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Problems

@ Two and Three dimensions:
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@ High dimensions:

@ Manifold reconstruction
e Homological attributes computation
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Surface Reconstruction
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Basic Topology

o d-ball BY {x € R* | ||x|| < 1} OY N
Al \
® d-sphere S¢ {x ¢ R’ | ||Ix]| = 1) AN

@ Homeomorphism h: T — T,
where h is continuous, bijective A
and has continuous inverse

@ k-manifold: neighborhoods homeomorphic to open k-ball
o 2-sphere, torus, double torus are 2-manifolds

@ k-manifold with boundary: interior points, boundary points
o B9 is a d-manifold with boundary where bd(B9) = S9!
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Basic Topology

@ Smooth Manifolds A

@ Triangulation

@ k-simplex

o Simplicial complex K:
(I) te K if t is a face of t, c K simplicial complex
(ii) t1,tp € K= t1Nty is a face of both

@ K is a triangulation of a topological
space T if T = |K]|

not a simplicial complex
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Sampling

A curve in the plane A sample Reconstructed curve
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Medial Axis

(a) (b)
(a) A subset of the medial axis of the curve (b) medial ball centered at v

touches the curve in three points, whereas the ones with centers u and w
touch it in only one point and coincide with the curvature ball.
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Sampling

Local Feature Size

o f(x) is the distance
to medial axis
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Sampling

e-sample (Amenta-Bern-Eppstein 98)

@ Each x has a sample
within ef(x) distance
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Voronoi Diagram & Delaunay Triangulation

Definition
Voronoi diagram Vor P: collection of Voronoi cells {V,} and its faces
Vo = {x e R® [ [|x — p|| < [|x — q[ for all g € P}

v

Definition

Delaunay triangulation Del P: dual of Vor P, a simplicial complex

Voronoi diagram and Delaunay triangulation of a point set in the plane
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Curve samples and Voronoi
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Curve Reconstruction Algorithms

@ Crust algorithm
(Amenta-Bern-Eppstein 98)
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Curve Reconstruction Algorithms

@ Crust algorithm e
(Amenta-Bern-Eppstein 98) & '\.\“ & ‘\\\1
@ Nearest neighbor algorithm
(Dey-Kumar 99) & .
@ many variations // P‘\q' *
)

(DMR99,Gie00,GS00,FR01,AMO02..
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Difficulties in 3D

@ Voronoi vertices can come @ There is no unique ‘correct’

close to the surface ... surface for reference
slivers are nasty
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Restricted Voronoi/Delaunay

Definition
Restricted Voronoi: Vor P|ly = {fp|x = fNX | f € Vor P}

Definition
Restricted Delaunay: Del P|s = {o |V, N T # 0}
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Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then
Del P|s is homeomorphic to ¥.
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Topology

Closed Ball property (Edelsbrunner, Shah 94)

If restricted Voronoi cell is a closed ball in each dimension, then
Del P|s is homeomorphic to ¥.

Theorem

For a sufficiently small € if P is an
e-sample of ¥, then (P, ¥) satisfies
the closed ball property, and hence
Del P|ly =~ X.
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Normals and Voronoi Cells 3D (Amenta-Bern 98)
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Long Voronoi cells and Poles

Dey (2011) Geometry and Topology from Point Cloud Data WALCOM 11 17 / 51



Normal Approximation

Lemma (Pole Vector)

Z((p™ — p),n,) = 2arcsin 7=
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Crust in 3D (Amenta-Bern 98)

©

Compute Voronoi diagram Vor P

©

Recompute the Voronoi diagram
after introducing poles

Filter crust triangles from Delaunay

[

Filter by normals

@ Extract manifold
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Cocone

@ vp = pt — pis the pole vector

@ Space spanned by vectors within the
Voronoi cell making angle > %’r with
v, OF —V,,
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Cocone Algorithm

COCONE(P)

1 compute Vor P,

2 T=0

3 for each p € P do
4 T, = CANDIDATETRIANGLES(V,);
5 T:=TUT,
6 end for

7 M := EXTRACTMANIFOLD(T);
8 output M
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Candidate Triangle Properties

The following properties hold for sufficiently small € (¢ < 0.06)

o Candidate triangles include the restricted Delaunay triangles
@ Their circumradii are small O(g)f(p)

@ Their normals make only O(e) angle with the surface normals at
the vertices

@ Candidate triangles include restricted Delaunay triangles
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Surface Reconstruction

Manifold Extraction: Prune and Walk

Remove Sharp edges with their triangles

Walk outside or inside the remaining triangles
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Surface Reconstruction

Homeomorphism

Let M be the triangulated surface obtained after the manifold
extraction.

Define h: R3 — ¥ where h(q) is the closest point on ¥. h is well
defined except at the medial axis points.

Lemma (Homeomorphism)
The restriction of h to M, h: M — ¥, is a homeomorphism. J
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Cocone Guarantees

Theorem

Any point x € ¥ is within O(e)f(x) distance from a point in the
output. Conversely, any point of the output surface has a point
x € ¥ within O(g)f(x) distance for ¢ < 0.06.

Theorem (Amenta-Choi-Dey-Leekha)

The output surface computed by COCONE from an € — sample is
homeomorphic to the sampled surface for ¢ < 0.06.
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Boundaries

@ Non-homeomorphic Restricted Delaunay [DLRWQ9]
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Boundaries

S
e
7

@ Non-orientabilty
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Input Variations

Boundaries

Theorem (Dey-Li-Ramos-Wenger 2009)

Let P be a sample of a smooth compact ¥ with boundary where
d(x, P) < ep, p = inf, lfs(x). For sufficiently small ¢ > 0 and

6ep < a < 6ep + O(ep), PEEL(P, o) computes a Delaunay mesh
isotopic to L.
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Input Variations

Noisy Data: Ram Head

Front view

Rear view

@ Hausdorff distance dy(P,X) is ef(p)

@ Theoretical guarantees [Dey-Goswami04, Ame

nta et al.05]
&5 =
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Input Variations

Nonsmoothness

Dey (2011)

@ Guarantee of homeomorphism is open
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High Dimensional PCD

@ Curse of dimensionality (intrinsic vs. extrinsic)
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High Dimensions

High Dimensional PCD

)

intrinsic vs. extrinsic
@ Reconstruction of submanifolds brings ambiguity

(

@ Curse of dimensionality

sampling
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High Dimensional PCD

@ Curse of dimensionality (intrinsic vs. extrinsic)

@ Reconstruction of submanifolds brings ambiguity
o Use (e,d)-sampling

@ Restricted Delaunay does not capture topology

o Slivers are arbitrarily oriented [CDR05] = Del P|x % % no
matter how dense P is.
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High Dimensional PCD

e ©

o Use (e,9)-sampling

©

Curse of dimensionality (intrinsic vs. extrinsic)
Reconstruction of submanifolds brings ambiguity

Restricted Delaunay does not capture topology

o Slivers are arbitrarily oriented [CDR05] = Del P|x % % no

matter how dense P is.

©

Delaunay triangulation becomes harder
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High Dimensions

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (g, 8)-sample P of a smooth manifold ¥ C RY for
appropriate ¢, 0 > 0, there is a weight assignment of P so that
Del P|s ~ ¥ which can be computed efficiently.
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High Dimensions

Reconstruction

Theorem (Cheng-Dey-Ramos 2005)

Given an (g, 8)-sample P of a smooth manifold ¥ C RY for
appropriate ¢, 0 > 0, there is a weight assignment of P so that
Del P|s ~ ¥ which can be computed efficiently.

Theorem (Chazal-Lieutier 2006)

Given an e-noisy sample P of manifold ¥ C RY, there exists
r, < p(X) for each p € P so that the union of balls B(p, r,) is
homotopy equivalent to .
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High Dimensions

Reconstructing Compacts
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High Dimensions

Reconstructing Compacts

@ Ifs vanishes, introduce p-reach and define (g, 1)-samples.
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High Dimensions

Reconstructing Compacts

@ Ifs vanishes, introduce p-reach and define (g, 1)-samples.

Theorem (Chazal-Cohen-S.-Lieutier 2006)

Given an (g, p1)-sample P of a compact K C R for appropriate
e, > 0, there is an « so that union of balls B(p, «) is homotopy
equivalent to K" for arbitrarily small n.
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Homology from PCD

Point cloud
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Homology from PCD

Point cloud Loops
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PCD—complex—homology

Point cloud
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PCD—complex—homology

Point cloud Rips complex
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PCD—complex—homology

Point cloud Rips complex Loops
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Boundary

Definition
A p-boundary d,41¢ of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices
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Boundary

Definition
A p-boundary d,41¢ of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices

2-chain bcd + bde (under Z3)
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Boundary

Definition
A p-boundary d,41¢ of a (p + 1)-chain c is defined as the sum of
boundaries of its simplices

1-boundary bc+cd+db+ bd+de+eb = bc+cd+de+eb = 0»(bcd+ bde)
(under Z5)
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Cycles

Definition
A p-cycle is a p-chain that has an empty boundary J
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Cycles

Definition
A p-cycle is a p-chain that has an empty boundary J

1-cycle ab+ bc + cd + de + ea (under Z,)
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Cycles

Definition
A p-cycle is a p-chain that has an empty boundary

1-cycle ab+ bc + cd + de + ea (under Z,)

@ Each p-boundary is a p-cycle: 9,0 0,11 =0
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Homology

Definition
The p-dimensional homology group is defined as

Hp(lc) = ZP(IC)/BP(,C)
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Homology
Definition

The p-dimensional homology group is defined as

Hp(lc) = ZP(IC)/BP(IC)

Definition
Two p-chains ¢ and ¢’ are homologous if ¢ = ¢’ 4+ 0,41d for some
chain d )
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Homology
Definition

The p-dimensional homology group is defined as

H,(KC) = Z,(K)/B,(K)

Definition
Two p-chains ¢ and ¢’ are homologous if ¢ = ¢’ 4+ 0,41d for some
chain d

(a) trivial (null-homologous) cycle; (b), (c) nontrivial homologous cycles
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Complexes

o Let P C R? be a point set
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Complexes

o Let P C R? be a point set

@ B(p, r) denotes an open d-ball centered at p with radius r

Definition

The Cech complex C(P) is a simplicial complex where a simplex
o € C"(P) iff Vert(o) C P and Npevert(o)B(p, r/2) # 0
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Complexes

o Let P C R? be a point set
@ B(p, r) denotes an open d-ball centered at p with radius r

Definition
The Cech complex C(P) is a simplicial complex where a simplex
o € C"(P) iff Vert(o) C P and Npevert(o)B(p, r/2) # 0

Definition
The Rips complex R"(P) is a simplicial complex where a simplex
o € R'(P) iff Vert(o) are within pairwise Euclidean distance of r
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Homology Definitions

Complexes

o Let P C R? be a point set

@ B(p, r) denotes an open d-ball centered at p with radius r

Definition

The Cech complex C"(P) is a simplicial complex where a simplex
o € C"(P) iff Vert(o) C P and Npevert(o)B(p, r/2) # 0

Definition
The Rips complex R'(P) is a simplicial complex where a simplex
o € R"(P) iff Vert(o) are within pairwise Euclidean distance of r

Proposition

For any finite set P C R and any r > 0, C"(P) C R'(P) C C*>(P)
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Point set P
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Balls B(p, r/2) for p € P
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Cech complex C"(P)




Rips complex R"(P)




Homology rank from PCD

Results of Chazal and Oudot (Main idea):
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Homology rank from PCD

Results of Chazal and Oudot (Main idea):
@ Consider inclusion of Rips complexes i: R"(P) — R*(P).
@ Induced homomorphism at homology level:

i*: H(R"(P)) — Hi(R*(P))

Theorem (Chazal-Oudot 2008)

Rank of the image of i* equals the rank of H(M) if P is dense
sample of M and r is chosen appropriately.
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Algorithm for homology rank

@ Compute R"(P).
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Algorithm for homology rank
@ Compute R"(P).

@ Insert simplices of R*(P) that are not in R'(P) and compute
the rank of the homology classes that survive.
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Algorithm for homology rank

@ Compute R"(P).
@ Insert simplices of R*(P) that are not in R'(P) and compute
the rank of the homology classes that survive.

Step 2: Persistent homology can be computed by the persistence
algorithm [Edelsbrunner-Letscher-Zomorodian 2000].
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OHBP: Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis
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OHBP: Optimal Homology Basis Problem

@ Compute an optimal set of cycles forming a basis

@ First solution for surfaces: Erickson-Whittlesey [SODAQ5]
@ General problem NP-hard: Chen-Freedman [SODA10]
@ Hj basis for simplicial complexes: Dey-Sun-Wang [SoCG10]
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Basis

@ Let H;(7) denote the j-dimensional homology group of 7" under
Ly
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Ly

@ The elements of Hy(7) are equivalence classes [g] of
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Basis

@ Let H;(7) denote the j-dimensional homology group of 7" under
Ly

@ The elements of Hy(7) are equivalence classes [g] of
1-dimensional cycles g, also called loops

Definition
A minimal set {[g1], ..., [gk]} generating H1(7') is called its basis
Here k = rank H(7)
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Shortest Basis

@ We associate a weight w(g) > 0 with each loop g in 7
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@ The length of a set of loops G = {g1, ..., gk} is given by

Len(G) = 3 w(g)

i=1
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Shortest Basis

@ We associate a weight w(g) > 0 with each loop g in 7
@ The length of a set of loops G = {g1, ..., gk} is given by

Len(G) = 3 w(g)

i=1

Definition
A shortest basis of Hy(7) is a set of k loops with minimal length that
generates Hy(7)
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Homology basis

Optimal basis for simplicial complex

Theorem (Dey-Sun-Wang 2010)

Let IC be a finite simplicial complex with non-negative weights on

edges. A shortest basis for Hi(K) can be computed in O(n*) time
where n = |K|
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Approximation from Point Cloud

@ Let P C R? be a point set sampled from a smooth closed
manifold M C R9 embedded isometrically
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Approximation from Point Cloud

@ Let P C R? be a point set sampled from a smooth closed
manifold M C R9 embedded isometrically

@ We want to approximate a shortest basis of H; (M) from P
@ Compute a complex KC from P
@ Compute a shortest basis of H;(K)

@ Argue that if P is dense, a subset of computed loops
approximate a shortest basis of H;(,M) within constant factors
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Approximation Theorem

Theorem (Dey-Sun-Wang 2010)

Let M C RY be a smooth, closed manifold with | as the length of a
shortest basis of Hi(M) and k = rank H;(M).

Given a set P C M of n points which is an e-sample of M and

4e <r < min{%\/gp(./\/l), pc(M)}, one can compute a set of loops
G in O(nnZn;) time where

1 4e

3p%(M)

Here n., n; are the number of edges and triangles in R* (P)
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@ Reconstructions :
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Conclusions

Conclusions

@ Reconstructions :

@ non-smooth surfaces remain open
@ high dimensions still not satisfactory

@ Homology :
o Size of the complexes
o more efficient algorithms
@ Didn’t talk about :
o functions on spaces
o persistence, Reeb graphs, Morse-Smale complexes, Laplace
spectra...etc.
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