
In general, convex sets may have either straight or curved boundaries and may be bounded or unbounded.
Convex sets may be topologically open or closed. Some examples are shown in the figure below. The convex
hull of a finite set of points in the plane is a bounded, closed, convex polygon.

Convex

UnboundedClosedOpenNeighborhood

p
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Figure 10: Terminology.

Convex hull problem: The (planar) convex hull problem is, given a set of n points P in the plane, output a rep-
resentation of P ’s convex hull. The convex hull is a closed convex polygon, the simplest representation is a
counterclockwise enumeration of the vertices of the convex hull. (A clockwise is also possible. We usually
prefer counterclockwise enumerations, since they correspond to positive orientations, but obviously one repre-
sentation is easily converted into the other.) Ideally, the hull should consist only of extreme points, in the sense
that if three points lie on an edge of the boundary of the convex hull, then the middle point should not be output
as part of the hull.

There is a simple O(n3) convex hull algorithm, which operates by considering each ordered pair of points (p, q),
and the determining whether all the remaining points of the set lie within the half-plane lying to the right of the
directed line from p to q. (Observe that this can be tested using the orientation test.) The question is, can we do
better?

Graham’s scan: We will present an O(n log n) algorithm for convex hulls. It is a simple variation of a famous
algorithm for convex hulls, called Graham’s scan. This algorithm dates back to the early 70’s. The algorithm is
based on an approach called incremental construction, in which points are added one at a time, and the hull is
updated with each new insertion. If we were to add points in some arbitrary order, we would need some method
of testing whether points are inside the existing hull or not. To avoid the need for this test, we will add points
in increasing order of x-coordinate, thus guaranteeing that each newly added point is outside the current hull.
(Note that Graham’s original algorithm sorted points in a different way. It found the lowest point in the data set
and then sorted points cyclically around this point.)

Since we are working from left to right, it would be convenient if the convex hull vertices were also ordered
from left to right. The convex hull is a cyclically ordered sets. Cyclically ordered sets are somewhat messier to
work with than simple linearly ordered sets, so we will break the hull into two hulls, an upper hull and lower
hull. The break points common to both hulls will be the leftmost and rightmost vertices of the convex hull. After
building both, the two hulls can be concatenated into a single cyclic counterclockwise list.

Here is a brief presentation of the algorithm for computing the upper hull. We will store the hull vertices in a
stack U , where the top of the stack corresponds to the most recently added point. Let first(U) and second(U)
denote the top and second element from the top of U , respectively. Observe that as we read the stack from
top to bottom, the points should make a (strict) left-hand turn, that is, they should have a positive orientation.
Thus, after adding the last point, if the previous two points fail to have a positive orientation, we pop them off
the stack. Since the orientations of remaining points on the stack are unaffected, there is no need to check any
points other than the most recent point and its top two neighbors on the stack.

Let us consider the upper hull, since the lower hull is symmetric. Let 〈p1, p2, . . . , pn〉 denote the set of points,
sorted by increase x-coordinates. As we walk around the upper hull from left to right, observe that each consec-
utive triple along the hull makes a right-hand turn. That is, if p, q, r are consecutive points along the upper hull,
then Orient(p, q, r) < 0. When a new point pi is added to the current hull, this may violate the right-hand turn
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Graham’s Scan
(1) Sort the points according to increasing order of their x-coordinates, denoted 〈p1, p2, . . . , pn〉.
(2) Push p1 and then p2 onto U .

(3) for i = 3 to n do:

(a) while size(U) ≥ 2 and Orient(pi, first(U), second(U)) ≤ 0, pop U .
(b) Push pi onto U .

after adding p[i]processing p[i]

i
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i
p

lower hull

upper hull
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Figure 11: Convex hulls and Graham’s scan.

invariant. So we check the last three points on the upper hull, including pi. They fail to form a right-hand turn,
then we delete the point prior to pi. This is repeated until the number of points on the upper hull (including pi)
is less than three, or the right-hand turn condition is reestablished. See the text for a complete description of the
code. We have ignored a number of special cases. We will consider these next time.

Analysis: Let us prove the main result about the running time of Graham’s scan.

Theorem: Graham’s scan runs in O(n log n) time.

Proof: Sorting the points according to x-coordinates can be done by any efficient sorting algorithm in O(n log n)
time. Let Di denote the number of points that are popped (deleted) on processing pi. Because each orien-
tation test takes O(1) time, the amount of time spent processing pi is O(Di + 1). (The extra +1 is for the
last point tested, which is not deleted.) Thus, the total running time is proportional to

n∑

i=1

(Di + 1) = n +
n∑

i=1

Di.

To bound
∑

i Di, observe that each of the n points is pushed onto the stack once. Once a point is deleted
it can never be deleted again. Since each of n points can be deleted at most once,

∑
i Di ≤ n. Thus

after sorting, the total running time is O(n). Since this is true for the lower hull as well, the total time is
O(2n) = O(n).

Convex Hull by Divide-and-Conquer: As with sorting, there are many different approaches to solving the convex
hull problem for a planar point set P . Next we will consider another O(n log n) algorithm, which is based on
the divide-and-conquer design technique. It can be viewed as a generalization of the famous MergeSort sorting
algorithm (see Cormen, Leiserson, and Rivest). Here is an outline of the algorithm. It begins by sorting the
points by their x-coordinate, in O(n log n) time.

The asymptotic running time of the algorithm can be expressed by a recurrence. Given an input of size n,
consider the time needed to perform all the parts of the procedure, ignoring the recursive calls. This includes the
time to partition the point set, compute the two tangents, and return the final result. Clearly the first and third of
these steps can be performed in O(n) time, assuming a linked list representation of the hull vertices. Below we
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Divide-and-Conquer Convex Hull
(1) If |P | ≤ 3, then compute the convex hull by brute force in O(1) time and return.

(2) Otherwise, partition the point set P into two sets A and B, where A consists of half the points with the lowest
x-coordinates and B consists of half of the points with the highest x-coordinates.

(3) Recursively compute HA = CH(A) and HB = CH(B).

(4) Merge the two hulls into a common convex hull, H , by computing the upper and lower tangents for HA and HB

and discarding all the points lying between these two tangents.

A

upper tangent

a

lower tangent

(a) (b)
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Figure 12: Computing the lower tangent.

will show that the tangents can be computed in O(n) time. Thus, ignoring constant factors, we can describe the
running time by the following recurrence.

T (n) =
{

1 if n ≤ 3
n + 2T (n/2) otherwise.

This is the same recurrence that arises in Mergesort. It is easy to show that it solves to T (n) ∈ O(n log n) (see
CLR). All that remains is showing how to compute the two tangents.

One thing that simplifies the process of computing the tangents is that the two point sets A and B are separated
from each other by a vertical line (assuming no duplicate x-coordinates). Let’s concentrate on the lower tangent,
since the upper tangent is symmetric. The algorithm operates by a simple “walking” procedure. We initialize a
to be the rightmost point of HA and b is the leftmost point of HB . (These can be found in linear time.) Lower
tangency is a condition that can be tested locally by an orientation test of the two vertices and neighboring
vertices on the hull. (This is a simple exercise.) We iterate the following two loops, which march a and b down,
until they reach the points lower tangency.

Finding the Lower Tangent
LowerTangent(HA,HB) :

(1) Let a be the rightmost point of HA.
(2) Let b be the leftmost point of HB .
(3) While ab is not a lower tangent for HA and HB do

(a) While ab is not a lower tangent to HA do a = a− 1 (move a clockwise).
(b) While ab is not a lower tangent to HB do b = b + 1 (move b counterclockwise).

(4) Return ab.

Proving the correctness of this procedure is a little tricky, but not too bad. Check O’Rourke’s book out for a
careful proof. The important thing is that each vertex on each hull can be visited at most once by the search, and
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hence its running time is O(m), where m = |HA|+ |HB | ≤ |A|+ |B|. This is exactly what we needed to get
the overall O(n log n) running time.

Lecture 4: More Convex Hull Algorithms

Reading: Today’s material is not covered in the 4M’s book. It is covered in O’Rourke’s book on Computational
Geometry. Chan’s algorithm can be found in T. Chan, “Optimal output-sensitive convex hull algorithms in two and
three dimensions”, Discrete and Computational Geometry, 16, 1996, 361–368.

QuickHull: If the divide-and-conquer algorithm can be viewed as a sort of generalization of MergeSort, one might
ask whether there is corresponding generalization of other sorting algorithm for computing convex hulls. In
particular, the next algorithm that we will consider can be thought of as a generalization of the QuickSort
sorting procedure. The resulting algorithm is called QuickHull.

Like QuickSort, this algorithm runs in O(n log n) time for favorable inputs but can take as long as O(n2) time
for unfavorable inputs. However, unlike QuickSort, there is no obvious way to convert it into a randomized al-
gorithm with O(n log n) expected running time. Nonetheless, QuickHull tends to perform very well in practice.

The intuition is that in many applications most of the points lie in the interior of the hull. For example, if the
points are uniformly distributed in a unit square, then it can be shown that the expected number of points on the
convex hull is O(log n).

The idea behind QuickHull is to discard points that are not on the hull as quickly as possible. QuickHull begins
by computing the points with the maximum and minimum, x- and y-coordinates. Clearly these points must
be on the hull. Horizontal and vertical lines passing through these points are support lines for the hull, and so
define a bounding rectangle, within which the hull is contained. Furthermore, the convex quadrilateral defined
by these four points lies within the convex hull, so the points lying within this quadrilateral can be eliminated
from further consideration. All of this can be done in O(n) time.

discard these

Figure 13: QuickHull’s initial quadrilateral.

To continue the algorithm, we classify the remaining points into the four corner triangles that remain. In general,
as this algorithm executes, we will have an inner convex polygon, and associated with each edge we have a set
of points that lie “outside” of that edge. (More formally, these points are witnesses to the fact that this edge is
not on the convex hull, because they lie outside the half-plane defined by this edge.) When this set of points is
empty, the edge is a final edge of the hull. Consider some edge ab. Assume that the points that lie “outside” of
this hull edge have been placed in a bucket that is associated with ab. Our job is to find a point c among these
points that lies on the hull, discard the points in the triangle abc, and split the remaining points into two subsets,
those that lie outside ac and those than lie outside of cb. We can classify each point by making two orientation
tests.

How should c be selected? There are a number of possible selection criteria that one might think of. The method
that is most often proposed is to let c be the point that maximizes the perpendicular distance from the line ab.
(For example, another possible choice might be the point that maximizes the angle cba or cab. It turns out that
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Figure 14: QuickHull elimination procedure.

these can be are very poor choices because they tend to produce imbalanced partitions of the remaining points.)
We replace the edge ab with the two edges ac and cb, and classify the points as lying in one of three groups:
those that lie in the triangle abc, which are discarded, those that lie outside of ac, and those that lie outside of cb.
We put these points in buckets for these edges, and recurse. (We claim that it is not hard to classify each point
p, by computing the orientations of the triples acp and cbp.)

The running time of Quickhull, as with QuickSort, depends on how evenly the points are split at each stage. Let
T (n) denote the running time on the algorithm assuming that n points remain outside of some edge. In O(n)
time we can select a candidate splitting point c and classify the points in the bucket in O(n) time. Let n1 and n2

denote the number of remaining points, where n1 + n2 ≤ n. Then the running time is given by the recurrence:

T (n) =
{

1 if n = 1
T (n1) + T (n2) where n1 + n2 ≤ n.

In order to solve this recurrence, it would be necessary to determine the “reasonable” values for n1 and n2.
If we assume that the points are “evenly” distributed, in the sense that max(n1, n2) ≤ αn for some constant
α < 1, then by applying the same analysis as that used in QuickSort (see Cormen, Leiserson, Rivest) the running
time will solve to O(n log n), where the constant factor depends on α. On the other hand, if the splits are not
balanced, then the running time can easily increase to O(n2).

Does QuickHull outperform Graham’s scan? This depends to a great extent on the distribution of the point
set. There are variations of QuickHull that are designed for specific point distributions (e.g. points uniformly
distributed in a square) and their authors claim that they manage to eliminate almost all of the points in a matter
of only a few iterations.

Gift-Wrapping and Jarvis’s March: The next algorithm that we will consider is a variant on an O(n2) sorting al-
gorithm called SelectionSort. For sorting, this algorithm repeatedly finds the next element to add to the sorted
order from the remaining items. The corresponding convex hull algorithm is called Jarvis’s march. which
builds the hull in O(nh) time by a process called “gift-wrapping”. The algorithm operates by considering any
one point that is on the hull, say, the lowest point. We then find the “next” edge on the hull in counterclockwise
order. Assuming that pk and pk−1 were the last two points added to the hull, compute the point q that maximizes
the angle 6 pk−1pkq. Thus, we can find the point q in O(n) time. After repeating this h times, we will return
back to the starting point and we are done. Thus, the overall running time is O(nh). Note that if h is o(log n)
(asymptotically smaller than log n) then this is a better method than Graham’s algorithm.

One technical detail is that when we to find an edge from which to start. One easy way to do this is to let p1 be
the point with the lowest y-coordinate, and let p0 be the point (−∞, 0), which is infinitely far to the right. The
point p0 is only used for computing the initial angles, after which it is discarded.

Output Sensitive Convex Hull Algorithms: It turns out that in the worst-case, convex hulls cannot be computed
faster than in Ω(n log n) time. One way to see this intuitively is to observe that the convex hull itself is sorted
along its boundary, and hence if every point lies on the hull, then computing the hull requires sorting of some
form. Yao proved the much harder result that determining which points are on the hull (without sorting them
along the boundary) still requires Ω(n log n) time. However both of these results rely on the fact that all (or at
least a constant fraction) of the points lie on the convex hull. This is often not true in practice.
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Figure 15: Jarvis’s march.

The QuickHull and Jarvis’s March algorithms that we saw last time suggest the question of how fast can convex
hulls be computed if we allow the running time to be described in terms of both the input size n and the output
size h. Many geometric algorithms have the property that the output size can be a widely varying function of
the input size, and worst-case output size may not be a good indicator of what happens typically. An algorithm
which attempts to be more efficient for small output sizes is called an output sensitive algorithm, and running
time is described as a asymptotic function of both input size and output size.

Chan’s Algorithm: Given than any convex hull algorithm must take at least O(n) time, and given that “log n” factor
arises from the fact that you need to sort the at most n points on the hull, if you were told that there are only h
points on the hull, then a reasonable target running time is O(n log h). (Below we will see that this is optimal.)
Kirkpatrick and Seidel discovered a relatively complicated O(n log h) time algorithm, based on a clever pruning
method in 1986. The problem was considered closed until around 10 years later when Timothy Chan came up
with a much simpler algorithm with the same running time. One of the interesting aspects of Chan’s algorithm
is that it involves combining two slower algorithms (Graham’s scan and Jarvis’s March) together to form an
algorithm that is faster than either one.

The problem with Graham’s scan is that it sorts all the points, and hence is doomed to having an Ω(n log n)
running time, irrespective of the size of the hull. On the other hand, Jarvis’s march can perform better if you
have few vertices on the hull, but it takes Ω(n) time for each hull vertex.

Chan’s idea was to partition the points into groups of equal size. There are m points in each group, and so
the number of groups is r = dn/me. For each group we compute its hull using Graham’s scan, which takes
O(m log m) time per group, for a total time of O(rm log m) = O(n log m). Next, we run Jarvis’s march
on the groups. Here we take advantage of the fact that you can compute the tangent between a point and a
convex m-gon in O(log m) time. (We will leave this as an exercise.) So, as before there are h steps of Jarvis’s
march, but because we are applying it to r convex hulls, each step takes only O(r log m) time, for a total of
O(hr log m) = ((hn/m) log m) time. Combining these two parts, we get a total of

O

((
n +

hn

m

)
log m

)

time. Observe that if we set m = h then the total running time will be O(n log h), as desired.

There is only one small problem here. We do not know what h is in advance, and therefore we do not know
what m should be when running the algorithm. We will see how to remedy this later. For now, let’s imagine that
someone tells us the value of m. The following algorithm works correctly as long as m ≥ h. If we are wrong,
it returns a special error status.

We assume that we store the convex hulls from step (2a) in an ordered array so that the step inside the for-loop
of step (4a) can be solved in O(log m) time using binary search. Otherwise, the analysis follows directly from
the comments made earlier.
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Chan’s Partial Convex Hull Algorithm (Given m)
PartialHull(P, m) :

(1) Let r = dn/me. Partition P into disjoint subsets P1, P2, . . . , Pr, each of size at most m.
(2) For i = 1 to r do:

(a) Compute Hull(Pi) using Graham’s scan and store the vertices in an ordered array.
(3) Let p0 = (−∞, 0) and let p1 be the bottommost point of P .
(4) For k = 1 to m do:

(a) For i = 1 to r do:
• Compute point qi ∈ Pi that maximizes the angle 6 pk−1pkqi.

(b) Let pk+1 be the point q ∈ {q1, . . . , qr} that maximizes the angle 6 pk−1pkq.
(c) If pk+1 = p1 then return 〈p1, . . . , pk〉.

(5) Return “m was too small, try again.”

q3

q4

pk−1

pk

q1

q2

Figure 16: Chan’s Convex Hull Algorithm.
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The only question remaining is how do we know what value to give to m? We could try m = 1, 2, 3, . . ., until
we luck out and have m ≥ h, but this would take too long. Binary search would be a more efficient option, but
if we guess to large a value for m (e.g. m = n/2) then we are immediately stuck with O(n log n) time, and this
is too slow.

Instead, the trick is to start with a small value of m and increase it rapidly. Since the dependence on m is only
in the log term, as long as our value of m is within a polynomial of h, that is, m = hc for some constant c, then
the running time will still be O(n log h). So, our approach will be to guess successively larger values of m, each
time squaring the previous value, until the algorithm returns a successful result. This technique is often called
doubling search (because the unknown parameter is successively doubled), but in this case we will be squaring
rather than doubling.

Chan’s Complete Convex Hull Algorithm
Hull(P ) :

(1) For t = 1, 2, . . . do:
(a) Let m = min(22t

, n).
(b) Invoke PartialHull(P, m), returning the result in L.
(c) If L 6= “try again” then return L.

Note that 22t

has the effect of squaring the previous value of m. How long does this take? The t-th iteration
takes O(n log 22t

) = O(n2t) time. We know that it will stop as soon as 22t ≥ h, that is if t = dlg lg ne. (We
will use lg to denote logarithm base 2.) So the total running time (ignoring the constant factors) is

lg lg h∑
t=1

n2t = n

lg lg h∑
t=1

2t ≤ n21+lg lg h = 2n lg h = O(n log h),

which is just what we want.

Lecture 5: Line Segment Intersection

Reading: Chapter 2 in the 4M’s.

Geometric intersections: One of the most basic problems in computational geometry is that of computing intersec-
tions. Intersection computation in 2- and 3-space is basic to many different application areas.

• In solid modeling people often build up complex shapes by applying various boolean operations (intersec-
tion, union, and difference) to simple primitive shapes. The process in called constructive solid geometry
(CSG). In order to perform these operations, the most basic step is determining the points where the
boundaries of the two objects intersect.

• In robotics and motion planning it is important to know when two objects intersect for collision detection
and collision avoidance.

• In geographic information systems it is often useful to overlay two subdivisions (e.g. a road network and
county boundaries to determine where road maintenance responsibilities lie). Since these networks are
formed from collections of line segments, this generates a problem of determining intersections of line
segments.

• In computer graphics, ray shooting is an important method for rendering scenes. The computationally
most intensive part of ray shooting is determining the intersection of the ray with other objects.

Most complex intersection problems are broken down to successively simpler and simpler intersection problems.
Today, we will discuss the most basic algorithm, upon which most complex algorithms are based.
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