Predicates

Elisha Sacks

Planar Vector Geometry

- Vectors represent positions and directions.
- Vector u has Cartesian coordinates $u=\left(u_{x}, u_{y}\right)$.
- Inner product: $u \cdot v=u_{x} v_{x}+u_{y} v_{y}$.
- Vector length: $\|u\|=\sqrt{u \cdot u}$.
- Unit vector: $u /\|u\|$.
- Cross product: $u \times v=u_{x} v_{y}-u_{y} v_{x}$
- Let α be the angle between u and v.
- $u \cdot v=\|u\| \cdot\|v\| \cdot \cos \alpha$.
- $u \times v=\|u\| \cdot\|v\| \cdot \sin \alpha$.

Predicates

- A predicate is a polynomial in the parameters of objects.
- Our parameters are the Cartesian coordinates of points.
- We have already seen the left turn predicate for 2D points $\operatorname{LT}(a, b, c)=(c-b) \times(a-b)$.
- It has the same sign as $\sin \alpha$ with $\alpha=\angle(c-b, a-b)$.
- It can also be expressed as the determinant

$$
\operatorname{LT}(a, b, c)=\left|\begin{array}{lll}
a_{x} & a_{y} & 1 \\
b_{x} & b_{y} & 1 \\
c_{x} & c_{y} & 1
\end{array}\right|
$$

- Another simple predicate is the order of points a and b in direction $u:(b-a) \cdot u$ is positive if b comes after a.

Circles

- A circle can be represented by a center o and a radius r.
- A circle can also be represented by points a, b, and c.
- The first representation has three independent parameters.
- The second representation has six dependent parameters.
- Circle predicates depend on the choice of representation.
- A point p is outside an o, r circle if $\|p-o\|-r$ is positive.
- The predicate can be rewritten without a square root as $(p-o) \cdot(p-o)-r^{2}$.

Point in Circle

- The predicate for a point p and an a, b, c circle is

$$
\left|\begin{array}{llll}
a_{x} & a_{y} & a \cdot a & 1 \\
b_{x} & b_{y} & b \cdot b & 1 \\
c_{x} & c_{y} & c \cdot c & 1 \\
p_{x} & p_{y} & p \cdot p & 1
\end{array}\right|
$$

- The predicate is positive when p is outside the circle if a, b, c are in counterclockwise order around the circle.
- Replacing p with (x, y) and expanding along the last row yields $\operatorname{LT}(a, b, c)\left(x^{2}+y^{2}\right)+u x+v y+w$.
- This is the equation of a circle after dividing by $\operatorname{LT}(a, b, c)$.
- It is the circle through a, b, c because the determinant is zero when p equals a, b, or c, since two rows are equal.
- It is positive for sufficiently large p because the LT is positive.

Angle Order

- Task: sort points counterclockwise around a point o.
- Need to define the order of points a and b around o.
- If $a_{y}>o_{y}$ and $b_{y}<o_{y}, a$ is first.
- If $a_{y}<o_{y}$ and $b_{y}>o_{y}, b$ is first.
- Otherwise, a is first if $\operatorname{LT}(a, o, b)<0$.
- What are the degenerate cases?

Spatial Vector Geometry

- Vectors represent positions and directions.
- Vector u has coordinates $u=\left(u_{x}, u_{y}, u_{z}\right)$.
- Inner product: $u \cdot v=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}$.
- Vector length: $\|u\|=\sqrt{u \cdot u}$.
- Unit vector: $u /\|u\|$.
- Cross product:

$$
u \times v=\left(u_{y} v_{z}-u_{z} v_{y}, u_{z} v_{x}-u_{x} v_{z}, u_{x} v_{y}-u_{y} v_{x}\right)
$$

- Let α be the angle between u and v.
- $u \cdot v=\|u\| \cdot\|v\| \cdot \cos \alpha$.
- $u \times v=(\|u\| \cdot\|v\| \cdot \sin \alpha) n$ with n a unit-vector perpendicular to u and v.

Predicates

- Point d is on the counterclockwise side of triangle $a b c$ if

$$
\operatorname{LT}(a, b, c, d)=\left|\begin{array}{llll}
a_{x} & a_{y} & a_{z} & 1 \\
b_{x} & b_{y} & b_{z} & 1 \\
c_{x} & c_{y} & c_{z} & 1 \\
d_{x} & d_{y} & d_{z} & 1
\end{array}\right|>0
$$

- Point p is outside the sphere through points a, b, c, d with $\mathrm{LT}(a, b, c, d)>0$ if

$$
\left|\begin{array}{lllll}
a_{x} & a_{y} & a_{z} & a \cdot a & 1 \\
b_{x} & b_{y} & b_{z} & b \cdot b & 1 \\
c_{x} & c_{y} & c_{z} & c \cdot c & 1 \\
d_{x} & d_{y} & d_{z} & d \cdot d & 1 \\
p_{x} & p_{y} & p_{z} & p \cdot p & 1
\end{array}\right|>0
$$

Projective Geometry

Elisha Sacks

Motivation

- The projective plane adds points at infinity to the affine plane.
- Two parallel lines intersect at a point at infinity.
- Asymptotes of algebraic curves are points at infinity.
- These concepts remove special cases from affine geometry.
- Any two projective lines intersect at a unique point.
- Every projective algebraic curve consists of closed loops.

Projective Points

- A projective point is a line through the origin of \Re^{3}.
- Its homogenous coordinates are any point (a, b, c) on the line.
- If $c \neq 0$, it intersects the $z=1$ plane at $(a / b, b / c, 1)$ and represents the affine point $(a / c, b / c)$.
- If $c=0$, it is at infinity.

Projective Points

- The pink lines are affine points.
- The blue lines are points at infinity.

Projective Lines

- A projective line is a plane through the origin of \Re^{3}.
- The line $u x+v y+w z=0$ is written as $\langle u, v, w\rangle$.
- It consists of the affine points $(a, b, 1)$ with (a, b) on the affine line $u x+v y+w=0$, plus $(-v, u, 0)$ at infinity.
- The line at infinity $z=0$ consists of all the points at infinity.

Plane Model

- Map an affine point to its intersection with the $z=1$ plane.
- Map the line at infinity to the $z=0$ plane.
- Affine lines are on the $z=1$ plane.
- Their points at infinity are on the $z=0$ plane.

Sphere Model

- Map a point to its two intersections with the unit sphere.
- Lines map to great circles.
- The line at infinity maps to the equator.

Sphere Model

- The pink lines (affine points) lie on the great circle.
- The blue lines (points at infinity) lie on the equator.

Hemisphere Model

- Map a point to its intersection with the northern hemisphere.
- Affine lines map to great semicircles.
- The line at infinity maps to the equator.

Points and Lines

- The line through points p and q has normal $p \times q$.
- Lines m and n intersect at the point $p=m \times n$.
- If m and n are affine and non parallel, p is affine.
- If m and n are parallel, p is at infinity.
$(u, v, w) \times\left(u, v, w^{\prime}\right)=\left(-v\left(w-w^{\prime}\right), u\left(w-w^{\prime}\right), 0\right)=(-v, u, 0)$
- If m is the line at infinity, p is n 's point at infinity. $(0,0,1) \times(u, v, w)=(-v, u, 0)$
- The line at infinity is parallel to every affine line.

Examples

The affine lines $x+y-1=0$ and $x-y-1=0$ intersect at $(1,0)$. The projective lines $x+y-z=0$ and $x-y-z=0$ intersect at $(1,1,-1) \times(1,-1,-1)=(1,0,1)$.
The affine lines $x-y-1=0$ and $x-y-2=0$ are parallel. The projective lines $x-y-z=0$ and $x-y-2 z=0$ intersect at $(1,-1,-1) \times(1,-1,-2)=(1,1,0)$.
The affine points $(1,1)$ and $(2,3)$ define the line $-2 x+y+1=0$.
The projective points $(1,1,1)$ and $(2,3,1)$ define the line $-2 x+y+z=0$, since $(1,1,1) \times(2,3,1)=(-2,1,1)$.
The affine line through (a, b) in direction (c, d) is the projective line $(a, b, 1) \times(c, d, 0)$.

Duality

There is a natural duality between the point $p=(a, b, c)$ and the line $\hat{p}=\langle a, b, c\rangle$.
Unlike the affine case, every line has a dual.
If a point p is on a line l, \hat{l} is on \hat{p}, since the original equation is $p \cdot I=0$ and the dual equation is $\hat{l} \cdot \hat{p}=0$.
If a line I passes through points p and q, \hat{p} and \hat{q} intersect at \hat{l}, since $I=p \times q$ implies $I \cdot p=0$ and $I \cdot q=0$, so $\hat{l} \cdot \hat{p}=0$ and $\hat{\jmath} \cdot \hat{q}=0$.

Projective Varieties

A projective variety is the zero set of a homogeneous polynomial $p(x, y, z)$; every term of the polynomial has the same degree d.
Examples: a projective line is homogeneous with $d=1$ and $x y-z^{2}$ is homogeneous with $d=2$.
A homogeneous polynomial is zero or nonzero for all the homogeneous coordinates of a projective point.
The projective variety $p(x, y, z)=0$ consists of the affine variety $p(x, y, 1)=0$, which is its intersection with the plane $z=1$, plus the points at infinity $p(x, y, 0)=0$, which are its intersection with the plane $z=0$.
Example: $x y-z^{2}=0$ consists of the hyperbola $x y=1$ plus the points at infinity $(1,0,0)$ and $(0,1,0)$.

Homogenization

Homogenization: Convert an affine polynomial $p(x, y)=0$ to a homogeneous polynomial in x, y, z by substituting x / z for x and y / z for y then clearing the denominator.
Example: the hyperbola $x y-1=0$ homogenizes to $x y-z^{2}=0$.
Dehomogenization: Convert a homogeneous polynomial to an affine polynomial by substituting $z=1$.
Let $q(x, y, z)$ be the homogenization of $p(x, y)$. The affine variety of p equals the affine part of the projective variety of q, that is the points with $z=1$. The points at infinity of q are the zeroes of the leading (highest degree) terms of p, since the other terms of q are zero for $z=0$.

Line

The line $y=2 x+2$ homogenizes to $2 x-y+2 z=0$ with point at infinity $(1,2,0)$ that equals $(0.447,0.894,0)$ in the hemisphere model. This point converts the affine line into a loop.

Parabola

The parabola $y=x^{2}$ homogenizes to $y z-x^{2}=0$ with point at infinity $(0,1,0)$ that converts the affine parabola into a loop.

Ellipse

The ellipse $x^{2}+4 y^{2}=4$ homogenizes to $x^{2}+4 y^{2}-4 z^{2}=0$ with no points at infinity, since the affine ellipse is already closed.

Hyperbola

The hyperbola $x y=1$ homogenizes to $x y-z^{2}=0$ with points at infinity $(1,0,0)$ and ($0,1,0$). These points convert the two components of the affine hyperbola into a single loop.

Cubic

The cubic $y=x^{3}$ homogenizes to $y z^{2}-x^{3}=0$ with point at infinity $(0,1,0)$ that converts the affine variety to a loop.

Complex Projective Geometry

The true setting for algebraic geometry is complex projective space.
Example: The circle $x^{2}+y^{2}=1$ homogenizes to $x^{2}+y^{2}=z^{2}$ with points at infinity $(\pm 1, i)$.

Bezout's theorem If polynomials p and q of degrees m and n do not have a common component, they have mn complex projective roots counting multiplicity.

Example: The intersection of two circles consists of two real or complex affine points and the two points at infinity $(\pm 1, i)$.

Projective Geometry in n Dimensions

- Every affine space k^{n} has a projective space $P\left(k^{n}\right)$.
- The projective points are lines through the origin of k^{n+1}.
- The homogeneous coordinates are $\left(x_{1}, \ldots, x_{n+1}\right)$.
- If $x_{n+1} \neq 0, x$ maps to the affine point $\left(\frac{x_{1}}{x_{n+1}}, \ldots, \frac{x_{n}}{x_{n+1}}\right)$.
- If $x_{n+1}=0, x$ is at infinity.
- The plane, sphere, and hemisphere models generalize.
- The points at infinity are isomorphic to $P\left(k^{n-1}\right)$.
- The space $P\left(\Re^{3}\right)$ is used in graphics.

Limitations of Projective Geometry

- Although the projective plane eliminates the special cases of the affine plane, it also has disadvantages.
- The projective plane is not orientable.
- Lines have one side: removing a line leaves a connected set.
- Segments are ambiguous: two points split their line into two connected parts that cannot be distinguished.
- Likewise, the direction from a to b is ambiguous, e.g. each point at infinity lies in two directions from every affine point.
- Convexity is undefined.

Oriented Projective Geometry

- Stolfi [1] defines an oriented version of projective geometry that solves these problems at the cost of increased complexity.
- Each projective point is split into two oriented points: the line $k a$ is split into the rays $k a$ and $-k a$ with $k>0$.
- Each projective line is split into two oriented lines likewise.
- In the sphere model, opposite points are no longer identified and great circles are oriented.
- The convex hull of a set of points is the dual of the envelope of the dual lines.
[1] J. Stolfi, Oriented Projective Geometry, Academic Press, 1991.

Spherical Computational Geometry

- A point a has normal vector a.
- A segment $a b$ lies in the plane with normal $n=a \times b$ and is traversed counterclockwise around n.
- The tangent to $a b$ at b is $t(a b, b)=(a \times b) \times b=n \times b$.

Spherical Computational Geometry

- The path $a b c$ is a left turn if $b \cdot t(a b, b) \times t(b c, b)>0$.
- The segment intersection predicate is as before.

Spherical Computational Geometry

- Some algorithms transfer easily from the plane to the sphere.
- Some rely on properties of the plane that differ on the sphere.
- For example, the sum of the angles of a triangle is not 180°.
- Spherical geometry is an instance of Riemann geometry.

