we note that in Algorithm CupPers, as a consequence of Proposition 9,290

we need to check if an index k is a birth (death) index of B(im H∗(⌣•)) only when it is a291

birth (death) index of B(H∗(K•)). Also, from Corollary 10, we know that at most one cycle292

dies at a death index of B(im H∗(⌣•)) (justifying Step 2.2.2).293

We now introduce some notation. In what follows, we denote the persistent cup module294

by V•. For a birth index b, let Sb be the cup space at index b. Let Cb be the vector space of295

the product cocycle classes created at index b. In particular, the classes in Cb are linearly296

independent of classes in Sb+1. For a birth index b < n, Sb can be written as a direct sum297

Sb = Sb+1 ⊕ Cb. For index n, we set Sn = Cn. Then, for a birth index b ∈ {0, . . . , n}, Cb is298

a subspace of H∗(Kb). Cb can be written as:299

Cb =
{
⟨[ξi] ⌣ [ξj ] | ξi, ξj are essential cocycles of H∗(K•)⟩ if b = n

⟨[ξi] ⌣ [ξj ] | ξi is born at b, and ξj is born at an index ≥ b⟩ if b < n
300

For a birth index b, let Cb be the submatrix of S formed by representatives whose classes301

generate Cb, which augments S in Step 2.1.2 (i) when k = b in the for loop. The cocycles302

in Cb are maintained for k ∈ {b, . . . , 1} via subsequent restrictions to index k. Let Sb be303

the submatrix of S containing representative product cocycles that are born at index ≥ b.304

Clearly, Cb is a submatrix of Sb for b < n, and Cn = Sn.305

Let DPb be the set of filtration indices for which the cocycles in Cb become successively306

linearly dependent to other cocycles in Sb. That is, d ∈ DPb if and only if there exists a307

cocycle ζ in Cb such that ζ is independent of all cocycles to its left in matrix S at index308

d+ 1, but ζ is either trivial or a linear combination of cocycles to its left at index d.309

For the base case, we show that the death indices of the essential bars are correctly310

computed. First, we observe that for all d ∈ DPn, rkV•([d, n]) = rkV•([d+ 1, n])− 1. Using311

Fact 1, it follows that the algorithm computes the correct barcode for im H∗(⌣•) only if312

the indices in DPn are the respective death indices for the essential bars. Since the leftmost313

columns of S are coboundaries from ∂⊥ followed by cocycles from Cn, and since we perform314

only left-to-right column additions in Step 2.2.1 to zero out cocycles in Cn, the base case315

holds true. By (another) simple inductive argument, it follows that the computation of316

indices in DPn does not depend on the specific ordering of representatives within Cn.317

Let b < n be a birth index in B(H∗(K•)). For induction hypothesis, assume that for every318

birth index b′ > b the indices in DPb′ are the respective death indices of the bars of im H∗(⌣•)319

born at b′. By construction, the cocycles {ζ1, ζ2, . . . } in S are sequentially arranged by the320

following rule: If ζi and ζj are two representative product cocycles in S, then i < j if the321

birth index bi of the interval represented by ζi is greater than or equal to the birth index bj322

of the interval represented by ζj . Then, as a consequence of the induction hypothesis, for a323

cocycle ζ ∈ Cb \ Sb, we assign the correct birth index to the interval represented by ζ only if324

ζ can be written as a linear combination of cocycles to its left in matrix S.325



XX:10 Cup Product Persistence and Its Efficient Computation

Now, suppose that at some index d ∈ DPb we can write a cocycle ζ in submatrix Cb326

as a linear combination of cocycles to its left in S. For such a d ∈ DPb, rkV•([d, b]) =327

rkV•([d+ 1, b])− 1. Hence, using Fact 1, a birth index ≥ b must be paired with d.328

However, since DPb ∩DPb′ = ∅ for b < b′, it follows from the inductive hypothesis that329

the only birth index that can be paired to d is b. Moreover, since we take restrictions of330

cocycles in S, all cocycles in Cb eventually become trivial or linearly dependent on cocycles331

to its left in S. So, DPb has the same cardinality as the number of cocycles in Cb, and all332

the bars that are born at b must die at some index in DPb. As a final remark, it is easy333

to check that the computation of indices in DPb is independent of the specific ordering of334

representatives within Sb by a simple inductive argument. ◀335

Time complexity of CupPers. Let the input simplex-wise filtration have n additions and336

hence the complex K have n simplices. Step 1 of CupPers can be executed in O(n3) time337

using algorithms in [6, 15]. The outer loop in Step 2 runs O(n) times. For each death index338

in Step 2.2, we perform left-to-right column additions as done in the standard persistence339

algorithm to bring the matrix in reduced form. Hence, for each death index, Step 2.2 can be340

performed in O(n3) time. Since there are at most O(n) death indices, the total cost for Step341

2.2 in the course of the algorithm is O(n4).342

Step 2.1 apparently incurs higher cost than Step 2.2. This is because at each birth343

point, we have to test the product of multiple pairs of cocycles stored in H. However, we344

observe that there are at most O(n2) products of pairs of representative cocycles that are345

each computed and tested for linear independence at most once. In particular, if ξi and ξj346

represent (di, bi] and (dj , bj ] resp. with bi ≤ bj , then ξi ⌣ ξj is computed and tested for347

independence iff bi > dj and the test happens at bi. Using Equation (1), computing ξi ⌣ ξj348

takes linear time. So the cost of computing the O(n2) products is O(n3). Moreover, since349

each independence test takes O(n2) time with the assumption that S is kept reduced all the350

time, Step 2.1 can be implemented to run in O(n4) time over the entire algorithm.351

Finally, since restrictions of cocycles in S and H are computed by zeroing out corresponding352

rows, the total time to compute restrictions over the course of the algorithm is O(n2).353

Combining all costs, we get an O(n4) complexity bound for CupPers.354

4 Algorithm for the barcode of persistent k-cup modules355

While considering the persistent 2-cup modules (referred to as persistent cup modules in356

Section 3) is the natural first step, it must be noted that the invariants thus computed can357

still be enriched by considering persistent k-cup modules. As a next step, we consider image358

persistence of the k-fold tensor products.359

Image persistence of k-fold tensor product. Consider image persistence of the map360

⌣k
•: C∗(K•)⊗ C∗(K•)⊗ · · · ⊗ C∗(K•)→ C∗(K•) (4)361

where the tensor product is taken k times. Taking G• = ⌣k
• in the definition of image362

persistence, we get the module im H∗(⌣k
•) which is same as the persistent k-cup module363

introduced in [13]. Our aim is to compute B(im H∗(⌣k K•)) (written as B(im H∗(⌣k
•)) when364

the complex is clear from the context). Likewise, the degree-wise barcodes B(im Hp(⌣•))365

and B(im Hp(⌣k
•)) can also be defined and computed. We omit the details for brevity.366

▶ Definition 14. For any i ∈ {0, . . . , n}, a nontrivial cocycle ζ ∈ Z∗(Ki) is said to be an367

order-k product cocycle of Ki if [ζ] ∈ im H∗(⌣k
i ).368



J. Open Access and J. R. Public XX:11

4.1 Computing barcode of persistent k-cup modules369

The order-k product cocycles can be viewed recursively as cup products of order-(k − 1)370

product cocycles with another cocycle. This suggests a recursive algorithm for computing the371

barcode of persistent k-cup module: compute the barcode of persistent (k − 1)-cup module372

recursively and then use that to compute the barcode of persistent k-cup module just like373

the way we computed persistent 2-cup module using the bars for ordinary persistence. In the374

algorithm OrderkCupPers, we assume that the barcode with representatives for H∗(K•)375

has been precomputed which is denoted by the pair of sets ({(di,1, bi,1], {ξi,1}). For simplicity,376

we assume that this pair is accessed by the recursive algorithm as a global variable and is377

not passed at each recursion level. At each recursion level k, the algorithm computes the378

barcode-representative pair denoted as ({(di,k, bi,k], {ξi,k}). Here, the cocycles ξi,k are the379

initial cocycle representatives (before restrictions) for the bars (di,k, bi,k]. At the time of380

their respective births bi,k, they are stored in the field ξi,k · rep@birth.381

382

Algorithm OrderkCupPers (K•,k)383

Step 1. If k = 2, return the barcode with representatives {(di,2, bi,2], ξi,2} computed by384

CupPers on K•385

else {(di,k−1, bi,k−1], ξi,k−1} ← OrderkCupPers(K•, k − 1)386

Let H = {ξi,1 | [ξi,1] essential & deg(ξi,1) > 0}; R := {ξi,k−1 | bi,k−1 = n}; S := ∂⊥;387

Step 2. For ℓ := n to 1 do388

Restrict the cocycles in S, R, and H to index ℓ;389

Step 2.1 For every r s.t. br,1 = ℓ ̸= n (i.e., ℓ is a birth-index) and deg(ξr,1) > 0390

∗ Step 2.1.1 Update H := [H | ξr,1]391

∗ Step 2.1.2 For every ξj,k−1 ∈ R392

i. If (ζ ← ξr,1 ⌣ ξj,k−1) ̸= 0 and ζ is independent in S, then S := [S | ζ] with393

column ζ annotated as ζ · birth := ℓ and ζ · rep@birth := ζ394

Step 2.2 For all s such that ℓ = bs,k−1395

∗ Step 2.2.1 If ℓ ̸= n, update R := [R | ξs,k−1]396

∗ Step 2.2.2 For every ξi,1 ∈ H397

i. If (ζ ← ξs,k−1 ⌣ ξi,1) ̸= 0 and ζ is independent in S, then S := [S | ζ] with398

column ζ annotated as ζ · birth := ℓ and ζ · rep@birth := ζ399

Step 2.3 If ℓ = di,1 (i.e. ℓ is a death-index) and deg(ξi,1) > 0 for some i then400

∗ Step 2.3.1 Reduce S with left-to-right column additions401

∗ Step 2.3.2 If a nontrivial cocycle ζ is zeroed out, remove ζ from S, generate the402

bar-representative pair {(ℓ, ζ · birth], ζ · rep@birth}403

∗ Step 2.3.3 Remove the column ξi,1 from H404

∗ Step 2.3.4 Remove the column ξj,k−1 from R if dj,k−1 = ℓ for some j405

A high-level pseudocode for computing the barcode of persistent k-cup module is given406

by algorithm OrderkCupPers. The algorithm calls itself recursively to generate the sets407

of bar-representative pairs for the persistent (k − 1)-cup module. As in the case of persistent408

2-cup modules, birth and death indices of order-k product cocycle classes are subsets of birth409

and death indices resp. of ordinary persistence. Thus, as before, at each birth index of the410

cohomology module, we check if the cup product of a representative cocycle (maintained in411

matrix H) with a representative for persistent (k − 1)-cup module (maintained in matrix R)412

generates a new cocycle in the barcode for persistent k-cup module (Steps 2.1.2(i), 2.2.2(i)).413

If so, we note this birth with the resp. cocycle (by annotating the column) and add it to the414



XX:12 Cup Product Persistence and Its Efficient Computation

matrix S that maintains a basis for live order-k product cocycles. At each death index, we415

check if an order-k product cocycle dies by checking if the matrix S loses a rank through416

restriction (Step 2.3.1). If so, the cocycle in S that becomes dependent to other cocycles417

through a matrix reduction is designated to be killed (Step 2.3.2) and we note the death of a418

bar in the k-cup module barcode. We update H, R appropriately (Steps 2.3.3, 2.3.4). At a419

high level, this algorithm is similar to CupPers with the role of H played by both H and R420

as they host the cocycles whose products are to be checked during the birth and the role of421

S in both algorithms remains the same, that is, check if a product cocycle dies or not.422

Correctness and complexity of OrderkCupPers Correctness can be established the423

same way as for CupPers. See Appendix F for a sketch of the proof. For complexity, observe424

that we incur a cost from recursive calling in Step 1 and O(n4) cost from Step 2 with a425

similar analysis we did for CupPers while noting that there are once again a total of O(n2)426

product cocycles to be checked for independence at birth (Steps 2.1 and 2.2). Then, we get a427

recurrence for time complexity as T (n, k) = T (n, k − 1) +O(n4) and T (n, 2) = O(n4) which428

solves to T (n, k) = O(kn4). Note that k ≤ d, the dimension of K. This gives an O(dn4)429

algorithm for computing the barcodes of persistent k-cup modules for all k ∈ {2, . . . , d}.430

▶ Remark 15. In [25, Remark 4.18], a method to compute k-cup modules via the rank431

invariant is briefly sketched, but no complexity analysis is given. An obvious estimate for432

computing the d-cup module with the strategy mentioned in [25] would take O(nd+5) time433

(generate O(n2) pairs (a, b), generate all possible candidate O(nd) tuples of live cocyles whose434

product at a is nonzero, and then O(n3) time to check if a generated tuple contributes to435

the basis at a). In contrast, our algorithm runs in O(dn4) time, which is substantially faster.436

▶ Remark 16. In Sections 3 and 4, we devised algorithms to compute (absolute) persistent437

k-cup modules. The algorithms for computing relative persistent k-cup modules are minor438

variations (See Appendix G). Through Examples 35 and 36 in Appendix G, we also observe439

that unlike in the case of ordinary persistence [15], we do not have any duality that gives440

bijection of bars between barcodes of absolute and relative cup modules.441

4.2 Faster computation of the persistent cup-length442

The cup length of a ring is defined as the maximum number of multiplicands that together443

give a nonzero product in the ring. Let Int∗ denote the set of all closed intervals of R. Let444

F be an R-indexed filtration of simplicial complexes. The persistent cup-length function445

cuplength• : Int∗ → N is defined as a function from the set of closed intervals to the set of446

non-negative integers, which assigns to each interval [a, b], the cup-length of the image ring447

im
(
H∗(K)[a, b]

)
, which is the ring im

(
H∗(Kb)→ H∗(Ka)

)
.448

Given a P -indexed filtration F of a d-complex K of size n, let V k• denote its persistent449

k-cup module. Leveraging the fact that cuplength•([a, b]) = argmax{k | rkV k
•

([a, b]) ̸= 0}450

(see Proposition 5.9 in [13]), the algorithm described in Section 4 can be used to compute the451

persistent cup-length in O(dn4) time, whereas O(nd+2) is a coarse estimate for the runtime452

of the algorithm described in [12]. Thus, for d ≥ 3, our complexity bound for computing the453

persistent cup length is strictly better. We refer the reader to Appendix E for further details.454

5 Partition modules of the cup product: a more refined invariant455

A partition λq of an integer q is a multiset of integers that sum to q, written as λq ⊢ q.456

That is, a multiset λq = {s1, s2, . . . , sℓ} is a partition of q if s1 + s2 + · · ·+ . . . sℓ = q. The457



J. Open Access and J. R. Public XX:13

integers s1, s2, . . . , sℓ are non-decreasing. For every partition λq of q, we define a submodule458

im Hλq (⌣ K•)) (written as im Hλq (⌣•)) when K is clear from context) of im Hq(⌣ℓ
•)):459

im Hλq (⌣i)) = ⟨[α1] ⌣ [α2] ⌣ · · ·⌣ [αℓ] | [αj ] ∈ Hsj (Ki) for j ∈ [ℓ]⟩.460

The structure map im Hλq (⌣i))→ im Hλq (⌣i−1)) is the restriction of φ∗
i to im Hλq (⌣i)).461

For an integer q ≥ 1, let P(q) denote the number of partitions of q. In [14], Pribitkin462

proved that for q ≥ 1, P(q) < ec
√

q

q
3
4

, where c = π
√

2/3. For a d-complex K, let P↑(d) denote463

the total number of partition modules. Below, we obtain an upper bound for P↑(d).464

P↑(d) =
d∑
q=2
P(q) <

d∑
q=2

ec
√
q

q
3
4

< d
1
4 ec

√
d.465

When d is small, as is often the case in practice, P↑(d) is also small. For instance,466

P↑(2) = 1, P↑(3) = 3, P↑(4) = 7.467

Partition modules are more discriminative than persistent cup modules. From468

Remark 17 and Example 18, it follows that barcodes of partition modules are a strictly finer469

invariant compared to barcodes of cup modules.470

▶ Remark 17. Given two filtrations K• and L•, suppose that for some ℓ and q, im Hq(⌣ℓ K•))471

and im Hq(⌣ℓ L•)) are distinct. Without loss of generality, there exists a bar (d, b] in472

B(im Hq(⌣ K•))) with no matching bar in B(im Hq(⌣ L•))). Let ζ be a representative for473

the bar (d, b]. Then, [ζ] can be written as [ζ1] ⌣ [ζ2] ⌣ · · · ⌣ [ζℓ] in Kb. Let si for each474

i ∈ [ℓ] denote the degree of cocycle class [ζi]. Then, λq = {s1, s2, . . . , sℓ} is a partition of q. It475

follows that the bar (d, b] will be present in B(im Hλq (⌣ K•))) but not in B(im Hλq (⌣ L•))).476

▶ Example 18. Let L1 = (S3×S1)∨S2 ∨S2 and L2 = (S2×S2)∨S1 ∨S3. The natural cell477

filtrations L1
• and L2

• have isomorphic persistence modules and persistent cup modules. While478

L1
• has a nontrivial barcode for im H(3,1) and a trivial barcode for im H(2,2), the opposite is479

true for L2
•. See Example 20 in Appendix B for details.480

Partition modules are not a complete invariant. Let C1 be the 3-torus, and C2 =481

RP2∨RP2∨RP3. The natural cell filtrations C1
• and C2

• have isomorphic persistence modules,482

isomorphic persistent cup modules as well as isomorphic partition modules. Yet, C1 and C2
483

have non-isomorphic cohomology algebras. See Example 21 in Appendix B for details.484

The barcodes of all the partition modules of the cup product can be computed in485

O(d 1
4 ec

√
dn4) time, where c = π

√
2/3 time. The algorithm for computing them is described486

in Appendix C. In Appendix D, using functoriality of the cup product, we observe that487

partition modules are stable for Čech and Rips filtrations w.r.t. the interleaving distance.488

6 Conclusion.489

The cup product is a cohomology operation that gives the cohomology vector spaces the490

structure of a graded ring [19]. One could also use other operations such as Massey products491

and Steenrod squares [24, 26, 27]. Recently, Lupo et al. [22] introduced invariants called492

Steenrod barcodes and devised algorithms for their computation, which were implemented in493

the software steenroder. Our work complements the results in Lupo et al. [22], Contessoto494



XX:14 Cup Product Persistence and Its Efficient Computation

et al. [12, 13] and Mémoli et al. [25]. While Contessoto et al. [13] introduced persistent495

k-cup modules invariant and established its stability, in this work, we devise an algorithm496

to compute it efficiently. We also introduce a more discriminative stable invariant called497

partition modules and provide an efficient algorithm to compute it. We believe that the498

combined advantages of a fast algorithm and favorable stability properties make cup modules499

and partition modules valuable additions to the topological data analysis pipeline.500

References501

1 Ulrich Bauer. Ripser: efficient computation of Vietoris–Rips persistence barcodes. Journal of502

Applied and Computational Topology, 5(3):391–423, 2021.503

2 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing persistent504

homology in chunks. In Topological methods in data analysis and visualization III, pages505

103–117. Springer, 2014.506

3 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat – persistent507

homology algorithms toolbox. Journal of Symbolic Computation, 78:76–90, 2017.508

4 Ulrich Bauer and Maximilian Schmahl. Efficient Computation of Image Persistence. In509

Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on510

Computational Geometry (SoCG 2023), volume 258 of Leibniz International Proceedings in511

Informatics (LIPIcs), pages 14:1–14:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-512

Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2023.14.513

5 Francisco Belchí and Anastasios Stefanou. A-infinity persistent homology estimates detailed514

topology from point cloud datasets. Discrete & Computational Geometry, pages 1–24, 2021.515

6 Jean-Daniel Boissonnat, Tamal K Dey, and Clément Maria. The compressed annotation matrix:516

An efficient data structure for computing persistent cohomology. In European Symposium on517

Algorithms, pages 695–706. Springer, 2013.518

7 Peter Brooksbank, E O’Brien, and James Wilson. Testing isomorphism of graded algebras.519

Transactions of the American Mathematical Society, 372(11):8067–8090, 2019.520

8 Frédéric Chazal, Vin De Silva, and Steve Oudot. Persistence stability for geometric complexes.521

Geometriae Dedicata, 173(1):193–214, 2014.522

9 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.523

In Proceedings of the twenty-first annual symposium on Computational geometry, pages 263–271,524

2005.525

10 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.526

Discrete Comput. Geom., 37(1):103–120, Jan 2007. doi:10.1007/s00454-006-1276-5.527

11 David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Persistent528

homology for kernels, images, and cokernels. In Proceedings of the Twentieth Annual ACM-529

SIAM Symposium on Discrete Algorithms, pages 1011–1020. SIAM, 2009.530

12 Marco Contessoto, Facundo Mémoli, Anastasios Stefanou, and Ling Zhou. Persistent cup-531

length. In 38th International Symposium on Computational Geometry, SoCG 2022, June532

7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 31:1–31:17. Schloss Dagstuhl -533

Leibniz-Zentrum für Informatik, 2022.534

13 Marco Contessoto, Facundo Mémoli, Anastasios Stefanou, and Ling Zhou. Persistent cup-length,535

2021. URL: https://arxiv.org/abs/2107.01553v3, doi:10.48550/ARXIV.2107.01553.536

14 Wladimir de Azevedo Pribitkin. Simple upper bounds for partition functions. The Ramanujan537

Journal, 18(1):113–119, 2009.538

15 Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent (co)539

homology. Inverse Problems, 27(12):124003, 2011.540

16 Tamal K. Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge541

University Press, 2022.542

17 Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. Applied543

Mathematics. American Mathematical Society, 2010.544

https://doi.org/10.4230/LIPIcs.SoCG.2023.14
https://doi.org/10.1007/s00454-006-1276-5
https://arxiv.org/abs/2107.01553v3
https://doi.org/10.48550/ARXIV.2107.01553


J. Open Access and J. R. Public XX:15

18 David Eppstein. Python code for generating partitions. https://code.activestate.com/545

recipes/218332/. Accessed: 2023-11-30.546

19 Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.547

20 Jean-Claude Hausmann. Mod two homology and cohomology, volume 10. Springer, 2014.548

21 Estanislao Herscovich. A higher homotopic extension of persistent (co)homology. Journal of549

Homotopy and Related Structures, 13(3):599–633, 2018.550

22 Umberto Lupo, Anibal M. Medina-Mardones, and Guillaume Tauzin. Persistence Steenrod551

modules. Journal of Applied and Computational Topology, 6(4):475–502, 2022.552

23 Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The Gudhi553

library: Simplicial complexes and persistent homology. In Hoon Hong and Chee Yap, editors,554

Mathematical Software – ICMS 2014, pages 167–174, Berlin, Heidelberg, 2014. Springer Berlin555

Heidelberg.556

24 William S. Massey. Higher order linking numbers. Journal of Knot Theory and Its Ramifications,557

7:393–414, 1998.558

25 Facundo Mémoli, Anastasios Stefanou, and Ling Zhou. Persistent cup product structures and559

related invariants. Journal of Applied and Computational Topology, 2023.560

26 Robert E. Mosher and Martin C. Tangora. Cohomology operations and applications in homotopy561

theory. Courier Corporation, 2008.562

27 Norman E Steenrod. Products of cocycles and extensions of mappings. Annals of Mathematics,563

pages 290–320, 1947.564

28 Andrew Yarmola. Persistence and computation of the cup product. Undergraduate honors565

thesis, Stanford University, 2010.566

29 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In Proceedings of567

the twentieth annual symposium on Computational geometry, pages 347–356, 2004.568

https://code.activestate.com/recipes/218332/
https://code.activestate.com/recipes/218332/
https://code.activestate.com/recipes/218332/


XX:16 Cup Product Persistence and Its Efficient Computation

A Mod-2 (co)homology569

Given a simplicial complex K, let K(p) denote the set of p-simplices of K. A p-cochain of K is570

a function ζ : K(p) → Z2 with finite support. Equivalently, a p-cochain is a subset of K(p).571

For any non-negative integer p, since the p-cochains can be added to each other with Z2572

additions, they form a Z2-vector space called the p-th cochain group, denoted by Cp(K).573

The coboundary of a p-simplex is a (p+1)-cochain that corresponds to the set of its (p+1)-574

cofaces. The coboundary map is linearly extended from p-simplices to p-cochains, where the575

coboundary of a cochain is the Z2-sum of the coboundaries of its elements. This extension576

is known as the coboundary homomorphism, and is denoted by δp : Cp(K) → Cp+1(K). A577

cochain ζ ∈ Cp(K) is called a p-cocycle if δpζ = 0, that is, ζ ∈ ker δp. The collection of578

p-cocycles forms the p-th cocycle group of K, denoted by Zp(K), which is also a vector space579

under Z2 addition. A cochain η ∈ Cp(K) is said to be a p-coboundary if η = δp−1ξ for some580

cochain ξ ∈ Cp−1(K), that is, η ∈ im δp−1. The collection of p-coboundaries forms the p-th581

coboundary group of K, denoted by Bp(K) which is also a vector space under Z2 addition.582

The three vector spaces are related as follows: Bp(K) ⊂ Zp(K) ⊂ Cp(K). Therefore, we can583

define the quotient space Hp(K) = Zp(K)/Bp(K), which is called the p-th cohomology group584

of K. The elements of the vector space Hp(K), known as the p-th cohomology group of K,585

are equivalence classes of p-cocycles, where p-cocycles are equivalent if their Z2-difference586

is a p-coboundary. Equivalent cocycles are said to be cohomologous. For a p-cocycle ζ, its587

corresponding cohomology class is denoted by [ζ]. The p-th Betti number of K, denoted by588

βp(K) is defined as βp(K) = dim Hp(K). For a cocycle η and a simplex σ, the evaluation map589

⟨η, σ⟩ is defined as follows: ⟨η, σ⟩ = 1 if σ is in the support of η, and 0 otherwise.590

A vector space V is said to be graded with an index set I if V = ⊕i∈IVi. Cochain and591

cohomology groups form graded vector spaces, where the grading is achieved with degree.592

Specifically, we work with graded cochain and cohomology vector spaces C∗(K) =
⊕

p∈N Cp(K),593

and H∗(K) =
⊕

p∈N Hp(K), respectively.594

A cochain complex is a pair (C∗, δ) where C∗ is a graded vector space and δ is a linear595

map satisfying δ(Cp) ⊂ Cp+1 and δ ◦ δ = 0. Observe that (C∗, δ) is graded in the increasing596

order of degrees. For instance, for a simplicial complex, the simplicial cochain groups along597

with the respective coboundary maps assemble to give a cochain complex.598

Given two cochain complexes (C∗, δC) and (D∗, δD), a linear map ψ : D∗ → C∗ satisfying599

ψ(Dp) ⊂ Cp for all p is a cochain map if ψ ◦ δD = δC ◦ ψ. For every p ∈ {0, 1, 2, . . . },600

applying the cohomology functor Hp to a cochain complex (C∗, δ), gives its p-th cohomology601

group, which is the quotient space Hp(C∗) = ker(δ:Cp→Cp+1)
im(δ:Cp−1→Cp) , and applying it to a cochain602

map ψ : D∗ → C∗ induces a linear map Hp(ψ) : Hp(D∗)→ Hp(C∗).603

Let L be a subcomplex of a simplicial complex K. The couple (K, L) is called a simplicial604

pair. The p-th relative cochain group is given by Cp(K, L) = Hom(Cp(K, L),Z2). For every605

p, Cp(K, L) can be viewed as a subgroup of Cp(K). The relative couboundary maps δp :606

Cp(K, L)→ Cp+1(K, L) are obtained as restrictions of the absolute coboundary maps. Then,607

the p-th relative cocycle group Zp(K, L) and the (p+1)-th relative coboundary group Bp(K, L)608

are respectively given by the kernel and the image of δp. Finally, the p-th cohomology group609

Hp(K, L) is given by Hp(K, L) = Zp(K, L)/Bp(K, L).610

A.1 Tensor products of cochain complexes611

Given two vector spaces U and V with basis BU and BV respectively, the tensor product612

U ⊗ V is the vector space with the set of all formal products u ⊗ v, u ∈ BU , v ∈ BV , as613

a basis. One may view u⊗ v as the function sending (u, v) ∈ BU × BV to 1 and all other614



J. Open Access and J. R. Public XX:17

elements to 0, and U ⊗ V as the space of all bilinear functions defined on U × V . One may615

extend the definition of the tensor product to cochain complexes viewed as graded vector616

spaces. Given two cochain complexes A and B (whose respective coboundary maps are both617

denoted by δ), the tensor product A⊗B is the cochain complex whose degree-p group is618

(A⊗B)p =
⊕
i+j=p

Ai ⊗Bj ,619

where Ai⊗Bj is the tensor product of Z2-vector spaces, and whose coboundary map is given620

by the Leibniz rule (specialized to Z2-vector spaces).621

δ(a⊗ b) = δa⊗ b+ a⊗ δb, where a and b are vectors in Ai and Bj , respectively.622

B Additional examples623

▶ Example 19. In this section, we provide an additional example that highlights the624

discriminating power of persistent cup modules.625

Filtered real projective space. The real projective space RPn is the space of lines through626

the origin in Rn+1. It is homeomorphic to the quotient space Sn/(u ≃ −u) obtained by627

identifying the antipodal points of a sphere, which in turn is homeomorphic to Dn/(v ≃ −v)628

for v ∈ ∂Dn. Since Sn−1/(u ≃ −u) ∼= RPn−1, RPn can be obtained from RPn−1 by attaching629

a cell Dn using the projection ℘n : Sn−1 → RPn−1. Thus, RPn is a CW complex with one630

cell in every dimension from 0 to n. This gives rise to the natural cell filtration RPn• for631

RPn, where cells of successively higher dimension are introduced with attaching maps ℘i for632

i ∈ [n] described above. Finally, the cohomology algebra of RPn is given by Z2[x]/(xn+1),633

where x ∈ H1(RPn) [20, pg. 146].634

Filtered complex projective space. The complex projective space CPn is the space635

of complex lines through the origin in Cn+1. It is homeomorphic to the quotient space636

S2n+1/S1 ∼= S2n+1/(u ≃ λqu), which in turn can be shown to be homeomorphic to D2n/(v ≃637

λqv) for v ∈ ∂D2n for all λq ∈ C, |λq| = 1. Therefore, CPn is obtained from CPn−1 by638

attaching a 2n-dimensional cell D2n using the projection ℘′
2n : S2n−1 → CPn−1. Thus, CPn639

is a CW complex with one cell in every even dimension from 0 to 2n. This yields the natural640

cell filtration CPn• for CPn where a cell of dimension 2i is added to the CW complex for641

i ∈ [n] with the attaching maps ℘′
2i for i ∈ [n] described above. The cohomology algebra of642

CPn is given by Z2[y]/(yn+1), where y ∈ H2(CPn) [20, pg. 241].643

Filtered wedge of spheres. Let Ln = S1 ∨ · · · ∨ Sn be a wedge of spheres of increasing644

dimensions. Let p be the basepoint of Ln. The filtration Ln• can be described as follows:645

Ln0 = p, and for i ∈ {1, . . . , n}, Lni = S1 ∨ · · · ∨ Si, where for each index i, a cell of dimension646

i is added with the attaching map that takes the boundary of the i-cell to the basepoint p.647

The cohomology algebra of Ln is trivial in the sense that x ⌣ y = 0 for all x, y ∈ H∗(L).648

Standard persistence cannot distinguish Ln• from RPn• since they have the same standard649

persistence barcode. Persistent cup length for RPn• and CPn• for all intervals [i, j] with650

n ≥ i ≥ 1 is equal to i, and hence persistent cup length cannot disambiguate these filtrations.651

Finally, persistent cup modules can tell apart Ln• , RPn• and CPn• as their cup module652

barcodes are different. This follows from the fact that the degrees of the generator of the653

cohomology algebras of RPn• and CPn• are different.654



XX:18 Cup Product Persistence and Its Efficient Computation

▶ Example 20. Let L1 = (S3×S1)∨S2 ∨S2 and L2 = (S2×S2)∨S1 ∨S3. The natural cell655

filtrations L1
• and L2

• have isomorphic persistence modules and persistent cup modules. While656

L1
• has a nontrivial barcode for im H(3,1) and a trivial barcode for im H(2,2), the opposite is657

true for L2
•.658

The barcodes for the persistence modules (using the convention from Section 2.1) are659

B(H0(L1
•)) = B(H0(L2

•)) = {(−1, 4]},660

B(H1(L1
•)) = B(H1(L2

•)) = {(0, 4]},661

B(H2(L1
•)) = B(H2(L2

•)) = {(1, 4], (1, 4]}662

B(H3(L1
•)) = B(H3(L2

•)) = {(2, 4]} and663

B(H4(L1
•)) = B(H4(L2

•)) = {(3, 4]}.664

For the persistent cup modules, B(im H4(⌣ L1
•)) = B(im H4(⌣ L2

•)) = {(3, 4]}. For other665

degrees, the persistent cup modules are trivial.666

Finally, for partition modules B(im H(2,2)(⌣ L2
•)) = {(3, 4]} and B(im H(2,2)(⌣ L1

•)) is667

empty, while B(im H(3,1)(⌣ L2
•)) is empty and B(im H(3,1)(⌣ L1

•)) = {(3, 4]}.668

▶ Example 21. Let C1 be the 3-torus, and C2 = RP2∨RP2∨RP3. The natural cell filtrations669

C1
• and C2

• have isomorphic persistence modules, isomorphic persistent cup modules as well670

as isomorphic partition modules. Yet, C1 and C2 have non-isomorphic cohomology algebras.671

The barcodes for the persistence modules are672

B(H0(L1
•)) = B(H0(L2

•)) = {(−1, 3]},673

B(H1(L1
•)) = B(H1(L2

•)) = {(0, 3], (0, 3], (0, 3]},674

B(H2(L1
•)) = B(H2(L2

•)) = {(1, 3], (1, 3], (1, 3]} and675

B(H3(L1
•)) = B(H3(L2

•)) = {(2, 3]}.676

The barcodes for the persistence cup modules are677

B(im H2(⌣ L1
•)) = B(im H2(⌣ L2

•)) = {(1, 3], (1, 3], (1, 3]} and678

B(im H3(⌣ L1
•)) = B(im H3(⌣ L2

•)) = {(2, 3]}.679

The barcodes for the partition modules are680

B(im H(1,1)(⌣ L1
•)) = B(im H(1,1)(⌣ L2

•)) = {(1, 3], (1, 3], (1, 3]},681

B(im H(2,1)(⌣ L1
•)) = B(im H(2,1)(⌣ L2

•)) = {(2, 3]} and682

B(im H(1,1,1)(⌣ L1
•)) = B(im H(1,1,1)(⌣ L2

•)) = {(2, 3]}.683

The cohomology algebra H∗(C1) ≈ Z2[a, b, c]/(a2, b2, c2). Note that H∗(RP2) ≈ Z2[a]/(a3)684

and H∗(RP3) ≈ Z2[a]/(a4). Let H> denote the positive parts of H∗. Then, the cohomology685

algebra of C2 is H∗(C2) ≈ Z21⊕ H>(RP2)⊕ H>(RP2)⊕ H>(RP3).686

Unlike H∗(C2), there does not exist a cocycle x in the algebra H∗(C1) such that x3 is687

nonzero. Hence H∗(C1) and H∗(C2) are non-isomorphic.688

C Algorithm for computing partitions modules of the cup product689

Algorithm CupPers2Parts describes an algorithm for computing the barcode of the module690

im Hλq (⌣•)) for λq ⊢ q when |λq| = 2. First, in Step 0, we need to check if the barcode for691

the partition λq = {s1, s2} has already been computed because CupPers2Parts is called692



J. Open Access and J. R. Public XX:19

from ExtendCupPersKParts possibly multiple times with the same argument λq. In693

Step 1, we compute the barcode of the cohomology persistence module H∗(K•) along with a694

persistent cohomology basis. As in CupPers2Parts, a basis is maintained with the matrix695

H whose columns are (restricted) representative cocycles. The matrix H is initialized with696

essential cocycles. The matrix S is initialized with the coboundary matrix ∂⊥ with standard697

cochain basis. Subsequently, nontrivial cocycle vectors are added to S. For every k, the698

classes of the nontrivial cocycles in matrix S form a basis for im Hλq (⌣k)). In particular, a699

cocycle ζ = ξ1 ∪ ξ2 is added to S only if deg(ξ1) = s1 and deg(ξ2) = s2 or vice versa. Other700

than the details mentioned here, CupPers2Parts is identical to CupPers.701

Algorithm CupPers2Parts (K•, λq)702

Step 0. If the barcode for the partition λq = {s1, s2} has already been computed, then703

return the barcode with representatives {(di,2, bi,2], ξi,2}.704

Step 1. Compute barcode B(F) = {(di, bi]} of H∗(K•) with representative cocycles ξi;705

Let H = {ξi | [ξi] essential}; Initialize S with the coboundary matrix ∂⊥ obtained by706

taking transpose of the boundary matrix ∂;707

Step 2. For k := n to 1 do708

Restrict the cocycles in S and H to index k;709

Step 2.1 For every i s.t. k = bi (k is a birth-index)710

∗ Step 2.1.1 If k ̸= n, update H := [H | ξi]711

∗ Step 2.1.2 If deg(ξi) = s1712

1. Step 2.1.2.1 For every ξj ∈ H with deg(ξj) = s2713

i. If (ζ ← ξi ⌣ ξj) ̸= 0 and ζ is independent in S, then S := [S | ζ] with column714

ζ annotated as ζ · birth := k and ζ · rep@birth := ζ715

∗ Step 2.2.2 If deg(ξi) = s2 and s1 ̸= s2716

1. Step 2.2.2.1 For every ξj ∈ H with deg(ξj) = s1717

i. If (ζ ← ξi ⌣ ξj) ̸= 0 and ζ is independent in S, then S := [S | ζ] with column718

ζ annotated as ζ · birth := k and ζ · rep@birth := ζ719

Step 2.2 If k = di for some i then (k is a death-index)720

∗ Step 2.2.1 Reduce S with left-to-right column additions721

∗ Step 2.2.2 If a nontrivial cocycle ζ is zeroed out, remove ζ from S, generate the722

bar-representative pair {(k, ζ · birth], ζ · rep@birth}723

∗ Step 2.2.3 Update H by removing the column ξi724

▶ Definition 22 (Refinement of a partition). Let λq and λ′
q be partitions of q. We say λq725

refines λ′
q if the parts of λ′

q can be subdivided to produce the parts of λq.726

For example, (1, 1, 1, 1) ⊢ 4 and (1, 2, 1) ⊢ 4 and (1, 1, 1, 1) is a refinement of (1, 2, 1).727

▶ Remark 23. If a partition λq is a refinement of a partition λ′
q, then im Hλq (⌣•)) is a728

submodule of im Hλ
′
q (⌣•)).729

▶ Definition 24 (Extension of a partition). Let p and q be integers, with q > p. Let730

λq = (s1, s2, . . . , sm) be a partition of q and λp = (s′
1, s

′
2, . . . , s

′
ℓ) be a partition of p for some731

integers ℓ and m, with m > ℓ. We say λq extends λp if si = s′
i for i ∈ [ℓ]. We say that λq732

extends λp by one if |λq| = |λp|+ 1.733

For example, (2, 2) ⊢ 4 and (2, 2, 3) ⊢ 5, and (2, 2, 3) extends (2, 2) by one.734



XX:20 Cup Product Persistence and Its Efficient Computation

Algorithm ExtendCupPersKParts describes an algorithm for computing the barcode735

of the module im Hλt(⌣•)) for λt ⊢ t. In Step 0, we check if the barcode for the partition λt736

has already been computed because ExtendCupPersKParts is called recursively from737

ExtendCupPersKParts possibly multiple times with the same argument λt. In Step 1,738

we first check if |λt| = 2, in which case, we invoke CupPers2Parts and return. Otherwise,739

|λt| = k > 2, and the algorithm calls itself recursively to generate the sets of bar-representative740

pairs for the module im Hλq (⌣•)), where λt is a partition that extends λq by one. As in the741

case of OrderkCupPers, the birth and death indices of order-k product cocycle classes are742

subsets of birth and death indices resp. of ordinary persistence. Therefore, at each birth743

index of the cohomology module, we check if the cup product of a representative cocycle744

with degree t− q (maintained in matrix H) with a representative for im Hλq (⌣•)) (which745

has degree q and is maintained in matrix R) generates a new cocycle in the barcode for746

im Hλt(⌣•)) (Steps 2.1.2(i), 2.2.2(i)). If so, we note this birth with the resp. cocycle (by747

annotating the column) and add it to the matrix S that maintains a basis for live order-k748

product cocycles whose respective degrees form a partition λt of t.The case of death (Step749

2.3) is identical to OrderkCupPers.750

Algorithm ExtendCupPersKParts (K•,λt)751

Step 0. If the barcode for the partition λt has already been computed, then return the752

barcode with representatives {(di,k, bi,k], ξi,k}. Else, let λq be any partition such that λt753

extends λq by one, and let k = |λt|.754

Step 1. If |λt| = 2, return the barcode with representatives {(di,2, bi,2], ξi,2} computed by755

CupPers2Parts(K•, λt)756

Set {(di,k−1, bi,k−1], ξi,k−1} ← ExtendCupPersKParts(K•,λq)757

Let H = {ξi,1 | [ξi,1] essential and deg(ξi,1) = t − q}; R := {ξi,k−1 | bi,k−1 = n};758

S := ∂⊥;759

Step 2. For ℓ := n to 1 do760

Restrict the cocycles in S, R, and H to index ℓ;761

Step 2.1 For every r s.t. br,1 = ℓ ̸= n (i.e., ℓ is a birth-index) and deg(ξr,1) = t− q762

∗ Step 2.1.1 Update H := [H | ξr,1]763

∗ Step 2.1.2 For every ξj,k−1 ∈ R764

i. If (ζ ← ξr,1 ⌣ ξj,k−1) ̸= 0 and ζ is independent in S, then S := [S | ζ] with765

column ζ annotated as ζ · birth := ℓ and ζ · rep@birth := ζ766

Step 2.2 For all s such that ℓ = bs,k−1767

∗ Step 2.2.1 If ℓ ̸= n, update R := [R | ξs,k−1]768

∗ Step 2.2.2 For every ξi,1 ∈ H769

i. If (ζ ← ξs,k−1 ⌣ ξi,1) ̸= 0 and ζ is independent in S, then S := [S | ζ] with770

column ζ annotated as ζ · birth := ℓ and ζ · rep@birth := ζ771

Step 2.3 If ℓ = di,1 (i.e. ℓ is a death-index) then772

∗ Step 2.3.1 Reduce S with left-to-right column additions773

∗ Step 2.3.2 If a nontrivial cocycle ζ is zeroed out, remove ζ from S, generate the774

bar-representative pair {(ℓ, ζ · birth], ζ · rep@birth}775

∗ Step 2.3.3 Remove the column ξi,1 from H776

∗ Step 2.3.4 Remove the column ξj,k−1 from R if dj,k−1 = ℓ for some j777

For every k ∈ {2, . . . , d}, Algorithm ComputePartitionBarcodes first generates all778

partitions of integer k, and then for every partition λk of k computes the barcode of the779

partition module im Hλk (⌣•)).780



J. Open Access and J. R. Public XX:21

Algorithm ComputePartitionBarcodes (K•)781

Step 1. For k := 2 to d do782

Step 1.1 Compute the set of partitions of k. Denote it by Λk.783

Step 1.2 For every partition λk ∈ Λk do784

∗ Step 1.2.1 {(di,|λk
|, bi,|λk

|], ξi,|λk
|} ← ExtendCupPersKParts(K•,λk).785

Correctness and complexity. The correctness proofs for CupPers and ExtendCup-786

PersKParts are identical to those of CupPers2Parts and OrderkCupPers, respectively.787

All partitions of an integer k can be generated in output-sensitive time using partitions788

of integer k − 1. For instance, see [18] for a Python code to do the same. Hence, Step789

1.1 of ComputePartitionBarcodes runs in time O(P↑(d)) which is upper bounded by790

O(d 1
4 ec

√
d), where c = π

√
2/3 (See Section 5). Note that ExtendCupPersKParts (and791

CupPers2Parts) executes beyond Steps 0 with a parameter λk only when it is called for792

the first time with that parameter. The total number of calls to ExtendCupPersKParts793

that proceed to Steps 1 is, therefore, bounded by P↑(d). If there are subsequent recursive794

calls to ExtendCupPersKParts with λk as a parameter it returns at Step 0. Note795

that ExtendCupPersKParts calls itself recursively only once (in Step 1). So the total796

number of calls where ExtendCupPersKParts returns at Step 0 is bounded by P↑(d). If797

ExtendCupPersKParts returns at Step 0, the cost of execution is O(1), else it is O(n4).798

Hence, the total cost of Step 1.2 of ComputePartitionBarcodes is P↑(d)O(n4) which is799

O(d 1
4 ec

√
dn4).800

D Stability801

We establish stability of partition modules of the cup product for Rips and Čech complexes.802

In particular, we show that when the Gromov-Haudorff distance (Hausdorff distance) between803

a point cloud and its perturbation is bounded by a small constant, then the interleaving804

distance between barcodes of respective Rips (Čech)partition modules is also bounded by a805

small constant.806

D.1 Geometric complexes807

▶ Definition 25 ( Rips complexes). Let X be a finite point set in Rd. The Rips complex of X808

at scale t consists of all simplices with diameter at most t, where the diameter of a simplex809

is the maximum distance between any two points in the simplex. In other words,810

VRt(X) = {S ⊂ X | diamS ≤ t}.811

The Rips filtration of X, denoted by VR•(X), is the nested sequence of complexes {VRt(X)}t≥0,812

where VRs(X) ⊆ VRt(X) for s ≤ t.813

▶ Definition 26 (Čech complexes). Let X be a finite point set in Rd. Let Dr,x denote a814

Euclidean ball of radius r centered at x. The Čech complex of X for radius r consists of all815

simplices satisfying the following condition:816

Čr(X) = {S ⊂ X |
⋂
x∈S

Dr,x ̸= ∅}.817

The Čech filtration of X, denoted by Č•(X), is the nested sequence of complexes {Čr(X)}r≥0,818

where Čs(X) ⊆ Čt(X) for s ≤ t.819



XX:22 Cup Product Persistence and Its Efficient Computation

D.2 The Gromov-Hausdorff distance820

Let X and Y be compact subspaces of a metric space M with distance d. For a point p ∈ X,821

d(p;Y ) is defined as822

d(p, Y ) = inf {d(p, q) | q ∈ Y }823

and the distance d(X,Y ) between spaces X and Y is defined as824

d(X,Y ) = sup {d(p, Y ) | p ∈ X} .825

The Hausdorff distance dH between X and Y is defined as826

dH(X,Y ) = max {d(X,Y ), d(Y,X)} .827

The Gromov-Hausdorff distance dGH between X and Y is defined as828

dGH(X,Y ) = inf {dH(f(X); g(Y )) | f : X ↪→M , g : Y ↪→M}829

where the infimum is taken over all isometric embeddings f : X ↪→ M , g : Y ↪→ M into830

some common metric space M .831

D.3 Stability of partition modules of the cup product832

In this section, as a direct consequence of the functoriality of the cup product, we show that833

the partition modules are stable for Čech and Rips filtrations.834

To begin with, let dI(M,N) denote the interleaving distance between two persistence835

modules M and N [8]. For finite point sets X and Y in Rd, let dH(X,Y ) denote the836

Hausdorff distance, and let dGH(X,Y ) denote the Gromov-Hausdorff distance between them.837

Let VR•(X) and VR•(Y ) denote the respective Rips filtrations of X and Y , and let Č•(X)838

and Č•(Y ) denote the respective Čech filtrations of X and Y .839

▶ Theorem 27. Let λq = {s1, s2, . . . , sℓ} be a partition of an integer q. Then, for finite840

point sets X and Y in Rd, the following identities hold true:841

1
2dI(im Hλq (⌣ VR•(X)), im Hλq (⌣ VR•(Y ))) ≤ dGH(X,Y ).842

1
2dI(im Hλq (⌣ Č•(X)), im Hλq (⌣ Č•(Y ))) ≤ dH(X,Y ).843

Proof. Let X and Y be point sets in a common Euclidean space Rd such that dGH(X,Y ) = ϵ
2 .844

Then, in the proof of Lemma 4.3 of [8], Chazal et al. showed that VR•(X) and VR•(Y ) are845

ϵ-interleaved.846

. . . VRa(X) VRa+ϵ(X) VRa+2ϵ(X) . . .

. . . VRa(Y ) VRa+ϵ(Y ) VRa+2ϵ(Y ) . . .

847

Applying the cohomology functor, we obtain an ϵ-interleaving of the respective cohomology848

persistence modules. Let {φ∗
a′,a}a′,a∈R and {ψ∗

a′,a}a′,a∈R denote the structure maps for the849

modules H∗(VR•(X)) and H∗(VR•(Y )), respectively. Also, let Fa+ϵ : H∗(VRa+ϵ(X)) →850

H∗(VRa(Y )) and Ga+ϵ : H∗(VRa+ϵ(Y )) → H∗(VRa(X)) for all a ∈ R be the maps that851

assemble to give an ϵ-interleaving between H∗(VR•(X)) and H∗(VR•(Y )).852



J. Open Access and J. R. Public XX:23

. . . H∗(VRa(X)) H∗(VRa+ϵ(X)) H∗(VRa+2ϵ(X)) . . .

. . . H∗(VRa(Y )) H∗(VRa+ϵ(Y )) H∗(VRa+2ϵ(Y )) . . .

Fa+ϵ

Ga+ϵ

Fa+2ϵ
Fa+3ϵ

Ga+3ϵ

φ∗
a+ϵ,a φ∗

a+2ϵ,a+ϵ

ψ∗
a+ϵ,a ψ∗

a+2ϵ,a+ϵ

Ga+2ϵ

853

For every j ∈ [ℓ], let [αj ] ∈ Hsj (Ki). Then, by the functoriality of the cup product,854

φ∗
a+ϵ,a([α1] ⌣ [α2] ⌣ · · · ⌣ [αℓ]) = φ∗

a+ϵ,a([α1]) ⌣ φ∗
a+ϵ,a([α2]) ⌣ · · · ⌣ φ∗

a+ϵ,a([αℓ]), and855

hence for all a ∈ R, φ∗
a+ϵ,a restricts to a map im Hλq (⌣ VRa+ϵ(X))→ im Hλq (⌣ VRa(X)).856

The functoriality of the cup product also gives us the restrictions ψ∗
a+ϵ,a : im Hλq (⌣857

VRa+ϵ(Y ))→ im Hλq (⌣ VRa(Y )), Fa+ϵ : im Hλq (⌣ VRa+ϵ(X))→ im Hλq (⌣ VRa(Y )) and858

Ga+ϵ : im Hλq (⌣ VRa+ϵ(Y ))→ im Hλq (⌣ VRa(X)). It is easy to check that the restrictions859

of the maps {Fa+ϵ}a∈R and {Ga+ϵ}a∈R assemble to give an ϵ-interleaving between the860

persistence modules im Hλq (⌣ VR•(X)) and im Hλq (⌣ VR•(Y )) with the restrictions of861

{φ∗
a,a′}

a,a′∈R and {ψ∗
a,a′}

a,a′∈R as the structure maps for im Hλq (⌣ VR•(X)) and im Hλq (⌣862

VR•(Y )), respectively.863

. . . im Hλq (⌣ VRa(X)) im Hλq (⌣ VRa+ϵ(X)) im Hλq (⌣ VRa+2ϵ(X)) . . .

. . . im Hλq (⌣ VRa(Y )) im Hλq (⌣ VRa+ϵ(Y )) im Hλq (⌣ VRa+2ϵ(Y )) . . .

Fa+ϵ

Ga+ϵ

Fa+2ϵ
Fa+3ϵ

Ga+3ϵ

φ∗
a+ϵ,a φ∗

a+2ϵ,a+ϵ

ψ∗
a+ϵ,a ψ∗

a+2ϵ,a+ϵ

Ga+2ϵ

864

The above diagram, proves the first claim.865

Cohen-Steiner et al. [9] showed that if dH(X,Y ) = ϵ
2 , then there exists an ϵ-interleaving866

between Č•(X) and Č•(Y ). Using this fact and repeating the argument above, we obtain the867

following the second claim. ◀868

Thus, if the Gromov-Hausdorff distance between point sets X and Y is small, then869

the interleaving distance for the respective ordinary persistence modules, cup modules and870

partition modules of cup product are all small.871

E Computing persistent cup-length872

This section expands Section 4.2. The cup length of a ring is defined as the maximum number875

of multiplicands that together give a nonzero product in the ring. Let Int∗ denote the set876

of all closed intervals of R, and let Int◦ denote the set of all the open-closed intervals of R877

of the form (a, b]. Let F be an R-indexed filtration of simplicial complexes. The persistent878

cup-length function cuplength• : Int∗ → N (introduced in [12,13]) is defined as the function879

from the set of closed intervals to the set of non-negative integers.1 Specifically, it assigns880

to each interval [a, b], the cup-length of the image ring im
(
H∗(K)[a, b]

)
, which is the ring881

im
(
H∗(Kb)→ H∗(Ka)

)
.882

Let the restriction of a cocycle ξ to index k be ξk. We say that a cocycle ζ is defined at883

p if there exists a cocycle ξ in Kq for q ≥ p and ζ = ξp.884

For a persistent cohomology basis Ω, we say that [d, b) is a supported interval of length k885

for Ω if there exists cocycles ξ1, . . . , ξk ∈ Ω such that the product cocycle ηs = ξs1 ⌣ · · ·⌣ ξsk886

is nontrivial for every s ∈ [d, b) and ηs either does not exist or is trivial outside of [d, b).887

1 For simplicity and without loss of generality, we define persistent cup-length only for intervals in Int∗,
and persistent cup-length diagram only for intervals in Int◦.

873

874



XX:24 Cup Product Persistence and Its Efficient Computation

In this case, we say that [d, b) is supported by {ξ1, . . . , ξk}. The max-length of a supported888

interval [d, b), denoted by ℓΩ([d, b)), is defined as889

ℓΩ([d, b)) = max{k ∈ N | ∃ξ1, . . . , ξk ∈ Ω such that (d, b] is supported by {ξ1, . . . , ξk}}.890

Let IntΩ be the set of supported intervals of Ω. In order to compute the persistent891

cup-length function, Contessoto et al. [12] define a notion called the persistent cup-length892

diagram, which is a function dgm⌣
Ω : Int◦ → N, that assigns to every interval [d, b) in893

IntΩ ⊂ Int◦ its max-length ℓΩ([d, b)), and assigns zero to every interval in Int◦ \ IntΩ.894

It is worth noting that unlike the order-k product persistence modules, the persistent895

cup-length diagram is not a topological invariant as it depends on the choice of representative896

cocycles. While the persistent cup-length diagram is not useful on its own, in Contessoto897

et al. [12], it serves as an intermediate in computing the persistent cup-length (a stable898

topological invariant) due to the following theorem.899

▶ Theorem 28 (Contessoto et al. [12]). Let F be a filtered simplicial complex, and let Ω be a900

persistent cohomology basis for F . The persistent cup-length function cuplength• can be901

retrieved from the persistent cup-length diagram dgm⌣
Ω for any (a, b] ∈ Int◦ as follows.902

cuplength•([a, b]) = max
(c,d]⊃[a,b]

dgm⌣
Ω ((c, d]). (5)903

Given a P -indexed filtration F , let V k• denote its persistent k-cup module. The following904

result appears as Proposition 5.9 in [13]. We provide a short proof in our notation for the905

sake of completeness.906

▶ Proposition 29 (Contessoto et al. [13]). cuplength•([a, b]) = argmax{k | rkV k
•

([a, b]) ̸= 0}.907

Proof. cuplength•([a, b]) = k ⇐⇒ 1. There exists a set of cocycles {ξ1, . . . , ξk} that908

are defined at b and ξs1 ⌣ · · · ⌣ ξsk is nontrivial for all s ∈ [a, b] 2. For any set of k + 1909

cocycles {ζ1, . . . , ζk+1} that are defined at b, the product ζs1 ⌣ · · ·⌣ ζsk+1 is zero for some910

s ∈ [a, b]. ⇐⇒ rkV k
•

([a, b]) ̸= 0 and rkV k+1
•

([a, b]) = 0. ◀911

Given a filtered complex K• : K1 ↪→ K2 ↪→ . . . , Contessoto et al. [12] define its p-truncation912

as the filtration Kp• : Kp1 ↪→ Kp2 ↪→ . . . , where for all i, Kpi denotes the p-skeleton of Ki. We913

now compare the complexities of computing the persistent cup-length using the algorithm914

described in Contessoto et al. [12] against computing it with our approach.915

Assume that K is a d-dimensional complex of size n, and let np denote the number of916

simplices in the p-skeleton of K. Let F be a filtration of K and let Fp be the p-truncation of917

F . Then, according to Theorem 20 in Contessoto et al. [12], using the persistent cup-length918

diagram, 1. the persistent cup-length of F can be computed in O(nd+2) time, 2. the persistent919

cup-length of Fp can be computed in O(np+2
p ) time.920

In contrast, as noted in Section 3, the barcodes of all the persistent k-cup modules for921

k ∈ {2, . . . , p} can be computed in O(p n4) time. Note that rkV k
•

([a, b]) ̸= 0 if and only if there922

exists an interval (x, y] in B(V k• ) such that (x, y] ⊃ [a, b]. This suggests a simple algorithm923

to compute cuplength• from the barcodes of persistent k-cup modules for k ∈ {2, . . . , n},924

that is, one finds the largest k for which there exists an interval (x, y] ∈ B(V k• ) such that925

(x, y] ⊃ [a, b]. Since the size of B(V k• ), for every k ∈ [n], is O(n), the algorithm for extracting926

the persistent cup-length from the barcode of persistent k-cup modules for k ∈ {2, . . . , d} runs927

in O(n2) time. Thus, using the algorithms described in Section 4, the persistent cup-length928

of a (p-truncated) filtration can be computed in O(dn4) (O(pn4)) time, which is strictly929

better than the coarse bound for the algorithm in [12] for d ≥ 3.930



J. Open Access and J. R. Public XX:25

F Correctness of OrderkCupPers931

In this section, we provide a brief sketch of correctness of OrderkCupPers. The statements932

of lemmas and their proofs are analogous to the case when k = 2 treated in the main body933

of the paper.934

▶ Proposition 30. Let {φ∗
i : H∗(K∗

i ) → H∗(K∗
i−1) | i ∈ [n]} denote the structure map of935

the module H∗(K•). The structure map for the persistent k-cup module im H∗(⌣k
•) is the936

restriction of φ∗
• to the image of ⌣k

•.937

Proof. Recall that φ∗
i denotes the induced map on cohomology H∗(Ki) → H∗(Ki−1). Let938

φk×⊗
i denote the tensor product of the map φ∗

i with itself taken k times.939

Applying the cohomology functor to the map940

⌣k
•: C∗(K•)⊗ C∗(K•)⊗ · · · ⊗ C∗ → C∗(K•) (6)941

and using the Künneth theorem for cohomology over fields, we obtain the following diagram:942

H∗(Ki)⊗ H∗(Ki)⊗ · · · ⊗ H∗(Ki) H∗(Ki)

H∗(Ki−1)⊗ H∗(Ki−1)⊗ · · · ⊗ H∗(Ki−1) H∗(Ki−1)

φk×⊗
i

⌣

⌣

φ∗
i

943

For cocycle classes [α1], . . . , [αk] ∈ H∗(K), by the functoriality of the cup product,944

φ∗
i ([α1]) ⌣ · · · ⌣ φ∗

i ([αk]) = φ∗
i ([α1] ⌣ . . . [αk]). Since, [α1] ⌣ · · · ⌣ [αk] ∈ im H∗(⌣k

i ) is945

mapped to an element in im H∗(⌣k
i−1), the structure map for the persistent k-cup module946

im H∗(⌣k
•) is the restriction of φ∗

• to the image of ⌣k
•. ◀947

▶ Definition 31. For any i ∈ {0, . . . , n}, a nontrivial cocycle ζ ∈ Z∗(Ki) is said to be an948

order-k product cocycle of Ki if [ζ] ∈ im H∗(⌣k
i ).949

▶ Proposition 32. For a filtration F of simplicial complex K, the birth points of B(im H∗(⌣k
•))950

are a subset of the birth points of B(H∗(K•)), and the death points of B(im H∗(⌣k
•)) are a951

subset of the death points of B(H∗(K•)).952

Proof. Let {(dij , bij ] | j ∈ [k]} be (not necessarily distinct) intervals in B(H∗(K•)), where953

bij+1 ≥ bij for j ∈ [k − 1]. Let ξij be a representative for (dij , bij ] for j ∈ [k].954

If ξi1 ⌣ ξ
bi1
i2

⌣ · · ·⌣ ξ
bi1
ik

is trivial, then by the functoriality of cup product,955

φbi1 ,r
(ξi1 ⌣ ξ

bi1
i2

⌣ · · ·⌣ ξ
bi1
ik

) = φbi1 ,r
(ξi1) ⌣ φbi1 ,r

(ξbi1
i2

) ⌣ · · ·⌣ φbi1 ,r
(ξbi1
ik

)956

= ξri1 ⌣ ξri2 ⌣ · · ·⌣ ξrik957

is trivial ∀r < bi1 . Writing contrapositively, if ∃r < bi1 for which ξri1 ⌣ ξri2 ⌣ · · ·⌣ ξrik958

is nontrivial, then ξi1 ⌣ ξ
bi1
i2

⌣ · · · ⌣ ξ
bi1
j is nontrivial. Noting that im H∗(⌣k

ℓ ) for any959

ℓ ∈ {0, . . . , n} is generated by {[ξℓi1 ] ⌣ {[ξℓi2 ] ⌣ · · ·⌣ [ξℓik ] | ξij ∈ ΩK for j ∈ [k]}, it follows960

that b is the birth point of an interval in B(im H∗(⌣k
•)) only if it is the birth point of an961

interval in B(H∗(K•)), proving the first claim.962



XX:26 Cup Product Persistence and Its Efficient Computation

Let Ω′
j+1 = {[τ1], . . . , [τℓ]} be a basis for im H∗(⌣k

j+1). Then, Ω′
j+1 extends to a basis963

Ωj+1 of H∗(Kj+1). If j is not a death index in B(H∗(K•)), then φj+1(τ1), . . . , φj+1(τℓ) are964

all nontrivial and linearly independent. Using Remark 7, it follows that j is not a death965

index in B(im H∗(⌣k
•)), proving the second claim. ◀966

▶ Corollary 33. If d is a death index in B(im H∗(⌣k
•)), then at most one bar of B(im H∗(⌣k

•))967

has death index d.968

Proof. The proof is identical to Corollary 10. ◀969

Let Cb be the vector space of order-k product cocycle classes created at index b. We note970

that for a birth index b ∈ {0, . . . , n}, Cb is a subspace of H∗(Kb) which can be written as971

Cb =
{
⟨[ξi1 ] ⌣ · · ·⌣ [ξik ] | ξij for j ∈ [k] are essential cocycles of H∗(K•)⟩ if b = n

⟨[ξi1 ] ⌣ · · ·⌣ [ξbik ] | ξi1 is born at b & ξij for j ̸= 1 is born at index ≥ b⟩ if b < n

(7)972

For a birth index b, let Cb be the submatrix of S formed by representatives whose classes973

generate Cb, augmented to S in Steps 2.1.2 (i) and 2.2.2 (i) when k = b in the outer for loop974

of Step 2.975

▶ Theorem 34. Algorithm OrderkCupPers correctly computes the barcode of persistent976

k-cup modules.977

Proof. The proof is nearly identical to Theorem 13. The key difference (from Theorem 13) is978

in how the submatrix Cb of S that stores the linearly independent order-k product cocycles979

born at ℓ = b in Steps 2.1 and 2.2 is built. It is easy to check that the classes of the980

cocycle vectors in Cb augmented to S in Steps 2.1 and 2.2 generate the space Cb described981

in Equation (7). ◀982

G Relative cup modules983

Let (K, L) be a simplical pair. As in the case of absolute cohomology, for the relative cup984

product, we have bilinear maps985

⌣: Cp(K, L)× Cq(K, L)→ Cp+q(K, L) that assemble to give a linear map986

987

⌣: C∗(K, L)⊗ C∗(K, L)→ C∗(K, L).988

Also, we have bilinear maps989

⌣: Hp(K, L)× Hq(K, L)→ Hp+q(K, L) that assemble to give a linear map990

991

⌣: H∗(K, L)⊗ H∗(K, L)→ H∗(K, L).992

For a filtered complex K, its persistent relative cohomology is given by H∗(K,K•) with993

linear maps given by inclusions [15]. Written in our convention for intervals, every finite bar994

(d, b] in B(Hi(K•)), we have a corresponding finite bar (d, b] in B(Hi+1(K,K•)), and for every995

infinite bar (d, n] in B(Hi(K•)), we have an infinite bar (−1, d] in B(Hi(K,K•)).996



J. Open Access and J. R. Public XX:27

Defining relative cup modules. Consider the following homomorphism given by cup997

products:998

⌣•: C∗(K,K•)⊗ C∗(K,K•)→ C∗(K,K•). (8)999

Taking G• =⌣• in the definition of image persistence, we get a persistence module, denoted by1000

im rel H∗(⌣ K•), which is called the persistent relative cup module. Whenever the underlying1001

filtered complex is clear from the context, we use the shorthand notation im rel H∗(⌣•)1002

instead of im H∗(⌣ K•).1003

Defining relative k-cup modules. Consider image persistence of the map1004

⌣k
•: C∗(K,K•)⊗ C∗(K,K•)⊗ · · · ⊗ C∗(K,K•)→ C∗(K,K•) (9)1005

where the tensor product is taken k times. Taking G• = ⌣k
• in the definition of image1006

persistence, we get the persistent relative k-cup module module im rel H∗(⌣k
•).1007

Next, we will describe how to compute the barcode of im rel H∗(⌣•), which being an1008

image module is a submodule of H∗(K,K•). The vector space im rel H∗(⌣i) is a subspace1009

of the vector space H∗(K,Ki). Let us call this subspace the relative cup space of H∗(K,Ki).1010

RelCupPers describes this algorithm to compute relative cup modules. First, in Step 0, we1011

compute the barcode of the cohomology persistence module H∗(K,K•) along with a relative1012

persistent cohomology basis. This can be achieved in O(n3) time by applying the standard1013

algorithm on the anti-transpose of the boundary matrix [15, Section 3.4]. The basis H is1014

maintained with the matrix H whose columns are representative cocycles. The matrix H is1015

initialized with the empty matrix. ∂⊥ maintains the relative coboundaries as one processes1016

the matrix in the reverse filtration order. At index n, ∂⊥ is empty. Throughout, ∂⊥ is stored1017

in the leftmost n columns of S, and there are no other columns in S at index n. Subsequently,1018

nontrivial relative cocycle vectors are added to S. The classes of the nontrivial cocycles in1019

matrix S form a basis S for the relative cup space at any point in the course of the algorithm.1020

In Step 2, at each index k, the k-th column of ∂⊥ is populated with the coboundary of k.1021

The remainder of the birth case and the whole of the death case is handled exactly like1022

RelCupPers. The correctness and complexity proofs for RelCupPers are identical to1023

CupPers.1024

Algorithm RelCupPers (K•)1025

Step 0. Compute barcode B(F) = {(di, bi]} of H∗(K,K•) with representative cocycles ξi1026

Step 1. Initialize an n× n coboundary matrix ∂⊥ as the zero matrix; ∂⊥ is maintained1027

as a submatrix of S; Initially all columns in S come from columns in ∂⊥. Subsequently,1028

in the course of the algorithm, new columns are added to (and removed from) the right1029

of ∂⊥ in S and the entries of ∂⊥ are also modified; Initialize H with the empty matrix1030

Step 2. For k := n to 1 do1031

For every simplex σj that has σk as a face, set ∂⊥
j,k = 11032

Step 2.1 For every i with k = bi (k is a birth-index) and deg(ξi) > 01033

∗ Step 2.1.1 Update H := [H | ξi]1034

∗ Step 2.1.2 For every ξj ∈ H1035

i. If (ζ ← ξi ⌣ ξj) ̸= 0 and ζ is independent in S, then S := [S | ζ] with column ζ1036

annotated as ζ · birth := k and ζ · rep@birth := ζ1037

Step 2.2 If k = di (k is a death-index) for some i and deg(ξi) > 0 then1038

∗ Step 2.2.1 Reduce S with left-to-right column additions1039



XX:28 Cup Product Persistence and Its Efficient Computation

∗ Step 2.2.2 If a nontrivial cocycle ζ is zeroed out, remove ζ from S, generate the1040

bar-representative pair {(k, ζ · birth], ζ · rep@birth}1041

∗ Step 2.2.3 Update H by removing the column ξi1042

In Algorithm RelOrderkCupPers, The initialization and maintenance of the matrix S1043

and ∂⊥ is the same as for RelCupPers. The matrices H and R are intialized with empty1044

matrices. The remainder of the birth case and the whole of the death case are identical to1045

OrderkCupPers. The correctness and complexity proofs for RelOrderkCupPers are1046

identical to OrderkCupPers.1047

Algorithm RelOrderkCupPers (K•,k)1048

Step 0. If k = 2, return the barcode with representatives {(di,2, bi,2], ξi,2} computed by1049

CupPers on K•1050

else {(di,k−1, bi,k−1], ξi,k−1} ← RelOrderkCupPers(K•, k − 1)1051

Step 1. Initialize an n×n coboundary matrix ∂⊥ as the zero matrix; ∂⊥ is maintained as1052

a submatrix of S; Initially all columns in S come from columns in ∂⊥. Subsequently, in1053

the course of the algorithm, new columns are added to (and removed from) the right of1054

∂⊥ in S and the entries of ∂⊥ are also modified; Initialize H and R with empty matrices1055

Step 2. For ℓ := n to 1 do1056

For every simplex σj that has σk as a face, set ∂⊥
j,k = 11057

Step 2.1 For every r s.t. br,1 = ℓ ̸= n (i.e., ℓ is a birth-index) and deg(ξr,1) > 01058

∗ Step 2.1.1 Update H := [H | ξr,1]1059

∗ Step 2.1.2 For every ξj,k−1 ∈ R1060

i. If (ζ ← ξr,1 ⌣ ξj,k−1) ̸= 0 and ζ is independent in S, then S := [S | ζ] with1061

column ζ annotated as ζ · birth := ℓ and ζ · rep@birth := ζ1062

Step 2.2 For all s such that ℓ = bs,k−11063

∗ Step 2.2.1 If ℓ ̸= n, update R := [R | ξs,k−1]1064

∗ Step 2.2.2 For every ξi,1 ∈ H1065

i. If (ζ ← ξs,k−1 ⌣ ξi,1) ̸= 0 and ζ is independent in S, then S := [S | ζ] with1066

column ζ annotated as ζ · birth := ℓ and ζ · rep@birth := ζ1067

Step 2.3 If ℓ = di,1 (i.e. ℓ is a death-index) and deg(ξi,1) > 0 for some i then1068

∗ Step 2.3.1 Reduce S with left-to-right column additions1069

∗ Step 2.3.2 If a nontrivial cocycle ζ is zeroed out, remove ζ from S, generate the1070

bar-representative pair {(ℓ, ζ · birth], ζ · rep@birth}1071

∗ Step 2.3.3 Remove the column ξi,1 from H1072

∗ Step 2.3.4 Remove the column ξj,k−1 from R if dj,k−1 = ℓ for some j1073

Lack of duality. In contrast to ordinary persistence, the following examples highlight the1074

fact that the barcodes of persistent (absolute) cup modules differ from persistent relative cup1075

modules. In fact, in general, there doesn’t seem to be any bijection between corresponding1076

intervals.1077

▶ Example 35. Let K be a torus with a disk removed. A torus can be obtained by identifying1078

the opposite sides of a [−1, 1]2 square. The space K can be obtained by removing a circle of1079

radius 1 around the origin. We now give the following CW structure to K: Let x0 and x1 be1080

the 0-cells, p, q, r and s be the 1-cells and α be the 2-cell. p and q are loops around x0, r1081

joins x0 and x1, and s is a loop around x1. The attachment of the 2-cell α is given by the1082

word pqp−1q−1rsr−1. See Figure 2 for an illustration.1083



J. Open Access and J. R. Public XX:29

p p

q

q

s

r

x1

x0

α

Figure 2 Complex K is a torus with a disk removed.1084

Consider the cellular filtration K• on K:1085

K0 = {x0, x1} ,1086

K1 = K0 ∪ {s, r} ,1087

K2 = K1 ∪ {p, q} ,1088

K3 = K2 ∪ {α} .1089

It is easy to check that the persistent (absolute) cup module for K• is trivial. However,1090

since K3/K1 is a torus, the persistent relative cup module is nontrivial.1091

▶ Example 36. Let L′ be a torus realized as a CW complex with a 0-cell x, two 1-cells a1092

and b and a 2-cell β. We now add a 2-cell α to L′ to obtain a CW complex L = L′ ∪ {α}. See1093

Figure 3 for an illustration.1094

x a

b

βα

Figure 3 Complex L is a torus with a disk added.1095



XX:30 Cup Product Persistence and Its Efficient Computation

Now consider the following cellular filtration L• on L:1096

L0 = {x}1097

L1 = L0
⋃
{a, b}1098

L2 = L1
⋃
{β}1099

L3 = L2
⋃
{α}1100

For the filtration L•, the persistent (absolute) cup module is nontrivial since L2 is a torus.1101

On the other hand, it is easy to check that the persistent relative cup module is trivial.1102


	1 Introduction
	2 Background and preliminaries
	2.1 Persistent cohomology
	2.2 Simplicial cup product
	2.3 Image persistence
	2.4 Barcodes

	3 Algorithm for the barcode of persistent cup module
	3.1 Rank functions and barcodes
	3.2 Correctness of Algorithm CupPers

	4 Algorithm for the barcode of persistent k-cup modules
	4.1 Computing barcode of persistent k-cup modules
	4.2 Faster computation of the persistent cup-length

	5 Partition modules of the cup product: a more refined invariant
	6 Conclusion.
	A Mod-2 (co)homology
	A.1 Tensor products of cochain complexes

	B Additional examples
	C Algorithm for computing partitions modules of the cup product
	D Stability
	D.1 Geometric complexes
	D.2 The Gromov-Hausdorff distance
	D.3 Stability of partition modules of the cup product

	E Computing persistent cup-length
	F Correctness of OrderkCupPers 
	G Relative cup modules

