“T'wo intervals are independent if neither is contained
in the other and their intersection is non-empty.

Into how many pieces do we have to cut n intervals
to guarantee that no two pieces are independent?”

1 Segment trees

Historically, computational geometry was first practiced by computer scientists working on algorithms and data
structures. At the beginning of the 70’s, a large body of knowledge on data structures for single-key items was
available, and there were a few attempts to extend the known techniques to 1tems determined by more than one
key, see [3, chapter 6.5]. Possibly the simplest such item is an interval delimited by two keys. A popular data
structure for storing a collection of intervals is the segment tree. It has originally been introduce by Bentley [1],
and good description can be found in [4]. The segment tree has a number of variations, and some are described in
the exercises and in later sections of these notes.

Definitions. Let S be a set of n intervals on the real line, R!. For convenience, we treat only half-open intervals,
in particular, each interval is closed to the left and open to the right. Consider the k < 2n endpoints indexed in
increasing order and add —oo and +oco to the list: —0c0o =ap < a; < a3 < ... < a3 < G4y = 40o. The k+1
intervals delimited by consecutive endpoints are the atomic segments defined by S. The segment tree of S is an
ordered minimum height binary tree with k+ 1 leaves so that the ith leaf from the left corresponds to the ith atomic
segment, [a;-1, a;), see figure 1.1. For each node « in the segment tree, the segment of «, s(x), is the corresponding
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Figure 1.1: A segment tree for 5 intervals defining 7 different endpoints. Each node stores a set or list of intervals.

atomic segment, if « is a leaf, and it is 8(x) = s(us) Us(v), if 4 = 1(x) and v = r(«) are its left and right children. In
other words, s(x) is the union of all atomic segments associated to leaves descending from x. Each node « stores a
subset of the intervals in S, namely all intervals that contain its segment but not the segment of its parent, p(k).
Formally,

L(k) = {¢ € S| s(x) C ¢ and s(p(x)) Z ¢}.

Properties. Consider the tree itself first. It has k£ + 1 < 2n + 1 leaves and thus 2k + 1 nodes in total. Its height
is therefore [log,(k + 1)] < 2 + logy n. It follows that it has 1 + [log,(k + 1)] < 3 + log, n levels.

Next the segments. Let v and x be two nodes in the segment tree. If they lie on a common path from the root
to a leaf, say v is a descendent of , then s(v) C s(k). Otherwise, s(v) Ns(x) = @ because there is no leaf that
descends from both nodes. This is summarized for later reference.

(1) Any two of the 2k + 1 segments defined by the segment tree are either nested or disjoint.

(1) The segments of nodes on a path from the root to a leaf form a nested sequence.
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(iii) The segments of the nodes in a level partition R!.

Finally, consider the sets L. It is interesting to see which sets L(k) contain an interval :. Consider the two
atomic segments to the left and right of ¢, but not contained in ¢. The paths from the root to the corresponding
leaves, A; and \Ag, coincide up to a node u and then branch off. Of course, ¢ does not belong to L of any node on
either path. Of the other nodes «, « € L(x) precisely if « is the right child of a node on the path from p to A, or the
left child of a node on the path from y to A,. In other words, these nodes x are connected to the double path by
an edge and they lie strictly between its two branches. Note that these nodes & are the roots of maximal subtrees
whose atomic segments are contained in ¢, see figure 1.2. It 13 now easy to see the following three properties of
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Figure 1.2: An interval belongs to the sets of the nodes connected to and between two paths.

segment trees.

(iv) An interval belongs to the sets L of at most 2 + 2log, n nodes.
(v) The segments s(x) of nodes k with ¢ € L(x) form a partition of «.

(vi) For a point z € R}, let p = Ko, K1,...,Kk4 = A be the path starting at the root, p, and ending at the leaf, A,
with z € (). Then {+ € S | z € 4} = U2, L(wi).

Note that (iv) follows from the observation that an interval belongs to sets L of at most two nodes per level and
no node of the top two levels, and (v) is a direct consequence of the definitions. Furthermore, (vi) follows from (ii)
and (iii). Indeed, if z € ¢ € S then ¢ belongs to the highest node on the path from A to p whose segment is still
contained in .

Analysis. The amount of storage required for n intervals is O(nlog n), see (iv).! The intervals containing a query
point z can be reported in time O(logn + t), where ¢ is the number of intervals found, see (vi).? Given the initial
tree for a fixed set of endpoints, an interval (with endpoints in this set) can be added in time O(logn). From this
it follows that the segment tree for a given set of n intervals can be constructed in time O(n logn).3

Homework exercises
1.1 Let S be a set of n intervals. For a node x of a segment tree for S, define H(w) = {s € S |s(k)Ne #

0 and s(x) Z ¢}. Take the sum of the sizes of these sets, over all nodes « of the segment tree, and prove that

>« card H(x) = O(nlogn).

1In good cases, the amount of storage needed is only O(n), but the average case is almost as bad as the worst case, namely ©(n logn),
see [2]. More precisely, the total size of all sets L is nlog; n + o(nlogn), on the average and in the worst case.

2By storing card L(x) rather than L(x), the amount of storage decreases to O(n). With this information it is still possible to count
the intervals that contain a point z in time O(logn).

3 There are in fact several different algorithms that cbnstruct a segment tree for n intervals in time O(nlogn). The one indicated
above would construct the tree first and then add the intervals, one at a time. Alternatively, the tree can be built in pre-order,
constructing x and L(x) simultaneously, and passing the relevant intervals to the recursive construction of the left and right subtrees.
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1.2 Modify the segment tree of a finite set S of intervals as follows. Each node & stores card L(x) and the total
length of the part of s(k) covered by intervals in U, L(v), over all descendents v of (this includes «).
Consider adding and removing intervals without changing the set of endpoints defining the tree structure.
Show that an interval can be added or removed in time O(logn), where n is the number of endpoints.
(Remark. The root of the tree stores the length (one-dimensional measure) of the union of intervals currently in the

tree.)

1.3 Consider a set R of n rectangles in R2, each the Cartesian product of an interval on the z;-axis and an interval
on the r3-axis. Show how the version of the segment tree in exercise 1.2 can be used to compute the arca cf

UR =U,¢g r in time O(nlogn).

1.4 Store the rectangles in Rin a (modified) segment tree so that for a point z € R?, the t rectangles that contain
z can be reported in time O(log? n + ). The amount of storage allowed is O(n log? n).
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