N\ Algorhm Desip

]\ JON KLEINBERG - EVA TARDOS

Chapter 13

Randomized
Algorithms

PEARSON Slides by Kevin Wayne.
“Addison | Copyright @ 2005 Pearson-Addison Wesley.
Wesley All rights reserved.

Randomization

Algorithmic design patterns.

« Greedy.

. Divide-and-conquer.
Dynamic programming.
Network flow.
Randomization.

in practice, access to a pseudo-random number generator

«
Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm
for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,
load balancing, Monte Carlo integration, cryptography.

13.1 Contention Resolution

Contention Resolution in a Distributed System

Contention resolution. Given n processes P, ..., P,, each competing for
access to a shared database. If two or more processes access the
database simultaneously, all processes are locked out. Devise protocol
to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time 1 with
probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the
database at time t. Then 1/(e-n) < Pr[S(i, t)] < 1/(2n).

Pf. By independence, Pr[S(i,t)] = p (1-p)~L

process i requests access none of remaining n-1 processes request access

. Setting p = 1/n, we have Pr[S(i, 1)] = 1/n (1 -1/n)"L =
V\ - v

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Useful facts from calculus. As nincreases from 2, the function:
« (1-1/n) converges monotonically from 1/4 up to 1/e
- (1-1/n)™1 converges monotonically from 1/2 down to 1/e.

Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in
en rounds is at most 1/e. After e:n(c In n) rounds, the probability is at
most n-—<.

Pf. Let F[i, t] = event that process i fails to access database in rounds
1 through t. By independence and previous claim, we have
Pr[F(i,)] = (1-1/(en)) .

. Choose t = [e-n: P FG, 0] < (1-1)" < (1-1)" < 1

. Chooset=[e-n|[clnn]: PiFG0] = (L) = n

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within 2e -nInn
rounds is at least 1 - 1/n.

Pf. Let F[t] = event that at least one of the n processes fails to access
database in any of the rounds 1 through t.

Pr[F[t]] = PranJF[i,t]] < SPFlin] < n(1-L)

i=1 i=1

! T

union bound previous slide

« Choosingt = 2 [en] [c Inn] yields Pr[F[t]]<=n-n2=1/n. =

Union bound. Given events E;, ..., E,, Pr[LnJ Ei] = Y Pr[£]
i=l

i=1

13.2 Global Minimum Cut

Global Minimum Cut

Global min cut. Given a connected, undirected graph G = (V, E) find a
cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of
related documents, network reliability, network design, circuit design,
TSP solvers.

Network flow solution.
- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
« Pick some vertex s and compute min s-v cut separating s from each
other vertexve V.

False intuition. Global min-cut is harder than min s-t cut.

Contraction Algorithm

Contraction algorithm. [Karger 1995]
. Pick an edge e = (u, v) uniformly at random.
. Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of uand v fo w
- keep parallel edges, but delete self-loops
« Repeat until graph has just two nodes v, and v,.
« Return the cut (all nodes that were contracted to form v,).

?\ b ? ?a\ b cp
oo 2 s
O

f

o

10

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob = 2/n2,

Pf. Consider a global min-cut (A*, B*) of G. Let F* be edges with one
endpoint in A* and the other in B*. Let k = |F*| = size of min cuft.

. In first step, algorithm contracts an edge in F* probability k / |E]|.

. Every node has degree = k since otherwise (A*, B*) would not be
min-cut. = |E| = 2kn.
« Thus, algorithm contracts an edge in F* with probability < 2/n.

o B*

><

F*

1

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob = 2/n2,

Pf. Consider a global min-cut (A*, B*) of G. Let F* be edges with one
endpoint in A* and the other in B*. Let k = |F*| = size of min cuft.
. Let G' be graph after j iterations. There are n' = n-j supernodes.
. Suppose no edge in F* has been contracted. The min-cut in G' is still k.
. Since value of min-cut is k, |E'| = $kn'.
. Thus, algorithm contracts an edge in F* with probability < 2/n".

- Let E; = event that an edge in F* is not contracted in iteration j.

Pr[E, NE,---NE,,] = Pr[E]x Pr[E, |E]] x ---x Pr[E,_, |[ENE,--NE, ;]
= (1-2)(1-2) - (1-3)(-3)
- () 0F) - (3) ()

2
n(n-1)

2
)

v

12

Contraction Algorithm

Amplification. To amplify the probability of success, run the
contraction algorithm many times.

Claim. If we repeat the contraction algorithm n2 In n times with
independent random choices, the probability of failing to find the

global min-cut is at most 1/n2.

Pf. By independence, the probability of failure is at most

2 , 212Inn
0 n”lnn 0 an _\2Inn 1
(l_) - [(l)] (') -
f

(1-1/x)x = 1/e

13

Global Min Cut: Context

Remark. Overall running time is slow since we perform ©(n2log n)
iterations and each takes Q(m) time.

Improvement. [Karger-Stein 1996] O(n? log3n).
. Early iterations are less risky than later ones: probability of
contracting an edge in min cut hits 50% when n / / 2 nodes remain.
« Run contraction algorithm until n / J 2 nodes remain.
« Run contraction algorithm twice on resulting graph, and return best of
two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log3n).

™ faster than best known max flow algorithm or
deterministic global min cut algorithm

14

13.3 Linearity of Expectation

Expectation

Expectation. Given a discrete random variables X, its expectation E[X]

is defined by: oo
E[X]= X jPr[X=j]
Jj=0

Waiting for a first success. Coin is heads with probability p and tails
with probability 1-p. How many independent flips X until first heads?

EIX] = S jPiX=jl1=3j0-py"p = L3 ja-py= P 1P
=0 j=0 T T 1-p 0 I-p p

j-1tails 1 head

1
p

16

Expectation: Two Properties

Useful property. If X is a 0/1 random variable, E[X] = Pr[X = 1].

Pf. E[X] = §j-Pr[X=j] =éj-Pr[X=j] = Pr[X =1]
j=0 J=0

not necessarily independent
Linearity of expectation. Given two random variables X/and\Y defined
over the same probability space, E[X + Y] = E[X] + E[Y].

Decouples a complex calculation into simpler pieces.

17

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Memoryless guessing. No psychic abilities; can't even remember
what's been turned over already. Guess a card from full deck
uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf. (surprisingly effortless using linearity of expectation)
. Let X, = 1if ith prediction is correct and O otherwise.
. Let X = number of correct guesses = X; + ... + X,.
« E[X]= Pr[X.=1] = 1/n.
« E[X] = E[X{]+ .. +EX]=1V1Un+._.+1/n=1 =
!

linearity of expectation

18

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to
guess each card.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is ©(log n).
Pf.
. Let X, = 1if ith prediction is correct and O otherwise.
. Let X = number of correct guesses = X; + ... + X,.
] E[Xl]:PI"[Xlzl] :1/(n’i"1).
« E[X] =E[X{] + .. + E[X,] =1/n+..+1/2+1/1=H(n). =
! !

linearity of expectation In(n+1) < H(n) <1+Inn

19

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n
different types of coupons. Assuming all boxes are equally likely to

contain each coupon, how many boxes before you have = 1 coupon of
each type?

Claim. The expected number of steps is ©(n log n).
Pf.
« Phase j = time between j and j+1 distinct coupons.
. Let X = number of steps you spend in phase .
. Let X = number of steps in total = X, + X; + .. + X ;.

n-1 n-1
E[X] = SEX]=3 " = nS Lo nH®m
=0 j=0n—1J] i=1 1

!

prob of success = (n-j)/n
= expected waiting time = n/(n-j)

20

134 MAX 3-SAT

Maximum 3-Satisfiability

exactly 3 distinct literals per clause

e
MAX-3SAT. Given 3-SAT formula, find a truth assignment that

satisfies as many clauses as possible.

C, = x VX3V x
C2=x2vx3va
C; = X VX,V X,
Cy = X VXV
Cs = X, VX,V X,

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability 3,
independently for each variable.

22

Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of
clauses satisfied by a random assignment is 7k/8.

1 if clause C; 1s satisfied
Pf. Consider random variable Z; = { !

otherwise.

- Let Z = weight of clauses satisfied by assignment Z;.

E[Z] =
/

(ke
=
N

~.
Il
—

linearity of expectation

I
(\Zk

Pr[clause C j 1s satisfied]

~.
I
—_

o0l
b

23

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment
that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. =

Probabilistic method. We showed the existence of a non-obvious
property of 3-SAT by showing that a random construction produces it
with positive probability!

24

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In
general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies = 7k/8
clauses is at least 1/(8k).

Pf. Let p; be probability that exactly j clauses are satisfied; let p be
probability that = 7k/8 clauses are satisfied.

Ik = EZI = 3 jp,

j<Tk/8 j=Tk/8

= (78_k_ %) E p] + k E pJ
j<7k/8 j=7k/8

< ({k=-9 1 + kp

Rearranging terms yields p=1/(8k). =

25

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments
until one of them satisfies = 7k/8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability at

least 1/(8k). By the waiting-time bound, the expected number of trials
to find the satisfying assignment is at most 8k. =

26

Maximum Satisfiability

Extensions.
. Allow one, two, or more literals per clause.
. Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-
approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a
7/8-approximation algorithm for version of MAX-3SAT where each
clause has at most 3 literals.

Theorem. [Hdstad 1997] Unless P = NP, no p-approximation algorithm
for MAX-3SAT (and hence MAX-SAT) for any p > 7/8.

!

very unlikely to improve over simple randomized
algorithm for MAX-3SAT

27

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find
correct answer.
Ex: Contraction algorithm for global min cuft.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run
in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

stop algorithm after a certain point

!

Remark. Can always convert a Las Vegas algorithm intfo Monte Carlo,
but no known method to convert the other way.

28

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in
poly-time.
Can decrease probability of false negative
One-sided error. to 2-190 by 100 independent repetitions
« If the correct answer is no, always return no. |
. If the correct answer is yes, return yes with probability = 3.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

!

running tfime can be unbounded, but
on average it is fast

Theorem. P C ZPP C RP C NP.

Fundamental open questions. To what extent does randomization help?
Does P = ZPP? Does ZPP = RP? Does RP = NP?

29

13.6 Universal Hashing

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a subset
S C U so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
= Create(): Initialize a dictionary with S = ¢.
- Insert(u): Addelementue U toS.
. Delete(u): DeleteufromsS, if uis currentlyinS.
= Lookup(u): Determine whetheruisinS.

Challenge. Universe U can be extremely large so defining an array of
size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums
P2P networks, associative arrays, cryptography, web caching, etc.

31

Hashing

Hash function. h: U—={0,1, .., n-1}.

Hashing. Create an array H of size n. When processing element u,
access array element H[h(u)].

Collision. When h(u) = h(v) but u = v.
. A collision is expected after ©(vn) random insertions. This
phenomenon is known as the "birthday paradox."
. Separate chaining: H[i] stores linked list of elements u with h(u) = i.

H[1] jocularly —» seriously
H[2] null

H[3] suburban —» untravelled — considerating

H[n] browsing

Ad Hoc Hash Function

Ad hoc hash function.

int h(String s, int n) {
int hash = 0;
for (int i = 0; i < s.length(); i++)
hash = (31 * hash) + s[i];

return hash % n;
} hash function ala Java string library

Deterministic hashing. If |U| = n2, then for any fixed hash function h,
there is a subset S C U of n elements that all hash to same slot. Thus,
O(n) time per search in worst-case.

Q. Butisn't ad hoc hash function good enough in practice?

33

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
= Obvious situations: aircraft control, nuclear reactors.

« Surprising situations: denial-of-service attacks.
™

malicious adversary learns your ad hoc hash function
(e.g., by reading Java APT) and causes a big pile-up in
a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using
less bandwidth than a dial-up modem
« Perl 5.8.0: insert carefully chosen strings into associative array.
« Linux 2.4.20 kernel: save files with carefully chosen names.

34

Hashing Performance

Idedlistic hash function. Maps m elements uniformly at random to n
hash slots.

« Running time depends on length of chains.

. Average length of chain=o=m/n.

« Choose n=m = on average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash
function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

!

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes

35

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]
. For any pair of elements u,ve U, Pr,c,[h(u)=h(v)]= 1/n
. Can select random h efficiently. ™ chosen uniformly at random
. Can compute h(u) efficiently.

Ex. U={a,b,c,d,e, f},n=2.

BoEoEd e
B0 totot oo

WP 0 0 0 1 11 Prycn [h(a) = h(d)]

not universal

1
0

H={h,h,, hsy, h}
Pr,cy[h(a)=h(b)] = 1/2
Prncn [h(a) = h(c)] = 1/2 universal

Pr,cy [h(a) = h(d)] = 1/2
Pr,cy [h(a) = h(e)] = 1/2
=0

Pry e [h(a) = h(f)]

36

Universal Hashing

Universal hashing property. Let H be a universal class of hash
functions; let h € H be chosen uniformly at random from H; and let

u € U. For any subset S C U of size at most n, the expected number of
items in S that collide with u is at most 1.

Pf. For any element s € S, define indicator random variable X = 1 if
h(s) = h(u) and O otherwise. Let X be a random variable counting the
total number of collisions with wu.

EcylX] = E[SooX,] = S ElX,] = S PrX,=1] = 3L = IS =
f ! f

linearity of expectation X, is a 0-1 random variable universal
(assumes u & S)

1

37

Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.
Modulus. Choose a prime number p = n, «— noneed for randomness here

Integer encoding. Identify each element u € U with a base-p integer
of r digits: x = (xq, X5, ..., X,.).

Hash function. Let A = set of all r-digit, base-p integers. For each
a=(a, a,, .., a.) where O <aq, < p, define
h,(x) = (é aixi) mod p
i=1

Hash function family. H={h,:a€ A }.

38

Designing a Universal Class of Hash Functions

Theorem. H={h,:a& A}isauniversal class of hash functions.

Pf. Let x = (xq, X,, ..., X.) and y = (yy, Y5, ... ¥,) be Two distinct elements of

U.

We need to show that Pr[h (x) = h (y)] = 1/n.
Since x =y, there exists an integer j such that x; = y;.
We have h(x) = h(y) iff

a; (yj_xj) = Y a;(x;-y;) modp
— i#]

m

Can assume a was chosen uniformly at random by first selecting all
coordinates a, where i = j, then selecting a; af random. Thus, we can
assume q; is fixed for all coordinates i = j.

Since p is prime, a; z = m mod p has at most one solution among p
possibili‘ries. <«— see lemma on next slide

Thus Prih,(x) = h (y)]=1/p<1/n. =

39

Number Theory Facts

Fact. Let p be prime, and let z = O mod p. Then az = m mod p has at most
one solution O < a < p.

Pf.
. Suppose a and B are two different solutions.
« Then (a - B)z = 0 mod p; hence (a - B)z is divisible by p.
« Since z = 0 mod p, we know that z is not divisible by p;
it follows that (o - B) is divisible by p.
« Thisimpliesa=p. =

Bonus fact. Can replace "at most one" with "exactly one" in above fact.
Pf idea. Euclid's algorithm.

40

13.9 Chernoff Bounds

Chernoff Bounds (above mean)

Theorem. Suppose X;, ..., X, are independent O-1 random variables. Let
X =X+ ..+ X, Then for any u = E[X] and for any & > O, we have

Pr[X >(1+0)u] <
!

sum of independent O-1 random variables
is tightly centered on the mean

ST
(1+6)1+(§

Pf. We apply a number of simple transformations.
. Foranyt>0,
PriX >(1+d)u] = Pr[efX >ez(l+6)u] < TN proiX]

! !

f(x) = e™is monotone in x Markov's inequality: Pr[X>a]l<E[X]/a

. Now E[e*] = E[e'>™] = [],Ele'"]

! !

definition of X independence

42

Chernoff Bounds (above mean)

Pf. (cont)
. Let p, =Pr[X; =1]. Then,

E[etX"] = pl-et+(1—pl-)eO = 1+pl-(et—l) <

!

t
epi(e -1)

forany 0 =0, l+a <e®

. Combining everything:

—t(1+0)u tX; —t(1+0)u p;i(e'=1) —t(1+d)u _u(e'-1)
PrX>(1+0)u] = e [Ele "] <= e [l e < e e

! !

previous slide inequality above

« Finally, choose t = In(1 +3). =

!

2ipi=E[X] = u

43

Chernoff Bounds (below mean)

Theorem. Suppose X;, ..., X, are independent O-1 random variables. Let
X = X;+ ..+ X,.. Then for any u < E[X] and for any 0 <3 < 1, we have

Pr{ X< (1-8)u] < g n 12
Pf idea. Similar.

Remark. Not quite symmeftric since only makes sense to consider 8 < 1.

44

13.10 Load Balancing

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to
be processed immediately on n identical processors. Find an assignment
that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each
processor receives at most [m/n] jobs.

Decentralized controller. Assign jobs to processors uniformly at
random. How likely is it that some processor is assigned "too many"
jobs?

46

Load Balancing

Analysis.

Let X. = number of jobs assigned to processor i.

Let Y;; = 1if job j assigned to processor i, and O otherwise.
We have E[Y;] = 1/n

Thus, X;= 3 Y, andu = E[X]] = 1.

Applying Chernoff bounds with & = ¢ - 1yields Pr[X, >¢] <

-1
ec

CC

Let y(n) be number x such that x* = n, and choose ¢ = e y(n).

c-1 c ey(n) 2y (n)
PrLX, >c] < & < (f) _ (L) < (L) _ L
c c y(n) y(n) n

Union bound = with probability = 1 - 1/n no processor receives

more than e y(n) = ©(logn / log log n) jobs.
V\

Fact: this bound is asymptotically tight: with high
probability, some processor receives ©(logn / log log n)

47

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs m = 16n In n. Then on average,
each of the n processors handles u = 16 In n jobs. With high probability
every processor will have between half and twice the average load.

Pf.
. Let X;,V;; be as before.
. Applying Chernoff bounds with § = 1 yields

e l6ninn 1 Inn 1 1V (161 1
Pr[X, >2u] <|— < |- == Pr{X; <lu] <e‘§(§)(nnn)=_2
4 e n n
« Union bound = every processor has load between half and twice

the average with probability =1 -2/n. =

48

Extra Slides

13.5 Randomized Divide-and-Conquer

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

RandomizedQuicksort(S) {
if |S| = 0 return

choose a splitter a; € S uniformly at random
foreach (a € S) {
if (a < a;) put a in S~
else if (a > a;) put a in S*
}
RandomizedQuicksort(S7)
output a;
RandomizedQuicksort (S*)

Remark. Can implement in-place.

!

O(log n) extra space

51

Quicksort

Running time.
. [Best case.] Select the median element as the splitter: quicksort
makes O(n log n) comparisons.
« [Worst case.] Select the smallest element as the splitter:
quicksort makes ©(n?) comparisons.

Randomize. Protect against worst case by choosing splitter at random.
Intuition. If we always select an element that is bigger than 25% of

the elements and smaller than 25% of the elements, then quicksort
makes O(n log n) comparisons.

Notation. Label elements so that x;< x, < ... < x,..

52

Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

I I I) e e e A S A
:

first splitter, chosen uniformly at random

/

Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and descendants.
« X, and x, are compared if their lca = x, or x,.
« X, and x, are not compared if their Ica = x; or x, or x5 or x,.

Claim. Pr[x; and x; are compared] = 2 / |j-i+1].

Quicksort: Expected Number of Comparisons

Theorem. Expected # of comparisons is O(n log n).
Pf.

S ——-233 = m$

1
l<si<j=n J—1+1 i-1 j=2 J j

!

probability that i and j are compared

1 ~ Zn}ldx = 2nlnn
] x=1X

Theorem. [Knuth 1973] Stddev of number of comparisons is ~ 0.65N.

Ex. If n=1million, the probability that randomized quicksort takes
less than 4n In n comparisons is at least 99.94%.

Chebyshev's inequality. Pr[|X - u| = k8] = 1/ k2.

55

