The Union-Find Problem

We look at the problem maintaining a system of sets that are pairwise disjoint. It should support two operations: (1) Find (2) Union.

\[C: \text{collection of subsets of } \{1, 2, \ldots, n\} \]
\[\text{s.t. } \bigcup I = \{1, 2, \ldots, n\} \text{ and } I \cap J = \emptyset \]
\[\text{if } I, J \in C. \]

Find(i): determines the set I \in C with \(i \in I \).

Union(I, J): joins sets I and J in C.

Often in applications we need the above two operations in the following way:

\[I := \text{Find}(i); \quad J := \text{Find}(j); \]
\[\text{If } I \neq J \text{ then } \text{Union}(I, J) \text{ endif.} \]

Here it does not really matter what I and J really are, except that they need to be different iff they represent different sets.
A simple solution.

C: array $[1...n]$ of integers

Each set is represented by one of its elements, and $C[i]$ stores the name (the index of the representative) of the set containing i.

Finding a set takes $O(1)$, but union takes $\Theta(n)$ since the entire array needs to be scanned in the worst-case.
The previous solution can be improved by storing

(i) the elements of a set in a linked list (next pointer)

(ii) the size of a set at its representative

```plaintext
function Find(i)
    return C[i].set

procedure Union (I, J)
    if C[I].size < C[J].size then I ← J endif
    C[I].size := C[I].size + C[J].size;
    Second := C[I].next;  C[I].next := J;
    t := J;  loop
        C[t].set := I;
        if C[t].next := 0 then
            C[t].next := Second
            exit loop
        endif
        t := t.next
    endloop
```
The worst-case of a single union operation is still \(\Theta(n) \), as before, but now we can show a logarithmic amortized bound.

Claim n-1 union operations take time \(O(n \log n) \)

Proof We consider the size of the set that contains the element \(i \). So define

\[O(i) = C \cdot \left[\text{find}(i) \right] \cdot \text{size} \]

\(O(i) \) changes whenever \(i \) is touched in the union operation; in this case the new \(O(i) \) is at least twice as large as the old one. This is because \(i \) is touched only if it belongs to the smaller of the two sets joined. Define \(k \) as the number of times element \(i \) is touched. Then \(O(i) \geq 2^k \Rightarrow k \leq \log n \).
We consider representing each set as a tree.

Idea - each set is represented by
- Find(i) traverses the path from i up to the root.
- Union(I, J) links the two trees.

Ex.
Union (2, 3)
 " (4, 7)
 " (2, 4)
 " (1, 2)
 " (4, 10)
 " (9, 12)
 " (12, 2)
 " (8, 11)
 " (8, 2)
 " (5, 6)
 " (6, 1)

Union takes O(1) time,
Find takes time proportional to the depth of the tree node.
Weighted Merging. The same idea as before improves time: instead of joining arbitrarily, join the smaller to the larger tree.

Assume: C has fields

\(p \) \text{ index of parent, index to itself if root}

\(h \) \text{ height of the tree}

function Find(i)
 if \(C[i].p = i \) then return i
 else return Find(\(C[i].p \))
endif

procedure Union(I, J)
 if \(C[I].h < C[J].h \) then
 \(C[I].p := J \)
 else
 \(C[J].p := I \);
 if \(C[I].h = C[J].h \) then
 \(C[I].h := C[I].h + 1 \)
 endif
 endif
endif
Claim. The height of a tree with \(n \) nodes is at most \(\log n \).

So, \textbf{Find} takes \(O(\log n) \) time.
\textbf{Union} takes \(O(1) \) time.

\textbf{Path Compression}.

The idea is to connect all nodes visited during a \textbf{Find} operation directly to the root.

\begin{verbatim}
function Find(i)
 if C[i].p ≠ ∅ then C[i].p := Find(C[i].p) end if
 return C[i].p
\end{verbatim}

\underline{Example} \((i, j)\) stands for

\begin{align*}
I & := \text{Find}(i) \quad J := \text{Find}(j) \\
\text{If} & \quad I \neq J \quad \text{then} \quad \text{Union}(I, J)
\end{align*}

\((2, 3), (2, 4), (1, 6), (2, 6), (5, 7), (9, 6)\)

\[\text{a path compression}\]
Ackermann's Function

It can be shown that m fold operations take $O(m \alpha(m))$ time where

$\alpha(m)$ is the slowly growing inverse Ackermann's function.

Def.

$A_k(1) = 2$ for $k \geq 1$

$A_1(n) = 2n$ for $n \geq 1$

$A_k(n) = A_{k-1}(A_k(n-1))$ for $k, n \geq 2$

<table>
<thead>
<tr>
<th>n=1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2^2</td>
<td>2^2</td>
<td>2^2</td>
<td>2^2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2^2</td>
<td>2^2</td>
<td>2^2</td>
<td>(\uparrow) tower of height $2^{2^{2^2}}$</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2^2</td>
<td>2^2</td>
<td>(\uparrow) tower of height $2^{2^{2^2}}$</td>
<td></td>
</tr>
</tbody>
</table>

$\alpha(m) = \min \{ n \mid A_n(n) \geq m \}$

For all practical purposes $\alpha(m) \leq 4$, but $\alpha(m)$ goes to infinity as m goes to ∞.