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“Everyday life is full with decisions based on vicinity,
such as where to get coffee and where to drink it.”

7 Voronoi diagrams

A region equipped with a metric and a collection of sites is nzaturally decomposed into cells, each represeiiting the
acighborhood of one site. In computational geometry, a decompesition obtained following this gensral ideu is called
a Voronoi diagram, honoring the pioneering work of the Russian mathematician Georges Voronoi (5, 6]. This idea
has emerged independently in different disciplines of science and thought, and the resulting decompositions are
known under a variety of names. including Dirichlet tesselations (3], Thiessen polygone [4], and Blum’s medial axis
transform [2]. The survey article by Aurenhammer [1]'is a good recent and general reference.

Voronoi cells for points. The Euclidean distance between two points, z = (£,,&2) and y = (v1,v2) in the plane
is |zy| = ((61 — v1)? + (€2 — v2)?) 3. Given a finite set S C RZ, the Voronoi cell of pe S is

Vo = {z €R? | |zp| < |zq|,q € S}..
Note that V), = ﬂqES—{p} Hpq, where Hp, = {z € R? | |zp| < |zq|} is the half-plane bounded by the perpendicular

bisector of p and ¢ that contains p. The following properties are immediate consequences of the definition and are
illustrated in figure 7.1.

Figure 7.1: The Voronoi cells of 12 points. There are 25 Voronoi edges and 14 Voronoi vertices.

(1) V}, is a convex polygonal region bounded by at most n — 1 edges, n = card S.
(i) pe Vp,s0V, #0 forallpe S.
(iii) V; is unbounded iff p € bd conv S.
(iv) intV, NintV, =0 if p # q.
(V) UpES VF’ = Rz‘
Assume general position of the points in S, which in this case means no 4 points lie on a common circle. Then
no point z € R? belongs to more than three Voronoi cells. The intersection of any two Voronoi cells is then either
empty or a line segment, called a Voronoi edge of S. The intersection of any three Voronoi cells is either empty

or a point, called a Voronoi vertezr of S. By assumption of general position, every Voronoi vertex belongs to three
Voronoi edges and three Voronoi cells.

v

LEMMA. A set of n point in R? defines at most 3n — 6 Vor. 0.4 ~iges and at most 2n — 5 Voronoi vertices.
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ProoF. We can assume general position because a élight perturbation can only increase the number of Voronoi
edges and vertices. To use Euler’s relation for planar graphs (Thm. 3.1), we bend all unbounded Voronoi edges so
they join at a common endpoint, z. Let e, be the number of such edges. Now we have a connected plane graph
with n faces, e edges, and v + 1 vertices. Every vertex has degree 3, except for z, which has degree eo. Hence,
3v + s = 2¢. From Euler’s relation we get e =3n—3 — e <3n—6andv=e—-n+1<2n-5.

Cones and paraboloids. For a fixed point p € R?, the Euclidean distance from p is a map 6, : R* — R. Consider
its graph, Cp = {(z,€) € R? xR | £ = |zp|}, which is the surface of a cone in R3, see figure 7.2. Its apex is (p,0), its

Figure 7.2: For each p € S take a cone with apex p, vertical axis, and right opening-angle. The lower envelope of the
cones projects vertically to the Voronoi diagram of S. Similarly, we can take a paraboloid per point and project the lower
envelope of the paraboloids.

axis of rotation is the vertical line (p,£), £ € R, and its opening angle is %, or a quarter of a full angle. The graph
of the point-wise minimum, §(z) = minyes{8p(2)}, consists of patches of cone surfaces. The vertical projection
into R? of the patch in C, is the Voronoai cell of p.

Similarly, let CZ = {(z,€?) | € = |zp|} be the graph of the Euclidean distance square from p. C? is a paraboloid
of revolution with the same axis and the same bottommost point as Cp. The graph of the point-wise minimum,
minye 5{5’?(3:)}, consists of paraboloid patches, and the vertical projection of the patch in C’g is V.

Power distance. There are many generalizations of Voronoi diagrams, some using weights to madify the distance
function. A particular such generalization is achieved by replacing Euclidean distance with power distance. Assign
to each point p € S a real weight w,. The power distance of a point z € R? from p € S is my(z) = |zp|2 — wy,
see figure 7.3. Notice the power distance give rise to paraboloids, similar to those on the right side of figure 7.2
except that their bottommost points do not lie in the same plane if the weights are different. Consider the disk

Figure 7.3: For a point z outside the disk with center p and radius (wp)%, the power distance is the length square of
the line segment connecting z to a tangent point on the bounding circle.

D, = {z € R? | |zp|? < wp}, which is a point if wp = 0 and empty if wp < 0. Obviously,

>0 ((%&D,.
mp(z){ =0 fZgpd Dy, and
<0 7 wD,.
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Given points p = (¢1,42) and ¢ = (¥, ¥s) with weights wp, and wg, the points z = (£;,£;) with equal power
distance from both satisfy m,(z) = m,(z), and therefore

(61— 1) + (62— 02)* —wp = (&1 — 1) + (62 — ¥2)* - wy,
which is equivalent to
2z, p—q) = (p.p) — (9,9) — wp + wy.
The set of such points z is therefore a line perpendicular to p — g, called the radical azis of pand q. It is a
generaiization of the perpendicular bisector, and a few examples covering the cases of incomparable, nested, and

disjoint disks are shown in figure 7.4. Notice that adding the same amount to the weights of p and ¢ does not
change the radical axis.

D ©/OF

Figure 7.4: The radical axis passes through the intersection of the bounding circles, if non-empty. If the disks are nested,
the radical axis misses both and recedes to infinity when the centers of the disks get close to coincidence. Two disjoint
disks are separated by their radical axis.

Power cells. Given a finite set S of points in R?, each with a weight in R, we can now generalize the Voronoi
diagram to the power diagram (also weighted Voronoi diagram) of S. The power cell of p€ S is

Py = {z €R? | m5(2) < my(2),g € ).

P, =V, if the weights of all points are the same. Similar to V},, we have P, = anS—{p} Hpq, where Hyy = {z €
R? | mp(z) < my(z)}, see figure 7.5. The following properties are straightforward and correspond to properties (1)

Figure 7.5: The power cells of 12 weighted points. Each point has a non-empty cell, so the number of edges and vertices
are the same as in- the Voronoi diagram of the same but unweighted points.

through (v) of Voronoi diagrams. Only property (ii) does not extend from Voronoi to power diagrams.
(i) Py is a convex polygonal region bounded by at most n — 1 edges, n = card S.

(ii) p is not necessarily a point of P, and P, = 0 is possible

(iii) Pp is unbounded if p is a vertex of conv S.
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(iv) int P, Nint Py = @ if p # g.
(v) Upes B =R

If the points and weights are in general position, we can again define power edges as non-empty intersections of
two, and power vertices as non-empty intersections of three cells. In this case, general position means there is no
z € R? with equal power distance from 4 or more weilghted points. Intuitively, this means there is no circle (with
center r) that orthogonally intersects 4 or more bouding circles of disks Dy,.

Homework exercises

7.1 Let S be a finite set of points in R®, and for each peES, letV, ={z€R3||zp| < [zq], ¢ € S} be the Voronoi
cell of p. Show that for every plane A there is a set of weighted points, Sy = {p, € A |p €S}, so0 that V. nh
is the power cell of pj, within A.

7.2 Let S be a set of n weighted points, and define the distance of z € R from P € S equal to |zp| — wp. The cell
of p is the set of points z whose distance from p is less than or equal to the distance to any other point in S.

(i) Show that the cell of any p € S is connected.
(ii) Argue that the number of edges and vertices bounding the cells are less than 3n and 2n, respectively.

(Hint. Notice that the edges are pieces of hyperbolas, and that two cells can share more than just one edge.)
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