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“The convex hull of a configuration of nails in a board is
bounded by the rubber band let loose around the nails.”

5 Convex hulls and paradigms

Computing the convex hull of finitely many points in the plane is the most prototypical problem studied in the
early days of geometric algorithms, see [5] which started off a sequence of papers on the subject. Its rele in two-
dimensional computational geometry is similar to that of sorting in the classic area of one-dimensional algorithms:
it serves as an example that permits the introduction of a wide variety of algorithmic paradigms.

Definitions. We already know what it means a set is convex, see section 4. Observe that the intersection of two
convex sets is again convex. More generally, the common intersection of any family of convex sets is convex. Given
a set S, it thus makes sense to define
convS = ﬂ C,
SCC,convex

and to call it the convez hull of S. Thus, conv S is the smallest convex set that contains S. A more analytical
definition is often useful. A point z is an affine combination of S if there are finitely many points p; in S-and
corresponding real numbers &; so that z = ) &ip; and " & = 1. z is a convez combination if furthermore & >0
for all i. The affine hull, aff S, is the set of affine combinations, and the convez hull, conv S, is the set of convex
combinations of S, see figure 5.1.

/ - \
Figure 5.1: The affine hull of two points is a line, and the convex hull is a line segment. The affine hull of three
non-collinear points is a plane, and the convex hull is a triangle.

Representation. Note that the convex hull of 2 finite set S C R? is a convex polygon. More precisely, the
boundary of the convex hull, bd conv S, is a polygon, and the convex hull itself, conv S, is a polygon together with
its inside. In any case, the cyclic sequence of vertices of this polygon is a suitable representation of conv S, see
figure 5.2. For notation, use next(p) to denote the counterclockwise (ccw) next vertex of p and use prev(p) to
denote the clockwise (cw) next vertex. '

Figure 5.2: The vertices of conv S are arranged as a doubly-linked cyclic list.

Observe that the requirement to compute the points in sorted order around the convex hull immediately implies
that Q(nlogn) time is necessary in the worst case. This is because any such convex hull algorithm can be used to
sort numbers. It turns out that (nlogn) is also a lower bound just for identifying the convex hull vertices among

the input points, but this is not so easy to prove, see [11].
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Incremental construction. Constructing conv S incrementally means to add a point at a time and to update
the data structure each time. This is particularly easy if the points are presorted, say from left to right. When the
ith point is added, we find its lower and upper tangents to the convex hull of the first i — 1 points. This method
can be generalized to 3 and higher dimensions where it is sometimes referred to as the beneath-beyond method,
see [10] or [4, chapter 8]. The time-complexity for n points in R% is O(n[4/21) in the worst case.

Figure 5.3: The solid edges show the boundary of the convex hull, and the broken edges show temporary edges constructed
by the mcremental algorithm.

initial step. store points p;, p2, ps in a cyclic list of length 3.
general step. for i := 1 to n do compute endpoints ¢ and b of the top and bottom tangents from p;:
1. set ¢t := b :=p;_1;
2. while p;,t,next(t) form a right-turn do ¢ := next(t) endwhile;
3. while p;, b, prev(b) form a left-turn do 4 := prev(b) endwhile;
4. add p; as a new vertex right after b and right before ¢
endfor.

ANALYsIS. The time for an iteration of the for-loop varies between constant and proportional to n. Using an
amortization argument, we can show that the time per point is only constant. One iteration of the for-loop adds
one point to the cyclic list. The point pays for its own addition and for the first iteration of the two while-loops.
Every iteration of the while-loops after the first removes a point from the list. The point pays for its own removal.
Each point pays at most 3 times, which implies the running time of the algorithm is O(n). Recall, however, that
the points are assumed to be sorted before the algorithm starts, and this takes time O(n log n).

Divide-and-conquer. The general idea of the divide-and-conquer paradigm is to divide a problem into subprob-
lems, to solve each subproblem recursively, and to eventually combine the solutions. It is usually advantageous to
divide into roughly equally large subproblems. For the convex hull problem we use a vertical line to divide into two
subproblems. The two resulting convex polygons are combined by adding the top and bottom common tangents
and removing two chains of edges between them. This method has been generalized to R3 [8], where it takes time
O(nlogn). In 4 and higher dimensions the merge step seems too complicated to justify the effort.

Again assume the points are sorted from left to right. The recursive procedure takes an index interval and
returns £ and r, the leftmost and rightmost vertices in the list representing the convex hull.

convex_hull(i, 5; £, T);
if j — i < 2 then build the cyclic list from scratch;
else convex_hull(i, |_ J £, rL); convex. hull(l_—-’—J 7, 2R, TR);
compute the endpomts tr,tr and br, bg of the top and bottom common tangents:
1. set ty :=bg :=rr and tgp := bg :={R;
2. loop while tz,tR, prev(tg) form a left-turn do tg := prev(tr) endwhile;
if tg,tr,next(ty) form a right-turn then ¢z := next(ty) else exit endif
forever;
3. symmetric to 2 the bottom common tangent
endif. :
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ANALYs1s. Each recursive call pays for two iterations of the combined forever- and while-loop. Every other
iteration is paied for by the point removed from the collection of cyclic lists representing the convex hulls of the
various not yet combined sets. Again the running time is O(n) after sorting.

Gift-wrapping. Suppose we know one of the vertices of conv .S, say the leftmost point py € S. We can then
rotate a half-line anchored at p = po, say in a ccw order, until it encounters another point, ¢ € S. pq is an edge
of conv S and ¢ is the ccw next vertex after p. The rest of the convex hull can be completed by iterating this step
until the polygon is closed. To generalize this approach to 3 and higher dimensions, the sequential search needs to
be replaced by a graph search method, such as depth-first or breadth-first search, see [2].

initial step. find po € S with minimum z;-coordinate, and initialize v:= (0, —1) and p := po;
ganeral step. repeat find point ¢ € S that minimizes the angle from v to ¢ — p;
set vi=¢g—pand p:=gq;
until ¢ = po.

ANALYSIS. The two-dimensional gift-wrapping algorithm, published in [6], takes time O(n) per point, and thus
time O(nh) altogether, if k of the n points end up being vertices of the convex hull. In the worst case, h = n and
the time-complexity is O(n?). It should be noted, however, that in many cases h is considerably smaller than n.
For example, if n points are chosen randomly and independently from a uniform distribution in the unit-square
then the expected value of A is proportional to log, n, see e.g. [9]. '

Homework exercises

5.1 The diameter of a set S is the maximum distance between any two points in S. Let S be a finite set of points
in R? and assume the cyclic sequence of vertices of conv S has already been computed. Give an algorithm
that finds the diameter of S in time O(h), where h is the length of the sequence.

(Hint. The diameter of S is defined by two “opposite” vertices of conv S.)

5.2 The width of S is the smallest distance between two parallel lines that sandwich S. Assume the sequence of
convex hull vertices is available, as in exercise 5.1. Give an algorithm that computes the width of S in time

O(h).

.5.3 Let S be a set of n points in R2. Call bd conv S the 1st convez layer of S, and for i > 2 define the ith convez
layer as the boundary of conv (S — T;_;), where T;_; contains the vertices of the first i — 1 convex layers.
Give an algorithm that computes all convex layers of S in time O(n?).

5.4 Consider the following recursive algorithm for constructing the convex hull of a set S of n points in R2. To
get started, find points p and ¢ with smallest and largest z;-coordinates. . Treat the points on the two sides
of the line, £y,, through p and ¢ separately. For the points on one side, find point r furthest from £yq, and
recurse for p and r and for r and ¢. Does this algorithm run in worst-case time O(n logn)?

(Remark. This algorithm has first been described in [3] and later independently in [1]. Only one of the two papers

contains the right answer.)
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