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Problems

Two and Three dimensions:

Curve and surface reconstruction

High dimensions:

Manifold reconstruction
Homological attributes computation
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Reconstruction

Surface Reconstruction
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Topology Background

Basic Topology

d -ball Bd {x ∈ R
d | ||x || ≤ 1}

d -sphere Sd {x ∈ R
d | ||x || = 1}

Homeomorphism h : T1 → T2

where h is continuous, bijective
and has continuous inverse

k-manifold: neighborhoods homeomorphic to open k-ball

2-sphere, torus, double torus are 2-manifolds

k-manifold with boundary: interior points, boundary points

Bd is a d-manifold with boundary where bd(Bd) = Sd−1
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Topology Background

Basic Topology

Smooth Manifolds

Triangulation

k-simplex

Simplicial complex K :

(i) t ∈ K if t is a face of t ′ ∈ K

(ii) t1, t2 ∈ K ⇒ t1 ∩ t2 is a face of both

K is a triangulation of a topological
space T if T ≈ |K |

Dey (2011) Geometry and Topology from Point Cloud Data WALCOM 11 5 / 51



Sampling

Sampling
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Sampling

Medial Axis
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Sampling

Local Feature Size

f (x) is the distance
to medial axis
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Sampling

ε-sample (Amenta-Bern-Eppstein 98)

Each x has a sample
within εf (x) distance
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Sampling

Voronoi Diagram & Delaunay Triangulation

Definition

Voronoi diagram Vor P : collection of Voronoi cells {Vp} and its faces
Vp = {x ∈ R

3 | ||x − p|| ≤ ||x − q|| for all q ∈ P}

Definition

Delaunay triangulation Del P : dual of Vor P , a simplicial complex
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Curve Reconstruction

Curve samples and Voronoi
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Curve Reconstruction

Curve Reconstruction Algorithms

Crust algorithm
(Amenta-Bern-Eppstein 98)
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Curve Reconstruction

Curve Reconstruction Algorithms

Crust algorithm
(Amenta-Bern-Eppstein 98)

Nearest neighbor algorithm
(Dey-Kumar 99)

many variations
(DMR99,Gie00,GS00,FR01,AM02..)
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Surface Reconstruction

Difficulties in 3D

Voronoi vertices can come
close to the surface . . .
slivers are nasty

There is no unique ‘correct’
surface for reference
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Surface Reconstruction

Restricted Voronoi/Delaunay

Definition

Restricted Voronoi: Vor P |Σ = {fP |Σ = f ∩ Σ | f ∈ Vor P}

Definition

Restricted Delaunay: Del P |Σ = {σ |Vσ ∩ Σ 6= ∅}
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Surface Reconstruction

Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then
Del P |Σ is homeomorphic to Σ.
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Surface Reconstruction

Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then
Del P |Σ is homeomorphic to Σ.

Theorem

For a sufficiently small ε if P is an
ε-sample of Σ, then (P, Σ) satisfies
the closed ball property, and hence
Del P |Σ ≈ Σ.
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Surface Reconstruction

Normals and Voronoi Cells 3D (Amenta-Bern 98)
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Surface Reconstruction

Long Voronoi cells and Poles
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Surface Reconstruction

Normal Approximation

Lemma (Pole Vector)

∠((p+ − p),np) = 2 arcsin ε

1−ε
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Surface Reconstruction

Crust in 3D (Amenta-Bern 98)

Compute Voronoi diagram Vor P

Recompute the Voronoi diagram
after introducing poles

Filter crust triangles from Delaunay

Filter by normals

Extract manifold
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Surface Reconstruction

Cocone

vp = p+ − p is the pole vector

Space spanned by vectors within the
Voronoi cell making angle > 3π

8
with

vp or −vp
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Surface Reconstruction

Cocone Algorithm

Cocone(P)

1 compute Vor P ;
2 T = ∅;
3 for each p ∈ P do

4 Tp = CandidateTriangles(Vp);
5 T := T ∪ Tp;
6 end for

7 M := ExtractManifold(T );
8 output M
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Surface Reconstruction

Candidate Triangle Properties

The following properties hold for sufficiently small ε (ε < 0.06)

Candidate triangles include the restricted Delaunay triangles

Their circumradii are small O(ε)f (p)

Their normals make only O(ε) angle with the surface normals at
the vertices

Candidate triangles include restricted Delaunay triangles
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Surface Reconstruction

Manifold Extraction: Prune and Walk

Remove Sharp edges with their triangles

Walk outside or inside the remaining triangles

Dey (2011) Geometry and Topology from Point Cloud Data WALCOM 11 23 / 51



Surface Reconstruction

Homeomorphism

Let M be the triangulated surface obtained after the manifold
extraction.

Define h : R
3 → Σ where h(q) is the closest point on Σ. h is well

defined except at the medial axis points.

Lemma (Homeomorphism)

The restriction of h to M, h : M → Σ, is a homeomorphism.
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Surface Reconstruction

Cocone Guarantees

Theorem

Any point x ∈ Σ is within O(ε)f (x) distance from a point in the
output. Conversely, any point of the output surface has a point
x ∈ Σ within O(ε)f (x) distance for ε < 0.06.

Theorem (Amenta-Choi-Dey-Leekha)

The output surface computed by Cocone from an ε − sample is
homeomorphic to the sampled surface for ε < 0.06.

Dey (2011) Geometry and Topology from Point Cloud Data WALCOM 11 25 / 51



Input Variations

Boundaries
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Boundaries
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Input Variations

Boundaries

Non-homeomorphic Restricted Delaunay [DLRW09]
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Input Variations

Boundaries

Non-orientabilty
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Input Variations

Boundaries

Theorem (Dey-Li-Ramos-Wenger 2009)

Let P be a sample of a smooth compact Σ with boundary where
d(x , P) ≤ ερ, ρ = infx lfs(x). For sufficiently small ε > 0 and
6ερ ≤ α ≤ 6ερ + O(ερ), Peel(P , α) computes a Delaunay mesh
isotopic to Σ.
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Input Variations

Noisy Data: Ram Head

Hausdorff distance dH(P , Σ) is εf (p)

Theoretical guarantees [Dey-Goswami04, Amenta et al.05]
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Input Variations

Nonsmoothness

Guarantee of homeomorphism is open
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High Dimensions

High Dimensional PCD

Curse of dimensionality (intrinsic vs. extrinsic)
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High Dimensions

High Dimensional PCD

Curse of dimensionality (intrinsic vs. extrinsic)

Reconstruction of submanifolds brings ambiguity

Use (ε, δ)-sampling

Restricted Delaunay does not capture topology

Slivers are arbitrarily oriented [CDR05] ⇒ DelP|Σ 6≈ Σ no
matter how dense P is.
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High Dimensions

High Dimensional PCD

Curse of dimensionality (intrinsic vs. extrinsic)

Reconstruction of submanifolds brings ambiguity

Use (ε, δ)-sampling

Restricted Delaunay does not capture topology

Slivers are arbitrarily oriented [CDR05] ⇒ DelP|Σ 6≈ Σ no
matter how dense P is.

Delaunay triangulation becomes harder
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High Dimensions

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (ε, δ)-sample P of a smooth manifold Σ ⊂ R
d for

appropriate ε, δ > 0, there is a weight assignment of P so that
Del P̂ |Σ ≈ Σ which can be computed efficiently.
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High Dimensions

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (ε, δ)-sample P of a smooth manifold Σ ⊂ R
d for

appropriate ε, δ > 0, there is a weight assignment of P so that
Del P̂ |Σ ≈ Σ which can be computed efficiently.

Theorem (Chazal-Lieutier 2006)

Given an ε-noisy sample P of manifold Σ ⊂ R
d , there exists

rp ≤ ρ(Σ) for each p ∈ P so that the union of balls B(p, rp) is
homotopy equivalent to Σ.
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High Dimensions

Reconstructing Compacts
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High Dimensions

Reconstructing Compacts

lfs vanishes, introduce µ-reach and define (ε, µ)-samples.

Theorem (Chazal-Cohen-S.-Lieutier 2006)

Given an (ε, µ)-sample P of a compact K ⊂ R
d for appropriate

ε, µ > 0, there is an α so that union of balls B(p, α) is homotopy
equivalent to K η for arbitrarily small η.
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Homology

Homology from PCD

Point cloud
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Homology

Homology from PCD

Point cloud Loops
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Homology

PCD→complex→homology

Point cloud
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Homology

PCD→complex→homology

Point cloud Rips complex Loops
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Homology Definitions

Boundary

Definition

A p-boundary ∂p+1c of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices
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Homology Definitions

Boundary

Definition

A p-boundary ∂p+1c of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices

a

b

c

d

e

2-chain bcd + bde (under Z2)
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Homology Definitions

Boundary

Definition

A p-boundary ∂p+1c of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices

a

b

c

d

e

1-boundary bc+cd+db+bd+de+eb = bc+cd+de+eb = ∂2(bcd+bde)

(under Z2)
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Homology Definitions

Cycles

Definition

A p-cycle is a p-chain that has an empty boundary
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Homology Definitions

Cycles

Definition

A p-cycle is a p-chain that has an empty boundary

a

b

c

d

e

1-cycle ab + bc + cd + de + ea (under Z2)
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Homology Definitions

Cycles

Definition

A p-cycle is a p-chain that has an empty boundary

a

b

c

d

e

1-cycle ab + bc + cd + de + ea (under Z2)

Each p-boundary is a p-cycle: ∂p ◦ ∂p+1 = 0
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Homology Definitions

Homology

Definition

The p-dimensional homology group is defined as
Hp(K) = Zp(K)/Bp(K)
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Definition

The p-dimensional homology group is defined as
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Definition

Two p-chains c and c ′ are homologous if c = c ′ + ∂p+1d for some
chain d
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Homology Definitions

Homology

Definition

The p-dimensional homology group is defined as
Hp(K) = Zp(K)/Bp(K)

Definition

Two p-chains c and c ′ are homologous if c = c ′ + ∂p+1d for some
chain d

(a) (b) (c)

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles
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Homology Definitions

Complexes

Let P ⊂ R
d be a point set

Dey (2011) Geometry and Topology from Point Cloud Data WALCOM 11 37 / 51



Homology Definitions

Complexes

Let P ⊂ R
d be a point set

B(p, r) denotes an open d -ball centered at p with radius r

Dey (2011) Geometry and Topology from Point Cloud Data WALCOM 11 37 / 51



Homology Definitions
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Let P ⊂ R
d be a point set

B(p, r) denotes an open d -ball centered at p with radius r

Definition

The Čech complex Cr (P) is a simplicial complex where a simplex
σ ∈ Cr (P) iff Vert(σ) ⊆ P and ∩p∈Vert(σ)B(p, r/2) 6= 0
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Homology Definitions

Complexes

Let P ⊂ R
d be a point set

B(p, r) denotes an open d -ball centered at p with radius r

Definition

The Čech complex Cr (P) is a simplicial complex where a simplex
σ ∈ Cr (P) iff Vert(σ) ⊆ P and ∩p∈Vert(σ)B(p, r/2) 6= 0

Definition

The Rips complex Rr (P) is a simplicial complex where a simplex
σ ∈ Rr (P) iff Vert(σ) are within pairwise Euclidean distance of r

Proposition

For any finite set P ⊂ R
d and any r ≥ 0, Cr (P) ⊆ Rr (P) ⊆ C2r (P)
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Homology Definitions

Point set P
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Homology Definitions

Balls B(p, r/2) for p ∈ P
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Homology Definitions

Čech complex Cr(P)
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Homology Definitions

Rips complex Rr(P)
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Homology Rank

Homology rank from PCD

Results of Chazal and Oudot (Main idea):
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Homology Rank

Homology rank from PCD

Results of Chazal and Oudot (Main idea):

Consider inclusion of Rips complexes i : Rr (P) → R4r (P).

Induced homomorphism at homology level:

i∗ : Hk(R
r (P)) → Hk(R

4r (P))

Theorem (Chazal-Oudot 2008)

Rank of the image of i∗ equals the rank of Hk(M) if P is dense
sample of M and r is chosen appropriately.
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Homology Rank

Algorithm for homology rank

1 Compute Rr (P).
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Homology Rank

Algorithm for homology rank

1 Compute Rr (P).

2 Insert simplices of R4r (P) that are not in Rr (P) and compute
the rank of the homology classes that survive.
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Homology Rank

Algorithm for homology rank

1 Compute Rr (P).

2 Insert simplices of R4r (P) that are not in Rr (P) and compute
the rank of the homology classes that survive.

Step 2: Persistent homology can be computed by the persistence
algorithm [Edelsbrunner-Letscher-Zomorodian 2000].
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Homology basis

OHBP: Optimal Homology Basis Problem

Compute an optimal set of cycles forming a basis
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Homology basis

OHBP: Optimal Homology Basis Problem

Compute an optimal set of cycles forming a basis

First solution for surfaces: Erickson-Whittlesey [SODA05]
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Homology basis

OHBP: Optimal Homology Basis Problem

Compute an optimal set of cycles forming a basis

First solution for surfaces: Erickson-Whittlesey [SODA05]

General problem NP-hard: Chen-Freedman [SODA10]

H1 basis for simplicial complexes: Dey-Sun-Wang [SoCG10]
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Homology basis

Basis

Let Hj(T ) denote the j-dimensional homology group of T under
Z2
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Homology basis

Basis

Let Hj(T ) denote the j-dimensional homology group of T under
Z2

The elements of H1(T ) are equivalence classes [g ] of
1-dimensional cycles g , also called loops

Definition

A minimal set {[g1], ..., [gk ]} generating H1(T ) is called its basis
Here k = rank H1(T )

Dey (2011) Geometry and Topology from Point Cloud Data WALCOM 11 45 / 51



Homology basis

Shortest Basis

We associate a weight w(g) ≥ 0 with each loop g in T
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The length of a set of loops G = {g1, . . . , gk} is given by

Len(G) =
k

∑

i=1

w(gi)
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Homology basis

Shortest Basis

We associate a weight w(g) ≥ 0 with each loop g in T

The length of a set of loops G = {g1, . . . , gk} is given by

Len(G) =
k

∑

i=1

w(gi)

Definition

A shortest basis of H1(T ) is a set of k loops with minimal length that
generates H1(T )
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Homology basis

Optimal basis for simplicial complex

Theorem (Dey-Sun-Wang 2010)

Let K be a finite simplicial complex with non-negative weights on
edges. A shortest basis for H1(K) can be computed in O(n4) time
where n = |K|
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Homology basis

Approximation from Point Cloud

Let P ⊂ R
d be a point set sampled from a smooth closed

manifold M ⊂ R
d embedded isometrically
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Let P ⊂ R
d be a point set sampled from a smooth closed

manifold M ⊂ R
d embedded isometrically

We want to approximate a shortest basis of H1(M) from P

Compute a complex K from P

Compute a shortest basis of H1(K)

Argue that if P is dense, a subset of computed loops
approximate a shortest basis of H1(M) within constant factors
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Homology basis

Approximation Theorem

Theorem (Dey-Sun-Wang 2010)

Let M ⊂ R
d be a smooth, closed manifold with l as the length of a

shortest basis of H1(M) and k = rank H1(M).
Given a set P ⊂ M of n points which is an ε-sample of M and

4ε ≤ r ≤ min{1
2

√

3
5
ρ(M), ρc(M)}, one can compute a set of loops

G in O(nn2
ent) time where

1

1 + 4r2

3ρ2(M)

l ≤ Len(G) ≤ (1 +
4ε

r
)l.

Here ne , nt are the number of edges and triangles in R2r (P)
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Conclusions

Conclusions

Reconstructions :

non-smooth surfaces remain open
high dimensions still not satisfactory

Homology :

Size of the complexes
more efficient algorithms

Didn’t talk about :

functions on spaces
persistence, Reeb graphs, Morse-Smale complexes, Laplace
spectra...etc.
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