Topological Analysis of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

Tamal K. Dey¹, Facundo Mémoli², Yusu Wang¹

Department of Computer Science and Engineering¹
Department of Mathematics²
The Ohio State University

• $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$, a finite cover of X

• $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$, a finite cover of X

- $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$, a finite cover of X
- Nerve of \mathcal{U} : $N(\mathcal{U})$ with vertex set A, iff $U_{\alpha_0} \cap U_{\alpha_1} \cap \ldots \cap U_{\alpha_k} \neq \emptyset$.

- $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$, a finite cover of X
- Nerve of \mathcal{U} : $N(\mathcal{U})$ with vertex set A, iff $U_{\alpha_0} \cap U_{\alpha_1} \cap \ldots \cap U_{\alpha_k} \neq \emptyset$.

- $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$, a finite cover of X
- Nerve of \mathcal{U} : $N(\mathcal{U})$ with vertex set A, iff $U_{\alpha_0} \cap U_{\alpha_1} \cap \ldots \cap U_{\alpha_k} \neq \emptyset$.

Nerves and 1-cycles

Nerves and 1-cycles

Nerves and 1-cycles

From space to nerve and H_1 -classes

- X a path connected, paracompact space
- $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$, a path connected cover, $X_{\mathcal{U}}$: blowup space
- $\phi_{\mathcal{U}}: X \to |\mathcal{N}(\mathcal{U})|$ is a map where $\phi_{\mathcal{U}} = \pi \circ \zeta$

From space to nerve and H_1 -classes

- X a path connected, paracompact space
- $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$, a path connected cover, $X_{\mathcal{U}}$: blowup space
- $\phi_{\mathcal{U}}: X \to |\mathcal{N}(\mathcal{U})|$ is a map where $\phi_{\mathcal{U}} = \pi \circ \zeta$

Theorem (Space-Nerve)

 $\phi_{\mathcal{U}*}: H_1(X) \to H_1(|\mathcal{N}(\mathcal{U})|)$ is a surjection.

• Consider covers $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ and $\mathcal{V} = \{V_{\beta}\}_{{\beta} \in B}$ and a map of sets $\xi : A \to B$ satisfying $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$

- Consider covers $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ and $\mathcal{V} = \{V_{\beta}\}_{{\beta} \in B}$ and a map of sets $\xi : A \to B$ satisfying $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
- ξ induces a simplicial map $N(\xi): N(\mathcal{U}) \to N(\mathcal{V})$

- Consider covers $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ and $\mathcal{V} = \{V_{\beta}\}_{{\beta} \in B}$ and a map of sets $\xi : A \to B$ satisfying $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
- ξ induces a simplicial map $N(\xi):N(\mathcal{U})\to N(\mathcal{V})$

- Consider covers $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ and $\mathcal{V} = \{V_{\beta}\}_{{\beta} \in B}$ and a map of sets $\xi : A \to B$ satisfying $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
- ξ induces a simplicial map $N(\xi):N(\mathcal{U})\to N(\mathcal{V})$

- Consider covers $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ and $\mathcal{V} = \{V_{\beta}\}_{{\beta} \in B}$ and a map of sets $\xi : A \to B$ satisfying $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
- ξ induces a simplicial map $N(\xi):N(\mathcal{U})\to N(\mathcal{V})$

- Consider covers $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ and $\mathcal{V} = \{V_{\beta}\}_{{\beta} \in B}$ and a map of sets $\xi : A \to B$ satisfying $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
- ξ induces a simplicial map $N(\xi):N(\mathcal{U})\to N(\mathcal{V})$

- Consider covers $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ and $\mathcal{V} = \{V_{\beta}\}_{{\beta} \in B}$ and a map of sets $\xi : A \to B$ satisfying $U_{\alpha} \subseteq V_{\xi(\alpha)}$ for all $\alpha \in A$
- ξ induces a simplicial map $N(\xi):N(\mathcal{U})\to N(\mathcal{V})$
- if $\mathcal{U} \stackrel{\xi_1}{\to} \mathcal{V} \stackrel{\xi_2}{\to} \mathcal{W}$, then $N(\xi_2 \circ \xi_1) = N(\xi_2) \circ N(\xi_1)$

Nerve to nerve and H_1 -classes

Nerve to nerve and H_1 -classes

Nerve to nerve and H_1 -classes

Proposition

 \mathcal{U} and \mathcal{V} be two covers of X with a cover map $\mathcal{U} \xrightarrow{\theta} \mathcal{V}$. Then, $\phi_{\mathcal{V}} = \hat{\tau} \circ \phi_{\mathcal{U}}$ where $\tau : \mathsf{N}(\mathcal{U}) \to \mathsf{N}(\mathcal{V})$ is induced by θ .

Corollary

The maps $\phi_{\mathcal{U}*}: H_k(X) \to H_k(|N(\mathcal{U})|)$, $\phi_{\mathcal{V}*}: H_k(X) \to H_k(|N(\mathcal{V})|)$, and $\hat{\tau}_*: H_k(|N(\mathcal{U})|) \to H_k(|N(\mathcal{V})|)$ commute, that is, $\phi_{\mathcal{V}*} = \hat{\tau}_* \circ \phi_{\mathcal{U}*}$.

Theorem (Nerve-Nerve)

Let $\tau: N(\mathcal{U}) \to N(\mathcal{V})$ be induced by a cover map $\mathcal{U} \to \mathcal{V}$. Then, $\tau_*: H_1(N(\mathcal{U})) \to H_1(N(\mathcal{V}))$ is a surjection.

- Equip X with a pseudometric d
- For $X' \subseteq X$, size $s(X') = \operatorname{diam}_d X'$

- Equip X with a pseudometric d
- For $X' \subseteq X$, size $s(X') = \operatorname{diam}_d X'$
- Let $z_1, z_2, ..., z_n$ be k-cycles whose classes form a basis of $H_k(X)$.

- Equip X with a pseudometric d
- For $X' \subseteq X$, size $s(X') = \operatorname{diam}_d X'$
- Let $z_1, z_2, ..., z_n$ be k-cycles whose classes form a basis of $H_k(X)$.
- z_1, z_2, \ldots, z_k is a minimal generator basis if $\sum_{i=1}^n s(z_i)$ is minimal

- Equip X with a pseudometric d
- For $X' \subseteq X$, size $s(X') = \operatorname{diam}_d X'$
- Let $z_1, z_2, ..., z_n$ be k-cycles whose classes form a basis of $H_k(X)$.
- z_1, z_2, \ldots, z_k is a minimal generator basis if $\sum_{i=1}^n s(z_i)$ is minimal

Lebesgue number of a cover

Lebesgue number of a cover:

$$\lambda(\mathcal{U}) = \sup\{\delta \,|\, \forall X' \subseteq X \text{ with } s(X') \leq \delta, \exists \, U_\alpha \in \mathcal{U} \text{ where } U_\alpha \supseteq X'\}$$

Lebesgue number of a cover

Lebesgue number of a cover:

$$\lambda(\mathcal{U}) = \sup\{\delta \,|\, \forall X' \subseteq X \text{ with } s(X') \leq \delta, \exists \, U_\alpha \in \mathcal{U} \text{ where } U_\alpha \supseteq X'\}$$

Theorem (Persistent H_1 -classes)

Let $z_1, z_2, ..., z_g$ be a minimal generator basis of $H_1(X)$ ordered with increasing sizes.

- i. Let $\ell \in [1,g]$ be the smallest integer so that $s(z_{\ell}) > \lambda(\mathcal{U})$. If $\ell \neq 1$, the class $\bar{\phi}_{\mathcal{U}*}[z_j] = 0$ for $j = 1, \ldots, \ell 1$. Moreover, the classes $\{\bar{\phi}_{\mathcal{U}*}[z_j]\}_{j=\ell,\ldots,g}$ generate $H_1(N(\mathcal{U}))$.
- ii. The classes $\{\bar{\phi}_{\mathcal{U}*}[z_j]\}_{j=\ell',\ldots,g}$ are linearly independent where $s(z_{\ell'}) > 4s_{max}(\mathcal{U})$.

Reeb space

Reeb graphs capture only vertical homology classes [D.-Wang 14]

Theorem (Reeb space)

Only vertical H_1 -classes survive in Reeb spaces.

• Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.

- Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.
- Connected components of $f^{-1}(U_{\alpha}) = \bigcup_{i=1}^{j_{\alpha}} V_{\alpha,i}$ form a cover $f^*(\mathcal{U})$ of X.

- Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.
- Connected components of $f^{-1}(U_{\alpha}) = \bigcup_{i=1}^{j_{\alpha}} V_{\alpha,i}$ form a cover $f^*(\mathcal{U})$ of X.

- Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.
- Connected components of $f^{-1}(U_{\alpha}) = \bigcup_{i=1}^{j_{\alpha}} V_{\alpha,i}$ form a cover $f^*(\mathcal{U})$ of X.

- Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.
- Connected components of $f^{-1}(U_{\alpha}) = \bigcup_{i=1}^{j_{\alpha}} V_{\alpha,i}$ form a cover $f^*(\mathcal{U})$ of X.

- Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.
- Connected components of $f^{-1}(U_{\alpha}) = \bigcup_{i=1}^{j_{\alpha}} V_{\alpha,i}$ form a cover $f^*(\mathcal{U})$ of X.

Mapper

Definition (Mapper)

[Singh-Carlsson-Mémoli] Let $f: X \to Z$ be continuous and $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ be a finite open covering of Z. The Mapper is

$$M(\mathcal{U}, f) := N(f^*(\mathcal{U}))$$

• $f: X \to Z$ continuous, well-behaved

- $f: X \to Z$ continuous, well-behaved
- a map $\xi: \mathcal{U} \to \mathcal{V}$ between covers of Z,

- $f: X \to Z$ continuous, well-behaved
- a map $\xi: \mathcal{U} \to \mathcal{V}$ between covers of Z,
- \exists a corresponding map for pullback covers of X:

$$f^*(\xi): f^*(\mathcal{U}) \longrightarrow f^*(\mathcal{V})$$

- $f: X \to Z$ continuous, well-behaved
- a map $\xi: \mathcal{U} \to \mathcal{V}$ between covers of Z,
- \exists a corresponding map for pullback covers of X:

$$f^*(\xi): f^*(\mathcal{U}) \longrightarrow f^*(\mathcal{V})$$

- $f: X \to Z$ continuous, well-behaved
- a map $\xi: \mathcal{U} \to \mathcal{V}$ between covers of Z,
- \exists a corresponding map for pullback covers of X:

$$f^*(\xi): f^*(\mathcal{U}) \longrightarrow f^*(\mathcal{V})$$

- $f: X \to Z$ continuous, well-behaved
- a map $\xi: \mathcal{U} \to \mathcal{V}$ between covers of Z,
- \exists a corresponding map for pullback covers of X:

$$f^*(\xi): f^*(\mathcal{U}) \longrightarrow f^*(\mathcal{V})$$

• if $\mathcal{U} \stackrel{\xi}{\to} \mathcal{V} \stackrel{\zeta}{\to} \mathcal{W}$, then $f^*(\zeta \circ \xi) = f^*(\zeta) \circ f^*(\xi)$

Tower of Covers, ToC

- Tower of Covers, ToC
 - $\mathfrak{U}=\left\{\mathcal{U}_{\varepsilon}\right\}_{\varepsilon>r}$, $r=\mathit{resolution}(\mathfrak{U}),\,\mathcal{U}_{\varepsilon}$ finite

- Tower of Covers, ToC
 - $\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{{\varepsilon} \geq r}$, $r = resolution(\mathfrak{U})$, $\mathcal{U}_{\varepsilon}$ finite
 - $\bullet \ \mathfrak{U} = \left\{ \mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'} \right\}_{r < \varepsilon \leq \varepsilon'}, \ u_{\varepsilon,\varepsilon} = \mathrm{id} \ , \ u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$

Tower of Covers, ToC

•
$$\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{\varepsilon > r}$$
, $r = resolution(\mathfrak{U})$, $\mathcal{U}_{\varepsilon}$ finite

•
$$\mathfrak{U} = \left\{ \mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'} \right\}_{r < \varepsilon < \varepsilon'}$$
, $u_{\varepsilon,\varepsilon} = \mathrm{id}$, $u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$

- Tower of Covers, ToC
 - $\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{{\varepsilon} \geq r}$, $r = resolution(\mathfrak{U})$, $\mathcal{U}_{\varepsilon}$ finite
 - $\mathfrak{U} = \left\{ \mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'} \right\}_{r < \varepsilon < \varepsilon'}$, $u_{\varepsilon,\varepsilon} = \mathrm{id}$, $u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$

- Tower of Simplicial complexes, ToS
 - $\bullet \ \mathfrak{S} = \big\{\mathcal{S}_\varepsilon\big\}_{\varepsilon \geq r}, \ \mathcal{S}_\varepsilon \ \mathsf{finite},$
 - $\bullet \ \mathfrak{S} = \big\{ \mathcal{S}_{\varepsilon} \overset{\mathbf{s}_{\varepsilon,\varepsilon'}}{\longrightarrow} \mathcal{S}_{\varepsilon'} \big\}_{r \leq \varepsilon \leq \varepsilon'}, \ \mathbf{s}_{\varepsilon,\varepsilon} = \mathrm{id} \ , \ \mathbf{s}_{\varepsilon',\varepsilon''} \circ \mathbf{s}_{\varepsilon,\varepsilon'} = \mathbf{s}_{\varepsilon,\varepsilon''}$

- Tower of Covers, ToC
 - $\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{{\varepsilon} \geq r}$, $r = resolution(\mathfrak{U})$, $\mathcal{U}_{\varepsilon}$ finite

•
$$\mathfrak{U} = \left\{ \mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'} \right\}_{r < \varepsilon < \varepsilon'}$$
, $u_{\varepsilon,\varepsilon} = \operatorname{id}$, $u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$

- Tower of Simplicial complexes, ToS
 - ullet $\mathfrak{S}=\left\{\mathcal{S}_{arepsilon}
 ight\}_{arepsilon\geq r}$, $\mathcal{S}_{arepsilon}$ finite,
 - $\bullet \ \mathfrak{S} = \big\{ \mathcal{S}_{\varepsilon} \xrightarrow{\mathbf{s}_{\varepsilon,\varepsilon'}'} \mathcal{S}_{\varepsilon'} \big\}_{r < \varepsilon < \varepsilon'}, \ \mathbf{s}_{\varepsilon,\varepsilon} = \mathrm{id} \ , \ \mathbf{s}_{\varepsilon',\varepsilon''} \circ \mathbf{s}_{\varepsilon,\varepsilon'} = \mathbf{s}_{\varepsilon,\varepsilon''}$

- Tower of Covers, ToC
 - $\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{{\varepsilon} \geq r}$, $r = resolution(\mathfrak{U})$, $\mathcal{U}_{\varepsilon}$ finite
 - $\mathfrak{U} = \left\{ \mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'} \right\}_{r < \varepsilon < \varepsilon'}$, $u_{\varepsilon,\varepsilon} = \operatorname{id}$, $u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$

- Tower of Simplicial complexes, ToS
 - ullet $\mathfrak{S}=\left\{\mathcal{S}_{arepsilon}
 ight\}_{arepsilon\geq r}$, $\mathcal{S}_{arepsilon}$ finite,
 - $\bullet \ \mathfrak{S} = \big\{ \mathcal{S}_{\varepsilon} \xrightarrow{\mathbf{s}_{\varepsilon,\varepsilon'}^{\varepsilon}} \mathcal{S}_{\varepsilon'} \big\}_{r < \varepsilon < \varepsilon'}, \ \mathbf{s}_{\varepsilon,\varepsilon} = \mathrm{id} \ , \ \mathbf{s}_{\varepsilon',\varepsilon''} \circ \mathbf{s}_{\varepsilon,\varepsilon'} = \mathbf{s}_{\varepsilon,\varepsilon''}$

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

$$MM(\mathfrak{U}, f) := N(f^*(\mathfrak{U}))$$

Persistence diagram of MM

• $D_kMM(\mathfrak{U}, f)$ = persistence diagram of:

$$\mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{1}}))\big) \to \mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{2}}))\big) \to \cdots \to \mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{n}}))\big)$$

Implication for multiscale mapper

Theorem

Consider the following multiscale mapper:

$$N(f^*\mathcal{U}_0) \to N(f^*\mathcal{U}_1) \to \cdots \to N(f^*\mathcal{U}_n)$$

- surjection from $H_1(X)$ to $H_1(N(f^*\mathcal{U}_i))$ for each $i \in [0, n]$.
- For H₁-persistence module:

$$\mathrm{H}_1\big(N(f^*\mathcal{U}_0)\big) \to \mathrm{H}_1\big(N(f^*\mathcal{U}_1)\big) \to \cdots \to \mathrm{H}_1\big(N(f^*\mathcal{U}_n)\big)$$

all connecting maps are surjections.

Persistent H_1 -classes in multiscale mapper

- $f: X \to Z$ where (Z, d_Z) a metric space
- $d_f(x, x') := \inf_{\gamma \in \Gamma_X(x, x')} \operatorname{diam}_Z(f \circ \gamma).$

Persistent H_1 -classes in multiscale mapper

- $f: X \to Z$ where (Z, d_Z) a metric space
- $d_f(x, x') := \inf_{\gamma \in \Gamma_X(x, x')} \operatorname{diam}_{Z}(f \circ \gamma).$

Persistent H_1 -classes in MM

Theorem

Consider a H_1 -persistence module of a multiscale mapper induced by a tower of path connected covers:

$$\mathrm{H}_{1}\big(\textit{N}(f^{*}\mathcal{U}_{\varepsilon_{0}})\big)\overset{s_{1*}}{\to}\mathrm{H}_{1}\big(\textit{N}(f^{*}\mathcal{U}_{\varepsilon_{1}})\big)\overset{s_{2*}}{\to}\cdots\overset{s_{n*}}{\to}\mathrm{H}_{1}\big(\textit{N}(f^{*}\mathcal{U}_{\varepsilon_{n}})\big)$$

Let $\hat{s}_{i*} = s_{i*} \circ s_{(i-1)*} \circ \cdots \circ \phi_{\mathcal{U}_{\varepsilon_0}*}$. Then, \hat{s}_{i*} renders the small classes of $H_1(X)$ trivial in $H_1(N(f^*\mathcal{U}_{\varepsilon_i}))$ as detailed in previous theorem.

Higher dimensional homology

- \exists a metric d_{δ} on mapper $N(\mathcal{U})$ so that $d_{GH}((N(\mathcal{U}),d_{\delta}),(X,d_f)) \leq 5\delta$
 - convergence of Reeb space to mappers [MW16]
- Persistence diagrams of (X, d_f) and $(N(\mathcal{U}), d_{\delta})$ are close

Higher dimensional homology

- \exists a metric d_{δ} on mapper $N(\mathcal{U})$ so that $d_{GH}((N(\mathcal{U}), d_{\delta}), (X, d_f)) \leq 5\delta$
 - convergence of Reeb space to mappers [MW16]
- Persistence diagrams of (X, d_f) and $(N(\mathcal{U}), d_{\delta})$ are close
- Persistence diagram of (X, d_f) and $MM(\mathfrak{U}, f)$ are close

Higher dimensional homology

- \exists a metric d_{δ} on mapper $N(\mathcal{U})$ so that $d_{GH}((N(\mathcal{U}), d_{\delta}), (X, d_f)) \leq 5\delta$
 - convergence of Reeb space to mappers [MW16]
- Persistence diagrams of (X, d_f) and $(N(\mathcal{U}), d_{\delta})$ are close
- Persistence diagram of (X, d_f) and $MM(\mathfrak{U}, f)$ are close
- Persistence diagrams of mapper and multiscale mapper are similar under an appropriate map-induced metric

ullet Surjection on H_1 -classes from space to nerve and between nerves

- \bullet Surjection on H_1 -classes from space to nerve and between nerves
- Implications for Reeb space, Mapper, and multiscale mapper

- \bullet Surjection on H_1 -classes from space to nerve and between nerves
- Implications for Reeb space, Mapper, and multiscale mapper
- What does persistence of MM compute? (answered)

- \bullet Surjection on H_1 -classes from space to nerve and between nerves
- Implications for Reeb space, Mapper, and multiscale mapper
- What does persistence of MM compute? (answered)
- Connection of MM to Reeb space? (answered)

- \bullet Surjection on H_1 -classes from space to nerve and between nerves
- Implications for Reeb space, Mapper, and multiscale mapper
- What does persistence of MM compute? (answered)
- Connection of MM to Reeb space? (answered)

Conjecture: If *t*-wise intersections in \mathcal{U} for all t > 0 have $\tilde{H}_{\leq k-t} = 0$, then is $\phi_{\mathcal{U}*}$ surjective for H_k ?

Thank You

