Chapter 7

Voronoi diagrams and
weighted complexes

This chapter presents several complexes used in subsequent shayiesnoi diagramsare
among the oldest geometric complexes studied; they are unbounded palydwedplexes that as-
sociate each point in space with the closest site in a fixed set of sites—tmmdes indicating for
every point in town the nearest posfioe, as illustrated in Figure 7.1. Voronoi diagrams arise in
the study of natural phenomena such as crystal formation, meteorotoggutational chemistry,
condensed matter physics, and epidemiology. Historically, they have bdmtovered several
times and are also known as Dirichlet tessellations, Thiessen polygongyigndr—Seitz cells.
They are the natural combinatorial duals of Delaunay subdivisions.tén ¢hapters, they play
important roles in ensuring the topological correctness of algorithms fdmningesurved surfaces.
We also studyweightedVoronoi diagrams, in which each site is equipped with a numerical
weight; a larger weight allows a site to claim more territory. Weighted Vororegrdams are
Voronoi diagrams in which the Euclidean distance is replaced with a nonmetasureecalled
the power distance We have already introduced weighted Delaunay triangulations, the duals o
weighted Voronoi diagrams, in Section 2.8. Here we explore their propéntieirther detail.

(b)
Figure 7.1: (a) The Voronoi diagram of a planar point set. (b) With th®y triangulation.
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Lastly, we present a kind of subcomplex of a weighted Delaunay triangulttat we call
a quarantined complexwhich satisfies conditions that guarantee that the circumcenters of the
simplices lie in the triangulation. Quarantined complexes generalize Proposifido Gigher
dimensions and to weighted Delaunay triangulations. We prove results qbarantined com-
plexes called the Monotone Power, Orthoball Cover, and Orthocentgaiiment Lemmas, and
apply them in Chapters 8, 9, and 11.

7.1 \oronoi diagrams

Let S be a finite set of points, callesites in RY. TheVoronoi cell \{, of a siteu € S is the set of
all points inRY that are at least as closeuas to any other site i6. Formally,

Vu={peR?:VweS, d(u,p)<dw,p)}

andu is said to be thgenerating siteof V. Each Voronoi cell is a convex polyhedron, possibly
an unbounded polyhedron. The faces of the Voronoi cells are cétlexhoi faces Voronoi faces

of dimensionsd, d — 1, 2, 1, and 0O are calledoronoi cells Voronoi facetsVoronoi polygons
Voronoi edgesandVoronoi verticesrespectively. All Voronoi faces are convex, and all except
the vertices can be unbounded.

Definition 7.1 (Moronoi diagram,) The Voronoi diagramof S, denoted VofS, is the polyhedral
complex containing the Voronoi cell of every sitee S and all the faces of the Voronoi cells.

Observe from the Voronoi diagram in Figure 7.1(a) that sites on thedaoyrof convS have
unbounded Voronoi cells. In the plane, two Voronoi edges of eatlowmded Voronoi cell are
rays—unless the sites are collinear, in which case all the Voronoi edgéaes.

Voronoi faces can be characterized by the sites that generate theme Y2gfito be the set of
points in the plane that have both siteandw as their nearest neighbor. Formally,

Vaw = VuN Vi
= {peRY:d(u p) =dw,p)and¥xe S, d(u, p) < d(x, p)}.

Viw = Vg N...nVy,
= {peRY:d(uy,p) =---=d(uj, p)andV x e S, d(ug, p) < d(x, p) }.

If Vuw is nonempty, it is a face of the Voronoi diagram and of both Voronoi &&JlandV,,, and
u andw are said to b&oronoi neighborand thegenerating sitesr simply generatorsof V.

If S is generic (recall Definition 4.2), a Voronoi face generatedjtsites has dimension
d+1- j. For example, in the plan¥,,, is an edge of two cells and,x is a vertex of three cells.
If S is not generic, the dimensionality could be lower or higher; for example,uif f@rtices
in the plane lie in the circular ordar, v, w, X on the boundary of an empty open disk, then
Vuw = Vuwv = Vuwvx IS @ vertex. Folj > 3, the face might have any dimension less than or equal
tod - 2; for j = 2, any dimension less than or equalite 1; for j = 1, it is always al-face.

Each Voronoi facet lies on a bisector between two sites. For two distiniotspow € S,
the bisectorof u andw is the set of points at equal distance frenandw, or equivalently, the
hyperplane orthogonal to the segmemt that intersects the midpoint afw. Clearly, V,w is a
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subset of the bisector. The bisector cifsinto two halfspaces. Ld#, be the closed halfspace
containingu. Then
Vu = m Huw.

weS\{u}

Recall that Definition 1.5 defines @nvex polyhedroto be the convex hull of a finite point
set. For Voronoi diagrams, we define it more generally to be the intersedtiariinite set of
halfspaces, thereby permitting unbounded polyhedra.

For any finite point se$, the Voronoi diagram of and the Delaunay subdivision 8fdefined
in Section 4.2 are related to each other by a duality illustrated in Figure 7.1(lluaity is a
bijective map between the faces of one complex and the faces of anothrevéirses the property
of inclusion; thus, ife c t are faces of the Delaunay subdivision®fthey map to dual faces
o* > 7 of the Voronoi diagram of. Eachk-face of the Delaunay subdivision is paired with a
(d—K)-face of the Voronoi diagram. For example, each Delaunay vertexrsdoaith its Voronoi
cell, and each Voronoi vertex is paired with a Delaudaface that is the union of all Delaunay
d-simplices whose circumspheres are centered at that Voronoi vertax.following theorem
makes precise the nature of this duality.

Theorem 7.1. Consider a site set P {uy,...,uj} € S. The polyhedrogonvP is a k-face of
the Delaunay subdivision of S if and only if, Vi, is a(d — k)-face ofVor S and there is no site
UJ+1 S S \ P SUCh that \4/1~~-Uj = VU1~~UjUj+1'

Proor. If convP is a face of the Delaunay subdivision, there exists a cldseall B that contains
no site excepti, . . ., uj, all of which lie onB's boundary. The Voronoi ceW,, . contains the
center ofB, soV,, y; is nonempty and hence a face of \®rBecause every site B\ P is further
from the center oB than the radius 0B, there is no sitelj,; € S\ P such thaVy, .y, = Vu,..ujuj.; -

For the reverse implication, |& be a closedi-ball whose center is an arbitrary point in the
interior of Vi, .y, and whose boundary passes through . ., u;. No other site is irB, so conw
is a face of the Delaunay subdivision.

If conv P has dimensioR, letII be the ( —k)-flat that contain®’s center and is orthogonal to
aff P. Every point onl1 is equidistant from the sites 1, but no point inRY \ IT is equidistant, so
Vi,..y; € I Every point onll whose distance frorB's center is less thad(B, S \ P)/2 is closer
to the sites inP than to any other site i, and is therefore iy, ;. It follows thatV,, ., has
the same dimension & namelyd — k. O

To complete the duality, it is sometimes convenient to pair the unbounded outenffte
Delaunay triangulation with a “vertex at infinity” where every ray of the ofwi diagram is
imagined to terminate.

Thanks to duality, the bounds on the complexity of a Delaunay triangulatian giv Sec-
tions 2.1 and 4.1 apply to Voronoi diagrams. Assite Voronoi diagram in the plane has at most
2n - 5 vertices and 8- 6 edges. Am-site Voronoi diagram ifR® has at mostr¢ — 3n — 2)/2
vertices. Just as amvertex triangulation irRY can have as many &(n'%/?!) d-simplices, an
n-site Voronoi diagram can have up®n'®/21) Voronoi vertices.

To compute the Voronoi diagram of a setof sites, first compute a Delaunay triangulation
DelS; Chapters 3 and 5 describe algorithms for doing so. Then compute thenceoter of
eachd-simplex in DelS. Where two or more adjoinind-simplices have the same circumcenter,



152

Figure 7.2: From left to right, the power distandg, p[wp]) is negative, zero, and positive. The
two balls at right are orthogonal, aéx[wy], p[wp]) = 0.

fuse them into a polyhedron (having the same circumcenter), yielding thenslaubdivision.
Finally, build the dual of the Delaunay subdivision. This last step mightirequo computation
at all; a data structure that represents the Delaunay subdivision anddin@centers implicitly
represents the Voronoi diagram too.

7.2 Weighted Voronoi and weighted Delaunay

Just as Delaunay triangulations naturally generalize to weighted Delauaaguiations, de-
scribed in Section 2.8, Voronoi diagrams generalizevéoghted Voronoi diagramshe duals of

weighted Delaunay subdivisions. Recall thawveight assignmenb : S — R maps each site
u € S to a weightw,. Negative weights are allowed. Meighted point set written S[w], and a

weighted points writtenu[wy].

Definition 7.2 (power distance) The power distancebetween two weighted points{w;] and
Olwq] is

n(plwpl, Alwg]) = d(p, CI)Z — Wp — Wgq-
We sometimes apply the notation to unweighted points, which by default havatzeig.

A weighted pointp[wp] can be interpreted asdball B, = B(p, y/wp). For an unweighted
point x outsideBy, the power distance(x, p[wp]) is the square of the length of the line segment
that extends fronx to touchBy, tangentially, illustrated in Figure 7.2. The power distance is zero if
x lies on the ball's boundary, and negativeiies inside the ball. We sometimes write the power
distancer(x, plwp]) as7(x, Bp). If the weightwy, is negative, the ball radiug/wp is imaginary,
and every point lies outside the ball.

A weighted Voronoi diagram is defined like a Voronoi diagram, exceft ttie Euclidean
distance is replaced by the power distance. Observe that the largert'a p&ilght, the closer it
is to other points, so a larger weight enables a site to claim a larger cellw@ighted Voronoi
cell of a siteu € S[w] is

W, = {peR?: Vwe S[w], n(p, Ulwd]) < x(p, Wwa]) }-

Counterintuitively, ifu's weight is too small to compete with its neighbous;an lie outsida,,
andW, can even be empty (in which casé submerged—not a vertex of the weighted Delaunay
triangulation ofS). Moreover, W, is not necessarily d-face; it can be of any dimension.
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Figure 7.3: Three weighted point sets that have the same weighted Voiiagoam, although the
weights are dterent in each set. At left, the orthoball (dashed) centered at the weigbienoi
vertex is orthogonal to all three weighted points. At center, the orthobalfddius zero. At right,
the radius of the orthoball is imaginary.

Definition 7.3 (weighted Voronoi diagram)The weighted Voronoi diagranof S[w], denoted
Vor S[w] and also known as thgower diagramis the polyhedral complex containing the weighted
Voronoi cell of every sital € S and all the faces of the weighted Voronoi cells.

As a weighted point can be interpreted as a ball, we sometimes talk about thetedeig
Voronoi diagram of a set of balls. The faces of a weighted Voronthiaze calledweighted
Voronoi facesand, like Voronoi faces, are characterized by their generating sites as

Wiy = Wy NN W;.

Unlike Voronoi faces, a weighted Voronoi face generated by two orensites can have any
dimension less thad.

Under the power distance, the bisectorupd,] andwlwy] is still a hyperplane orthogonal
to uw, but it intersects the midpoint afw only if the points have equal weight; otherwise, it is
further from the site with greater weight, and it might not intersmeat all. As Figure 7.3 shows,
if the balls centered at andw intersect, the intersection of their boundaries lies on the bisector.
The bisector cut®? into two closed halfspaces; l&f, be the closed halfspace dominatediby
Then

weS\{u}

A fundamental property of the weighted Voronoi diagram is that there jgraretric rela-
tionship between the sites and the vertices of the weighted Voronoi diagrasm jiiterpret both
types of points as balls. Observe that a vexaft the weighted Voronoi diagram is equidistant
in power distance from the weighted points that generate it. Assmmweightw, equal to the
power distance from to its generators. Then the power distance frgm, ] to its generators is
zero. LetBy be the ball centered a&twhose radius isy@,. We say that[w,] is orthogonalto its
generators, and we cdl, the orthoball centered at.

Definition 7.4 (orthogonal) Two weighted points—equivalently, two balls—asethogonalto
each other if the power distance between them is zero. Thefudher than orthogonalf the
power distance is positive. They ariser than orthogonaf the power distance is negative.
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If the weights are positive, orthogonality implies that the boundaries of tteibtersect each
other at right angles, as illustrated at right in Figure 7.2. To see thisidmnseighted pointp
andx with associated ballB, andBy, and letq be a point on the boundary of both balls. If the
balls meet at right anglegpgxis a right angle, and by Pythagoras’ Theoreg+ wy = d(p, X)?,
so the power distance betwepfw,] and x[wy] is zero.

Orthoballs generalize the notion of circumballs to simplices with weighted vertiagsex-
ample, ad-simplex with weighted vertices has a unique orthoball, namely the orthobadreen
at the vertex of the weighted Voronoi diagram of the simplexis1 vertices, as illustrated at left
in Figure 7.3. More generally, an orthoball of a simptexan be understood in two ways: as a
ball that is orthogonal to”’s weighted vertices, or as the intersection of a hyperplane that includes
the lifted simplexo* with the paraboloid induced by the parabolic lifting map.

Definition 7.5 (orthoball) Leto be ak-simplex or a convek-polyhedron with weighted vertices.
An orthoballof o is a ball (open or closed, as desired) that is orthogonalgeveighted vertices.

In other words, the centerand radius+/@, of the orthoball satisfyl(v, ¢)? — w, — @ = O for
every vertexv of . Note thatw. can be negative, in which case the radius is imaginary. An
orthosphereof o is the boundary of an orthoball of.

If o has an orthoball (every simplex does, but not every polyhedronje tleeone unique
orthoball ofo- whose center lies on thdtme hull of o, called thediametric orthoballof o-. The
diametric orthoball’s center is called tloethocenterof o, its radius is therthoradiusof o, and
its intersection with i o is the k-orthoball of -, which has the same center and radius as the
diametric orthoball. Arorthodiskis a 2-orthoball.

Analogously to circumballs, &-simplex inRY has exactly ond-orthoball, but ifk < d it
has infinitely manyd-orthoballs. Thek-orthoball is a cross-section of evedyorthoball (see
Lemma 7.4). Among altl-orthoballs, the diametric orthoball has minimum radius. Not every
convex polyhedron has an orthoball, but every face of a weightedubajesubdivision does.

The alternative way to understand an orthospl@@ a simplexo is to imagine liftingO
to R%1 with the parabolic liting map, yielding the ellipso@* = {(p,||pll?) : p € O}, which is
the intersection of a hyperplane with the parabolpid; = ||pl[2. With this observation, every
orthosphere induces a non-vertical hyperplan&dht and vice versa. To see this, recall from
the proof of Lemma 2.1 that ® has centep and radiusy/@,, the lifted ellipsoidO* lies on a
hyperplaneh ¢ R whose formula igpg:1 = 20 - p — |02 + @,, wherep varies oveRY. By
Definition 7.5,||V/[? — wy = 20-v—||0||> + @, for every vertew of . Recall that a weighted vertex
vis lifted to a height of|v||> — wy; it follows thatv* e h for every vertex of o, soo™ c h.

This intuition fails for an orthoball of- with imaginary radius, which induces a hyperplane
that includesr* but passes below the paraboloid and does not intersect it. But bensagiaary
radii are permitted, the one-to-one map from orthospheres to hypespdéiidolds. This map
also provides an alternative way to understand the power distancexsesse 6.

Just as a simplex is Delaunay if it has an empty open circumball, a simpleighted De-
launay if it has an orthoball at a nonnegative power distance from every uedigbertex, or
equivalently if it has a witness hyperplane (recall Definition 2.5). Olesémat these are pre-
cisely the conditions in which its vertices, . . ., uj induce a fac&\,, . ; of the weighted Voronoi
diagram.
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Theorem 7.2. Consider a weighted site sefd] = {uy, ..., uj} € S[w]. The polyhedromonvP
is a k-face of the weighted Delaunay subdivision of S if and only,jf Wis a (d — k)-face of
Vor S[w] and there is no sitejy; € S\ P such that W, _u; = Wo,...ujuj.s-

Proor. Analogous to the proof of Theorem 7.1. O

This duality is a nearly-symmetric relationship, because every weightec\wréeweighted
Delaunay face of any dimension is orthogonal to every weighted vertés diial face in the
weighted Voronoi diagram. Therefore, every weighted Vorahoell W, has an orthoball, namely
the ballBy induced by the weighted sitgw,]. The only break in the symmetry arises from the
unbounded cells of the weighted Voronoi diagramU [fo] is the set of weighted vertices of the
weighted Voronoi diagram V@[ w], then the weighted vertices of the weighted Voronoi diagram
Vor U[w] include the original sites i®[w] except those on the boundary of cdhv

A useful fact is that the orthocenter okaaceo of a weighted Delaunay subdivision is the
point &f o- N aff o, whereo™ is o’s dual face in the weighted Voronoi diagram. Because every
weighted Voronoi diagram is the dual of a weighted Delaunay subdivigiercomplexity bounds
given for Voronoi diagrams in Section 7.1 apply to weighted Voronoi @iagras well.

7.2.1 Properties of orthoballs

This section proves some geometric properties of orthoballs, the powenatistand weighted
Delaunay triangulations. The Delaunay triangulation is a special case wikilgated Delaunay
triangulation, so the propositions that follow apply to ordinary Delaunaydtiktions as well.

Theorthogonal projectiorof a pointp onto a flat or a linear celj C R3 is the pointge aff g
such that the line segmepp is perpendicular to thefiane hull &f g.

An interesting property of weighted Voronoi diagrams is that any cresses of a weighted
Voronoi diagram is a lower-dimensional weighted Voronoi diagram of difieal set of sites that
lie in the cross-section. The modified sites are found by orthogonally pirajetbe sites onto the
cross-sectional flat and adjusting their weights as described in the fojgwaposition.

Proposition 7.3. LetIT c RY be a flat. Let pe RY be a point with weightvp. Let p be the
orthogonal projection of p ontdl, with weightwp = wp — d(p, P)2. For every point xe II,
(X, plwpl) = 7(X, Plwp])-

Proor. (X, plwp]) = d(x. B)? — wp = d(x, B)2 + d(f. p)2 - wp = d(X, p)? — wp = 7(X, plwp]). O

If wp is nonnegative, the projected siievp] can be interpreted &(p, /wp), the smallest-
ball that includes the cross-sectiB(p, \wp) NI1. If wp is negative, Proposition 7.3 still applies,
but the “cross-section” has imaginary radius. The same principle apmiesnty to weighted
sites, but also to orthoballs. The following proposition shows that crestsess of an orthoball
of a simplex indicate the diametric orthoballs of its faces, as illustrated in Figuf@).7.4

Lemma 7.4 (Orthoball Restriction Lemma)Let v be a simplex with weighted vertices .
Let B(c, y/@c) be an orthoball ofr, and leto be a face ofr. LetC be the orthogonal projection
of ¢ ontoaff . Then the orthocenter and orthoradius@fare € and +/@g, respectively, where
we = we — d(c, €)?, and RE, \@¢) is the diametric orthoball ofr.
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@ (b)

Figure 7.4: (a) The intersection of edgb and the orthoball ofibc (the bigger dashed circle)
is an interval (bold). The smaller dashed circle indicates the diametric ballsointierval and
the diametric orthoball oéb. (b) The bisector of the orthoballs abcandabd is the line that
includes the edgab.

Proor. By the definition of orthoballB(c, /@) is orthogonal to the weighted verticeswofBy
Proposition 7.3Bz = B(E, +/@z) also is orthogonal to the weighted verticeofand is therefore
an orthoball ofo. Because& € aff o, Bz is the diametric orthoball. O

Just as every weighted Voronoi facet lies on a bisector of two weigluiedsp every weighted
Delaunay facet not on the boundary of the triangulation lies on a bisettwomrthoballs ofd-
simplices, as illustrated in Figure 7.4(b). See the proof of Lemma 7.5 for ouatfon.

7.3 Quarantined complexes

In our presentation of Ruppert’s algorithm, Proposition 6.2 shows thahwbesubsegment is
encroached, every triangle’s circumcenter lies in the domain, so the algarah safely insert
the circumcenter of any skinny triangle. In this section, we generalize tpogition to higher-

dimensional triangulations and weighted Delaunay triangulations to suppddeiaunay refine-
ment algorithms in this book. We study triangulations catjedrantined complexdhat have the

following desirable properties.

Definition 7.6 (quarantined complex)Let P be a PLC inRY. letS c |P| be a finite point set
that includes the vertices @f, and letw be a weight assignment such that a subcomplext
Del S[w] is a Steiner triangulation dP. The dimension kof both P andQ is the dimension of
their highest-dimensional cell, which is not necessatihA j-simplex inQ is called aboundary
simplexof Q if j < kand itis included in a lineaj-cell in P. We callQ a quarantined complex if
it satisfies the following conditions.

(i) The dimension of &|Q| is equal to the dimension &.
(i) Every vertex inQ has nonnegative weight.

(i) The power distance between every pair of vertice8 ia nonnegative.
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() (b)

Figure 7.5: (a) A quarantined complex. The weighted vertices are egessby balls. (b) This
one-dimensional complex is not a quarantined complex because it has dimens and itsfine
hull has dimension two. (c) This two-dimensional complex is not a quarantiomeglex because
two weighted vertices, represented by the balls at upper left, are cl@seotthogonal, and the
diametric orthoball of the boundary simplex at right is closer than orthdgorzavertex.

(iv) For every boundary simplex of Q and every vertex in Q, the power distance between
v[wy] and the diametric balB, of o is nonnegative, i.er(V[wy], B,) > 0.

Figure 7.5 illustrates a quarantined complex and some complexes that areanantined.
Note that? is sometimes a subcomplex of a larger PLC; perHRm®ntains a linear cell and
its faces. Observe that if every vertex has weight zero, condition (iii)viallly satisfied, as
a(u,v)? = d(u,v)?2 > 0, and condition (iv) requires each boundary simplex to have an open
diametric ball that contains no vertex. In Ruppert’s algorithm, condition Halgdls when no
subsegment is encroached.

Definition 7.7 (balls in a quarantined complexror any quarantined compléxof dimensionk

in RY, let Ball(Q) denote the set of closed balls that conteig +/wy) for every vertexv in Q,
the diametric orthoball of everlg-simplex inQ, and the diametric orthoball of every boundary
simplex ofQ that is not a vertex.

Figure 7.6 illustrates the balls in Ballf for one quarantined complex. No vertex Gis
closer than orthogonal to any ball in B&l) except that vertex’s own ball: this is true for vertex
balls by condition (iii), for diametric orthoballs of boundary simplices by condifig), and for
diametric orthoballs ok-simplices becausg is a Steiner weighted Delaunay triangulation.

7.3.1 The Monotone Power Lemma

The Monotone Power Lemma states that ikkdimensional quarantined complex, the diametric
orthoballs of thek-simplices and boundary simplices that intersect an arbitrary ray haverpow
distances from the origin of the ray that increase monotonically along thesailustrated in
Figure 7.7. The result also holds for the power distances from a powgewbrthogonal projection
onto the &ine hull of the quarantined complex is the origin of the ray. We use the lemmaue pro
the correctness of mesh generation algorithms in Chapters 8, 9, and appliiahe lemma, let

Q be a quarantined complex if, let IT be the &ine hull of|Q|, and letc- andr be simplices in

Q.
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Figure 7.6: Balls in a quarantined complex. (a) The weighted vertices (sotiés) and the
diametric orthoballs of the boundary edges (dashed). (b) Orthoballanfjtes (dashed).

Lemma 7.5(Monotone Power Lemma)L_etII be a flat inRY. Lety c II be a ray that intersects
two simplicesr, v c IT in that order—meaning that the ray strikes a pointoirthen a distinct
point int. (Either point may be i~ N 7, and one simplex may be a face of the other.) L.ead
B; be orthoballs ofr- and r whose centers lie ofl. Suppose that no vertex afis closer than
orthogonal to B and no vertex of is closer than orthogonal to B Let pe RY be an unweighted
point whose orthogonal projection onkg written p, is the source of. Thenr(p, B,) < n(p, B).

Proor. If B, = B, thenz(p, B,) = n(p, B;) and the result follows, so assume tigt # B;.
Becausep is orthogonal tdl, #(p, B)) = d(p, f)? + 7(p, B;) for i € {o, 7}, and it sufices to prove
thatz(p, By) < (P, B;).

LetH = {x e RY : n(x, B,) = n(x, B;)} be the bisector oB, andB, with respect to the power
distance. Every vertex af is orthogonal tdB,- and orthogonal or further than orthogonalBg
and therefore lies in the closed halfspgee RY : 7(x, B,) < 7(x, B;)} bounded byH. It follows
that every point inr lies in the same halfspace. Symmetrically, every pointlies in the closed
halfspacex € RY : 7(x, B,) > n(x, B;)}. Becausey intersects a point ior then a point inr, its
origin fis in the former halfspace—that is(p, B,-) < 7 (P, B;). O

Figure 7.7: A demonstration of the Monotone Power Lemma. Theyrasosses the simplices
e1, 71, €, €3, T2, T3, & in that order. The power distances frqmto their diametric orthoballs
increase monotonically in that order.
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Figure 7.8: All vertices are unweighted. A weighted poiftr,] is drawn as a circle, at a positive
power distance from every vertex. The power distance fpoimthe circumball of the triangle
is no greater than the power distance frpro X[ wy].

7.3.2 The Orthoball Cover Lemma

The balls of a quarantined compl&xcover its underlying space—every point|§§j is in some
ball in Ball(Q). More generally, suppose that a weighted pajrix] in |Q| has nonnegative power
distances from the weighted vertices of a quarantined confpl&hen for any poinp in space,
there is a ball in BallQ) at least as close tp in power distance ag[wy] is, as illustrated in
Figure 7.8. (See Exercise 10 for the relationship between these two claims.)

The Orthoball Cover Lemma below generalizes this claim further. It is dairsiep to prov-
ing the Orthocenter Containment Lemma, and it is also the key to guaranteeindarg con-
formity for a postprocessing step in Chapter 11 that modifies vertex weigkdgrimate sliver
tetrahedra from a mesh.

Lemma 7.6(Orthoball Cover Lemma)LetQ be a quarantined complex i, with a weight as-
signmentv to the vertices of. Let @] be a weighted pointiaff |Q| such thatr(V[wy], X[@]) =

0 for every vertex v ir. Let p be a point irRY, and letp be the orthogonal projection of p onto
aff |Q|. If xp intersectgQ|, then there is a ball B Ball(Q) such thatz(p, B) < 7(p, X[@x]).

Proor. If pcoincides with a vertex € Q, the ball associated witfjw,] satisfies the claim because
7(p, V[wy]) = —wy, Which is nonpositive becauskis a quarantined complex, aadp, X[@x]) =
m(Vwy], X[@y]) + wy = wy, Which is nonnegative.

Consider a poinp € |Q| that is not a vertex. Lat be the highest-dimensional simplex@n
that containg. Eithero has the same dimensionality @or o is a boundary simplex. In either
case, the diametric orthobd}, of o is in Ball(Q). We will see thaB, satisfies the claim.

Following the proof of Lemma 2.1, associate the weighted pxjiat,] with the hyperplane
h c R%! whose formula ig|q;1 = 2x- q— ||X||? + @y, whereq varies oveiRY. The power distance
x(V[wy], X[@y]) is the signed vertical distance wf aboveh (see Exercise 6), and the requirement
thatr(V[wy], X[@x]) = O for every vertew in Q is equivalent to requiring that every lifted vertex
vt e R%1 Jie on or aboveh. Therefore, the entire lifted compléXt = {o* : o € Q} lies on or
aboveh.

Likewise,n(p, B,) is the signed vertical distance pf aboves™. Aso* lies on or abovd,
7n(p, By) < n(p, X[wx]) and B,- satisfies the claim.
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Figure 7.9: The linear cef of least dimension through whickp exits|Q|.

Consider a poinp ¢ |Q|. If p € |9|, the reasoning above establishes that there is a ball
B € Ball(Q) such thatr(p, B) < n(p, X[wx]). Becausepp is orthogonal to fi |Q| andB is centered
on af |Q], 7(p, B) = d(p, p)? + (P, B) < n(p, X[w]) and B satisfies the claim.

If p¢|Qlandp ¢ |Q|, we prove the lemma by induction on the dimengkasf Q. In the base
case,k = 0 andpg'must be in|Q|, so the lemma holds. K > 0, assume for the inductive step
that the lemma holds for quarantined complexes of dimension leskit@ecausep intersects
|Q|, a walk fromx to P leaves|Q| at a pointy on the boundary ofQ|. Let P be the PLC that
Q triangulates, leg € P be the linear cell of least dimension that contamss illustrated in
Figure 7.9, and observe thptg"aff g. Let Qg = {o € Q : o C g} be the subset of simplices that
triangulateg, and observe thdlly is a quarantined complex of dimension less than

Let X be the projection ok onto &f g, and letwy = @y — d(X, X)°. By Proposition 7.3, the
weighted pointx[wy] is at nonnegative power distances from the weighted verticgshetause
X[wy] is. Observe that the projectigmof p onto &f g is also the projection op dnto &f g, and
thatxpintersectgy because, xp, andxp all containy, as illustrated. By the inductive assumption,
there is a balB € Ball(Q|g) such thatr(p, B) < 7(p, X{@wx]).

The ballB satisfies the claim by the following reasoning. Becaxfsmtersectg butp ¢ aft g,
eitherx lies ong or xp crosses fig. In the former casex = X; in the latter casesxxp > 90°
and thereforexxp > 90°. In either cased(p, X)2 + d(X; X)? < d(p, x)2. It follows thatz(p, B) <
d(p, X)? - wx = d(p, X)? + d(X, X)* — @x < d(p, X)* - @x = 7(p, X[@x)). O

The proof of the Orthoball Cover Lemma uses only the first two properfiasgoarantined
complex, and it does not use the weighted Delaunay property. Hencddé tor a wide class of
PLC triangulations besides quarantined complexes.

7.3.3 The Orthocenter Containment Lemma

The Orthocenter Containment Lemma states that all the orthocenters &fsihglices and
boundary simplices in a quarantined complex lie in its underlying space. Dmlaefinement
algorithms insert orthocenters of simplices to obtain domain conformity and hégteat qual-
ity, S0 it is important to ensure that the orthocenters lie in the domain.

Lemma 7.7(Orthocenter Containment Lemma)et Q be a quarantined complex of dimension k
in RY9. The orthocenter of every k-simplex lies@, as does the orthocenter of every boundary
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Figure 7.10: A facd of g separates the simplexc g from its orthocentec.

simplex ofQ. More specifically, letP be the PLC tha® triangulates. If an i-simplex € Q is
included in a linear i-cell ge P, then the orthocenter aflies in g.

Proor. Suppose for the sake of contradiction that sarsenplexr € Q is included in a linear
i-cell g € P but has an orthocenter¢ g. Let p be a point in the interior of. The line segment
from p to ¢ leavesg at a pointy on g's boundary, illustrated in Figure 7.10. Léte P be the
face ofg of least dimension that contaigsand observe that ¢ aff f andp ¢ aff f. Let € be the
orthogonal projection of onto &f f. Becausepc crossed, zptc > 90°.

Let v/@. be the orthoradius af, and letwz = @ — d(c, &)?. By Proposition 7.3, the weighted
point€[w¢] has nonnegative power distances from the weighted vertice®etause[w] does.
LetQls = {0 € Q: o C f} be the subset of simplices that triangulateéObserve tha®|; is a quar-
antined complex. Lep be the orthogonal projection gfonto &f f, and observe thgi€contains
y and therefore intersecfs as illustrated. By the Orthoball Cover Lemma (Lemma 7.6), there
is a ballB € Ball(Q|) such thatr(p, B) < n(p, ¢[we]). From this and the fact thatptc > 90°,
we haver(p, B) < d(p, €)% — @wz = d(p,€)? + d(&,¢)* — @ < d(p,c)? — we = n(p, c[wc]). Be-
causep € T andn(p, B) — n(p, c[w(]) is a linear function ofp, there is a vertex of r for which
n(v, B) < n(v,c[w¢]). Becausec[w] is orthogonal toviw,], we conclude thakr(Vw,], B) <
m(Vwy], c[w¢]) = 0. But this implies thav is closer than orthogonal to a ball in Ball, which is
not permitted in a quarantined complex. O

The proof can be interpreted as saying that if the orthocentetie$ outsideg, with a face
f of g separatingr from its orthocenter, then some vertex ofncroaches upon a boundary
simplex included inf or is too close to a vertex of for Q to be a quarantined complex. The
encroaching vertex is the vertex othat lies furthest towar®'s side of the bisector betwedh
and the orthocentafwy].

7.4 Notes and exercises

Gustav Dirichlet [81] first used two-dimensional and three-dimensioaednoi diagrams in the
study of quadratic forms in 1850. The general Voronoi diagrariris named after Georgy
Feodosevich Voronoi [220] (sometimes written Voronoy) who defined #908. \Voronoi was
one of Boris Delaunay’s two doctoral advisors.

The informal use of the Voronoi diagram dates back to DescaReisisipia Philosophiag70]
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of 1644. In an illustration, he decomposes space into convex, Voromordiflions that contain
one star each. Each star seems to exert more influence in its region thanehstars. The con-
cept of Voronoi diagrams has been conceived in several fieldsiged different names, such as
domains of actiofn crystallography [160]Wigner—Seitz zon&s metallurgy [224], and hiessen
polygonsin geography and meteorology [114, 214].

The power distance as a generalized distance function was known tndioiide weighted
Voronoi diagram, also known as tipewer diagram has been used in problems in packings and
coverings of spheres [177] and number theory [135]. In computdtge@metry, Aurenham-
mer [9] pioneered the study of the weighted Voronoi diagram. For in-dgyrtveys of Voronoi
diagrams, see Aurenhammer [10] and Aurenhammer and Klein [11].

The Monotone Power Lemma generalizes a result of EdelsbrunnemfBbJuses it to show
that if the vertices of a weighted Delaunay triangulation are generic, tioem thhe perspective
of any fixed point inRY, it is impossible to have a cycle ofsimplices in which each simplex
overlaps the next simplex in the cycle. The insight is that any ray shottihemiewpoint inter-
sectsd-simplices in increasing order according to the power distances of theatxadlk from the
viewpoint. The result does not hold if the vertices are not genericusedais possible to have a
cycle of overlapping simplices that have the same orthoball.

The Orthocenter Containment Lemma began with Ruppert’s proof of Rtimpos.2 for un-
weighted points in the plane [180], was partly extended to three dimensiddisdwychuk [198],
and was extended to weighted Delaunay triangulations by Cheng and 8ley [4

Exercises

1. Draw the Voronoi diagram and Delaunay triangulation of the followingtet.

2. LetY andZ be two point sets in the plane, together haumgoints. Consider overlaying
their Voronoi diagrams Voy and VorZ: that is, draw the edges of both Voronoi diagrams
and add a new vertex wherever an edge of¥ortersects an edge of V@r, thereby creating
a polyhedral complex called traverlayof VorY and VorZ. Formally, for each facé e
VorY and each facg € Vor Z, the overlay contains the faden gif it is nonempty.

(a) Give an example showing how to choose ¥ets1dZ so the overlay ha®(n?) faces.
Make sure it is clear how to generalize your examplae as co.

(b) Prove that for any two point se¥sandZ, the overlay of their Voronoi diagrams has
only O(n) unboundedaces.
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. The worst-case complexity of a Voronoi diagrannaites is®(n?) in three dimensions and

O(n'¥921) in R,

(a) Prove that a planar cross-section df@dimensional Voronoi diagram—in other words,
the polygonal complex formed by intersecting a 2-flat with a Voronoi diagrdnas
complexity no greater tha@(n).

(b) Does a planar cross-section oflalimensional Delaunay triangulation also always
have a complexity oD(n)? Explain.

. Show that the weighted Voronoi bisector of two weighted points is a plgoes orthogonal

to the line through the two points. Then show that if the points have nonnegegights
and are further than orthogonal to each other, the bisector lies betwaran th

. Show that at most two triangular faces of a tetrahedron can lie betwedatthhedron’s

interior and its circumcenter, but if its vertices have nonzero weights, thesgular faces
can lie between its interior and its orthocenter.

. Let plwp] and glwg] be two weighted points iRY, each representing either a weighted

vertex or an orthoball. Lemma 2.1 associates eachBgih RY with a hyperplaneh,
in R%1, and thereby associates each weighted ppliat,] with a hyperplanen,. Show
that the power distance(p[wp], dlwq]) is equal to the vertical distance pf abovehy, or
symmetrically, the vertical distance qf aboveh,.

. LetT be a triangulation of a point set in the plane, andxdte an arbitrary point in the

plane. Say that a triangltg € T is behind a trianglé; € T from X's perspective if one of
the following conditions is satisfied.

e Some ray shot fronx intersects first; and therts.

e There is atrianglé € T such that is behindt; andt, is behindt from x's perspective.
(Note that there need not be a single ray originating thiat intersects botty andty,
and that this definition is recursive.)

Draw a triangulatior¥ in the plane and a viewpoimtsuch that some triangle ffis behind
itself. In other words, there is a cyclical list of triangles such that eachgiéais behind
the preceding triangle in the cycle.

. Consider a triangulation comprising just one triarajleand its faces. Even for this simple

triangulation, the consequence of the Monotone Power Lemma can fail tafhcfldc]
is closer than orthogonal to the diametric orthobalbbf Design a counterexample that
demonstrates this failure.

. Consider a triangulation comprising just one edb&nd its vertices. The consequence of

the Orthoball Cover Lemma can fail to hold if the condition th@wa], X[@wx]) > 0 is not
satisfied. Design a counterexample that demonstrates this failure.

LetQ be a quarantined complex with a weight assignnaeritet x[wy] be a weighted point
such thatx € |Q| andn(X[wy], V[wy]) > O for every vertew in Q. Show thatB(x, \/w@y) is
included in the union of the balls in Ballj.
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11. Consider a triangulation comprising just one triangknd its faces. Suppose that every
vertex weight is zero and has an obtuse angle. Show that the consequence of the Or-
thocenter Containment Lemma fails to hold, and specify which property ofeaqtined
complex the triangle violates.



