40 12. Lifting and polarity

“Everything has many sides and angles, and
nothing can be fully comprehended without
understanding everything else, no?”

12 Lifting and polarity

As explained in section 5, the Delaunay triangulation of a finite set S C R? can be obtained by projecting the lower
faces of a convex polytope in R3 [1, 3]. In a similar fashion, the Voronoi diagram can be obtained by projecting
the faces of a three-dimensional convex polyhedron. These relations can be extended to points with weights, and
they are useful in explaining alpha shapes from a three-dimensioral perspective.

Lifting the Voronoi diagram. For a point p = (61, 92) € R?, let n, be the plane z3 = 24,2, +2¢225 — (62 +¢2).
It is easy to see that 7, is tangent to the paraboloid @ : z3 = z? + z2 and touches w in A(p) = (1,2, 6% + 62),
see figure 12.1. Using the same names, we define maps @, 7, : R? — R whose graphs are the parabolcid @ and the
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Figure 12.1: The plane 7, is tangent to the paraboloid .

plane 7,. A most important property is the following straightforward result.
LEMMA A. For z,p € R?, |zp|? = w(z) — ny(2).

PRrOOF. Take points z = (£1,£2) and p = (¢1, ¢2) and evaluate the right side of the relation:

@(z) = Mp(z) = € — 26161 + 67 +£3 — 26265 + 2
(61— 1) + (€2 — ¢2)%;

this is the square of the distance between z and p-

L8]

For a finite set S C R?, consider the collection of planes or maps ns = {np | p € S}. Since w(z) is fixed for any fixed
z € R?, lemma A implies that z belongs to the Voronoi cell V;, of p iff ny(z) > n,(z) for all ¢ € S. This suggests
we consider the half-spaces bounded from below by the planes Mp, and in particular, the common intersection of
these half-spaces. Define

Ny ={y=(v1,v2,v3) €R® |13 > 7,(¥), ¥/ = (vl_, v2)},

nE = {nt |p€eS} and Zs = Nn¥, see figure 12.2. The facets of Zs are the sets Zg N7y, p € S. Each such set
is non-empty since all planes are tangent to @, which is a convex surface. It follows that each plane 7, carries a
facet, and the projection to R? of Zs N np 1s the Voronoi cell V}, of p.

Power diagrams. In the case of a Voronoi diagram, all planes n, are constrained to be tangent to @. By moving
planes up or down, into @ or away from w, it is possible to capture the effect of weights and the definition of power
diagrams. Extend the definition of 7 to points p = (#1,92) with weights w, € R:

Np : T3 = 2¢121 + 20223 - 0] + 03 —wp),
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Figure 12.2: For points p in one dimension, the Voronoi cells ¥, are projections of the edges of a two-dimensional convex
polygonal region. The region is the common intersection of the half-planes bounded from below by the lines 7,.

and define 7, : R2? — R so its graph is the plane 7,. Similar to lemina A, we have
LEMMA B. For z € R? and p € R? x R, m,(2z) = w(z) — np(2).

The proof is the same as for lemma A. As before, let 7} be the closed half-space bounded from below by 7,, and
p /2

for a set S C R? x R, define nf = {n;,*' | p € S} and Zs = (nF. Because of the weights, the sets Zs N7, are
possibly empty, and if general position is not required, they can be line segments or points. The facets of Zs are
the non-empty two-dimensional sets of the form Zs N 7,. By Lemma B, the power cell of p € S is the projection
to R? of the facet Zs Nnp.

REMARK. For any set of non-vertical planes, H, there is a set of weighted points, S C R2 x R, so that A = ns.
This is not true for unweighted points. Although power diagrams are possibly less intuitive than Voronoi diagrams,
this correspondence with arbitrary plane collections indicates that power diagrams are rather natural objects.

Polarity. Duality is an important concept in the theory of convex polytopes, and in general in geometry. For
example, the cube is dual to the octahedron. Indeed, the cube has 8 vertices, each endpoint of 3 edges, and the
octahedron has 8 facets, each bounded by 3 edges. Furthermore, the cube has 6 facets, each bounded by 4 edges,
and the octahedron has 6 vertices, each endpoint of 4 edges. The notion of duality is unspecific about metric
properties, such as the length of edges and the area of facets. A related and more concrete geometric notion is
polarity discussed below.

The polar plane of a point a = (a1, as,a3) € R3is a* : z3 = 20121 + 2272 — 3. Symmetrically, we call a the
polar point of a* and write this as a = a**. Observe that a* is non-vertical, so the closed half-space a** bounded
from below by a* is unambiguous, and so is the: closed half-space a*~ bounded from above by a*. An important
property of polarity is that it preserves incidences and reverses vertical order.

LEMMA C. Let z,a € R3.
(i) z€a*iffacz”.
(ii) z € a*t iffacz*t.
(iii) z €a*” iffacz””.
PRrOOF. We only consider (ii) and use £ and a to denote the coordinates of z and a, as usual. The algebraic

condition for z € a*t is
€3 > 2011 + 20062 — as.

By trivial reordering of terms we see this is equivalent to a € . )

Consider a finite set A C R3, and apply polarity to get A* = {a* | a € A}. A point z lies above all planes in A*
iff each point of A lies above z*, see figure 12.3. This implies a correspondence between the convex bodies defined
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Figure 12.3: The ‘points in'A correspond to planes in A*, and the planes below all points correspond to points above
all planes.

by A and A”. We need definitions to be specific. Z4 =(),¢, a*t is the convex polyhedron above all planes in A*.
Its boundary consists of faces of dimension 0 (vertices), 1 (edges), and 2 (facets). Y4 = conv A is also a convex
polyhedron. A lower face of Y, is contained in a non-vertical plane so that all other points of Y4 lie vertically
above this plane. There is a bijection between the faces of Z4 and the lower faces of Y,3. To see this, take a face f
of Z4 and consider a point z € int f. The polar plane, z*, contains all points p € A whose polar planes contain z
and therefore f. The bijection maps vertices, edges, facets of Z4 to lower facets, lower edges, and lower vertices of
Y4, and it reverses the direction of containment.

Weighted Delaunay triangulations. For a finite set S C R?, the relation between Voronoi diagram, intersection
of half-spaces, convex hull, and Delaunay triangulation can be expressed by a commuting diagram:

Vs = Ds
in _ &
Nn¥ PlanY  conv A(S),

where the prime next to the arrow going up to Ds means projection of lower faces. A similar diagram exists for a
finite set S C R? x R of points with weights. The only missing piece is the weighted Delaunay triangulation Rs of
S, also known as the regular triangulation of S:

ps = -725'
in n

larit :
(Mt P=" convns®.

Rs can be defined as the nerve of the collection of power cells, geometrically realized by mapping P, to p. Alter-
natively, we can obtain Rs by projecting the lower faces of convns* to R?. Note that we implicitly stretch the
notion of a geometric triangulation by allowing simplicial complexes K with || = conv S and KX(® C S; compare
with the definition in section 8 where K(°) = § is required.

Weighted alpha shapes. How does all this relate to alpha shapes? Take a finite set S C R? x R. The facets
of Zs = (n& project to the power cells of the points in S. Imagine Zg moving vertically upwards. Each plane
7Mp € ns intersects the paraboloid, @, in a possibly empty ellipse whose projection in R? is a possibly empty circle
growing around p. Initially, the radius of this circle is \/wp, and after moving the plane up along a vertical vector
of length S, the radius is /w, + 3. Downward motion is indicated by negative values of 3. For a = /B, let Dy(a)
be the disk bounded by this circle; it is empty if wp, + 3 < 0, but not necessarily if # < 0. Since 8 can take on any
real value, positive or negative, a ranges over all non-negative reals and all non-negative multiples of the imaginary
unit. The (weighted) a-complez of S, K(e), is the nerve of the collection of cells E,(a) = P, N D,(a), geometrically
realized as usual [2], see figure 12.4. for af < o, the cells E,(a;) defining K(a;) are subsets of the cells Ep(a3),
simply because Dp(a1) C Dp(az). In the limit, when a reaches +o0, D,(a) covers all of P,, so Ep() becomes
equal to P,. Therefore,

(i) £(a1) C K(a2) C Rs whenever a? < o2.
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Figure 12.4: The weighted alpha complex is a subcomplex of the weighted Delaunay triangulation.

The (weighted) a-shape of S is |C(a)|. Because of property (i), the a-shape grows as o? grows, albeit not continu-
ously. alpha complexes and alpha shapes for unweighted points are just a special case of their weighted counterparts.
In the unweighted case, we can restrict 8 to non-negative real numkters, since negative values generate nerves and
_complexes that consist of the empty set only. It follows that o ranges only over the set of non-negative reals.

Weighted alpha complexes naturally define filtrations, in the same way unweighted alpha complexes do, see
section 11. Using the map Ps — Z = ﬂn;:, we can be specific about when exactly a simplex ¢ € Rgs belongs
to K(a). Consider the corresponding face, f, of Z. Move Z upward along a vertical vector of length 8 = o?
(downward if 3 < 0). Consider f* after the vertical translation. If f lies below @ the corresponding cells Ep(a)
have no common points, so ¢ & K(a). Otherwise, f intersects @ or lies above @, in which case the cells F,(a)
have a non-empty common intersection, and ¢ € K(a).

Homework exercises
12.1 Let S C R? be a finite set of points in general position, and for each p € S call
Fp = {z €R?||zp| 2 |zq],q € S}

the furthest-point Voronoi cell of p. Show there is a set 7 C R? x R and a bijection # : S — T so that
F, = Pp(p) foreach p€ S.

12.2 Let S be as in exercise 12.1. Define the furthest-point Delaunay triangulation as the nerve of Fs = {Fp |p €
S}, geometrically realized by mapping Fp to p. Prove that abe is a triangle in this triangulation iff all points
of S — {a, b, c} lie inside the circumcircle of abec.
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