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“How to draw a graph nicely is an art rather than
a science because too little is known about it.”

4 Triangulating polygons and drawing graphs

Poiygons and triangulations are fundamental objects in geometry aind in geometric algorithms, where they often
oceur in a larger or more general context. For example, we will use results on polygons and polygon trianguiations
to prove that every planar graph has a plane straight-line embedding.

Polygons and triangulations. A simple closed curve is (the i image of) a continuous and injective map §! — R?,
where $! is the circle of points in R? at distance 1 from the origin. It decomposes R? into two regions, the bounded
inside and the unbounded outside. A polygon is a piecewise linear simple closed curve; it is an n-gon if it has n
edges (linear pieces). We can think of a polygon as a plane and straight-line embedding of a cycle without repeated
vertices. A diagonal is a line segment inside the polygon that connects two of its vertices. To triangulate a polygon
means to draw pairwise non-crossing diagonals that decompose the inside into triangles.

THM. 4.1 Every n-gon has a triangulation, and every triangulation of the n-gon consists of n — 2 triangles and
n — 3 diagonals.

PrROOF. For n = 3, the polygon is already triangulated with n — 2 = 1 triangles and n — 3 = 0 diagonals. So
assume n > 3. It suffices to prove we can draw a single diagonal inside the n-gon. It cuts the polygon into an
ni-gon and an nj-gon, with n; + n3 = n + 2 and ny,n2 < n— 1. By induction, the n;-gon can be triangulated
with n; — 2 triangles and n; — 3 diagonals. The two triangulations together form a triangulation of the n-gon using
(n1 —2) + (n2 — 2) = n — 2 triangles and. (n; — 3) + (n2 — 3) + 1 = n — 3 diagonals.

To prove there is a diagonal, let b be the leftmost vertex of the n-gon, and let a and ¢ be its two neighbors. If
ac is a diagonal we are done, see figure 4.1 left. Otherwise, let z be the leftmost vertex of the n-gon that lies inside
the triangle abc; bz is a diagonal, see figure 4.1 right. ‘

Figure 4.1: Either the neighbors of b define a diagonal (left), or there is a vertex  that defines a diagonal with b (right).

REMARK. The n — 3 for the number of diagonals is important. Recall the claim in section 3 that a face with k£ > 3
edges in the plane embedding of a graph can be decomposed into smaller faces by adding a diagonal. A particular
diagonal cannot be added if it already exists outside the face. If there is a tangling tree in the face then there is
no problem because any diagonal connecting a leaf of this tree to another vertex can be added. Otherwise, there
are ﬂ@ possible diagonals. The diagonals that already exist form a plane decomposition of the outside, so there

can be at most k — 3 such diagonals. Since ﬂkz—'a > k — 3 for all k > 4, there is always a diagonal available.

We skip the discussion of algorithms that triangulate polygons although this is an interesting topic. The plane-
sweep method of section 2 can be modified so it finds the n - 3 diagonals that triangulate an n-gon in time
O(nlogn). For a many years it was an open problem whether O(n) time suffices, and this has recently been proven
to be the case by Chazelle [1].
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Dual tree. We can think of the triangles decomposing an n-gon as the nodes of a tree: two nodes are joined by an
arc if they share a diagonal, see figure 4.2. Since a triangle has only three sides, each node has degree 3 or less. The
number of nodes is n — 2 and the number of arcs is n — 3. A leaf is a node with only one neighbor; it corresponds
to a triangle bounded by one diagonal and two edges of the n-gon. Such a triangle is called an ear.

Figure 4.2: The triangles and diagonals of a triangulated polygon form a tree. The ears correspond to the leaves.

LEMMA A. Every triangulation of an n-gon, n > 4, has at least two ears.

There are at least two easy proofs of this fact. The first uses the dual tree and the observation that every tree with
n —2 > 2 nodes has at least two leaves. The second is a counting argument. A triangle is bounded by 0, 1, or 2
polygon edges, and since there are n edges for n — 2 triangles, at least two triangles receive two such edges.

Convexity and star-convexity. Intuitively, a polygon or its inside is convex if all pairs of contiguous edges turn
the same way. We present a different definition that generalizes to other objects and higher dimensions. A subset
A C R? is convez if a,b € A implies the line segment ab = {z=Xa+(1-XA)b|0 < A< 1} is contained in A, see
figure 4.3. A polygon is conver if its inside is convex. The kernel of A is the set of points a € A so that ab C A
for all b € A, see figure 4.3. For example, if A is convex then A is its own kernel. It is easy to construct polygons
with empty kernel, and there are examples already for n = 6 edges. A is star-convez if its kernel is non-empty.
The kernel of a polygon can be constructed by taking an open half-plane for each edge and forming the common

,,' )

Figure 4.3: The set on the left is not convex, the set in the middle is convex, and the right shows the kernel of a
non-convex pentagon. )

intersection of these half-planes. More specifically, the half-plane defined by an edge zy is bounded by the line
through z and y and consists of all points on the same side of the line as the points inside the polygon sufficiently
close to the midpoint, ﬂ.f’- If non-empty, the kernel is the inside of a convex polygon.

LEMMA B. Every 5-gon is star-convex.

PRrROOF. Triangulate the 5-gon. The two diagdna.ls used share a common vertex, b. Let a and ¢ be the neighboring
vertices of b. Take a sufficiently small open disk around b and intersect it with the open half-planes defined by ab
and be. The result is a non-empty open sector, see figure 4.3 right. The other three half-planes contain the disk

and therefore the sector.

Drawing graphs with straight edges. Plane embeddings of graphs are not restricted to straight edges, but it
turns out that straight edges suffice. Note however, that once the locations of the vertices are fixed, it might be
necessary to use non-straight edges in order to avoid crossings ~ee figure 3.1.
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TuM. 4.2 (Féry). Every planar graph has a straight-line embedding.

Proor. Let G = (V, E) be the planar graph and add edges until it is maximally connected. Find an arbitrary
plane embedding, and let a,b,c be the vertices of the outside face. If a,b,c are the only vertices in V' we may
assume the embedding is straight-line. Otherwise, modify the embedding using the following recursive algorithm.

step 1. Find a vertex v € V — {a, b, c} with degree k¥ < 5 and remove v together with all edges that contain it.
Add k — 3 edges to decompose the thus generated face into triangles.

step 2. Recursively, find a straight-line embedding of the new graph.

step 3. Remove the edges added in step 1 and choose a point p in the kernel of the thus created k-gon, k < 5.
Use straight edges to join p to the vertices of the k-gon.

Note that a vertex v as required in step 1 can be found unless G has only 3 vertices: This is because a, b, ¢ have
degree 3 or more each, so the total degree of the other n — 3 vertices is at most (6n — 12) — 9. The average degree
is at most 6::—:% < 6, hence there exists a vertex v different from a, b, c whose degree is 5 or less.

REMARK. The proof of theorem 4.2 is formulated as a recursive algorithm. Equivalently, we can think of step 2
as the induction hypothesis applied to the smaller graph. It is easy to translate the proof into a concrete algorithm.
A drawback of the algorithm is that it tends to cluster vertices in small regions. Methods that avoid tight clusters
can be found in [2; 5].

Homework exercises

4.1 Denote {1,2,...,k} by [k]. A k-coloring of a graph G = (V,E) is an assignment x : V — [k] so that
“x(v) # x(p) if vu € E. Prove that every planar graph has a 6-coloring.
Remark. In fact, every planar graph has a 4-coloring [4] (which is a 6-coloring with two unused colors), but no short
proof of this fact is known. To prove the existence of a 5-coloring is still relatively straightforward and only slightly
more involved than for a 6-coloring.) :

4.2 Let T = (V, E) be a degree-3 tree, that is, each vertex has degree 3 or less. The removal of an edge, e,
decomposes T into two trees, T} = (V4, E1) and Ty = (Vz, E3), with Vi UVo =V and Ey U E; = E — {e}.
Define n = card V and B(e) = min{card Vi, card V2}. Show that T has an edge eo with S(eo) > 23*.
(Remark. Note that a polygon triangulation corresponds to a degree-3 tree, and if the polygon has n + 2 edges the
tree has n vertices. The tree edge eo with f(eo) > 25 corresponds to a diagonal that cuts the (n + 2)-gon into an
(n1 + 2)-gon and an (na + 2)-gon so that min{ni,nz} > 2. Equivalently, min{n; +2,nz +2} > 22 = 242 4,
that is, each side contains at least one third of the original polygon edges.)
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