4 2. Planar point location with segment trees

“The plane has two independent directions, so it is
natural to move around by alternatingly following
one or the other. When to take which direction is an
issue that determines how long it takes to get there.”

2 Planar point location with segment trees

One of the applications of segment trees is to answer point location queries in the plane; these will be defined
shortly. Such queries have been studied a great deal in computational geometry, and several solutions are available
that acaleve optimal time and storage in the asymptotic sense, see e.g. {2, 3, 5]. The solution with the segmeat
tree goes back to [7] and falls short of optimality because it requires (n logn) storage.

Problem definition. In the above references, the planar point location problem requires a decomposition of
the plane into pairwise disjoint regions. It turns out that connectivity is not essential for most solutions, and that
weaker assumptions on the input suffice. We define the planar point location problem for a collection, S, of pairwise
non-crossing line segments in R?: for a query point z € R?, find the line segment vertically above z, if it exists, see

figure 2.1.
7\5\'

'
{
(
by

Figure 2.1: The line segment vertically above point z is ¢.

Segment tree approach. We can use segment trees to answer point location queries by projecting the line
segments vertically to the z;-axis. The resulting set of intervals is stored in a segment tree. The segment of a node
x corresponds to a vertical slab, namely the set of all points whose vertical projection to the z;-axis belongs to
s(x). A line segment spans a slab if it meets both vertical lines delimiting the slab. Each L(x) can be viewed as
a set of line segments, namely the line segments in S that span the slab of x but not the slab of the parent of «,
see the definition of L(k) in section 1. Observe that the line segments in a set L are naturally ordered from top
to bottom, because they intersect the same slab and they do not cross each other. In the data structure, the line
segments in L(x) are stored in sorted order in a linear array. '

A preliminary analysis shows that this data structure takes time O(n log? n) for construction and a query takes
time O(log? n). The amount of storage is still O(nlogn). The log? n term in the construction comes from the need
to sort lists of total size O(nlogn); in the worst case there are a few long lists that take all the time. We show
below how to reduce this to O(nlogn). The log?n term in the query comes from the fact that O(logn) lists are
searched, each by binary search. Again, a bad case occurs if all lists are long, so each binary search takes time
O(logn). The binary searches are not independent, and we will see how to take advantage of the dependence to
improve the query time to O(log n). '

Vertically ordering line segments. For a line segment a € S, let a’ be its vertical projection to the z,-axis. It is
convenient to assume that a is non-vertical, so @’ is indeed an interval and not just a point. For two line segments,
a,b € S, define a < b if inta’ Nintd’ # @ and a lies below b, that is, there is vertical line, £, that intersects both
line segments in their interiors and the zs-coordinate of £Na is less than that of £N b, see figure 2.2. We thus have
a relation (S, <), and the transitive closure is a partially ordered set.

If the line segments are added to the segment tree in an order compatible with <, then each list representing
a set L will automatically be sorted. These orderings are precisely the linear extensions of (S, <). Even though



9. Planar point location with segment trees 5

Figure 2.2: a < b.

the number of pairs related by < can be as large as (;) we show that it is possible to construct a relation <,
whose size it at most 3n, and whose transitive closure is the same as that of <. A linear extension of (S, <,) is also
a linear extension of (S, <) and can be found in additional time O(n) by topolegically sorting the corresponding
. directed acyclic graph, see e.g. [1, chapter VI] or [4, chapter 2). '

Plane sweep. The sparse order, <,, can be constructed by sweeping a vertical line, £, from left to right. The
sweep is conceptually continuous, but computations are necessary only 2t a discrete set of pesitions. An event
happens whenever £ encounters the-left or right endpoint of a line segment. At any point in time, the active line
segments are the ones intersected by ¢, and they are stored in sorted order along £. Two types of events need to
be distinguished. '

Event 1. The left endpoint of a line segment b € S is encountered, see figure 2.3. Add b to the set of active line
segments. Add (a,b) and (b, c) to <,, where a and c are the active line segments right below and above b,
provided they exist.

Event 2. The right endpoint of b € S is encountered, see figure 2.3. Delete b from the set of active line segments.
Add (a,c) to <,, where a and c are as in event 1.

Figure 2.3: When the left endpoint of b is encountered, ‘it is added to the data structure for active line segments: At
the same time, two pairs are added to <,. When the right endpoint of b is encountered, it is removed from the data
structure for active line segments. In addition, a new pair is added to <,.

This algorithm can be implemented so it runs in time O(nlog n) using a balanced tree [1, chapter I11] for the active
line segments. When a left or right endpoint is encountered, we.can find a,b,c in time O(log n) by searching the
balanced tree. To determine whether a point, z, lies above or below a line segment pq, we check whether pgz forms
a left or a right turn. A line segment can be added to or removed from the collection of active line segments in time
O(log n). The events are obtained by sorting the endpoints atong the z;-direction and scanning the sorted list once.
It is possible that an endpoint is shared by several line segments, in which case it gives rise to several events.! In
this case, events of type 2 are to precede those of type 1. Each line segment generates at most two pairs when its
left endpoint is encountered, and at most one when its right endpoint is encountered. This shows that <, contains
at most 3n ordered pairs. Finally, observe that if @ < c then there is a sequence a <, by <, bz <, ... <s bj <, c.
It follows that (g, c) is in the transitive closure of <,, so the transitive closures of < and <, are the same.

Decomposing lists. With the above segment tree, the time to answer a point location query is O(log2 n). As
mentioned earlier, this can be improved by exploiting the dependence between the various binary searches. The

1These events can be taken care of collectively by removing all old lne segments and adding all new line segments at once. While
this is easy to do, it requires a slightly more complicated implementauoa thaa the original two events. Alternatively, the line segments
can be processed in sequence. In this case, pairs are generated that belong to the transitive closure of <4 but not to <, itself. Since
these pairs are accounted for by the 3n upper bound argument, they do nut cause any harm.



6 2. Planar point location with segment trees

main idea is to store each list, L, in pieces and to represent each piece by a sorted tree. The reason for the pieces
is obvious from figure 2.4. Before the binary search in L(k), the algorithm performs a binary search in L(p(x))

Figure 2.4: The slab of a node « is decomposed by the line segments in L(x) and also by the line segments in L(p(x)).
Assuming a, b, ¢ fall into the same gap defined by p(p(x)), the tree portions on the right illustrate the original segment
tree, and the modified tree, T. Circles indicate nodes storing line segments, and squares indicate nodes storing vertical
lines.

and identifies two line segments between which the query point, z, lies. The two line segments also identify a
subsequence of L(x) that need to be searched. Accordingly, decompose L(x) into several lists, each associated with
a gap between two line segments in L(p(x)), or between —co and the lowest or +co and the highest line segment in
L(p(x)). Store each (new) list in a binary tree that supports binary search. We label the lists somehow and denote
the tree that stores the ith list by 7;. Each internal node of T} stores a line segment, and each leaf, A, corresponds
to a gap. For each gap there are two trees storing pieces of L(1(x)) and L(r(x)). The roots of these trees are made
the left and right children of . :

Now we have a binary tree T, composed of many'small trees, the T}, with nodes of two types. Each interior
node of a T; stores a line segment, and the search branches depending on whether the query point, z, lies below or
above this line segment. Each leaf of a T; stores a vertical line, and the search branches depending on whether z
lies to the left or the right of this line.

Weighted binary search trees. So far, the query time did not necessarily improve yet. It does improve to
O(logn) if weighted binary search trees are used for the T;. Suppose the k leaves of a sorted binary tree, T;, have
positive real weights, w(A1), w(A2),..., w(As). Define w(T}) = Z;=1 w(Aj). Then T; is a weighted binary search
tree for the assigned weights if there is a constant ¢ so that the depth of A; is at most ¢ +log, %g—,%, for all j. Such
a tree can be constructed in time O(k), see [6, chapter III.4]. ‘

We set the weight of a leaf A of any T; equal to the number of descendents it has in 7. If A is a leaf of T then
it has one descendent, namely itself, and w(A) = 1. Recall that the total number of non-leaf nodes of all 7} is no
more than (2 + 2log, n) - n, see property (iv) in section 1. Each T; has one more leaf than non-leaf, and there
are at most 4n + 3 such trees. The total number of nodes and an upper bound on the largest weight is therefore
4nlog, n+ 8n + 3. A search path goes through h < log,n + 3 trees T;. Let the trees along the path be indexed as
Ty through T and let ); be the leaf in Tj that lies on the path. Note that ;_; is the parent of the root of T} and
w(Tj) < w(Aj-1). The length of the path is therefore at most '

3 w(T;) . S
> (c+log, o)) = ¢ htlogu(Ti - logy w(hn) = 3 Jfw(h) = w(T4)]
Jj=1 i=1



2. Planar point location with segment trees 7

< c(logyn + 3) + logy(4nlogy n + 8n + 3)
"< (c+1)log, n+ O(loglogn).

Summary. The planar point location problem can be solved with the (modified) segment tree, which takes
O(nlogn) storage and construction time, so that a query can be answered in time O(logn).

Homework exercises

2.1 Prove that relations < and <, defined above are acyclic.
(Remark. Acyclicity is essential because otherwise the transitive closure and linear extension would not exist.)

2.2 Give an algorithm that takes time O(nlogn) to partition the lists L into the pieces required to improve the

time for a point location query to O(logn).
(Hint. Use the lists H described in exercise 1.1.)

References

[1] T. H. CorMEN, C. E. LEISERSON AND R. L. RIVEST. Introduction to Algorithms. MIT Press, Cambridge, 1990.

[2] H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFL Optimal point location in a monotone subdivision. SIAM J. Comput.
15 (1986), 317-340.

[3] D. G. KRKPATRICK. Optimal search in planar subdivisions. SIAM J. Comput. 12 (1983), 28-35. .
[4] D. E. KNUTH. Fundamenfal Algorithms. The Art,of Computer Programming, Vol. 1. Addison-Wesley, Reading, 1968.

[5] R. J. LirToN AND R. E. TARJAN. Applications of a planar separator theorem. In “Proc. 18th IEEE Ann. Sympos.
Found. Comput. Sci. 19777, 162-170.

[6] K. MEHLHORN. Data Structures and Algorithms 1: Sortinj and Searching. Springer-Verlag, Heidelberg, 1984.

[7] F. P. PREPARATA. A new approach to planar point location. SIAM J. Comput. 10 (1981), 473-482.



