
Chapter 7

Voronoi diagrams and
weighted complexes

This chapter presents several complexes used in subsequent chapters. Voronoi diagramsare
among the oldest geometric complexes studied; they are unbounded polyhedral complexes that as-
sociate each point in space with the closest site in a fixed set of sites—for instance, indicating for
every point in town the nearest post office, as illustrated in Figure 7.1. Voronoi diagrams arise in
the study of natural phenomena such as crystal formation, meteorology, computational chemistry,
condensed matter physics, and epidemiology. Historically, they have been rediscovered several
times and are also known as Dirichlet tessellations, Thiessen polygons, andWigner–Seitz cells.
They are the natural combinatorial duals of Delaunay subdivisions. In later chapters, they play
important roles in ensuring the topological correctness of algorithms for meshing curved surfaces.

We also studyweightedVoronoi diagrams, in which each site is equipped with a numerical
weight; a larger weight allows a site to claim more territory. Weighted Voronoi diagrams are
Voronoi diagrams in which the Euclidean distance is replaced with a nonmetric measure called
thepower distance. We have already introduced weighted Delaunay triangulations, the duals of
weighted Voronoi diagrams, in Section 2.8. Here we explore their properties in further detail.

(a) (b)

Figure 7.1: (a) The Voronoi diagram of a planar point set. (b) With the Delaunay triangulation.
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Lastly, we present a kind of subcomplex of a weighted Delaunay triangulation that we call
a quarantined complex, which satisfies conditions that guarantee that the circumcenters of the
simplices lie in the triangulation. Quarantined complexes generalize Proposition 6.2 to higher
dimensions and to weighted Delaunay triangulations. We prove results aboutquarantined com-
plexes called the Monotone Power, Orthoball Cover, and Orthocenter Containment Lemmas, and
apply them in Chapters 8, 9, and 11.

7.1 Voronoi diagrams

Let S be a finite set of points, calledsites, in Rd. TheVoronoi cell Vu of a siteu ∈ S is the set of
all points inRd that are at least as close tou as to any other site inS. Formally,

Vu = { p ∈ Rd : ∀w ∈ S, d(u, p) ≤ d(w, p) },

andu is said to be thegenerating siteof Vu. Each Voronoi cell is a convex polyhedron, possibly
an unbounded polyhedron. The faces of the Voronoi cells are calledVoronoi faces. Voronoi faces
of dimensionsd, d − 1, 2, 1, and 0 are calledVoronoi cells, Voronoi facets, Voronoi polygons,
Voronoi edges, andVoronoi vertices, respectively. All Voronoi faces are convex, and all except
the vertices can be unbounded.

Definition 7.1 (Voronoi diagram). The Voronoi diagramof S, denoted VorS, is the polyhedral
complex containing the Voronoi cell of every siteu ∈ S and all the faces of the Voronoi cells.

Observe from the Voronoi diagram in Figure 7.1(a) that sites on the boundary of convS have
unbounded Voronoi cells. In the plane, two Voronoi edges of each unbounded Voronoi cell are
rays—unless the sites are collinear, in which case all the Voronoi edges are lines.

Voronoi faces can be characterized by the sites that generate them. DefineVuw to be the set of
points in the plane that have both sitesu andw as their nearest neighbor. Formally,

Vuw = Vu ∩ Vw

= { p ∈ Rd : d(u, p) = d(w, p) and∀ x ∈ S, d(u, p) ≤ d(x, p) }.
Vu1...u j = Vu1 ∩ . . . ∩ Vu j

= { p ∈ Rd : d(u1, p) = · · · = d(u j , p) and∀ x ∈ S, d(u1, p) ≤ d(x, p) }.

If Vuw is nonempty, it is a face of the Voronoi diagram and of both Voronoi cellsVu andVw, and
u andw are said to beVoronoi neighborsand thegenerating sitesor simplygeneratorsof Vuw.

If S is generic (recall Definition 4.2), a Voronoi face generated byj sites has dimension
d+1− j. For example, in the plane,Vuw is an edge of two cells andVuwx is a vertex of three cells.
If S is not generic, the dimensionality could be lower or higher; for example, if four vertices
in the plane lie in the circular orderu, v, w, x on the boundary of an empty open disk, then
Vuw = Vuwv = Vuwvx is a vertex. Forj ≥ 3, the face might have any dimension less than or equal
to d − 2; for j = 2, any dimension less than or equal tod − 1; for j = 1, it is always ad-face.

Each Voronoi facet lies on a bisector between two sites. For two distinct points u,w ∈ S,
the bisectorof u andw is the set of points at equal distance fromu andw, or equivalently, the
hyperplane orthogonal to the segmentuw that intersects the midpoint ofuw. Clearly,Vuw is a
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subset of the bisector. The bisector cutsRd into two halfspaces. LetHuw be the closed halfspace
containingu. Then

Vu =
⋂

w∈S\{u}
Huw.

Recall that Definition 1.5 defines aconvex polyhedronto be the convex hull of a finite point
set. For Voronoi diagrams, we define it more generally to be the intersectionof a finite set of
halfspaces, thereby permitting unbounded polyhedra.

For any finite point setS, the Voronoi diagram ofS and the Delaunay subdivision ofS defined
in Section 4.2 are related to each other by a duality illustrated in Figure 7.1(b). Aduality is a
bijective map between the faces of one complex and the faces of another that reverses the property
of inclusion; thus, ifσ ⊂ τ are faces of the Delaunay subdivision ofS, they map to dual faces
σ∗ ⊃ τ∗ of the Voronoi diagram ofS. Eachk-face of the Delaunay subdivision is paired with a
(d−k)-face of the Voronoi diagram. For example, each Delaunay vertex is paired with its Voronoi
cell, and each Voronoi vertex is paired with a Delaunayd-face that is the union of all Delaunay
d-simplices whose circumspheres are centered at that Voronoi vertex. The following theorem
makes precise the nature of this duality.

Theorem 7.1. Consider a site set P= {u1, . . . ,u j} ⊆ S . The polyhedronconvP is a k-face of
the Delaunay subdivision of S if and only if Vu1...u j is a (d − k)-face ofVor S and there is no site
u j+1 ∈ S \ P such that Vu1...u j = Vu1...u ju j+1.

P. If convP is a face of the Delaunay subdivision, there exists a closedd-ball B that contains
no site exceptu1, . . . ,u j , all of which lie onB’s boundary. The Voronoi cellVu1...u j contains the
center ofB, soVu1...u j is nonempty and hence a face of VorS. Because every site inS\P is further
from the center ofB than the radius ofB, there is no siteu j+1 ∈ S\P such thatVu1...u j = Vu1...u ju j+1.

For the reverse implication, letB be a closedd-ball whose center is an arbitrary point in the
interior of Vu1...u j and whose boundary passes throughu1, . . . ,u j . No other site is inB, so convP
is a face of the Delaunay subdivision.

If convP has dimensionk, letΠ be the (d−k)-flat that containsB’s center and is orthogonal to
aff P. Every point onΠ is equidistant from the sites inP, but no point inRd \Π is equidistant, so
Vu1...u j ⊆ Π. Every point onΠ whose distance fromB’s center is less thand(B,S \ P)/2 is closer
to the sites inP than to any other site inS, and is therefore inVu1...u j . It follows thatVu1...u j has
the same dimension asΠ, namelyd − k. �

To complete the duality, it is sometimes convenient to pair the unbounded outer face of the
Delaunay triangulation with a “vertex at infinity” where every ray of the Voronoi diagram is
imagined to terminate.

Thanks to duality, the bounds on the complexity of a Delaunay triangulation given in Sec-
tions 2.1 and 4.1 apply to Voronoi diagrams. Ann-site Voronoi diagram in the plane has at most
2n − 5 vertices and 3n − 6 edges. Ann-site Voronoi diagram inR3 has at most (n2 − 3n − 2)/2
vertices. Just as ann-vertex triangulation inRd can have as many asΘ(n⌈d/2⌉) d-simplices, an
n-site Voronoi diagram can have up toΘ(n⌈d/2⌉) Voronoi vertices.

To compute the Voronoi diagram of a setS of sites, first compute a Delaunay triangulation
DelS; Chapters 3 and 5 describe algorithms for doing so. Then compute the circumcenter of
eachd-simplex in DelS. Where two or more adjoiningd-simplices have the same circumcenter,
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Figure 7.2: From left to right, the power distanceπ(x, p[ωp]) is negative, zero, and positive. The
two balls at right are orthogonal, asπ(x[ωx], p[ωp]) = 0.

fuse them into a polyhedron (having the same circumcenter), yielding the Delaunay subdivision.
Finally, build the dual of the Delaunay subdivision. This last step might require no computation
at all; a data structure that represents the Delaunay subdivision and the circumcenters implicitly
represents the Voronoi diagram too.

7.2 Weighted Voronoi and weighted Delaunay

Just as Delaunay triangulations naturally generalize to weighted Delaunay triangulations, de-
scribed in Section 2.8, Voronoi diagrams generalize toweighted Voronoi diagrams, the duals of
weighted Delaunay subdivisions. Recall that aweight assignmentω : S 7→ R maps each site
u ∈ S to a weightωu. Negative weights are allowed. Aweighted point setis writtenS[ω], and a
weighted pointis writtenu[ωu].

Definition 7.2 (power distance). The power distancebetween two weighted pointsp[ωp] and
q[ωq] is

π(p[ωp],q[ωq]) = d(p,q)2 − ωp − ωq.

We sometimes apply the notation to unweighted points, which by default have weight zero.

A weighted pointp[ωp] can be interpreted as ad-ball Bp = B(p,
√
ωp). For an unweighted

point x outsideBp, the power distanceπ(x, p[ωp]) is the square of the length of the line segment
that extends fromx to touchBp tangentially, illustrated in Figure 7.2. The power distance is zero if
x lies on the ball’s boundary, and negative ifx lies inside the ball. We sometimes write the power
distanceπ(x, p[ωp]) asπ(x, Bp). If the weightωp is negative, the ball radius

√
ωp is imaginary,

and every point lies outside the ball.
A weighted Voronoi diagram is defined like a Voronoi diagram, except that the Euclidean

distance is replaced by the power distance. Observe that the larger a point’s weight, the closer it
is to other points, so a larger weight enables a site to claim a larger cell. Theweighted Voronoi
cell of a siteu ∈ S[ω] is

Wu = { p ∈ Rd : ∀w ∈ S[ω], π(p,u[ωu]) ≤ π(p,w[ωw]) }.

Counterintuitively, ifu’s weight is too small to compete with its neighbors,u can lie outsideWu,
andWu can even be empty (in which caseu is submerged—not a vertex of the weighted Delaunay
triangulation ofS). Moreover,Wu is not necessarily ad-face; it can be of any dimension.
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Figure 7.3: Three weighted point sets that have the same weighted Voronoidiagram, although the
weights are different in each set. At left, the orthoball (dashed) centered at the weighted Voronoi
vertex is orthogonal to all three weighted points. At center, the orthoball has radius zero. At right,
the radius of the orthoball is imaginary.

Definition 7.3 (weighted Voronoi diagram). The weighted Voronoi diagramof S[ω], denoted
Vor S[ω] and also known as thepower diagram, is the polyhedral complex containing the weighted
Voronoi cell of every siteu ∈ S and all the faces of the weighted Voronoi cells.

As a weighted point can be interpreted as a ball, we sometimes talk about the weighted
Voronoi diagram of a set of balls. The faces of a weighted Voronoi cell are calledweighted
Voronoi facesand, like Voronoi faces, are characterized by their generating sites as

Wu1...u j =Wu1 ∩ . . . ∩Wu j .

Unlike Voronoi faces, a weighted Voronoi face generated by two or more sites can have any
dimension less thand.

Under the power distance, the bisector ofu[ωu] and w[ωw] is still a hyperplane orthogonal
to uw, but it intersects the midpoint ofuw only if the points have equal weight; otherwise, it is
further from the site with greater weight, and it might not intersectuwat all. As Figure 7.3 shows,
if the balls centered atu andw intersect, the intersection of their boundaries lies on the bisector.
The bisector cutsRd into two closed halfspaces; letIuw be the closed halfspace dominated byu.
Then

Wu =
⋂

w∈S\{u}
Iuw.

A fundamental property of the weighted Voronoi diagram is that there is a symmetric rela-
tionship between the sites and the vertices of the weighted Voronoi diagram, ifwe interpret both
types of points as balls. Observe that a vertexv of the weighted Voronoi diagram is equidistant
in power distance from the weighted points that generate it. Assignv a weight̟v equal to the
power distance fromv to its generators. Then the power distance fromv[̟v] to its generators is
zero. LetBv be the ball centered atv whose radius is

√
̟v. We say thatv[̟v] is orthogonalto its

generators, and we callBv theorthoballcentered atv.

Definition 7.4 (orthogonal). Two weighted points—equivalently, two balls—areorthogonalto
each other if the power distance between them is zero. They arefurther than orthogonalif the
power distance is positive. They arecloser than orthogonalif the power distance is negative.
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If the weights are positive, orthogonality implies that the boundaries of the balls intersect each
other at right angles, as illustrated at right in Figure 7.2. To see this, consider weighted pointsp
andx with associated ballsBp andBx, and letq be a point on the boundary of both balls. If the
balls meet at right angles,∠pqx is a right angle, and by Pythagoras’ Theoremωp+ωx = d(p, x)2,
so the power distance betweenp[ωp] andx[ωx] is zero.

Orthoballs generalize the notion of circumballs to simplices with weighted vertices.For ex-
ample, ad-simplex with weighted vertices has a unique orthoball, namely the orthoball centered
at the vertex of the weighted Voronoi diagram of the simplex’sd+ 1 vertices, as illustrated at left
in Figure 7.3. More generally, an orthoball of a simplexσ can be understood in two ways: as a
ball that is orthogonal toσ’s weighted vertices, or as the intersection of a hyperplane that includes
the lifted simplexσ+ with the paraboloid induced by the parabolic lifting map.

Definition 7.5 (orthoball). Letσ be ak-simplex or a convexk-polyhedron with weighted vertices.
An orthoballof σ is a ball (open or closed, as desired) that is orthogonal toσ’s weighted vertices.
In other words, the centerc and radius

√
̟c of the orthoball satisfyd(v, c)2 − ωv − ̟c = 0 for

every vertexv of σ. Note that̟c can be negative, in which case the radius is imaginary. An
orthosphereof σ is the boundary of an orthoball ofσ.

If σ has an orthoball (every simplex does, but not every polyhedron), there is one unique
orthoball ofσ whose center lies on the affine hull ofσ, called thediametric orthoballof σ. The
diametric orthoball’s center is called theorthocenterof σ, its radius is theorthoradiusof σ, and
its intersection with aff σ is thek-orthoball of σ, which has the same center and radius as the
diametric orthoball. Anorthodiskis a 2-orthoball.

Analogously to circumballs, ak-simplex inRd has exactly onek-orthoball, but ifk < d it
has infinitely manyd-orthoballs. Thek-orthoball is a cross-section of everyd-orthoball (see
Lemma 7.4). Among alld-orthoballs, the diametric orthoball has minimum radius. Not every
convex polyhedron has an orthoball, but every face of a weighted Delaunay subdivision does.

The alternative way to understand an orthosphereO of a simplexσ is to imagine liftingO
to Rd+1 with the parabolic lifting map, yielding the ellipsoidO+ = {(p, ‖p‖2) : p ∈ O}, which is
the intersection of a hyperplane with the paraboloidpd+1 = ‖p‖2. With this observation, every
orthosphere induces a non-vertical hyperplane inRd+1 and vice versa. To see this, recall from
the proof of Lemma 2.1 that ifO has centero and radius

√
̟o, the lifted ellipsoidO+ lies on a

hyperplaneh ⊂ Rd+1 whose formula ispd+1 = 2o · p − ‖o‖2 + ̟o, wherep varies overRd. By
Definition 7.5,‖v‖2−ωv = 2o·v−‖o‖2+̟o for every vertexv of σ. Recall that a weighted vertex
v is lifted to a height of‖v‖2 − ωv; it follows thatv+ ∈ h for every vertexv of σ, soσ+ ⊂ h.

This intuition fails for an orthoball ofσ with imaginary radius, which induces a hyperplane
that includesσ+ but passes below the paraboloid and does not intersect it. But becauseimaginary
radii are permitted, the one-to-one map from orthospheres to hyperplanes still holds. This map
also provides an alternative way to understand the power distance; see Exercise 6.

Just as a simplex is Delaunay if it has an empty open circumball, a simplex isweighted De-
launay if it has an orthoball at a nonnegative power distance from every weighted vertex, or
equivalently if it has a witness hyperplane (recall Definition 2.5). Observe that these are pre-
cisely the conditions in which its verticesu1, . . . ,u j induce a faceWu1...u j of the weighted Voronoi
diagram.
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Theorem 7.2. Consider a weighted site set P[ω] = {u1, . . . ,u j} ⊆ S[ω]. The polyhedronconvP
is a k-face of the weighted Delaunay subdivision of S if and only if Wu1...u j is a (d − k)-face of
Vor S[ω] and there is no site uj+1 ∈ S \ P such that Wu1...u j =Wu1...u ju j+1.

P. Analogous to the proof of Theorem 7.1. �

This duality is a nearly-symmetric relationship, because every weighted vertex of a weighted
Delaunay face of any dimension is orthogonal to every weighted vertex ofits dual face in the
weighted Voronoi diagram. Therefore, every weighted Voronoid-cellWu has an orthoball, namely
the ballBu induced by the weighted siteu[ωu]. The only break in the symmetry arises from the
unbounded cells of the weighted Voronoi diagram. IfU[̟] is the set of weighted vertices of the
weighted Voronoi diagram VorS[ω], then the weighted vertices of the weighted Voronoi diagram
Vor U[̟] include the original sites inS[ω] except those on the boundary of convS.

A useful fact is that the orthocenter of ak-faceσ of a weighted Delaunay subdivision is the
point aff σ ∩ aff σ∗, whereσ∗ is σ’s dual face in the weighted Voronoi diagram. Because every
weighted Voronoi diagram is the dual of a weighted Delaunay subdivision, the complexity bounds
given for Voronoi diagrams in Section 7.1 apply to weighted Voronoi diagrams as well.

7.2.1 Properties of orthoballs

This section proves some geometric properties of orthoballs, the power distance, and weighted
Delaunay triangulations. The Delaunay triangulation is a special case of theweighted Delaunay
triangulation, so the propositions that follow apply to ordinary Delaunay triangulations as well.

Theorthogonal projectionof a pointp onto a flat or a linear cellg ⊆ R3 is the pointp̃ ∈ aff g
such that the line segmentpp̃ is perpendicular to the affine hull aff g.

An interesting property of weighted Voronoi diagrams is that any cross-section of a weighted
Voronoi diagram is a lower-dimensional weighted Voronoi diagram of a modified set of sites that
lie in the cross-section. The modified sites are found by orthogonally projecting the sites onto the
cross-sectional flat and adjusting their weights as described in the following proposition.

Proposition 7.3. Let Π ⊂ Rd be a flat. Let p∈ Rd be a point with weightωp. Let p̃ be the
orthogonal projection of p ontoΠ, with weightωp̃ = ωp − d(p, p̃)2. For every point x∈ Π,
π(x, p[ωp]) = π(x, p̃[ωp̃]).

P. π(x, p̃[ωp̃]) = d(x, p̃)2 − ωp̃ = d(x, p̃)2 + d(p̃, p)2 − ωp = d(x, p)2 − ωp = π(x, p[ωp]). �

If ωp̃ is nonnegative, the projected site ˜p[ωp̃] can be interpreted asB(p̃,
√
ωp̃), the smallestd-

ball that includes the cross-sectionB(p,
√
ωp)∩Π. If ωp̃ is negative, Proposition 7.3 still applies,

but the “cross-section” has imaginary radius. The same principle applies not only to weighted
sites, but also to orthoballs. The following proposition shows that cross-sections of an orthoball
of a simplex indicate the diametric orthoballs of its faces, as illustrated in Figure 7.4(a).

Lemma 7.4 (Orthoball Restriction Lemma). Let τ be a simplex with weighted vertices inRd.
Let B(c,

√
̟c) be an orthoball ofτ, and letσ be a face ofτ. Let c̃ be the orthogonal projection

of c ontoaff σ. Then the orthocenter and orthoradius ofσ are c̃ and
√
̟c̃, respectively, where

̟c̃ = ̟c − d(c, c̃)2, and B(c̃,
√
̟c̃) is the diametric orthoball ofσ.
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Figure 7.4: (a) The intersection of edgeab and the orthoball ofabc (the bigger dashed circle)
is an interval (bold). The smaller dashed circle indicates the diametric ball of this interval and
the diametric orthoball ofab. (b) The bisector of the orthoballs ofabc andabd is the line that
includes the edgeab.

P. By the definition of orthoball,B(c,
√
̟c) is orthogonal to the weighted vertices ofτ. By

Proposition 7.3,Bc̃ = B(c̃,
√
̟c̃) also is orthogonal to the weighted vertices ofσ, and is therefore

an orthoball ofσ. Because ˜c ∈ aff σ, Bc̃ is the diametric orthoball. �

Just as every weighted Voronoi facet lies on a bisector of two weighted points, every weighted
Delaunay facet not on the boundary of the triangulation lies on a bisector of two orthoballs ofd-
simplices, as illustrated in Figure 7.4(b). See the proof of Lemma 7.5 for confirmation.

7.3 Quarantined complexes

In our presentation of Ruppert’s algorithm, Proposition 6.2 shows that when no subsegment is
encroached, every triangle’s circumcenter lies in the domain, so the algorithm can safely insert
the circumcenter of any skinny triangle. In this section, we generalize the proposition to higher-
dimensional triangulations and weighted Delaunay triangulations to support the Delaunay refine-
ment algorithms in this book. We study triangulations calledquarantined complexesthat have the
following desirable properties.

Definition 7.6 (quarantined complex). Let P be a PLC inRd. let S ⊂ |P| be a finite point set
that includes the vertices ofP, and letω be a weight assignment such that a subcomplexQ of
DelS[ω] is a Steiner triangulation ofP. Thedimension kof bothP andQ is the dimension of
their highest-dimensional cell, which is not necessarilyd. A j-simplex inQ is called aboundary
simplexof Q if j < k and it is included in a linearj-cell in P. We callQ a quarantined complex if
it satisfies the following conditions.

(i) The dimension of aff |Q| is equal to the dimension ofQ.

(ii) Every vertex inQ has nonnegative weight.

(iii) The power distance between every pair of vertices inQ is nonnegative.
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(a) (b) (c)

Figure 7.5: (a) A quarantined complex. The weighted vertices are represented by balls. (b) This
one-dimensional complex is not a quarantined complex because it has dimension one and its affine
hull has dimension two. (c) This two-dimensional complex is not a quarantinedcomplex because
two weighted vertices, represented by the balls at upper left, are closer than orthogonal, and the
diametric orthoball of the boundary simplex at right is closer than orthogonal to a vertex.

(iv) For every boundary simplexσ of Q and every vertexv in Q, the power distance between
v[ωv] and the diametric ballBσ of σ is nonnegative, i.e.π(v[ωv], Bσ) ≥ 0.

Figure 7.5 illustrates a quarantined complex and some complexes that are not quarantined.
Note thatP is sometimes a subcomplex of a larger PLC; perhapsP contains a linear cell and
its faces. Observe that if every vertex has weight zero, condition (iii) is trivially satisfied, as
π(u, v)2 = d(u, v)2 > 0, and condition (iv) requires each boundary simplex to have an open
diametric ball that contains no vertex. In Ruppert’s algorithm, condition (iv)holds when no
subsegment is encroached.

Definition 7.7 (balls in a quarantined complex). For any quarantined complexQ of dimensionk
in Rd, let Ball(Q) denote the set of closed balls that containsB(v,

√
ωv) for every vertexv in Q,

the diametric orthoball of everyk-simplex inQ, and the diametric orthoball of every boundary
simplex ofQ that is not a vertex.

Figure 7.6 illustrates the balls in Ball(Q) for one quarantined complex. No vertex inQ is
closer than orthogonal to any ball in Ball(Q) except that vertex’s own ball: this is true for vertex
balls by condition (iii), for diametric orthoballs of boundary simplices by condition (iv), and for
diametric orthoballs ofk-simplices becauseQ is a Steiner weighted Delaunay triangulation.

7.3.1 The Monotone Power Lemma

The Monotone Power Lemma states that in ak-dimensional quarantined complex, the diametric
orthoballs of thek-simplices and boundary simplices that intersect an arbitrary ray have power
distances from the origin of the ray that increase monotonically along the ray, as illustrated in
Figure 7.7. The result also holds for the power distances from a point whose orthogonal projection
onto the affine hull of the quarantined complex is the origin of the ray. We use the lemma to prove
the correctness of mesh generation algorithms in Chapters 8, 9, and 11. Toapply the lemma, let
Q be a quarantined complex inRd, letΠ be the affine hull of |Q|, and letσ andτ be simplices in
Q.
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(a) (b)

Figure 7.6: Balls in a quarantined complex. (a) The weighted vertices (solid circles) and the
diametric orthoballs of the boundary edges (dashed). (b) Orthoballs of triangles (dashed).

Lemma 7.5(Monotone Power Lemma). LetΠ be a flat inRd. Let~γ ⊂ Π be a ray that intersects
two simplicesσ, τ ⊂ Π in that order—meaning that the ray strikes a point inσ then a distinct
point inτ. (Either point may be inσ∩ τ, and one simplex may be a face of the other.) Let Bσ and
Bτ be orthoballs ofσ andτ whose centers lie onΠ. Suppose that no vertex ofσ is closer than
orthogonal to Bτ and no vertex ofτ is closer than orthogonal to Bσ. Let p∈ Rd be an unweighted
point whose orthogonal projection ontoΠ, written p̃, is the source of~γ. Thenπ(p, Bσ) ≤ π(p, Bτ).

P. If Bσ = Bτ, thenπ(p, Bσ) = π(p, Bτ) and the result follows, so assume thatBσ , Bτ.
Becausepp̃ is orthogonal toΠ, π(p, Bi) = d(p, p̃)2+ π(p̃, Bi) for i ∈ {σ, τ}, and it suffices to prove
thatπ(p̃, Bσ) ≤ π(p̃, Bτ).

Let H = {x ∈ Rd : π(x, Bσ) = π(x, Bτ)} be the bisector ofBσ andBτ with respect to the power
distance. Every vertex ofσ is orthogonal toBσ and orthogonal or further than orthogonal toBτ,
and therefore lies in the closed halfspace{x ∈ Rd : π(x, Bσ) ≤ π(x, Bτ)} bounded byH. It follows
that every point inσ lies in the same halfspace. Symmetrically, every point inτ lies in the closed
halfspace{x ∈ Rd : π(x, Bσ) ≥ π(x, Bτ)}. Because~γ intersects a point inσ then a point inτ, its
origin p̃ is in the former halfspace—that is,π(p̃, Bσ) ≤ π(p̃, Bτ). �

e1

p̃
τ1

τ2

τ3

e4

e3

~γ

e2

Figure 7.7: A demonstration of the Monotone Power Lemma. The ray~γ crosses the simplices
e1, τ1, e2, e3, τ2, τ3, e4 in that order. The power distances from ˜p to their diametric orthoballs
increase monotonically in that order.
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τ

p

Figure 7.8: All vertices are unweighted. A weighted pointx[̟x] is drawn as a circle, at a positive
power distance from every vertex. The power distance fromp to the circumball of the triangleτ
is no greater than the power distance fromp to x[̟x].

7.3.2 The Orthoball Cover Lemma

The balls of a quarantined complexQ cover its underlying space—every point in|Q| is in some
ball in Ball(Q). More generally, suppose that a weighted pointx[̟x] in |Q| has nonnegative power
distances from the weighted vertices of a quarantined complexQ. Then for any pointp in space,
there is a ball in Ball(Q) at least as close top in power distance asx[̟x] is, as illustrated in
Figure 7.8. (See Exercise 10 for the relationship between these two claims.)

The Orthoball Cover Lemma below generalizes this claim further. It is a crucial step to prov-
ing the Orthocenter Containment Lemma, and it is also the key to guaranteeing boundary con-
formity for a postprocessing step in Chapter 11 that modifies vertex weights toeliminate sliver
tetrahedra from a mesh.

Lemma 7.6(Orthoball Cover Lemma). LetQ be a quarantined complex inRd, with a weight as-
signmentω to the vertices ofQ. Let x[̟x] be a weighted point inaff |Q| such thatπ(v[ωv], x[̟x]) ≥
0 for every vertex v inQ. Let p be a point inRd, and letp̃ be the orthogonal projection of p onto
aff |Q|. If xp̃ intersects|Q|, then there is a ball B∈ Ball(Q) such thatπ(p, B) ≤ π(p, x[̟x]).

P. If pcoincides with a vertexv ∈ Q, the ball associated withv[ωv] satisfies the claim because
π(p, v[ωv]) = −ωv, which is nonpositive becauseQ is a quarantined complex, andπ(p, x[̟x]) =
π(v[ωv], x[̟x]) + ωv ≥ ωv, which is nonnegative.

Consider a pointp ∈ |Q| that is not a vertex. Letσ be the highest-dimensional simplex inQ

that containsp. Eitherσ has the same dimensionality asQ or σ is a boundary simplex. In either
case, the diametric orthoballBσ of σ is in Ball(Q). We will see thatBσ satisfies the claim.

Following the proof of Lemma 2.1, associate the weighted pointx[̟x] with the hyperplane
h ⊂ Rd+1 whose formula isqd+1 = 2x ·q− ‖x‖2+̟x, whereq varies overRd. The power distance
π(v[ωv], x[̟x]) is the signed vertical distance ofv+ aboveh (see Exercise 6), and the requirement
thatπ(v[ωv], x[̟x]) ≥ 0 for every vertexv in Q is equivalent to requiring that every lifted vertex
v+ ∈ Rd+1 lie on or aboveh. Therefore, the entire lifted complexQ+ = {σ+ : σ ∈ Q} lies on or
aboveh.

Likewise,π(p, Bσ) is the signed vertical distance ofp+ aboveσ+. Asσ+ lies on or aboveh,
π(p, Bσ) ≤ π(p, x[̟x]) andBσ satisfies the claim.
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Figure 7.9: The linear cellg of least dimension through whichxp̃ exits |Q|.

Consider a pointp < |Q|. If p̃ ∈ |Q|, the reasoning above establishes that there is a ball
B ∈ Ball(Q) such thatπ(p̃, B) ≤ π(p̃, x[̟x]). Becausepp̃ is orthogonal to aff |Q| andB is centered
on aff |Q|, π(p, B) = d(p, p̃)2 + π(p̃, B) ≤ π(p, x[̟x]) andB satisfies the claim.

If p < |Q| and p̃ < |Q|, we prove the lemma by induction on the dimensionk of Q. In the base
case,k = 0 and p̃ must be in|Q|, so the lemma holds. Ifk > 0, assume for the inductive step
that the lemma holds for quarantined complexes of dimension less thank. Becausexp̃ intersects
|Q|, a walk from x to p̃ leaves|Q| at a pointy on the boundary of|Q|. Let P be the PLC that
Q triangulates, letg ∈ P be the linear cell of least dimension that containsy, as illustrated in
Figure 7.9, and observe that ˜p < aff g. Let Q|g = {σ ∈ Q : σ ⊆ g} be the subset of simplices that
triangulateg, and observe thatQ|g is a quarantined complex of dimension less thank.

Let x̄ be the projection ofx onto aff g, and let̟x̄ = ̟x − d(x, x̄)2. By Proposition 7.3, the
weighted point ¯x[̟x̄] is at nonnegative power distances from the weighted vertices ofg because
x[̟x] is. Observe that the projection ¯p of p onto aff g is also the projection of ˜p onto aff g, and
that x̄p̄ intersectsg becauseg, xp̃, andx̄p̄ all containy, as illustrated. By the inductive assumption,
there is a ballB ∈ Ball(Q|g) such thatπ(p, B) ≤ π(p, x̄[̟x̄]).

The ballBsatisfies the claim by the following reasoning. Becausexp̃ intersectsgbut p̃ < aff g,
eitherx lies ong or xp̃ crosses aff g. In the former case, ¯x = x; in the latter case,∠xx̄p̃ > 90◦

and therefore∠xx̄p > 90◦. In either case,d(p, x̄)2 + d(x̄, x)2 ≤ d(p, x)2. It follows thatπ(p, B) ≤
d(p, x̄)2 −̟x̄ = d(p, x̄)2 + d(x̄, x)2 −̟x ≤ d(p, x)2 −̟x = π(p, x[̟x]). �

The proof of the Orthoball Cover Lemma uses only the first two properties of a quarantined
complex, and it does not use the weighted Delaunay property. Hence, it holds for a wide class of
PLC triangulations besides quarantined complexes.

7.3.3 The Orthocenter Containment Lemma

The Orthocenter Containment Lemma states that all the orthocenters of thek-simplices and
boundary simplices in a quarantined complex lie in its underlying space. Delaunay refinement
algorithms insert orthocenters of simplices to obtain domain conformity and high element qual-
ity, so it is important to ensure that the orthocenters lie in the domain.

Lemma 7.7(Orthocenter Containment Lemma). LetQ be a quarantined complex of dimension k
in Rd. The orthocenter of every k-simplex lies in|Q|, as does the orthocenter of every boundary
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Figure 7.10: A facef of g separates the simplexτ ⊆ g from its orthocenterc.

simplex ofQ. More specifically, letP be the PLC thatQ triangulates. If an i-simplexτ ∈ Q is
included in a linear i-cell g∈ P, then the orthocenter ofτ lies in g.

P. Suppose for the sake of contradiction that somei-simplexτ ∈ Q is included in a linear
i-cell g ∈ P but has an orthocenterc < g. Let p be a point in the interior ofτ. The line segment
from p to c leavesg at a pointy on g’s boundary, illustrated in Figure 7.10. Letf ∈ P be the
face ofg of least dimension that containsy, and observe thatc < aff f andp < aff f . Let c̃ be the
orthogonal projection ofc onto aff f . Becausepccrossesf , ∠pc̃c> 90◦.

Let
√
̟c be the orthoradius ofτ, and let̟ c̃ = ̟c−d(c, c̃)2. By Proposition 7.3, the weighted

point c̃[̟c̃] has nonnegative power distances from the weighted vertices off becausec[̟c] does.
Let Q| f = {σ ∈ Q : σ ⊆ f } be the subset of simplices that triangulatef . Observe thatQ| f is a quar-
antined complex. Let ˜p be the orthogonal projection ofp onto aff f , and observe that ˜pc̃ contains
y and therefore intersectsf , as illustrated. By the Orthoball Cover Lemma (Lemma 7.6), there
is a ballB ∈ Ball(Q| f ) such thatπ(p, B) ≤ π(p, c̃[̟c̃]). From this and the fact that∠pc̃c > 90◦,
we haveπ(p, B) ≤ d(p, c̃)2 − ̟c̃ = d(p, c̃)2 + d(c̃, c)2 − ̟c < d(p, c)2 − ̟c = π(p, c[̟c]). Be-
causep ∈ τ andπ(p, B) − π(p, c[̟c]) is a linear function ofp, there is a vertexv of τ for which
π(v, B) < π(v, c[̟c]). Becausec[̟c] is orthogonal tov[ωv], we conclude thatπ(v[ωv], B) <

π(v[ωv], c[̟c]) = 0. But this implies thatv is closer than orthogonal to a ball in Ball(Q), which is
not permitted in a quarantined complex. �

The proof can be interpreted as saying that if the orthocenter ofτ lies outsideg, with a face
f of g separatingτ from its orthocenter, then some vertex ofτ encroaches upon a boundary
simplex included inf or is too close to a vertex off for Q to be a quarantined complex. The
encroaching vertex is the vertex ofτ that lies furthest towardB’s side of the bisector betweenB
and the orthocenterc[̟c].

7.4 Notes and exercises

Gustav Dirichlet [81] first used two-dimensional and three-dimensional Voronoi diagrams in the
study of quadratic forms in 1850. The general Voronoi diagram inRd is named after Georgy
Feodosevich Voronoi [220] (sometimes written Voronoy) who defined it in1908. Voronoi was
one of Boris Delaunay’s two doctoral advisors.

The informal use of the Voronoi diagram dates back to Descartes’sPrincipia Philosophiae[70]
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of 1644. In an illustration, he decomposes space into convex, Voronoi-like regions that contain
one star each. Each star seems to exert more influence in its region than the other stars. The con-
cept of Voronoi diagrams has been conceived in several fields and given different names, such as
domains of actionin crystallography [160],Wigner–Seitz zonesin metallurgy [224], andThiessen
polygonsin geography and meteorology [114, 214].

The power distance as a generalized distance function was known to Voronoi. The weighted
Voronoi diagram, also known as thepower diagram, has been used in problems in packings and
coverings of spheres [177] and number theory [135]. In computational geometry, Aurenham-
mer [9] pioneered the study of the weighted Voronoi diagram. For in-depthsurveys of Voronoi
diagrams, see Aurenhammer [10] and Aurenhammer and Klein [11].

The Monotone Power Lemma generalizes a result of Edelsbrunner [85],who uses it to show
that if the vertices of a weighted Delaunay triangulation are generic, then from the perspective
of any fixed point inRd, it is impossible to have a cycle ofd-simplices in which each simplex
overlaps the next simplex in the cycle. The insight is that any ray shot fromthe viewpoint inter-
sectsd-simplices in increasing order according to the power distances of their orthoballs from the
viewpoint. The result does not hold if the vertices are not generic, because it is possible to have a
cycle of overlapping simplices that have the same orthoball.

The Orthocenter Containment Lemma began with Ruppert’s proof of Proposition 6.2 for un-
weighted points in the plane [180], was partly extended to three dimensions byShewchuk [198],
and was extended to weighted Delaunay triangulations by Cheng and Dey [48].

Exercises

1. Draw the Voronoi diagram and Delaunay triangulation of the following point set.

2. Let Y andZ be two point sets in the plane, together havingn points. Consider overlaying
their Voronoi diagrams VorY and VorZ: that is, draw the edges of both Voronoi diagrams
and add a new vertex wherever an edge of VorY intersects an edge of VorZ, thereby creating
a polyhedral complex called theoverlayof Vor Y and VorZ. Formally, for each facef ∈
Vor Y and each faceg ∈ Vor Z, the overlay contains the facef ∩ g if it is nonempty.

(a) Give an example showing how to choose setsY andZ so the overlay hasΘ(n2) faces.
Make sure it is clear how to generalize your example asn→ ∞.

(b) Prove that for any two point setsY andZ, the overlay of their Voronoi diagrams has
only O(n) unboundedfaces.
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3. The worst-case complexity of a Voronoi diagram ofn sites isΘ(n2) in three dimensions and
Θ(n⌈d/2⌉) in Rd.

(a) Prove that a planar cross-section of ad-dimensional Voronoi diagram—in other words,
the polygonal complex formed by intersecting a 2-flat with a Voronoi diagram—has
complexity no greater thanO(n).

(b) Does a planar cross-section of ad-dimensional Delaunay triangulation also always
have a complexity ofO(n)? Explain.

4. Show that the weighted Voronoi bisector of two weighted points is a hyperplane orthogonal
to the line through the two points. Then show that if the points have nonnegative weights
and are further than orthogonal to each other, the bisector lies between them.

5. Show that at most two triangular faces of a tetrahedron can lie between the tetrahedron’s
interior and its circumcenter, but if its vertices have nonzero weights, threetriangular faces
can lie between its interior and its orthocenter.

6. Let p[ωp] and q[ωq] be two weighted points inRd, each representing either a weighted
vertex or an orthoball. Lemma 2.1 associates each ballBp in Rd with a hyperplanehp

in Rd+1, and thereby associates each weighted pointp[ωp] with a hyperplanehp. Show
that the power distanceπ(p[ωp],q[ωq]) is equal to the vertical distance ofp+ abovehq, or
symmetrically, the vertical distance ofq+ abovehp.

7. Let T be a triangulation of a point set in the plane, and letx be an arbitrary point in the
plane. Say that a trianglet2 ∈ T is behind a trianglet1 ∈ T from x’s perspective if one of
the following conditions is satisfied.

• Some ray shot fromx intersects firstt1 and thent2.

• There is a trianglet ∈ T such thatt is behindt1 andt2 is behindt from x’s perspective.
(Note that there need not be a single ray originating atx that intersects botht1 andt2,
and that this definition is recursive.)

Draw a triangulationT in the plane and a viewpointx such that some triangle inT is behind
itself. In other words, there is a cyclical list of triangles such that each triangle is behind
the preceding triangle in the cycle.

8. Consider a triangulation comprising just one triangleabcand its faces. Even for this simple
triangulation, the consequence of the Monotone Power Lemma can fail to holdif c[ωc]
is closer than orthogonal to the diametric orthoball ofab. Design a counterexample that
demonstrates this failure.

9. Consider a triangulation comprising just one edgeab and its vertices. The consequence of
the Orthoball Cover Lemma can fail to hold if the condition thatπ(a[ωa], x[̟x]) ≥ 0 is not
satisfied. Design a counterexample that demonstrates this failure.

10. LetQ be a quarantined complex with a weight assignmentω. Let x[̟x] be a weighted point
such thatx ∈ |Q| andπ(x[̟x], v[ωv]) ≥ 0 for every vertexv in Q. Show thatB(x,

√
̟x) is

included in the union of the balls in Ball(Q).
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11. Consider a triangulation comprising just one triangleτ and its faces. Suppose that every
vertex weight is zero andτ has an obtuse angle. Show that the consequence of the Or-
thocenter Containment Lemma fails to hold, and specify which property of a quarantined
complex the triangle violates.


