Geometry and Topology from Point Cloud Data

Tamal K. Dey

Department of Computer Science and Engineering The Ohio State University

1 / 51

WALCOM 11

Dey (2011)

Geometry and Topology from Point Cloud Data

Problems

• Two and Three dimensions:

<ロ> (日) (日) (日) (日) (日)

Problems

- Two and Three dimensions:
 - Curve and surface reconstruction

(日) (同) (三) (三)

Problems

- Two and Three dimensions:
 - Curve and surface reconstruction
- High dimensions:

(日) (同) (三) (三)

Problems

- Two and Three dimensions:
 - Curve and surface reconstruction
- High dimensions:
 - Manifold reconstruction

Problems

- Two and Three dimensions:
 - Curve and surface reconstruction
- High dimensions:
 - Manifold reconstruction
 - Homological attributes computation

- ∢ ∃ ▶

Surface Reconstruction

<ロ> (日) (日) (日) (日) (日)

Basic Topology

- d-ball B^d { $x \in \mathbb{R}^d$ | ||x|| ≤ 1 }
- *d*-sphere S^d $\{x \in \mathbb{R}^d \mid ||x|| = 1\}$
- Homeomorphism h : T₁ → T₂ where h is continuous, bijective and has continuous inverse

- *k*-manifold: neighborhoods homeomorphic to open *k*-ball
 2-sphere, torus, double torus are 2-manifolds
- k-manifold with boundary: interior points, boundary points
 - B^d is a *d*-manifold with boundary where $bd(B^d) = S^{d-1}$

A B F A B F

Basic Topology

- Smooth Manifolds
- Triangulation
 - *k*-simplex
 - Simplicial complex K:
 (i) t ∈ K if t is a face of t' ∈ K
 (ii) t₁, t₂ ∈ K ⇒ t₁ ∩ t₂ is a face of both
 - K is a triangulation of a topological space T if $T \approx |K|$

not a simplicial complex

• • = • • = •

WALCOM 11 5 / 51

Sampling

Sampling

Geometry and Topology from Point Cloud Data

æ WALCOM 11 6 / 51

• • = • • = •

Medial Axis

(a) A subset of the medial axis of the curve (b) medial ball centered at v touches the curve in three points, whereas the ones with centers u and w touch it in only one point and coincide with the curvature ball.

WALCOM 11 7 / 51

→ 3 → 4 3

Local Feature Size

• f(x) is the distance to medial axis

Geometry and Topology from Point Cloud Data

WALCOM 11 8 / 51

• • = • •

Sampling

ε -sample (Amenta-Bern-Eppstein 98)

 Each x has a sample within εf(x) distance

Voronoi Diagram & Delaunay Triangulation

Definition

Voronoi diagram Vor *P*: collection of Voronoi cells $\{V_p\}$ and its faces $V_p = \{x \in \mathbb{R}^3 \mid ||x - p|| \le ||x - q|| \text{ for all } q \in P\}$

Definition

Delaunay triangulation Del P: dual of Vor P, a simplicial complex

Voronoi diagram and Delaunay triangulation of a point set in the plane

Geometry and Topology from Point Cloud Data

< □ > < □ > < □ > < □ > < □ >

Curve samples and Voronoi

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 11 / 51

3

- 本間 と 本語 と 本語 と

 Crust algorithm (Amenta-Bern-Eppstein 98)

- Crust algorithm (Amenta-Bern-Eppstein 98)
- Nearest neighbor algorithm (Dey-Kumar 99)

- Crust algorithm (Amenta-Bern-Eppstein 98)
- Nearest neighbor algorithm (Dey-Kumar 99)

- Crust algorithm (Amenta-Bern-Eppstein 98)
- Nearest neighbor algorithm (Dey-Kumar 99)
- many variations (DMR99,Gie00,GS00,FR01,AM02..)

Difficulties in 3D

• Voronoi vertices can come close to the surface . . . slivers are nasty

• There is no unique 'correct' surface for reference

★ ∃ ► ★

Restricted Voronoi/Delaunay

Definition

Restricted Voronoi: Vor $P|_{\Sigma} = \{f_P|_{\Sigma} = f \cap \Sigma \mid f \in \text{Vor } P\}$

Definition

Restricted Delaunay: Del $P|_{\Sigma} = \{ \sigma \mid V_{\sigma} \cap \Sigma \neq \emptyset \}$

Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then $\operatorname{Del} P|_{\Sigma}$ is homeomorphic to Σ .

.

Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then $\operatorname{Del} P|_{\Sigma}$ is homeomorphic to Σ .

Geometry and Topology from Point Cloud Data

Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then $\operatorname{Del} P|_{\Sigma}$ is homeomorphic to Σ .

Theorem

For a sufficiently small ε if P is an ε -sample of Σ , then (P, Σ) satisfies the closed ball property, and hence $\text{Del } P|_{\Sigma} \approx \Sigma$.

Surface Reconstruction

Normals and Voronoi Cells 3D (Amenta-Bern 98)

Geometry and Topology from Point Cloud Data

Long Voronoi cells and Poles

WALCOM 11 17 / 51

3

Normal Approximation

Lemma (Pole Vector) $\angle((p^+ - p), \mathbf{n}_p) = 2 \arcsin \frac{\varepsilon}{1 - \varepsilon}$

∃ →

Crust in 3D (Amenta-Bern 98)

- Compute Voronoi diagram Vor P
- Recompute the Voronoi diagram after introducing poles
- Filter crust triangles from Delaunay
- Filter by normals
- Extract manifold

WALCOM 11 19 / 51

Cocone

- $\mathbf{v}p = p^+ p$ is the pole vector
- Space spanned by vectors within the Voronoi cell making angle > ^{3π}/₈ with ν_p or -ν_p

< 3 >

Cocone Algorithm

- COCONE(P)
 - 1 compute Vor *P*;
 - 2 $T = \emptyset;$
 - 3 for each $p \in P$ do
 - 4 $T_p = \text{CANDIDATETRIANGLES}(V_p);$
 - 5 $T := T \cup T_p;$
 - 6 end for
 - 7 M := ExtractManifold(T);
 - 8 output M

.

Candidate Triangle Properties

The following properties hold for sufficiently small ε (ε < 0.06)

- Candidate triangles include the restricted Delaunay triangles
- Their circumradii are small $O(\varepsilon)f(p)$
- Their normals make only $O(\varepsilon)$ angle with the surface normals at the vertices
- Candidate triangles include restricted Delaunay triangles

Manifold Extraction: Prune and Walk

Remove Sharp edges with their triangles

Walk outside or inside the remaining triangles

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 23 / 51

Homeomorphism

Let M be the triangulated surface obtained after the manifold extraction.

Define $h : \mathbb{R}^3 \to \Sigma$ where h(q) is the closest point on Σ . *h* is well defined except at the medial axis points.

Lemma (Homeomorphism)

The restriction of h to M, $h: M \to \Sigma$, is a homeomorphism.

Cocone Guarantees

Theorem

Any point $x \in \Sigma$ is within $O(\varepsilon)f(x)$ distance from a point in the output. Conversely, any point of the output surface has a point $x \in \Sigma$ within $O(\varepsilon)f(x)$ distance for $\varepsilon < 0.06$.

Theorem (Amenta-Choi-Dey-Leekha)

The output surface computed by COCONE from an ε – sample is homeomorphic to the sampled surface for ε < 0.06.

Boundaries

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 26 / 51

(日) (四) (王) (王) (王)

Boundaries

• Ambiguity in reconstruction

WALCOM 11 26 / 51

∃ →

Image: A matched and A matc
Boundaries

• Non-homeomorphic Restricted Delaunay [DLRW09]

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 26 / 51

・ロト ・ 日 ・ ・ 田 ト ・

Boundaries

Non-orientability

Dey (2011)

Geometry and Topology from Point Cloud Data

3 WALCOM 11 26 / 51

∃ →

・ロト ・ 日 ・ ・ 田 ト ・

Boundaries

Theorem (Dey-Li-Ramos-Wenger 2009)

Let P be a sample of a smooth compact Σ with boundary where $d(x, P) \leq \varepsilon \rho$, $\rho = \inf_x \operatorname{lfs}(x)$. For sufficiently small $\varepsilon > 0$ and $6\varepsilon \rho \leq \alpha \leq 6\varepsilon \rho + O(\varepsilon \rho)$, $\operatorname{PEEL}(P, \alpha)$ computes a Delaunay mesh isotopic to Σ .

Noisy Data: Ram Head

- Hausdorff distance $d_H(P, \Sigma)$ is $\varepsilon f(p)$
- Theoretical guarantees [Dey-Goswami04, Amenta et al.05]

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 27 / 51

Nonsmoothness

• Guarantee of homeomorphism is open

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 28 / 51

I ≡ ►

• Curse of dimensionality (intrinsic vs. extrinsic)

Geometry and Topology from Point Cloud Data

▶ < ≧ ▶ ≧ ∽ ९ ୯ WALCOM 11 29 / 51

< ロ > < 同 > < 回 > < 回 > < 回 >

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity

.

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
 - Use (ε, δ)-sampling

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
 - Use (ε, δ)-sampling
- Restricted Delaunay does not capture topology
 - Slivers are arbitrarily oriented [CDR05] ⇒ Del P|_Σ ≉ Σ no matter how dense P is.

- Curse of dimensionality (intrinsic vs. extrinsic)
- Reconstruction of submanifolds brings ambiguity
 - Use (ε, δ)-sampling
- Restricted Delaunay does not capture topology
 - Slivers are arbitrarily oriented [CDR05] ⇒ Del P|_Σ ≉ Σ no matter how dense P is.
- Delaunay triangulation becomes harder

WALCOM 11 29 / 51

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (ε, δ) -sample P of a smooth manifold $\Sigma \subset \mathbb{R}^d$ for appropriate $\varepsilon, \delta > 0$, there is a weight assignment of P so that $\operatorname{Del} \hat{P}|_{\Sigma} \approx \Sigma$ which can be computed efficiently.

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (ε, δ) -sample P of a smooth manifold $\Sigma \subset \mathbb{R}^d$ for appropriate $\varepsilon, \delta > 0$, there is a weight assignment of P so that $\operatorname{Del} \hat{P}|_{\Sigma} \approx \Sigma$ which can be computed efficiently.

Theorem (Chazal-Lieutier 2006)

Given an ε -noisy sample P of manifold $\Sigma \subset \mathbb{R}^d$, there exists $r_p \leq \rho(\Sigma)$ for each $p \in P$ so that the union of balls $B(p, r_p)$ is homotopy equivalent to Σ .

A B F A B F

Reconstructing Compacts

Geometry and Topology from Point Cloud Data

▶ < ≧ ▶ ≧ ∽ ९ ୯ WALCOM 11 31 / 51

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Reconstructing Compacts

• lfs vanishes, introduce μ -reach and define (ε , μ)-samples.

Geometry and Topology from Point Cloud Data

WALCOM 11 31 / 51

Reconstructing Compacts

• Ifs vanishes, introduce μ -reach and define (ε, μ)-samples.

Theorem (Chazal-Cohen-S.-Lieutier 2006)

Given an (ε, μ) -sample P of a compact $K \subset \mathbb{R}^d$ for appropriate $\varepsilon, \mu > 0$, there is an α so that union of balls $B(p, \alpha)$ is homotopy equivalent to K^{η} for arbitrarily small η .

→ Ξ →

Homology from PCD

Point cloud

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 32 / 51

個 と く ヨ と く ヨ と

Homology from PCD

Point cloud

WALCOM 11 32 / 51

$\mathsf{PCD}{\rightarrow}\mathsf{complex}{\rightarrow}\mathsf{homology}$

Point cloud

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 33 / 51

∃ →

► < Ξ ►</p>

$\mathsf{PCD}{\rightarrow}\mathsf{complex}{\rightarrow}\mathsf{homology}$

Point cloud

Rips complex

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 33 / 51

∃ →

・ロト ・ 日 ・ ・ 田 ト ・

$\mathsf{PCD}{\rightarrow}\mathsf{complex}{\rightarrow}\mathsf{homology}$

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

Simplicial complex

Geometry and Topology from Point Cloud Data

WALCOM 11 34 / 51

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

2-chain bcd + bde (under \mathbb{Z}_2)

Geometry and Topology from Point Cloud Data

WALCOM 11 34 / 51

< ∃ >

Definition

A *p*-boundary $\partial_{p+1} \mathbf{c}$ of a (p+1)-chain **c** is defined as the sum of boundaries of its simplices

1-boundary $bc+cd+db+bd+de+eb = bc+cd+de+eb = \partial_2(bcd+bde)$ (under \mathbb{Z}_2)

WALCOM 11 34 / 51

- ∃ ►

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

Geometry and Topology from Point Cloud Data

(日) (同) (三) (三)

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

Simplicial complex

Geometry and Topology from Point Cloud Data

WALCOM 11 35 / 51

A (10) A (10)

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

1-cycle ab + bc + cd + de + ea (under \mathbb{Z}_2)

Geometry and Topology from Point Cloud Data

WALCOM 11 35 / 51

-

► < ∃ ►</p>

Definition

A *p*-cycle is a *p*-chain that has an empty boundary

1-cycle ab + bc + cd + de + ea (under \mathbb{Z}_2)

• Each *p*-boundary is a *p*-cycle: $\partial_p \circ \partial_{p+1} = 0$

• • = • • = •

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

- 4 @ > - 4 @ > - 4 @ >

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

Definition

Two p-chains c and c' are homologous if $c = c' + \partial_{p+1}d$ for some chain d

→ ∃ →

Homology

Definition

The *p*-dimensional homology group is defined as $H_p(\mathcal{K}) = Z_p(\mathcal{K})/B_p(\mathcal{K})$

Definition

Two *p*-chains *c* and *c'* are homologous if $c = c' + \partial_{p+1}d$ for some chain *d*

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles $_{\sim}$

WALCOM 11

36 / 51

Dey (2011)

Geometry and Topology from Point Cloud Data

Complexes

• Let $P \subset \mathbb{R}^d$ be a point set

Geometry and Topology from Point Cloud Data

WALCOM 11 37 / 51

(日) (四) (王) (王) (王)

Complexes

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Complexes

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Definition

The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma) \subseteq P$ and $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$
Complexes

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Definition

The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma) \subseteq P$ and $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$

Definition

The Rips complex $\mathcal{R}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ iff $Vert(\sigma)$ are within pairwise Euclidean distance of r

Complexes

- Let $P \subset \mathbb{R}^d$ be a point set
- B(p, r) denotes an open *d*-ball centered at *p* with radius *r*

Definition

The Čech complex $C^r(P)$ is a simplicial complex where a simplex $\sigma \in C^r(P)$ iff $Vert(\sigma) \subseteq P$ and $\bigcap_{p \in Vert(\sigma)} B(p, r/2) \neq 0$

Definition

The Rips complex $\mathcal{R}^r(P)$ is a simplicial complex where a simplex $\sigma \in \mathcal{R}^r(P)$ iff $Vert(\sigma)$ are within pairwise Euclidean distance of r

Proposition

For any finite set $P \subset \mathbb{R}^d$ and any $r \ge 0$, $C^r(P) \subseteq \mathcal{R}^r(P) \subseteq C^{2r}(P)$

Point set P

Balls B(p, r/2) for $p \in P$

Čech complex $C^r(P)$

Rips complex $\mathcal{R}^r(P)$

Results of Chazal and Oudot (Main idea):

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results of Chazal and Oudot (Main idea):

• Consider inclusion of Rips complexes $i: \mathcal{R}^r(P) \to \mathcal{R}^{4r}(P)$.

Results of Chazal and Oudot (Main idea):

- Consider inclusion of Rips complexes $i: \mathcal{R}^r(P) \to \mathcal{R}^{4r}(P)$.
- Induced homomorphism at homology level:

$$i^* \colon H_k(\mathcal{R}^r(P)) \to H_k(\mathcal{R}^{4r}(P))$$

- 4 同 6 4 日 6 4 日 6

Results of Chazal and Oudot (Main idea):

- Consider inclusion of Rips complexes $i: \mathcal{R}^r(P) \to \mathcal{R}^{4r}(P)$.
- Induced homomorphism at homology level:

$$i^* \colon H_k(\mathcal{R}^r(P)) \to H_k(\mathcal{R}^{4r}(P))$$

WALCOM 11

Results of Chazal and Oudot (Main idea):

- Consider inclusion of Rips complexes $i: \mathcal{R}^r(P) \to \mathcal{R}^{4r}(P)$.
- Induced homomorphism at homology level:

$$i^* \colon H_k(\mathcal{R}^r(P)) \to H_k(\mathcal{R}^{4r}(P))$$

Results of Chazal and Oudot (Main idea):

- Consider inclusion of Rips complexes $i: \mathcal{R}^r(P) \to \mathcal{R}^{4r}(P)$.
- Induced homomorphism at homology level:

$$i^* \colon H_k(\mathcal{R}^r(P)) \to H_k(\mathcal{R}^{4r}(P))$$

Theorem (Chazal-Oudot 2008)

Rank of the image of i^* equals the rank of $H_k(M)$ if P is dense sample of M and r is chosen appropriately.

WALCOM 11 42 / 51

Algorithm for homology rank

• Compute $\mathcal{R}^r(P)$.

イロト イポト イヨト イヨト 二日

Algorithm for homology rank

- Compute $\mathcal{R}^r(P)$.
- 2 Insert simplices of $\mathcal{R}^{4r}(P)$ that are not in $\mathcal{R}^{r}(P)$ and compute the rank of the homology classes that survive.

くほと くほと くほと

Algorithm for homology rank

- Compute $\mathcal{R}^r(P)$.
- 2 Insert simplices of $\mathcal{R}^{4r}(P)$ that are not in $\mathcal{R}^{r}(P)$ and compute the rank of the homology classes that survive.
- Step 2: *Persistent homology* can be computed by the persistence algorithm [Edelsbrunner-Letscher-Zomorodian 2000].

• Compute an optimal set of cycles forming a basis

イロト 人間ト イヨト イヨト

• Compute an optimal set of cycles forming a basis

Geometry and Topology from Point Cloud Data

WALCOM 11 44 / 51

• Compute an optimal set of cycles forming a basis

Geometry and Topology from Point Cloud Data

WALCOM 11 44 / 51

• Compute an optimal set of cycles forming a basis

• First solution for surfaces: Erickson-Whittlesey [SODA05]

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 44 / 51

• Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]

• Compute an optimal set of cycles forming a basis

- First solution for surfaces: Erickson-Whittlesey [SODA05]
- General problem NP-hard: Chen-Freedman [SODA10]
- H₁ basis for simplicial complexes: Dey-Sun-Wang [SoCG10]

Basis

• Let $H_j(\mathcal{T})$ denote the *j*-dimensional homology group of \mathcal{T} under \mathbb{Z}_2

<ロ> (日) (日) (日) (日) (日)

Basis

- Let $H_j(\mathcal{T})$ denote the *j*-dimensional homology group of \mathcal{T} under \mathbb{Z}_2
- The elements of H₁(*T*) are equivalence classes [g] of 1-dimensional cycles g, also called loops

- 4 同 6 4 日 6 4 日 6

Basis

- Let $H_j(\mathcal{T})$ denote the *j*-dimensional homology group of \mathcal{T} under \mathbb{Z}_2
- The elements of H₁(T) are equivalence classes [g] of 1-dimensional cycles g, also called loops

Definition

A minimal set $\{[g_1], ..., [g_k]\}$ generating $H_1(\mathcal{T})$ is called its basis Here $k = \operatorname{rank} H_1(\mathcal{T})$

• We associate a weight $w(g) \ge 0$ with each loop g in \mathcal{T}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We associate a weight $w(g) \ge 0$ with each loop g in \mathcal{T}
- The length of a set of loops $G = \{g_1, \ldots, g_k\}$ is given by

- 4 同 6 4 日 6 4 日 6

- We associate a weight $w(g) \ge 0$ with each loop g in \mathcal{T}
- The length of a set of loops $G = \{g_1, \ldots, g_k\}$ is given by

$$Len(G) = \sum_{i=1}^k w(g_i)$$

- 4 同 6 4 日 6 4 日 6

- We associate a weight $w(g) \ge 0$ with each loop g in \mathcal{T}
- The length of a set of loops $G = \{g_1, \ldots, g_k\}$ is given by

$$\mathsf{Len}(\mathsf{G}) = \sum_{i=1}^k \mathsf{w}(g_i)$$

Definition

A shortest basis of $H_1(\mathcal{T})$ is a set of k loops with minimal length that generates $H_1(\mathcal{T})$

Optimal basis for simplicial complex

Theorem (Dey-Sun-Wang 2010)

Let \mathcal{K} be a finite simplicial complex with non-negative weights on edges. A shortest basis for $H_1(\mathcal{K})$ can be computed in $O(n^4)$ time where $n = |\mathcal{K}|$

 Let P ⊂ ℝ^d be a point set sampled from a smooth closed manifold M ⊂ ℝ^d embedded isometrically

A B A A B A

- Let P ⊂ ℝ^d be a point set sampled from a smooth closed manifold M ⊂ ℝ^d embedded isometrically
- We want to approximate a shortest basis of $H_1(\mathcal{M})$ from P

- Let P ⊂ ℝ^d be a point set sampled from a smooth closed manifold M ⊂ ℝ^d embedded isometrically
- We want to approximate a shortest basis of $H_1(\mathcal{M})$ from P
- Compute a *complex* \mathcal{K} from P

- Let P ⊂ ℝ^d be a point set sampled from a smooth closed manifold M ⊂ ℝ^d embedded isometrically
- We want to approximate a shortest basis of $H_1(\mathcal{M})$ from P
- Compute a *complex* \mathcal{K} from P
- Compute a shortest basis of $H_1(\mathcal{K})$

- Let P ⊂ ℝ^d be a point set sampled from a smooth closed manifold M ⊂ ℝ^d embedded isometrically
- We want to approximate a shortest basis of $H_1(\mathcal{M})$ from P
- Compute a *complex* \mathcal{K} from P
- Compute a shortest basis of $H_1(\mathcal{K})$
- Argue that if P is dense, a subset of computed loops approximate a shortest basis of H₁(M) within constant factors

Approximation Theorem

Theorem (Dey-Sun-Wang 2010)

Let $\mathcal{M} \subset \mathbb{R}^d$ be a smooth, closed manifold with l as the length of a shortest basis of $H_1(\mathcal{M})$ and $k = \operatorname{rank} H_1(\mathcal{M})$. Given a set $P \subset \mathcal{M}$ of n points which is an ε -sample of \mathcal{M} and $4\varepsilon \leq r \leq \min\{\frac{1}{2}\sqrt{\frac{3}{5}}\rho(\mathcal{M}), \rho_c(\mathcal{M})\}$, one can compute a set of loops G in $O(nn_e^2n_t)$ time where

$$\frac{1}{1+\frac{4r^2}{3\rho^2(\mathcal{M})}}I \leq \text{Len}(\mathsf{G}) \leq (1+\frac{4\varepsilon}{\mathsf{r}})\mathsf{I}.$$

Here n_e , n_t are the number of edges and triangles in $\mathcal{R}^{2r}(P)$

Conclusions

• Reconstructions :

■ ◆ ■ ▶ ■ つへの WALCOM 11 50 / 51

<ロ> (日) (日) (日) (日) (日)
- Reconstructions :
 - non-smooth surfaces remain open

(日) (同) (三) (三)

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory

A E A

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Homology :

- ∢ ∃ ▶

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Homology :
 - Size of the complexes

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Homology :
 - Size of the complexes
 - more efficient algorithms

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Homology :
 - Size of the complexes
 - more efficient algorithms
- Didn't talk about :

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Homology :
 - Size of the complexes
 - more efficient algorithms
- Didn't talk about :
 - functions on spaces

- Reconstructions :
 - non-smooth surfaces remain open
 - high dimensions still not satisfactory
- Homology :
 - Size of the complexes
 - more efficient algorithms
- Didn't talk about :
 - functions on spaces
 - persistence, Reeb graphs, Morse-Smale complexes, Laplace spectra...etc.

Thank You

Dey (2011)

Geometry and Topology from Point Cloud Data

WALCOM 11 51 / 51

3

・ロト ・ 日 ト ・ 日 ト ・ 日