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8 3. Planar graphs

“The question whether or not a graph can be drawn
without edges crossing each other is topological.
Once it is drawn, questions become geometric.”

3 Planar graphs

In the work of Turda and others, graphs were predominantly considered geometric or topological objects drawn
in the plane. The historical development has soon lead to a more abstract view, in which a graph is just a set of
elements (vertices or nodes) and a set of pairs of elements (edges or arcs). One of the strongholds of the connection
between the abstract and the concrete is the area of planar graphs. Graphs that can be drawn crossing free in the
plane enjoy many properties that do not hold for general graphs.

Graphs. We begin by recollecting common definitions needed in this section. A graph is an ordered pair of sets,
G = (V, E). The elements in V are called vertices and the elements in E are vertex pairs and called edges. We
consider only finite undirected simple graphs, that is, V' is finite and E C (‘;) So each edge is an unordered pair.
The degree of a vertex, u, is the number of edges that contain u. A path is a sequence of vertices, ?o,11,...,t; so
that {t;—1,%} € E for all 1 < i < j; it starts at to and ends at t;. Two vertices s,u € V are adjacent if they form
an edge in E, and they are connected if there is a path starting at s and ending at u. G is connected if every pair
of vertices is connected. A graph F' = (U, D) is a subgraph of G if U C V and D C E. The subgraph of G induced
by a subset U C V is (U, EN (Z)) A (connected) component of G is an induced subgraph that is connected and
maximal. A cycle is a path that starts and ends at the same vertex. A (free) tree is a connected graph without
cycle, and a spanning tree of a graph G = (V, E) is a tree whose vertex set is V. We will use the fact that every
connected graph has a spanning tree, and that a tree with n vertices has precisely n — 1 edges.

Embedding in the plane. Whenever we draw a graph in the plane, R3?, we draw a vertex as a point or little circle
and an edge as a curve connecting two such points. We make this more formal. A simple curve is (the image of) a
continuous and injective map [0, 1] — R2. The images of 0 and 1 are the endpoints of the curve. An embedding, ¢,
of G = (V, E) in the plane maps a vertex u € V to a point £(u) € R? an edge uv = {u,v} € E to a simple curve
¢(uv) with endpoints ¢(u) and e(v). To simplify the discussion, an embedding is often implicitly assumed and no
distinction is made between a vertex and its point or an edge and its simple curve. By definition, a single edge has
no self-intersections, but it is certainly possible that two edges cross. An embedding ¢ is plane if

(i) e(u) # €(v) for different vertices u and v, and
o e ={ 4 LU0

An embedding is straight-line if every edge is a (straight) line segment. Finally, we call G = (V, E) planar if it has
a plane embedding. These concepts are illustrated in figure 3.1.

X DA = A

Figure 3.1: K4 is the complete graph on 4 vertices. The first three embeddings from left to right are nvon-plane and
straight-line, plane and not straight-line, and plane and straight-line. On the right, the two embeddings of Ks are both
non-plane, but this does not yet imply that Ky is not planar; it might be we just missed a plane embedding.
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Euler’s relation. A plane embedding of a graph decomposes R? into disconnected regions, called faces. Informally,
the faces are the pieces of R? formed by cutting along the edges of the embedding. As an example, consider the
embedding of the “cube” in figure 3.2, which has n = card V = 8 vertices, e = card E' = 12 edges, and f = 6 faces.
Note that the outside region is also counted as a face.
\\
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- Figure 3.2: A spanning tree of the “cube” has 7 edges, and the cube can be completed by adding the other 5 edges.

THM. 3.1 (Euler's relation). Let G be a planar graph with ¢ components. Thenn—e+ f=1+c.

ProoF. Consider an arbitrary but fixed plane embedding of G. Assume first that G is connected, and let T = (V, 4)
be a spanning tree, see figure 3.2. Then cardV = n, card A = n — 1, and there is only-one face. Observe that
n—(n—1)+1=2, so the assertion holds for T. Any additional edge leaves n unchanged and it increases e by 1.
Because it forms a cycle in T, the edge decomposes a face into two, so it also increases f by 1. So adding an edge
does not change n — e + f, which completes the proof assuming G is connected.

If G is not connected we get n; — e; + f; = 2 for the ith component. Clearly, n=3";n; and e =3 ;¢;. To
count the faces, consider adding a component at a time. Initially, there is one face, R2, and when we add the ith
component we decompose one face into f; faces. Thus, f =14+ ,(fi —1) =1—-c+ ), fi. We finally have

n-e+f=1—c+2(n;—e,-+f.-)=1+c. e

Note that the embedding does not play a role in Euler’s relation, as long as it is plane so that faces are defined. It
is thus a theorem for planar graphs, and not only for plane embeddings. Generalizations of the Euler relation are
abundant in the geometry and topology literature, see e.g. [5]. Examples are graphs embedded on surface other
than the plane and complexes embedded in 3 or higher dimensions.

Maximally connected planar graphs. A planar graph G = (V, E) is mazimally connected if adding any more
edge to E would result in a violation of planarity. In a maximally connected planar graph with 3 or more vertices,
every-face (also the outside) must be bounded by precisely three edges. For if a face is bounded by only one or
two edges, G is not a simple graph, and if a face is bounded by more than three edges then it can be further
subdivided.! )

LEMMA A. A maximally connected graph with n > 3 vertices has e = 3n —6 edges and f = 2n — 4 faces.

PROOF. Every face has 3 edges and every edge belongs to 2 faces. So if we count the 3 edges of each face we count
each edge twice, that is 3f = 2e. Therefore, n — e+ %" =2ore=3n—6and n-— §21+f=2or f=2n-4.

This implies ¢ < 3n — 6 and f < 2n — 4 for general planar graphs of n > 3 vertices. Another useful consequence of
the above lemma is the following.

1This claim is not entirely trivial. Consider a face bounded by a cycle of & > 3 edges. A diagonal is an edge that connects two
non-contiguous vertices and goes through the face. Not every diagonal . an be used to subdivide the face, because the vertex pair it
connects might already be connected by an edge outside the face. It is. h..wever, sufficient to show that there is at least one diagonal
that can be used for subdividing the face, see also section 4.
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LEMMA B. Every planar graph has a vertex of degree at most 5.

ProOOF. The average degree is 2n—° < 82-12 £ 6. Not all vertices can have degree higher than the average.

n

Testing for planarity. A popular topic in planar graph theory is testing whether or not a given graph is planar.
This can be done in time O(r) by fairly involved algorithms, see e.g. {1, 2]. A related topic is to structuraliy
characterize when a graph is planar. Possibly the best knowu characterization is due to Kuratowski [3] who showed
that a graph is planar as long as it does not have a subgraph homeomorphic to K5 and K3 3. We begin by arguing
that Ks and K3 3 are not planar.

LEMMA C. K5 and K3 3 are not planar.

Proor. Recall that K5 has 5 vertices and (2) = 10 edges. Assume K5 has a plane embedding. As a consequence
of lemma A, we get f <2n—4=16,and thusn—e+ f <5—10+ 6 =1 < 2, which contradicts Euler’s relation.

K3 3 consists of 3 + 3 vertices and all @ edges connecting the first 3 with the second 3 vertices. Note that every
cycle in K3 3 has even length, so every face in an assumed plane embedding of K3 3 is bounded by 4 or more edges.
Hence, 4f < 2e = 18, and therefore n +e¢ — f <6 —9+4 =1 < 2, again a contradiction to Euler’s relation.

It is possibly surprising that these two graphs, K5 and K3 3, are the quint-essential non-planar graphs, as observed
by Kuratowski. To make this formal, we need the notion of a homeomorphism between graphs. Two graphs are
homeomorphic if one can be obtained from the other by a sequence of the following two operations: (a) if z is
adjacent to exactly two other vertices, 4 and v, then substitute uv for uz and zv and delete z, and (b) add a vertex
z and substitute uz and zv for the edge uv. We omit the elementary but somewhat lengthy proof of Kuratowski’s
characterization.

THM. 3.2 (Kuratowski). A graph G is planar iff no subgraph of G is homeomorphic to Ks or to K3 3.

Homework exercises

3.1 Consider the following algorithm for testing whether or not a given graph is planar. It is based on Kuratowski’s
characterization of planar graphs.

step 1. Remove every degreé-1 vertex and the edge that contains it.

step 2. Remove every degree-2 vertex and replace its two edges by an edge connecting its two neighbors.

step 3. Check whether the resulting graph has a K5 or a K33 as a subgraph; if not proclaim the graph is
planar.

Why is this algorithm not correct?

~3.2 Let S be a set of n points in the plane so that the distance between any two points is at least 1. Prove that
the number of point pairs at distance exactly 1 is less than 3n. :
(Hint. Prove first that the shortest side of a convex quadrilateral is strictly shorter than the longest diagonal.)

3.3 A graph G = (V, E) is bipartite if there is a partition V = AUB so that every edge in E connects a vertex
in A with a vertex in B. For example, every tree is bipartite. Show that every graph with m edges has a
bipartite subgraph with at least 2> edges. How fast can such a subgraph be constructed?

(Hint. Tty an iteration that moves vertices back and forth between the two vertex sets.)
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