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“Are the shape of the universe, the shape of
a car, and the shape a person is in related
concepts or a fluke of common language?”

11 Alpha shapes

The word ‘shape’ is commonly used to describe a class of geometric properties that come in degrees, such as the
degree of non-convexity, or the degree of non-connectivity, etc. There is an inherent notion of level of detail, similar
to the distinction between global and local and everything between. For a real parameter o, the family of a-shapes
of a finite point set offers a concrete substitute for the fuzzy notion of shape of the set [1, 2].

Growing disks. Let S be a finite set in R?, and for p € S and a 20, let Dp(a) = {z € R? | |zp| < a} be the disk
of radius a around p. By gradually and continuously Increasing « starting at 0, we can grow a disk D, around
each p € S. The disks grow simultaneously and at uniform speed. The boundary of the union behaves like the
parabolic front in section 10: the breakpoints where arcs meet move along Voronoi edges, and the arcs sweep out
Voronoi cells, see figure 11.1.

Figure 11.1: The breakpoints where arcs meet sweep out the 1-skeleton of the Voronoi diagram.

We introduce some notation. The. set of disks of radius a is Ds(a) = {Dy(a) | p € S}, the disk union is
Ds(a) = Dp(a), and its boundary is bd | JDs(a). A straightforward but most useful property is
p€ES P

() V» "UDs(a) =V, N Dp(a).

This is because a point z € V, is closest to p and therefore belongs to D,(a) if it belongs to any disk in Ds(e).
Use Voronoi cells to decompose the union into smaller cells £,(a) = Vo NUDs(a). By property (i), Ep(a) is the
intersection of V, with a single disk, D,(a), and is therefore convex. Define Es(a) = {Ep(a) | p € S}, see figure
11.2. Together, the Voronoi cells cover the entire plane, and any two Voronoi cells have disjoint interiors. This
implies

(i) UEs(a) = UDs(a), and
(iii) int Ep(a) Nint Ey(a) =0 if p # q.
Clearly, E;(a) C V, for all p € S. For bounded Voronoi cells, Ey(a) = Vp provided « is sufficiently large, namely

at least the maximum distance from p to any z € V. For unbounded cells, Ep(a) covers all of V, in the limit.

Alpha shapes and complexes. The nerve of the colle<tia . cells in the decomposition, N(a) = N(Es(a)), is
an abstract simplicial complex. Strictly speaking, A’ (@) 1s ne4 & subset of N(Vs) because it contains collections of
cells E, rather than collections of Voronoi cells. This is only s techaicality, and we have
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Figure 11.2: The Voronoi cells decompose the disk union into convex cells without shared interior points.
(iv) N(a) is isomorphic to a subcomplex of A/ (Vs).

The subcomplex of N(Vs) that is naturally isomorphic to A'(a) is obtained by substituting
of Ep(a) in N(a). The a-complez of S is the geometric realization, K(a) = Ks(a),
map ¢ : Es(a) — R? with P(Ep(a)) = p, see figure 11.3. Note that the geometric

in R? for every a, and these points are the same as used to derive the Delaunay t
of Voronoi cells. Therefore,

Vo for every occurrence
of N(a) defined by the injective
realization uses the same points
riangulation from the collection

(v) K(a1) C K(a2) C D whenever a; < as.

The a-shape of S is the underlying space, |K(a)|, of £(a), see figure 11.3.
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Figure 11.3: The a-complex and a-shape for the points and value of « as shown in figure 11.2.

Filtrations. As « grows continuously from 0 to +oo, UDs(a) also grows, and we get a continuous family of disk
unions. The corresponding family of alpha shapes is discrete because K .changes only when a new subset of Es
is added to its nerve. This happens when a pair of cells touches for the first time, or a triplet of cells meet at a
common Voronoi vertex. Sequences of complexes similar to the resulting sequence of alpha complexes have been
studied in algebraic topology. A filtration is a sequence of simplices,

70,01,...,0m,

so that for each 0 < j < m, K;i = {0 | 0 < i < j} is a simplicial complex, see e.g. [3, chapter 9]. The sequence
of alpha complexes is almost a filtration; it falls short of being one because two contiguous alpha complexes may
differ by more than just one simplex, even if general position is assumed. It is possible, however, to add complexes
between such contiguous alpha complexes to get a genuine filtration. Below, we study in detail how to decide for

two simplices 0,0’ € D whether & joins the growin alpha complex before or after or simultaneously with ¢’.
p g g

Vertices. Each vertex belongs to K(0), and for & < 0 we define K(a)

= {0}. So all vertices are added simultaneously,
at time a = 0, before all edges and triangles. We may order them

arbitrarily as o1, 09,...,0,.
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Edges. For an edge ab € D define o(ab) = J%bl; it is the radius of the smallest enclosing disk. If o > o(abd) then
Dy (@) N Dy(a) # 0, but this does not necessarily imply that £, (@) N Ey(a) have a non-empty intersection, see the
three points at the upper right in figure 11.2. If ab intersects the dual Voronoi edge, V;NVj, then a > o(ab) suffices
for ab € K(c). This is the case when no points of S lie inside the circle with ceater 2% and radius o(ab). If ad
does not intersect V; N V; then a > 0(ab) is not sufficient. We will come back to this case shortly.

Triangles. For abc € D, let o{abc) be the radius of the circumcizcle; it is also the distance of a, &, and ¢ from
the Voronoi vertex z = V, N Vs N V.. At the moment when the cells Eq(a), Ep(a), E.(a) reach z, which happens
simultaneously, they have a common intersection. They reach r at time a = o(abe), so o > o(abc) is necessary and
sufficient for abe € K(a).

Attached edges. An edge ab € D is attached if it does not intersect the dual Voronoi edge, V4 N V4. It belongs to
A(a) only if « is iarge enough for £, (@) and Ej(a) to reach a common Voronoj vertex. This vertex also belongs
to a third cell, E,(a). So ab is added to the alpha complex simultaneously with abc at time o = o(abc). In order
to get a genuine filtration, we let ab precede abc in the sequence; otherwise, one of the prefixes would correspond
to a collection of simplices that do not form a complex.

It should be clear that a filtration that contains the sequence of alpha complexes as a subsequence is a convenient
data structure representing the entire family of alpha shapes or complexes. The size of this filtration is just the
number of simplices in D, which is less than 6n. For a given o € R, we can retrieve K () by searching for the index
i so that 9(0y) < @ < g(0i41). Then K(a) = K;. This stipulates that each attached edge ab € D has its original
o-value replaced by the smallest ¢-value of any triangle (one or two) that contains ab.

Homework exercises

11.1 Let K be the a-complex of a finite poiﬁt set in R2. The. closure of L C
ClIL C K that contains L. The star of a simplex 7 € K is St 7 = {¢ € K,
Lkr={r' e CIStr |7 nr =0}

() What is the link of a triangle in K?
(ii) What are the three types of links an edge 7 € K can have?
(iii) Consider A = bd D,(a)Nbd UD,. Show that A =@ iff Lka is a cycle of edges.

K is the smallest subcomplex
| 7 C o}, and the link of 7 is

11.2 Let D be a set of n disks in general position in R2. The boundary of the union, bd UD, consists of at least
one and possibly several components, called boundary cycles, each a cyclic sequence of circular arcs.

(i) Show bd|JD has fewer than 2n boundary cycles.
(ii) Show each boundary cycle consists of fewer than 2n arcs.

(iii) Show the total number of arcs in the collection of boundary cycles is less than 6n.

11.3 Let D = Dg be the Delaunay triangulation of a finite set S CR2 Let o (o) be the radius of the smallest disk
that covers 0. Define L(a) = {r €D | ¢'(¢) < a}. Show £L(a) is a simplicial complex and K(a) C L(a).
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